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 Abstract 

My dissertation focuses on evaluating model uncertainties when numerically simulating 

surface water-groundwater (sw-gw) interactions at different scales. To do so, I mainly use 

HydroGeoSphere, a physically-based distributed finite element model that fully couples 

variably saturated subsurface flow with surface water flow. I evaluate three predominant model 

uncertainty types at three different scales of sw-gw interaction. For each of these investigations, 

I selected a corresponding study site.  

Firstly, I evaluate structural (conceptual) uncertainty from delineating baseflow contribution 

areas to gaining stream reaches, or stream capture zones, at the catchment-scale. I investigate 

how the delineated stream capture zone (in the Alder Creek watershed) can differ due to the 

chosen model code and delineation method (Chow et al. 2016). The results indicate that 

different models can calibrate acceptably well to the same data and produce very similar 

distributions of hydraulic head, but can produce different capture zones. The stream capture 

zone is highly sensitive to the post-processing particle tracking algorithm. Reverse transport is 

an alternative and more reliable approach that accounts for local-scale parameter uncertainty 

and provides probability intervals for the stream capture zone. The two methods can be 

combined to enhance the overall confidence in the delineated stream capture zone.  

Secondly, I evaluate parameter uncertainty when simulating meander-scale hyporheic 

exchange by conducting a model-based sensitivity (bathymetry) and uncertainty (subsurface 

K-distribution) analysis. I select the Steinlach River Test Site for demonstration. I conduct a 

sensitivity analysis to determine the aspects of river bathymetry that have the greatest influence 

on the predictive biases (Chow et al. 2018). Results indicate that simulating hyporheic 

exchange with a high-resolution detailed bathymetry using a 3D fully coupled sw-gw model 

leads to nested multi-scale hyporheic exchange systems. A poorly resolved bathymetry will 

underestimate the small-scale hyporheic exchange, biasing the simulated hyporheic exchange 

towards larger scales, thus leading to overestimates of hyporheic exchange residence times. 

The detailed river slope alone is not enough to accurately simulate the locations and magnitudes 

of losing and gaining river reaches. Thus, local bedforms in terms of bathymetric highs and 

lows within the river are required. Incorporating local bedforms will likely capture the nested 

nature of hyporheic exchange, leading to more physically meaningful simulations of hyporheic 

exchange fluxes and transit times. 
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Additionally, I conduct an uncertainty analysis to evaluate the trade-offs between intrinsic 

(irreducible) and epistemic (reducible) model errors when choosing between homogeneous and 

highly complex subsurface parameter structures (Chow et al. 2019). Results indicate that, if the 

parameter structure is too simple, it will be limited by intrinsic model errors.  By increasing 

subsurface complexity through the addition of zones or heterogeneity, we can begin to 

exchange intrinsic for epistemic errors. Thus, choosing the appropriate level of detail to 

represent the subsurface parameter distributions depends on the acceptable range of intrinsic 

structural errors for the given modelling objectives and the available site data.  

Thirdly, I evaluate data uncertainty at the bedform-scale in a fractured rock setting by 

modelling a conservative tracer experiment at the Eramosa Bedrock River Site. I use a 

stochastic discrete fracture network framework to represent the subsurface fractured bedrock 

connectivity, and in doing so produce a probabilistic distribution of the potential hyporheic 

exchange extents and residence times. The results indicate that the coincidence of fractures and 

hydraulic gradients determine the spatial extents of bedform-scale hyporheic exchange. 

Furthermore, hyporheic exchange residence times in bedrock rivers at the bedform-scale are 

potentially orders of magnitude longer when compared to fluvial rivers (i.e., months to years 

vs. minutes to hours). 

In the age of highly-parameterized integrated hydrological models, there is an increasing need 

to understand whether we are getting the right forecasts for the right reasons. Modelling is only 

a single tool in the scientific toolbox that works best when combined with others, e.g., field 

and laboratory experiments. The next generation of integrated hydrological modellers will face 

evermore challenging objectives, which to achieve will require multi-disciplinary teams. 

Regardless of the origins of your knowledge-base, it is important to always approach numerical 

models with a healthy level of skepticism. Ultimately, scientists should approach models with 

a relentless fearlessness to falsify them, which is an absolute necessity if we wish to continually 

push the envelope of scientific knowledge.
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 Zusammenfassung 

Meine Dissertation beschäftigt sich mit der Einschätzung von Modellunsicherheiten bei der 

numerischen Simulation von Oberflächenwasser-Grundwasser-Wechselwirkungen auf 

unterschiedlichen Skalen. Dafür benutze ich hauptsächlich HydroGeoSphere, ein physikalisch-

basiertes finite Elemente Modell, das die veränderlich gesättigte Untergrundströmung mit der 

Oberflächenströmung vollständig koppelt. Ich erkunde drei vorherrschende 

Unsicherheitstypen auf drei Skalen, indem ich die Oberflächenwasser-Grundwasser-

Wechselwirkungen simuliere. Für jede dieser Untersuchungen wähle ich ein geeignetes 

Untersuchungsgebiet aus. 

Zunächst untersuche ich die strukturbedingte (konzeptionelle) Unsicherheit auf der 

Einzugsgebietsskala bei der Bestimmung von  Basisabflussbeitragsflächen exfiltrierender 

Flussabschnitte oder Flusseinzugsgebiete. Dafür wähle ich das Einzugsgebiet des “Alder 

Creek” aus. Ich erforsche, inwieweit die so bestimmten Flusseinzugsgebiete von der Wahl des 

Modellcodes und der Abgrenzungsmethode abhängen (Chow et al. 2016). Die Ergebnisse 

deuten darauf hin, dass verschiedene Modelle hinreichend gut auf dieselben Daten kalibriert 

werden können, wobei sehr ähnliche Verteilungen des hydraulischen Potentials, aber 

unterschiedliche Geometrien der Einzugsgebiete entstehen. Das Flusseinzugsgebiet ist sehr 

sensitiv gegenüber der Wahl des Particle-Tracking-Nachverarbeitungsalgorithmus. 

Umgekehrter Transport stellt einen alternativen und zuverlässigeren Ansatz dar, der lokale 

Parameterunsicherheit berücksichtigt und Wahrscheinlichkeitsintervalle für das 

Flusseinzugsgebiet liefert. Beide Methoden können kombiniert werden, um die gesamte 

Konfidenz des abgeleiteten Flusseinzugsgebiets zu erhöhen. 

Als Zweites widme ich mich der Parameterunsicherheit, indem ich eine Sensitivitäts- 

(Bythymetrie) und Unsicherheitsanalyse (K-Verteilung des Untergrunds) für Simulationen des 

hyporheischen Austauschs auf der Mäanderskala durchführe. Dies untersuche ich am Beispiel 

des Steinlach-Testgeländes. Ich vollziehe eine Sensitivitätsanalyse um diejenigen Aspekte der 

Flussbathymetrie zu identifizieren, die den größten Einfluss auf systematische 

Vorhersageabweichungen haben (Chow et al. 2018). Die Ergebnisse zeigen, dass die 

Simulation des hyporheischen Austausches mit einer hochaufgelösten und detaillierten 

Bathymetrie unter Verwendung eines dreidimensionalen vollständig gekoppelten 

Oberflächenwasser-Grundwasser-Modells zu verschachtelten Multi-Skalen-Systemen von 

hyporheischem Austausch führt. Eine schlecht aufgelöste Bathymetrie führt zur 



viii  

Unterschätzung von kleinskaligem hyporheischen Austausch, wodurch derselbe auf größere 

Skalen verschoben wird. Dies führt zur Überschätzung von Aufenthaltszeiten in der 

hyporheischen Zone. Eine detaillierte Beschreibung der Flusssteigung allein reicht dabei nicht 

aus, um die Lage und den Betrag des Wasseraustauschs von exfiltrierenden und infiltrierenden 

Flussabschnitten richtig zu simulieren. Folglich sind lokale Flussgeometrien (Sohlformen) in 

Form von bathymetrischen Hoch- und Tiefpunkten des Flussverlaufs notwendig. Bei 

Berücksichtigung dieser Sohlform wird die verschachtelte Natur des hyporheischen 

Austauschs besser erfasst, wodurch physikalisch sinnvollere Simulationen von 

Austauschflüssen und Verweilzeiten erreicht werden können. 

Zusätzlich führe ich eine Unsicherheitsanalyse durch, um den Trade-off zwischen intrinsischen 

(nicht reduzierbaren) und epistemischen (reduzierbaren) Modellfehlern abzuwägen, der bei der 

Wahl zwischen homogenen und hoch-komplexen Untergrundparameterstrukturen entsteht 

(Chow et al. 2019). Die Ergebnisse deuten darauf hin, dass die Aussagekraft eines Modells bei 

einer zu simplen Parameterstruktur durch intrinsische Fehler eingeschränkt ist. Mit 

zunehmender Untergrundkomplexität durch die Berücksichtigung von Zonen oder 

Heterogenität können intrinsische Fehler durch epistemische Fehler ersetzt werden. Daher 

hängt die Wahl des Detaillierungsgrads im Hinblick auf die Untergrundparameterstruktur vom 

annehmbaren Grad an intrinsischen Strukturfehlern bei gegebenen Modellzielen, sowie von 

den verfügbaren Standortdaten ab. 

Drittens bewerte ich Datenunsicherheit auf der Sohlformskala in geklüftetem Fels. Als 

Demonstrator wähle ich die Modellierung eines konservativen Tracerexperiments am Standort 

"Eramosa Bedrock River". Ich benutze ein stochastisches, diskretes Frakturnetzwerk um die 

Konnektivität von Klüften des Festgesteins abzubilden. Dabei erzeuge ich eine probabilistische 

Verteilung von potentiellen Ausmaßen und Aufenthaltszeiten hyporheischer 

Austauschvorgänge. Die Ergebnisse zeigen, dass das Zusammenspiel von Klüften und 

hydraulischen Gradienten die räumlichen Ausdehnungen des hyporheischen Austauschs auf 

Sohlformskala bestimmen. Außerdem sind die hyporheischen Austauschverweilzeiten in 

Festgesteinsflüssen auf der Sohlformskala im Vergleich zu fluvialen Flüssen potentiell um 

Größenordnungen länger (d.h. Monate oder Jahre gegenüber Minuten oder Stunden). 

Im Zeitalter der hochparametrisierten integrierten hydrologischen Modelle gibt es eine 

zunehmende Notwendigkeit zu verstehen, ob aus den richtigen Gründen richtige Vorhersagen 

getroffen werden. Modellierung ist nur ein einzelnes Werkzeug im naturwissenschaftlichen 

Werkzeugkasten, das am besten in Kombination mit anderen Werkzeugen wie Feld- und 
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Laborexperimenten funktioniert. Die nächste Generation der Modellierer, die sich mit 

integrierten hydrologischen Systemen beschäftigt, wird immer anspruchsvolleren Zielen 

gegenübergestellt sein, deren Umsetzung multidisziplinäre Teams verlangt. Unabhängig von 

den Ursprüngen der eigenen Wissensbasis ist es wichtig, numerischen Modellen stets mit 

einem gesunden Maß an Skepsis zu begegnen. Abschließend sollten Naturwissenschaftler mit 

der unerbittlichen Furchtlosigkeit zur Falsifizierung an Modelle herantreten. Dies ist eine 

absolute Notwendigkeit, um die wissenschaftliche Erkenntnis ständig zu erweitern. 
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1.  Introduction 

Groundwater and surface water systems have long been considered separately by geoscientists 

(hydrogeologists and hydrologists) because they are known to act at very different temporal 

and spatial scales (Figure 1.1). However, in the last 30 years the science of surface 

water-groundwater (sw-gw) exchange has advanced tremendously. We now know that the 

environmental sustainability of some surface water systems depends on groundwater discharge 

to maintain steady baseflows, temperatures, habitat connectivity, and nutrients to support 

healthy aquatic eco-systems (Vaux 1968, Beatty et al. 2010, Bätz et al. 2016). Furthermore, the 

water that is associated with sw-gw exchange has the potential to undergo biogeochemical 

reactions, which can be attributed to the retention and degradation of pollutants within 

watersheds, ultimately impacting ecosystem health (Kalbus et al. 2006, Buss et al. 2009, 

Grathwohl et al. 2013, Trauth et al. 2018). Understanding the natural ecological functions of 

rivers and identifying riverbed exchange mechanisms are especially important for 

environmental engineers and freshwater biologists in their efforts to reclaim and enhance 

sw-gw exchange (Woessner 2000).  

Figure 1.1: Surface water-

groundwater exchange early 

and modern view: 

A) Early view of stream 

function as a closed pipe sys-

tem, receiving nutrients (or 

other solutes) from the cat-

chment with negligible amo-

unts of exchange between 

surface water-groundwater. 

B) Contrasting view of the 

stream’s function places the 

stream as an integral part of 

the catchment system (adap-

ted from Bencala 1993). 
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Understanding the biogeochemical nature and physical mechanisms that control sw-gw 

exchange requires knowledge from a combination of geoscience disciplines. To understand the 

physical nature of sw-gw exchange alone requires, as a minimum, knowledge of hydrogeology, 

hydrology and fluid mechanics, as well as geomorphology and sedimentology. My research 

focuses on studying the physical mechanisms that control sw-gw exchange using a model-

based approach.  

Model-based approach. Current geoscientific methods available to better understand the 

physical processes of sw-gw exchange include experimentation in the field and laboratory, as 

well as numerical modelling. Within each of these methods are vast sub-disciplines of 

geoscience, each with a wide variety of specialized methods and jargon. For example, 

hydrogeological (e.g., slug and pumping tests) and geophysical (e.g., electrical resistivity 

surveys) methods could be employed in the field to characterize sw-gw exchange at a site and 

to construct a site conceptual model (Doro et al. 2013, Ward et al. 2013, Steelman 2015a, 

Kennedy 2017). In the laboratory, sw-gw flume experiments could be conducted with the added 

benefit of controlling boundary conditions and material properties (Salehin et al. 2004, 

Packman et al. 2004, Tonina and Buffington 2007). Making careful observations in both field 

and laboratory experiments is critical in producing the measurements that can be used to derive 

governing equations for system processes. However, field and laboratory experiments can be 

expensive in both human (e.g., time, skills) and material (e.g., equipment, laboratories) 

resources. Therefore, an alternative potentially cost-effective form of experimentation is the 

use of numerical modelling that can incorporate the physical, chemical, and/or biochemical 

processes relevant to a given situation. Therefore, the research in this dissertation is model-

based, using models that were developed in connection with field data collected at select sites. 

Due to this focus, it is worthwhile looking at properties, advantages, disadvantages, and 

challenges of modelling in more detail. Lehr (1979) defines a numerical model as a simplified 

mathematical representation of a complex physical system and gives the example of a road 

map as a type of model that depicts a complex network of roads in a simplified manner for 

navigation. Numerical models can be process-based (i.e., physically-based models), which use 

processes and principles of physics (e.g., Darcy’s Law) to represent sw-gw flow interactions 

within a given domain (Anderson et al. 2015). Alternatively, there are also data-driven or 

empirically-based models, which use statistical equations from available data to derive 

relationships between a measured variable (e.g., precipitation, temperature) and the desired 

unknown variable (e.g., discharges at an outlet of a catchment). 
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Numerical modelling is powerful because it allows one to analyze a wide range of conditions 

rapidly and inexpensively (not included: integrated numerical models that are computationally 

expensive and require supercomputing clusters to achieve reasonable run-times) compared to 

controlled field and laboratory experiments (Frind 2003). For example, one could perform a 

sensitivity analysis with a numerical model (Section 1.1.4 and Chapter 4) to reveal the 

parameters that dominate the behaviour of the system under investigation, and thus prioritize 

the future study of specific parameters and processes. One could also perform a scenario 

analysis, where a number of “what if” scenarios could be posed to test hypotheses about the 

system properties and behaviour. Finally, numerical models play an important role when 

studying potentially hazardous chemicals, which by law cannot be discharged into the 

environment for experiments (in most developed countries). Thus, validated numerical models 

(by proxy field and laboratory studies) can be a way to simulate the fate and transport of 

potentially hazardous chemical experiments without risk to the environment (Sudicky et al. 

1983). 

Numerical modelling does not come without caveats however, it is important to note that 

“essentially, all models are wrong, but some are useful” (Box and Draper 1987).  The meaning 

of Box and Draper’s (1987) quote is that every numerical model is wrong because it is a 

simplification of a complex natural system (i.e., reality), nevertheless numerical models can be 

useful because they can help us explain and understand the importance of various system 

components and their interactions. 

Relevance of uncertainties. Furthermore, numerical modelling can be used to forecast future 

systems states. I have chosen to use the word forecast over prediction because it indicates that 

all estimates of future conditions have uncertainty (Anderson et al. 2015). Uncertainties arise 

in numerical modelling because all models are wrong (to varying degrees, Box and Draper 

1987) and because of uncertainties arising from four broad categories (Gupta et al. 2005, Jones 

and Mendoza 2012). These four broad uncertainty categories are: 

1. Structural/conceptual uncertainty (e.g., missing governing processes, mathematical 

formulation is incomplete and/or inaccurate, multiple working hypotheses, 

equifinality). 

2. Data uncertainty (e.g., imperfect and/or incomplete measurements) 

3. Parameter uncertainty (e.g., nonuniqueness, identifiability)  

4. Predictive uncertainty (e.g., out-of-sample simulations) 
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These four categories of model uncertainty will be further described in Section 1.1. 

As a result of the aforementioned model uncertainties, forecasts from numerical models should 

always be analyzed with a reasonable degree of skepticism and caution (Anderson and 

Woessner 1992, Konikow and Bredehoeft 1992). Failing to recognize the uncertainties inherent 

in forecasts from numerical models can lead to disastrous results. For example, overfishing and 

the eventual demise of the Grand Banks cod fisheries off the coast of Canada was partly due to 

inaccurate estimates of total allowable catch based on numerically modelled cod stock size 

(Pilkey and Pilkey-Jarvis 2007).  

Anderson et al. (2015) describes a model as being stochastic if any of its parameters, input or 

boundary conditions have a probabilistic distribution; otherwise, the model is considered to be 

deterministic. Many geoscientists (e.g., Beven and Binley 1992, Pappenberger and Beven 

2006, Cirpka and Valocchi 2016) have argued that the notion of a deterministic calibrated 

model has no place in environmental models since uniqueness is always achieved at the cost 

of error-inducing simplifications. Instead, it has debated that a large number of simulations 

should be used within a stochastic Bayesian framework to explore the range of forecast 

possibilities rather than making a single best-fit (deterministic) forecast (Pappenberger and 

Beven 2006, Gómez‐Hernández 2006, Cirpka and Valocchi 2016).  

Ultimately the usefulness of a numerical model and the amount of uncertainty that one is 

willing to accept depends on the purpose of the model. The purpose of a forecasting model is 

to plan future actions based on the likelihood that an event will occur given that some action 

or inaction will be taken, which is very different from predicting what will happen in the future 

(Doherty 2011, Anderson et al. 2015). Forecasting models are often used as engineering 

calculators to plan and design engineering projects (e.g., the dewatering of a proposed open pit 

mine in a humid region to ensure geotechnical slope stability). Alternatively, interpretive 

models (Anderson et al. 2015) have the purpose of improving our system understanding, which 

in this context would be to better understand sw-gw processes and evaluating the properties 

that govern their interactions. Voss (2011a) adds that there are few insights to be gained from 

the time-consuming and tedious process of calibrating highly parameterized models to data, 

rather the goal of a modelling study should be to learn something about the system through a 

model-based analysis. In other words, a calibrated model should not be the end product of a 

modelling study, instead the desired result should be the lessons learned from the model 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=G%C3%B3mez-Hern%C3%A1ndez%2C+J+Jaime
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development and analysis. Thus, stakeholders concerned with water management issues should 

buy advice from a competent hydro(geo)logist, not a hydro(geo)logical model (Voss 2011b). 

Scales. Sw-gw exchange operate at various spatial and temporal scales. Here, I consider 

large-scale sw-gw interactions as watershed-scale and river-corridor-scale (1 km to 10 m) 

processes, which can be mainly topography-driven (Cardenas 2008, Wang et al. 2018).  Others 

(e.g., Chen et al. 2014, Maxwell et al. 2015) classify large-scale hydro(geo)logical modelling 

as continental-scale (1,000’s km) modelling, however continental-scale interactions will not be 

considered here. I consider medium-scale sw-gw exchange to be meander-scale processes (1 

m to 10 cm), which are typically driven by hydrostatic processes (Wondzell and Gooseff 2013). 

I classify small-scale sw-gw exchange as bedform or riffle-pool-riffle-scale (10 cm to 1 mm), 

which can be primarily hydrodynamic-driven (Trauth et al. 2013).  

An important sw-gw process, known as hyporheic exchange, acts from the topography-driven 

watershed-scale (km to 100 km) to the hydrodynamic-driven bedform-scale (cm to m) 

(Cardenas 2008). Hyporheic exchange is defined as the process where river water infiltrates 

into the subsurface, potentially mixes with groundwater, and returns to the river. Figure 1.2 is 

a conceptual drawing of the nested hierarchies of hyporheic exchange systems from the river 

corridor to the bedform-scale.  

Boano et al. (2014) have shown that the scale of hyporheic exchange can be associated with 

different transit times (Figure 1.3). The scales of sw-gw interactions I will focus on in my 

dissertation will be the catchment-scale (Chapter 3), meander-scale (Chapters 4 and 5), and 

bedform-scale (Chapter 6). These research chapters (green text) and their corresponding scales 

(black text) are labelled in Figure 1.3. By examining Figure 1.3, we can get a sense of both the 

spatial and temporal magnitudes expected at the scales of sw-gw exchange in the upcoming 

chapters. The distribution of hyporheic transit times (the time taken for water to move through 

the subsurface) and the percentage of sw-gw exchange per unit length of river have been shown 

to be critical factors when determining the magnitude of potential biogeochemical reactions 

(Cardenas 2015, Altenkirch et al. 2016). Anderson et al. (2015) have noted that simulating 

transit times with groundwater models is more uncertain than the simulation of heads because 

it requires more detailed knowledge of aquifer heterogeneities. 

Scope. This dissertation aims to advance our understanding about the physical processes in 

sw-gw interactions through modelling-based research. Based on the discussion above, a 

meaningful definition of the scope of my dissertation and research questions must consider 
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combinations of the various model uncertainty types and different exchange processes at 

different scales. 

Therefore, the following subsections of Chapter 1 will describe in detail the definitions and 

categories of uncertainty when modelling sw-gw exchange (Section 1.1), followed by an 

assessment of knowledge gaps on sw-gw modelling at different scales (Sections 1.2 to 1.4). 

Finally, a description of which uncertainties being tackled at which scale will be provided, 

leading to a clear scope and selection of motivating research questions for this dissertation in 

Section 1.5. The resulting structure of this dissertation will be clarified in Section 1.6. 

1.1 Uncertainty in surface water-groundwater modelling 

Uncertainty is unavoidable in all efforts of environmental modelling: any model is by definition 

a simplified and therefore imperfect representation of a system, and this simplified 

representation is based on measurements (in applied modelling) which can never be error-free. 

Models used in industry are typically used in a deterministic way without a rigorous 

quantification of error/uncertainty.  It is not necessary (and indeed not possible) to remove the 

uncertainty from the models in order to use them to design earthwork engineering projects, 

support decision making, or develop and test hypotheses about natural system processes, as 

long as the uncertainty is quantified when dealing with model forecasts.  

According to Pappenberger and Beven (2006), in order for models to be useful and credible, it 

is important to have quantifiable measures of uncertainty that are easy to understand for 

stakeholders who may not have a background in modelling. In cases where the uncertainty of 

a model prediction is too large for the prediction to be useful for a given purpose, the 

uncertainty needs to be reduced. This in turn requires knowing at which stage of the modelling 

process the uncertainty has been introduced and how each individual uncertainty source 

contributes to the overall forecast uncertainty. Anderson et al. (2015) adds that the modeller is 

obligated to provide the best forecast possible, report uncertainty bounds, and communicate 

those limits in a clear and logical way to stakeholders. 

By quantifying the contribution of different uncertainty sources, decisions can be made where 

to focus efforts in reducing the uncertainty. My research focuses on identifying and quantifying 

different sources of uncertainty associated with the predictions from sw-gw models at different 

scales in order to gain insights into the relative importance of different uncertainty sources that 

can be applied to other hydrological modelling problems.  
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Figure 1.2: Conceptual drawing of nested hierarchical hyporheic exchange circulation cells at different scales: a) River-corridor-scale (1 km -10 m)[adapted 

from National Research Council 2002]: depicting meander-scale hyporheic exchange nested within regional groundwater discharge and recharge b) Meander-

scale (10 m - 10 cm): depicting bedform-scale hyporheic exchange nested within meander-scale hyporheic exchange, c) Bedform-scale (10 cm - 1 mm): 

depicting the turbulent flow regimes following bedforms that can lead to bedform-scale hyporheic exchange nested within meander-scale hyporheic exchange 

(Chow et al. 2018).
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Figure 1.3: Spatial and temporal scaling of hyporheic flow. Important regimes of hyporheic flow are 

denoted in red with minor regimes in blue and typical channel features influencing hyporheic exchange 

are shown in black. Chapters addressing hydrological features at a specific scale in green. Approximate 

spatial and temporal limits of hyporheic flow are illustrated with dashed lines, with external biological, 

fluvial, and geomorphological influences shown in grey. Hyporheic flow dimension (depth or length) is 

divided by channel width to account for scaling of size of channel features with river size (adapted from 

Boano et al. 2014). 

1.1.1 States of knowledge (or uncertainty)  

The former U.S. Secretary of Defense, Donald Rumsfeld, defined uncertainty as the state of 

current knowledge, saying that “there are known knowns, there are things that we know we 

know. We also know there are known unknowns, that is to say, we know there are some things 

we do not know. But there are also unknown unknowns, the ones we don’t know we don’t 

know.” Atherton (2013) organized these states of knowledge in a graphical matrix that I have 

adapted for sw-gw modelling (Figure 1.4).  
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Figure 1.4: Matrix of knowledge states. Four distinct quadrants with varying degrees of self-awareness 

and applied understanding. The green line separates our unconscious and conscious self-awareness, 

while the blue line separates our applied understanding. I define applied understanding as a level of 

mastery where the knowledge can be applied in a straightforward manner to solve engineering-type 

problems. The arrows indicate the states of knowledge cycle (Adapted from Atherton 2013).  
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There are four distinct quadrants within the matrix of knowledge states (Figure 1.4): 

Unconscious Incompetence (don’t know you don’t know): We are not aware of what we do 

not know and are therefore unconscious with regards to our incompetence. The “unknown 

unknowns” are the most elusive by nature and in my opinion the most dangerous type of 

unknowns because we are unaware of their existence and therefore cannot grasp the 

consequences of their ignorance. For example, there may be missing or incomplete processes 

in our sw-gw model that could be important, but we proceed ignorantly. 

Conscious Incompetence (know you don’t know): – We are aware that we do not have full 

knowledge of some particular aspect of the system under investigation, therefore we are 

consciously incompetent. Stochastic methods play an important role in this knowledge state. 

For example, unknown parameter and/or boundary conditions of a sw-gw model can be 

explored by treating them as random variables. With enough realizations and efficient 

stochastic methods, one could deduce useful insights even if there are a number of variables 

with uncertain values. In other words, we can quantify (to some extent) the model uncertainties 

that we are aware of by using stochastic methods. 

Conscious Competence (know you know): We have learned through careful experimentation 

and hypothesis testing fundamental physical laws of nature (e.g., Darcy’s Law in its valid 

range). These could be useful correlations and/or cause-and-effect relationships. We have 

reached a level of mastery or conscious competence and can apply this knowledge in useful 

ways, e.g., engineered designs. Furthermore, this knowledge can be shared through didactic 

methods.  

Unconscious Competence (don’t know you know): We have learned something so well, we 

have forgotten how we learned it in the first place and are thus operating on auto-pilot (i.e., 

without deliberate thought). In this case we are unconsciously competent. In other words, we 

may be so familiar and fluent with something that we now have difficulties explaining it to 

someone else in a clear and concise way (e.g., driving a car or language use). In the context of 

sw-gw modelling, one may lack the ability to communicate overly abstract uncertainty 

quantification concepts to stakeholders. 

The first step in the process of understanding sw-gw interactions is to become aware of our 

ignorance (Figure 1.4: transition from top-left to top-right quadrant). This means going from a 

state of unconscious incompetence to conscious incompetence. Next, we try to advance our 



 Modelling Surface Water-Groundwater Exchange 

 11 

knowledge by going from a state of conscious incompetence to conscious competence. This is 

often a difficult step (Figure 1.4: barrier between top-right and bottom-right quadrant) that 

usually requires novel experimentation and can sometimes take years to decades of research 

by numerous scientists. However, this step can be assisted by prioritizing recognized 

uncertainties in the upper right quadrant, which is the primary goal of my dissertation. 

Finally, once we have gained sufficient understanding, we may end up taking this knowledge 

for granted, forgetting how we learned it, thus rendering the knowledge difficult to share 

(Figure 1.4: transition from bottom-right to bottom-left quadrant should be prevented). To 

avoid transitioning to a state of unconscious competence it is important to properly document 

our current knowledge, as well as the methods used to obtain it (including our failed attempts, 

Feynman 1966). Instead, we should seek to use our newfound knowledge to fuel our curiosity 

to uncover more of natures’ “unknown unknowns” (Figure 1.4: transition from bottom-right to 

top-left quadrant), thus repeating the states of knowledge cycle.  

It is important to note that there is a type of observational bias that occurs when focusing on 

“known unknowns”, which is common in stochastic analysis of systems. Watzlawick (1993) 

popularized the “drunkard’s search principle” or the “streetlight effect”, which states that there 

is a tendency to bias one’s search (i.e., research resources) where it is easiest to look. This 

principle originates from an old joke:  

A policeman sees a drunk man searching for something under a streetlight and asks 

what the drunk has lost. He says he lost his keys and they both look under the streetlight 

together. After a few minutes the policeman asks if he is sure he lost them here, and 

the drunk replies, no, and that he lost them in the park. The policeman asks why he is 

searching here, and the drunk replies, "this is where the light is". 

An example of investigating a “known unknown” under the “streetlight” in sw-gw interaction 

science is research in subsurface heterogeneity for physically-based spatially distributed 

models, particularly hydraulic conductivity (Cardenas et al. 2004, Salehin et al. 2004, Zhou et 

al. 2014, Pryshlak et al. 2015, Liu and Chui 2018, Stonedahl et al. 2018). Since, hydraulic 

conductivity is known to vary orders of magnitude (Freeze and Cherry 1979), the conceptual 

representation of its heterogeneous distribution in the subsurface continues to be researched, 

when perhaps scientific resources could be better spent elsewhere. When scientific resources 

are inefficiently spent on studying similar problems that are obviously uncertain (i.e., 

drunkard’s search), there are often only marginal gains in our understanding of natural system 
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processes. This can lead to stagnation within scientific research, or as Schwartz (2013) calls it 

“Zombie-Science”. Furthermore, the cost of opportunity losses in research is unknowable.  

Schwartz (2013) claims that problem selection is the key to protect against zombie-science. 

Therefore, I have chosen to investigate different model uncertainty types at different scales of 

sw-gw exchange modelling, with the aim of achieving novel insights. Although, I dedicate 

Chapter 5 to investigating subsurface heterogeneity for a sw-gw exchange model, I intend to 

produce novel insights regarding the potential trade-offs one could encounter when choosing 

one subsurface structure over another. The model uncertainties I will describe in the following 

section are the “known unknowns”. However, I will attempt to investigate uncertainties around 

(not under) the “streetlight” in my dissertation.  

1.1.2 Defining types of model uncertainty  

A number of different taxonomies have been suggested for classifying types of uncertainty, 

with sometimes conflicting uses of certain terms. Three broad categories of environmental 

model uncertainty have been suggested by Gupta et al. (2005) and a fourth by Jones and 

Mendoza (2012). The four uncertainties are: 

1. Structural (Conceptual) Uncertainty 

2. Data Uncertainty 

3. Parameter Uncertainty  

4. Predictive (Model Niche) Uncertainty 

Structural (or conceptual) uncertainty has different definitions for hydrologists and 

hydrogeologists. In the context of lumped conceptual models that are typically used by 

hydrologists, the definition of this term refers to the types of model components (such as water 

storage and transfer functions) and connections between these components. In the context of 

distributed groundwater and surface water models that numerically solve physically-based 

partial differential equations (PDE), which are typically used by hydrogeologists, the usage is 

less clear. It can be used to capture the effects of uncertainty about the geometry or limits of 

the domain and the location of aquitards and facies boundaries, in addition to uncertainties in 

the mathematical formulation (e.g., missing physical processes, incomplete and/or inaccurate 

mathematical formulation). Furthermore, multiple structural (conceptual) models can represent 

processes and hydro(geo)logical responses equally well, this is referred to as equifinality 

(Anderson et al. 2015). 
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According to Gupta et al. (2012) model structure encompasses the:  

 Conceptual model: the physical and process structures 

 Mathematical model: the symbolic representation of the processes in the form of 

equations and the spatial variability structure 

 Computational structure: the discretization and solution of the mathematical 

formulation. Technically, computational structural choices introduce numerical errors, 

which are known and differ from model uncertainty. 

Data uncertainty refers to observations that are used to build, force, and calibrate the model. 

An example of data uncertainty are errors in measuring hydraulic heads used for groundwater 

model calibration or errors in measuring and interpolating precipitation used to estimate 

recharge for hydro(geo)logical systems.  

Parameter uncertainty refers to the situation that there is typically not a single best set of 

parameter values that can be assigned to a model (Carrera and Neuman 1986), but rather the 

calibration process finds distinct and different parameter value combinations or parameter 

value ranges that match the observed data equally well. This is typically referred to as 

nonuniqueness, where multiple parameter combinations can provide similar fits to the 

calibration target (Anderson et al. 2015). Furthermore, a model parameter that is both sensitive 

and uncorrelated is more likely to be estimated than an insensitive and/or correlated parameter, 

this is known as parameter identifiability. In other words, parameter identifiability reflects the 

ease with which particular parameter values might be calibrated (Beven 2009). 

Physically-based hydrogeological models typically have more unknown parameter values than 

field measurements. Therefore, the inverse problem is underdetermined with respect to the 

observations (i.e., no. of calibration parameters [unknowns] > no. of observation [knowns]) 

and is therefore mathematically ill-posed. Parameter nonuniqueness is often reducible by 

including more and varied calibration data. Different time periods and data types can contain 

(non-redundant) information related to different aspects of the modelled system (Appendix A). 

Predictive (or model niche) uncertainty is described by Jones and Mendoza (2012) as the 

uncertainty arising from the application of a model outside the system for which it was 

originally developed and calibrated. Silver (2012) describes model niche uncertainty as the 

problem of using the past as a guide while recognizing the future may be different. In other 

words, predictive uncertainty is when a model is used “out of sample”, which means the model 

is making forecasts with data that only partially matches the prediction trying to be made. This 
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is the case if the calibration data does not cover the entire range of forcings to be accounted for 

in the prediction, which is typical when a model is being used for forecasting. This is because 

predictive modelling often requires the model to produce output outside of time frames and 

stresses in which it was originally developed (e.g., a new well or planned expansion of an open 

pit mine). Niels Bohr succinctly epitomized predictive model uncertainty saying that 

“prediction is very difficult, especially about the future.” In light of model predictive 

uncertainty, Beven and Young (2013) recommends applied modellers to use the term fit-for-

purpose (rather than calibrated) to describe a model that has been conditionally optimized for 

a specific application. 

In practice, a calibrated model can only be considered conditionally optimal (Beven 2009) 

because it depends on data (and their errors) and heuristic criteria for judging optimality that is 

selected by the modeller (Anderson et al. 2015). Instead, a modeller should acknowledge the 

aforementioned uncertainties and consider a “family” or ensemble of possible reasonable 

models because physically-based hydro(geo)logical models are inherently equifinal (i.e., are 

conceptually uncertain) and nonunique (i.e., have parameter uncertainty). Model evaluation 

should then be thought of as a form of hypothesis testing, rather than seeking the “best/optimal” 

model, which leads to the concept of multiple working hypotheses (Beven 2009, Ferré 2017). 

A skilled modeller should be able to discern dead-end models quickly and focus on a reasonable 

subset of models (Anderson et al. 2015). Models outside the reasonable realm can be discarded 

objectively (or assigned a low model weight in a Bayesian framework). I define an unrea-

sonable model as one that fails to achieve a satisfactory match to historical data (i.e., hindcast), 

does not use defensible parameter values (e.g., within the measured range or ranges reported 

in the literature for similar properties), and/or is inconsistent with the conceptual model.  

1.1.3  Uncertainty types in the modelling process 

Another way to understand the different uncertainty types is to label them as they appear in the 

modelling process (Figure 1.5). The most important step in modelling starts with defining the 

purpose (Predictive Uncertainty) and building the conceptual model (Structural Uncertainty). 

In order to build a conceptual model, one needs to study the existing data at a site (Data 

Uncertainty). Afterwards the appropriate numerical/mathematical model is chosen to represent 

the conceptual model (Structural Uncertainty). The model choice generally constrains the 

number of physical processes represented, the discretization scheme, and the representation of 

boundary conditions. Once the numerical model is built, the model parameters can be calibrated 
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to existing data (Parameter and Data Uncertainty✝). The model is then used to make predictions 

outside of the calibrated conditions and thus will be introduced to boundary conditions 

representing future scenarios (Predictive Uncertainty). Finally, a model can be post audited. 

This is a form of model validation, where a model is re-visited to judge the accuracy of its 

predictions (Anderson and Woessner 1992, Konikow and Bredehoeft 1992). Sections 1.5 and 

1.6 will describe the uncertainty types addressed by my motivating research questions and the 

chapters in which they reside, respectively.  

 

1.1.4 Sensitivity analysis 

Sensitivity is a measure of how changes in model input values or assumptions impact outputs 

(Morgan and Henrion 1990). A sensitivity analysis attempts to uncover model input (i.e., 

parameters, boundary conditions) that may have a significant impact on model output. 

Depending on the model’s purpose, the sensitive input should also significantly impact the 

                                                 
✝ A study by Motavita et al. (2019), which I co-authored, investigates the choice of data time series length and 

hydrological condition on parameter calibration and validation uncertainty using a conceptual rainfall-runoff 

model (Appendix A). 

Figure 1.5: Different uncertainty types in 

hydrogeological model development 

(adapted from Anderson and Woessner 

1992). 

Uncertainty types mapped on modelling 

process: 

Structural (Conceptual) Uncertainty  

Data Uncertainty  

Parameter Uncertainty  

Predictive (Niche) Uncertainty 
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model output of concern. In other words, a model input could be sensitive, but if it impacts 

model output that is irrelevant for the design/study, then it is unnecessary to focus resources in 

constraining that model input.  

Therefore, the model input of greatest concern is the one that has little data to constrain it and 

has a significant impact on the model output of interest. Sensitivity analysis can highlight the 

existing knowledge gaps once sensitive inputs are identified. It can also help guide the use of 

future resources in order to constrain model inputs and parameters (i.e., modelling additional 

scenarios, the design of field investigations). 

Sensitive inputs are also compared to how they change the model calibration. A good 

calibration means that the model honours the observed data, which is interpreted as the model’s 

ability to capture the behaviour of the natural system. Table 1.1 categorizes four different types 

of sensitivity based on how they change the quality of model calibration (significant vs. 

insignificant) and how they change the model output (significant vs. insignificant).  

Table 1.1: Four sensitivity types (adapted from Wels et al. 2012) 

Change of Parameter/ 

Boundary Condition 
 Change in Calibration 

  Insignificant Significant 

Change in Model 

Forecast / Output of 

Concern 

Insignificant Type I Type II 

Significant Type IV Type III 

 Type I: Input values are varied within a reasonable range but nothing significant happens 

as a result. This input type does not need further data collection or monitoring. 

 Type II: There is a significant effect on the quality of model calibration, but an insig-

nificant effect on model output of concern. In other words, changes to the model input or 

parameters that significantly affect the calibration may not significantly affect the model 

forecast or output of concern. The input type also does not need further data collection or 

monitoring. For example, one could calibrate a groundwater model to a flux measurement 

by changing hydraulic conductivities within a specific hydrogeological unit, but this may 

not necessarily produce a large change in hydraulic heads (i.e., output of concern) within a 

differing hydrogeological unit and/or location in the same model domain. 
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 Type III: Has a significant effect on both model calibration and forecast. Having a 

significant effect on model calibration means that this particular model input or parameter 

has data that can potentially constrain or identify its value (i.e., parameter identifiability).  

 Type IV (grey): Has insignificant effect on calibration, but significant effect on model 

forecasts. This is a cause for concern because nonuniqueness in a model input might allow 

a range of valid calibrations, but the choice of value significantly impacts the model 

forecast or output of concern. It is important to determine the value of this input and not 

rely on model calibration to estimate it. It should be measured with good data, and ideally 

the data should represent the same stresses as in the predictive model simulations. 

1.1.5 Uncertainty analysis 

Uncertainty analysis is the quantification of imperfect knowledge regarding model input and 

how it impacts model output (Jones and Mendoza 2012). Uncertainty analysis and sensitivity 

analysis are often misinterpreted as the same thing. Sensitivity analysis evaluates the relative 

impact of a specific input and to model output, and does not consider probabilities. Whereas, 

uncertainty analysis is a more rigorous attempt to quantify the probability distribution of model 

output.  

Figure 1.6 shows that model uncertainty (grey shaded area) lies at the intersection of three 

model components: structure (concept), parameter, and data uncertainty. First, by building a 

conceptual model (green circle) we create a mental picture of how our system behaves. The 

conceptual model simplifies the system sufficiently to make the solution tractable, while 

retaining enough of the essential and controlling processes to make the results useful and valid 

(Frind 2003). From the conceptual model we select our mathematical and numerical model 

accordingly, thus defining the model structure. Based on our conceptual model we then select 

boundary conditions and parameters that best represent our system, thus defining our 

parameters (blue circle). Finally, we compare our model results to observed measurements (red 

circle) and fine tune our parameter values (blue circle). At the intersection of these three 

constraints, there may still be large degrees of freedom, thus demonstrating nonuniqueness or 

uncertainty in the model output.  

Hydrologic modelling in practice often takes a deterministic approach, using the “best-fit case” 

model (a single point in the model space) and perhaps a few scenarios to explore the “upper 

bounds” (a few points on the outer envelope of the solid grey shaded intersection area). 

Stochastic modelling processes have been developed to explore this model space in an efficient 
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way (grey area), as well as exploring areas outside of the intersection (grey hatched area), in 

an attempt to quantify the probability of highly improbable events with severe consequences 

(red point). 

 

Figure 1.6: Venn diagram of model uncertainties. The grey shaded union of the different sources of 

model uncertainty (Green: Structural Uncertainty, Red: Data Uncertainty, Blue: Parameter 

Uncertainty) is the model space we explore in an uncertainty analysis. Stochastic modelling methods 

can provide efficient ways of exploring the plausible model configurations. A single point within the 

intersection indicates one realization of the plausible model configurations providing one deterministic 

model output/forecast. A robust uncertainty analysis (i.e., Bayesian uncertainty quantification) should 

still include highly improbable events (grey hatched areas) with severe consequences (red dot) even if 

they have a low likelihood of occurring. This Venn diagram is my attempt to visualize and summarize 

numerous ideas from the environmental model uncertainty literature. 

The upcoming Sections 1.2, 1.3, and 1.4 will describe the sw-gw modelling objectives at 

different scales and the current research gaps, with a focus on different types of model 

uncertainties.  

Chapters 4 and 5 will evaluate the roles of river bathymetry and subsurface distribution of 

hydraulic conductivity, respectively, when modelling meander-scale hyporheic exchange. It is 

far easier to accurately measure channel bathymetry than to accurately measure the distribution 

of subsurface properties. Therefore, the feasible parameter space for the distribution of 

subsurface properties is much larger than bathymetry. For this reason only a sensitivity analysis 

(Chapter 4) will be conducted to identify the aspects of river bathymetry that have the most 

significant impact on simulated meander-scale hyporheic exchange. Whereas, an uncertainty 

analysis will be conducted for the distribution of subsurface properties (Chapter 5) to determine 

the appropriate level of detail necessary to simulate meander-scale hyporheic exchange.   
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1.2 Catchment-scale surface water-groundwater interactions: stream baseflow 

capture zone delineation  

At the catchment-scale, groundwater discharge to surface water bodies can be important in 

maintaining steady water levels and baseflows, which keep water temperatures and 

(bio)chemical constituent concentrations amenable to support healthy aquatic ecosystems (e.g., 

cold-water fisheries). Water that becomes groundwater discharge originates as precipitation 

(groundwater recharge) falling on the land surface within the catchment. It is then stored within 

the aquifer and slowly released into surface water bodies (e.g., lakes, wetlands, rivers, streams) 

as baseflow (Freeze and Cherry 1979). The dynamics of groundwater discharge (amount, 

discharge rate, quality) depends on the extent and characteristics of the groundwater recharge 

and storage areas. For a smaller near-surface water storage area, the transition from 

precipitation to discharge might take a few days, while for a large watershed it could take 

centuries or millennia (Winter et al. 1998).  

Prevention of actual or potential threats to the quality and quantity of groundwater discharge 

(baseflow) is critical to ensuring the environmental sustainability of receiving surface water 

bodies. A major threat is land development for industrial, commercial, or residential purposes, 

which can increase the risk of groundwater contamination from sources such as chemical spills 

and road salting (Cleary and Cleary 1991, Howard and Israfilov 2012). Impervious surfaces 

such as roads, parking lots and roofs can also impact groundwater recharge by promoting storm 

runoff and reducing aquifer storage.  

In order to manage these threats and find a balance between development and the protection of 

water resources, it is necessary to confidently identify the areas that contribute baseflow to 

surface water bodies. Appropriate protective measures can then be taken, and the potential 

economic cost can be assessed. The only practical approach to delineate these areas is by using 

models that can simulate sw-gw processes. The method to define groundwater recharge areas 

that potentially provide water to a groundwater sink (e.g., well or surface water body) is known 

as capture zone delineation (Cleary and Cleary 1991, Frind et al. 2006). The basic relationships 

for a typical multi-aquifer groundwater flow system is illustrated in Figure 1.7, which contains 

a hierarchy of scales from local to regional, where the transition from precipitation to discharge 

can range from days to millennia.  

Presently, the industry-standard approach to capture zone delineation (CZD) is by particle 

tracking, which is usually based on the assumption of homogeneous hydrogeological properties 
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(AquaResource Inc. 2010). The assumption of homogeneous hydrogeological properties and a 

uniform flow field can produce thin pencil-like capture zones that can be easily packaged into 

an envelope under certain conditions (i.e., Grand River Source Protection Area 2015). 

 

Figure 1.7: Groundwater flow system: well capture zone and stream capture zone are highlighted in 

orange (Chow et al. 2016). 

In contrast, heterogeneous hydrogeological conditions tend to produce erratic (but more 

realistic) particle tracks that may be subjective and difficult to package into an envelope 

(Martin and Frind 2005). It is inadvisable to make land use decisions on the basis of such 

capture zones. Furthermore, once land uses are assigned in a municipality’s planning process, 

it becomes difficult to change them. Therefore, there is an urgent need to update standard 

practices to account for hydrogeological parameter uncertainty, which challenges decision 

makers when it comes to interpreting capture zone results and designating land-use (Frind and 

Molson 2018).  

Uncertainties in CZD can also arise from structural or conceptual model choices (Section 1.1), 

such as the choice between different commercially available hydrosystem modelling software 

packages, which can differ in their conceptual and numerical approach (e.g., for discretizing 

the model domain). These differences can introduce different simplifying assumptions that can 

ultimately impact the delineated capture zone. Thus, choosing between or combining 

competing capture zones produced by different models can introduce an additional challenge 

for stakeholders (Sousa et al. 2013). 
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Thus, I chose to mainly investigate these structural model choice uncertainties because early 

decisions in the modelling process have been shown to have the potential to cascade and 

accumulate throughout the modelling process (Beven et al. 2005), which can lead to 

imprecision and uncertainty in the final model results. Also, I chose to delineate stream 

baseflow contribution areas at the catchment-scale (10 km to 100 km) because capture zone 

delineation is typically used for long-term (i.e., years to decades) land-use planning, which is 

associated with intermediate and regional-scale groundwater flow systems occurring at the 

catchment-scale. 

1.3 Meander-scale hyporheic exchange in fluvial rivers 

Hyporheic exchange is driven by hydrostatic and hydrodynamic pressure variations due to 

variable bedform structures or larger features, such as meanders (e.g., Cardenas 2004). 

Hyporheic exchange is influenced by the river geomorphology (Kasahara and Wondzell 2003) 

and structural heterogeneity of the subsurface sediments within the hyporheic zone (e.g., 

Thibodeaux and Boyle 1987, Stonedahl et al. 2010, Osenbrück et al. 2013).  

Numerous studies have evaluated the effects of subsurface heterogeneity on the hyporheic 

exchange residence times and flux rates (e.g., Cardenas et al. 2004, Salehin et al. 2004, Ward 

et al. 2013, Zhou et al. 2014, Pryshlak et al. 2015, Tonina et al. 2016, Liu and Chui 2018, 

Stonedahl et al. 2018). However, the level of detail necessary to simulate hyporheic exchange 

transit time distributions at the meander-scale and the expected trade-offs in predictive 

accuracy when choosing one subsurface parameter structure over another is still unclear.  

Therefore, I chose to fill this knowledge gap by investigating hyporheic exchange in fluvial 

rivers at the hydrostatic-driven meander-scale (m to km) because the associated transit times 

(hours to days) are relevant for anaerobic microbial processes such as denitrification (Zarnetske 

et al. 2011, Boano et al. 2014). One additional model aspect identified as contributing 

significantly to the predictive uncertainty of hyporheic exchange is the accurate representation 

of river bathymetry (Cardenas et al., 2004). However, it remains unclear which aspects of 

bathymetry are the most critical with respect to the accurate simulation of meander-scale 

hyporheic exchange. Thus, I also chose to investigate the level of bathymetric detail one would 

need to simulate meander-scale hyporheic exchange in a physically meaningful way. 
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1.4 Bedform-scale hyporheic exchange in bedrock rivers 

Bedrock rivers represent a unique hydrogeological environment, in which the surface water 

flows along an exposed bedrock surface, which may include weathered cobbles and sharp 

angular bedrock fragments. Tinkler and Wohl (1998) define bedrock rivers as reaches where 

“a substantial proportion of the boundary (≥50 %) is exposed bedrock, or is covered by an 

alluvial veneer which is largely mobilized during high flows such that underlying bedrock 

geometry strongly influences patterns of flow hydraulics and sediment movement.”  

Bedrock rivers are commonly formed by glacial meltwater and are often found in 

high-elevation headwater regions that are characterized as high-energy erosional environments 

(Tinkler and Wohl 1998). Bedrock rivers can also be found at lower elevations in regions with 

no net deposition of fluvial sediments, which are typically high-energy regions dominated by 

sediment transport where river reaches are stripped of their overburden (Kennedy 2017). 

Although bedrock rivers are frequently found throughout the world, the number of documented 

studies is limited (Figure 1.8). Most documented bedrock studies characterize their 

geomorphological evolution, focusing on channel erosion and transport. Thus, there are few 

studies that specifically address the nature of sw-gw exchange within bedrock rivers, 

particularly the mechanisms that could potentially control the presence of hyporheic exchange 

within bedrock rivers.  

 

Figure 1.8: World distribution of bedrock river studies (Tinkler and Wohl 1998).  

Studies of hyporheic exchange have typically involved rivers composed of unconsolidated 

fluvial sediments, which leaves a knowledge gap about the behaviour of hyporheic exchange 
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in bedrock rivers (Figure 1.9). It has been shown in river engineering works that it is dangerous 

to assume that knowledge from alluvial and gravel bed rivers can be transferred directly to 

bedrock rivers (Vaughn 1990, Tinkler and Parish 1998). This is because the flow regimes of 

bedrock rivers (even at quite low stages) are associated with greater velocities and shear 

stresses when compared to fluvial rivers, and usually possess highly aerated and turbulent flow 

structures (Tinkler and Wohl 1998). 

 

Figure 1.9: Alluvial vs. bedrock rivers (adapted from Kennedy 2017). Bedform-scale hyporheic ex-

change within (a) alluvial and (b) bedrock river settings. Within a riffle-pool-riffle sequence, turbulent 

river flow produces eddies on the leeward side of the riffle, causing hydrodynamic pressure variation. 

Therefore, I chose to fill this knowledge gap by modelling sw-gw exchange in a bedrock river 

at the bedform-scale (cm to m) because it is in-line with the scale associated with the discrete 

fracture network approach, which explicitly represents fractures and matrix as distinct features 

for subsurface flow and transport (MacQuarrie and Mayer 2005). Furthermore, I was granted 

access to high-resolution geological and hydrogeological data from a bedrock river at the 

bedform-scale through a collaboration with the University of Guelph’s G360 Institute for 

Groundwater Research (Chapter 6).  

1.5 Research goals and motivating questions 

Thus, I have derived four main research goals covering three different scales from the 

aforementioned knowledge gaps on modelling sw-gw exchange. Each research goal focuses on 

tackling a different type of model uncertainty (Table 1.2). 
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These four main research goals on modelling sw-gw exchange are: 

1. Catchment-scale (Chapter 3): Identify model errors that come from numerical model 

choice (structural uncertainty) and to provide practical methods that account for 

parameter uncertainty for delineating areas that provide baseflow to receiving surface 

water bodies (predictive uncertainty). 

2. Meander-scale (Chapter 4): Determine the role river bathymetry plays (data and 

parameter uncertainty) when simulating hyporheic exchange transit time and fluxes 

(predictive uncertainty). Also determine which aspects of bathymetry are critical (data 

uncertainty and sensitivity) so that simplifications of bathymetry do not affect 

simulated hyporheic exchange too dramatically. 

3. Meander-scale (Chapter 5): Evaluate the degree of subsurface detail necessary 

(conceptual and parameter uncertainty) to accurately simulate hyporheic transit time 

distributions (predictive uncertainty). Additionally, I wish to determine the subsurface 

parameter structure that makes the best use of hydrogeological data (data and parameter 

uncertainty) by reducing the predictive uncertainty (sensitivity). 

4. Bedform-scale (Chapter 6): Evaluate factors controlling hyporheic exchange along a 

fractured sedimentary bedrock river through the use of a discrete fracture network 

approach to represent the subsurface (data and parameter uncertainty) within a 

manually coupled numerical sw-gw model.  The aim is to understand fracture network 

heterogeneity and its role in defining the lateral and vertical extents of hyporheic 

exchange flow paths and residence time distributions (predictive uncertainty) 

commonly associated with fracture-dominated bedrock river flow systems.   

Table 1.2: Uncertainty types addressed modelling SW-GW at different scales  

Scale and Site Chp. 
Uncertainty Types* 

1 2 3 4 

Catchment - Alder Creek Watershed 3 ✔ ✘ ✔ ✔ 

Meander - Steinlach 

River Test Site 

Bathymetry 4 ✘ ✔ ✔ ✔ 

Subsurface Parameterization 5 ✔ ✔ ✔ ✔ 

Bedform - Eramosa Bedrock River Site 6 ✘ ✔ ✔ ✔ 

*Uncertainty Types: (1) Structural, (2) Data, (3) Parameter, (4) Predictive 
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Four main corresponding research questions (RQ) can be derived from the aforementioned 

research goals (Figure 1.10): 

1. When simulating sw-gw interactions at the catchment-scale, does the choice of numerical 

model code affect the results of delineating baseflow contribution areas for gaining stream 

reaches? If yes, then what are the most important criteria to consider when choosing 

between different numerical model codes? (Chapter 3) 

2. When simulating hyporheic exchange at the meander-scale, what are the most important 

aspects of the river bathymetry that need to be captured in order to capture the scales of 

exchange appropriately? (Chapter 4) 

3. What is the recommended degree of subsurface detail when choosing a subsurface 

parameterization structure to simulate meander-scale hyporheic exchange? What are the 

expected trade-offs when choosing between a simple vs. complex (detailed) subsurface 

parameter structure? (Chapter 5) 

4. Can hyporheic exchange occur within bedrock rivers at the bedform-scale? If yes, then 

how is hyporheic exchange different in bedrock rivers compared to fluvial rivers? 

Furthermore, what are the main fracture properties that influence the hyporheic exchange 

residence times and spatial extents? (Chapter 6) 

 

Figure 1.10: Bottom-up approach illustrating the different scales of surface water-groundwater 

exchange simulated in each Chapter. The colours indicate the predominant uncertainty addressed in 

each Chapter: Green – Structural Uncertainty, Blue – Parameter Uncertainty, Red – Data Uncertainty. 
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I will reintroduce Figure 1.10 at the beginning of each research chapter to indicate which scale 

and which main model uncertainty type is being treated. Each chapter will progressively 

decrease in system-scale, starting at the catchment-scale and finishing at the bedform-scale. In 

combination, the stated goals and research questions will address the major questions of 

uncertainty in modelling the physical process of sw-gw interactions, emphasizing different 

types and sources of uncertainties that are most relevant at the respective scales and in the 

respective system. 

1.6 Approaches and dissertation structure  

Chapter 2 describes the methods used to simulate sw-gw interactions shared between all 

subsequent chapters. This includes a description of HydroGeoSphere (Aquanty Inc. 2015) and 

WATRAC (Frind and Molson 2004). Additional chapter-specific methods can be found within 

the separate chapters. 

Chapter 3 starts with catchment-scale sw-gw interactions, addressing the delineation of 

baseflow contribution areas to stream reaches, also known as stream capture zones (RQ1). This 

chapter focuses on model-related uncertainties due to model characteristics, discretization 

schemes, delineation methods, and particle tracking algorithms. To answer these uncertainties, 

a model and method intercomparison is conducted. The methodology is applied to the Alder 

Creek watershed in southwestern Ontario. Four different model codes are compared: 

HydroGeoSphere, WATFLOW, MODFLOW, and FEFLOW. Additionally, two delineation 

methods are compared: reverse particle tracking and reverse transport, where the latter 

considers local-scale parameter uncertainty by using a macrodispersion term to produce a 

capture probability plume. The results from this chapter indicate that different models can 

calibrate acceptably well to the same data and produce very similar distributions of hydraulic 

head, but can produce different capture zones. The stream capture zone is found to be highly 

sensitive to the particle tracking algorithm. It was also found that particle tracking by itself, if 

applied to complex systems such as the Alder Creek watershed, would require considerable 

subjective judgement in the delineation of stream capture zones. Reverse transport is an 

alternative and more reliable approach that provides probability intervals for the baseflow 

contribution areas, taking uncertainty into account. The two approaches can be used together 

to enhance the confidence in the final outcome. 

Chapter 4 determines the aspects of river bathymetry that have the greatest influence on the 

predictive biases when simulating meander-scale hyporheic exchange (RQ2). A highly 
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parameterized HydroGeoSphere model of the Steinlach River Test Site in southwest Germany 

was built as a reference. This model is then modified with simpler bathymetries, evaluating the 

changes to hyporheic exchange fluxes and transit time distributions. Results indicate that 

simulating hyporheic exchange with a high-resolution detailed bathymetry using a three-

dimensional fully coupled model leads to nested multi-scale hyporheic exchange systems. A 

poorly resolved bathymetry will underestimate the small-scale hyporheic exchange, biasing the 

simulated hyporheic exchange towards larger scales, thus leading to overestimates of hyporheic 

exchange residence times. This can lead to gross biases in the estimation of a catchment’s 

capacity to attenuate pollutants when extrapolated to account for all meanders along an entire 

river within a watershed. The detailed river slope alone is not enough to accurately simulate 

the locations and magnitudes of losing and gaining river reaches. Thus, local bedforms in terms 

of bathymetric highs and lows within the river are required. Bathymetry surveying campaigns 

can be more effective by prioritizing bathymetry measurements along the thalweg and 

gegenweg of a meandering channel. The gegenweg is defined as the line that connects the 

shallowest points in successive cross-sections along the depositional side of a river opposite 

the thalweg under average flow conditions. Incorporating local bedforms will likely capture 

the nested nature of hyporheic exchange, leading to more physically meaningful simulations 

of hyporheic exchange fluxes and transit times. 

Chapter 5 evaluates the trade-offs between intrinsic (irreducible) and epistemic (reducible) 

model errors when choosing between homogeneous and highly complex subsurface parameter 

structures to simulate meander-scale hyporheic exchange (RQ3). Once more I use the 

HydroGeoSphere model of the Steinlach River Test Site as a reference to simulate hyporheic 

exchange and to assess the predictive errors and uncertainties of transit time distributions. 

Results indicate that if the parameter structure is too simple, it will be limited by intrinsic model 

errors.  By increasing subsurface complexity through the addition of zones or heterogeneity, 

we can begin to exchange intrinsic for epistemic errors. Thus, choosing the appropriate level 

of detail to represent the subsurface parameter distributions depends on the acceptable range 

of intrinsic structural errors for the given modelling objectives and the available site data. 

Results indicate that a zonated model is capable of reproducing the transit time distributions of 

a more detailed model, but only if the geological structures are known. An interpolated 

heterogeneous parameter field (cf. pilot points) showed the best trade-offs between the two 

errors, indicating fitness for practical applications. Parameter fields generated by multiple-

point geostatistics (MPS) produce transit time distributions with the largest uncertainties, 
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however these are reducible by additional hydrogeological data, particularly flux 

measurements. 

Chapter 6 evaluates the conditions that could potentially produce bedform-scale hyporheic 

exchange to occur within a bedrock river. Furthermore, I examine how hyporheic exchange 

may be different in bedrock rivers in comparison to fluvial rivers (RQ4). I focus on evaluating 

data uncertainty at the bedform-scale by modelling a conservative tracer experiment at the 

Eramosa Bedrock River Site near the City of Guelph, Canada. I use a stochastic discrete 

fracture network framework to represent the subsurface fractured bedrock connectivity, and in 

doing so produce a probabilistic distribution of the potential hyporheic exchange extents and 

residence times. The results indicate that the coincidence of fractures and hydraulic gradients 

determine the spatial extents of bedform-scale hyporheic exchange. Furthermore, hyporheic 

exchange residence times in bedrock rivers at the bedform-scale are potentially orders of 

magnitude longer when compared to fluvial rivers (i.e., months to years vs. minutes to hours).
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2.  Methods for simulating surface water-groundwater exchange 

Modelling sw-gw exchange at relevant scales is important in deepening our understanding of 

this complex phenomenon. Coupled sw-gw modelling is capable of generating detailed nested 

hierarchies of hyporheic exchange circulation systems (Buffington and Tonina 2009) at the 

bedform and meander-scale (Stonedahl et al. 2010). However, at the catchment-scale it 

becomes difficult to include complex interactions between hyporheic exchange scales (Caruso 

et al. 2016). Typically, a manually coupled modelling approach is used to simulate hyporheic 

exchange (Cardenas and Wilson 2007b, Stonedahl et al. 2010, Trauth et al. 2013), where the 

streambed pressures are derived from a surface water model, which are then assigned as the 

top boundary condition for a groundwater model. The groundwater model then computes the 

fluxes at its top surface, representing losing and gaining conditions for the surface water model. 

Advances in computer technology have made physically based hydrological models that 

explicitly include all relevant hydrological processes in an integrated approach more tractable. 

Thus, whenever feasible, fully coupled sw-gw modelling is preferred over manual coupling in 

my dissertation. Section 2.1 will provide the governing equations for the core model I have 

used throughout my dissertation. 

While the governing equations that are used in coupled sw-gw models are well established, 

lack of hydrogeological data continues to be a limiting factor in modelling sw-gw interactions 

(Bredehoeft 2010). For instance, it is rare to have many hydraulic conductivity measurements 

of the near-subsurface underlying a surface water channel and it is therefore difficult to 

constrain the model parameters for such a zone. Modelling sw-gw exchange with 

physically-based spatially distributed models is known to be sensitive to the spatial distribution 

of subsurface hydrogeological properties (Ward et al. 2013, Pryshlak et al. 2015, Liu and Chui 

2018, Stonedahl et al. 2018), as well as surface flow domain properties (Jones et al. 2008, Frei 

and Fleckenstein 2013, Wang et al. 2018). Thus, it raises the question of whether our current 

methods for characterizing hydro(geo)logy are sufficient to quantify sw-gw exchange and 

whether uncertainty in sw-gw exchange can be reduced based on the conceptual 

hydro(geo)logical model chosen. I will investigate these questions in detail in Chapters 4 and 

5 of my dissertation using a fully coupled sw-gw model. 
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2.1 HydroGeoSphere and governing equations 

Freeze and Harlan (1969) were one of the first to propose a fully integrated physically-based 

hydrologic modelling approach for hydrological forecasting and to assess the adequacy of our 

hydrological knowledge.  With advancements in computing over the last several decades, 

implementation of Freeze and Harlan’s (1969) vision has resulted in several fully-integrated 

hydrological models, such as the Integrated Hydrology Model (InHM, Vanderwak and Loague 

2001), OpenGeoSys (OGS, Kloditz et al. 2012), PARallel FLOW (PARFLOW, Maxwell et al. 

2016), and HydroGeoSphere (HGS, Aquanty Inc. 2015). Results from model intercomparison 

benchmark tests by Maxwell et al. (2014) and Kollett et al. (2017) have shown good agreement 

and the same qualitative behaviour between different integrated sw-gw models (i.e., CATHY, 

HGS, OGS, PIHM, ParFlow, PAWS, tRIBS-VEGGIE), which lends confidence in the 

fundamental physical and numerical implementation of the governing equations in the different 

integrated sw-gw models tested within their studies. I chose to use HGS because of its flexible 

discretization scheme, fully coupled treatment of sw-gw exchange, capabilities of representing 

discrete fracture networks for flow and transport, and parallel computing capabilities.  

HGS is a physically-based, 3D finite element numerical model designed to simulate the entire 

terrestrial portion of the hydrologic cycle (Aquanty Inc. 2015). HGS has the capability of 

representing numerous hydrological processes (e.g., interception, evapotranspiration, 

snowmelt, freeze and thaw of pore water), however in my research I only use HGSs’ 

capabilities to fully couple sw-gw flow and to represent discrete fracture networks for flow and 

transport.   

HGS fully couples three-dimensional variably saturated subsurface flow (modified Richards’ 

equation; Richards 1931) with the two-dimensional, depth-integrated diffusive wave 

approximation of the Saint Venant equations for surface water flow (Viessman and Lewis 

1996). HGS is well suited to delineate stream baseflow contribution areas at the catchment-

scale (RQ1 in Chapter 3) because it can generate its own water courses without having to assign 

them as surface water boundary conditions a priori. In other words, the advantage of HGS is 

that it calculates the spatial distribution of gaining and losing stream reaches (i.e., the exchange 

flux) within the channel without the need to manually prescribe these areas as a boundary 

condition to the groundwater flow system beforehand. At the meander-scale, HGS can generate 

a physically consistent two-dimensional distribution of river stages and the associated 

distribution of exchange fluxes to simulate hydrostatic-driven hyporheic exchange (RQ2 and 3 
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in Chapters 4 and 5, respectively). Furthermore, HGS allows flexible unstructured 

discretization, which permits local refinement of the mesh in areas of interest (i.e., bathymetric 

details within the river channel, RQ2 in Chapter 4).  

HGS uses the standard Galerkin finite element method (Huyakorn and Pinder 1983, Forsyth 

1991) to solve Richards’ equation with upwinding of the relative permeability and the 

advective-dispersive transport equation. HGS is capable of using a variety of discretization 

schemes to solve the 3D porous medium and dual continuum equations (Aquanty Inc. 2015). I 

used 3D triangular prisms (6-node elements) for my modelling of sw-gw exchange at the 

catchment and meander-scales (Chapters 3, 4, and 5) because of its flexibility in local 

refinement in areas of interest (i.e., rivers and wells). For my modelling of sw-gw exchange of 

a fractured bedrock river at the bedform-scale (Chapter 6), I did not require local refinement. 

Therefore, I chose to use the 3D finite difference approximation (Panday et al. 1993) for 

rectangular prisms (8-node elements) to represent the matrix and 2D fractures equations (Tang 

et al. 1981, Sudicky and McLaren 1992, Therrien and Sudicky 1996) for rectangular (4-node) 

planes to represent the fractures. HGS solves either linear equations (for saturated flow under 

combined conditions or solute transport) or non-linear equations (for variably-saturated 

subsurface flow, surface flow). To solve the non-linear equations, HGS uses the Newton-

Raphson iteration scheme (Forsyth and Simpson 1991). 

Several assumptions in HGS have been made for subsurface flow: 

1. The fluid is incompressible. 

2. The porous medium and fractures are non-deformable. 

3. The system is under isothermal conditions. 

4. The air phase is infinitely mobile. 

The governing equation in HGS for subsurface flow is the modified form of Richards’ equation 

used to describe 3D transient subsurface flow in a variably-saturated porous medium (Aquanty 

Inc. 2015): 

−𝛻 ∙ (𝑤𝑚𝑞)  +  ∑ 𝛤𝑒𝑥,𝑖 ± 𝑄

𝑛

𝑖=1

=  𝑤𝑚

𝜕

𝜕𝑡
(𝜃𝑠𝑆𝑤)  
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Where: 

wm is a dimensionless weighting factor between a 2nd (or more) interacting porous media 

(e.g., fractures, macropores); 

q   is the fluid flux (LT-1); 

𝛤𝑒𝑥 is the volumetric fluid exchange rate between 𝑛 surrounding environmental and 

hydraulic features (e.g., overland/surface flow domains 𝛤𝑜, fractures 𝛤𝑓) expressed as a 

volume-specific source/sink strength (L3L-3T-1); 

Q   is the volumetric fluid flux per unit volume representing a source (positive) or a sink 

(negative) to the system (e.g., wells, tile drains), also expressed as a volume-specific 

source/sink strength (L3L-3T-1); 

𝜃𝑠  is the saturated water content (dimensionless), which is assumed to equal porosity; 

𝑆𝑤 is the water saturation (dimensionless). 

The product of 𝜃𝑠 and 𝑆𝑤 is the volumetric water content, which equals the fraction of water-

filled bulk volume. 

The fluid flux q (LT-1) is given by: 

𝑞 = −𝑲 ∙ 𝑘𝑟𝛻(𝛹 + 𝑧) 

Where: 

𝑘𝑟 = 𝑘𝑟(𝑆𝑤) is the relative permeability of the medium (dimensionless), which is a 

function of the water saturation 𝑆𝑊 (dimensionless); 

𝛹 is the pressure head (L); 

𝑧 is the elevation head (L); 

𝑲 is the hydraulic conductivity tensor (LT-1) given by: 𝑲 =  
𝜌𝑔

𝜇
𝒌 

Where: 

𝜌 is the density of water (ML-3); 

𝑔 is gravitational acceleration (LT-2); 

𝜇 is the dynamic viscosity of water (ML-1T-1) 

𝒌 is the porous medium permeability tensor (L2) 

The governing equation in HGS for overland flow (e.g., surface water and runoff) is the 

diffusive wave approximation of the Saint Venant equations for unsteady shallow flow. It 

assumes depth-averaged flow velocities, hydrostatic pressure distribution vertically, mild 

slope, dominant bottom shear stress, and local and convective acceleration. Furthermore, it 
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assumes that either the Manning, the Chezy, or the Darcy-Weisbach formulae (based on user-

choice) are valid to calculate frictional resistance forces (Cirpka and Bürger 2012, Aquanty 

Inc. 2015): 

𝜕𝜙𝑜ℎ𝑜

𝜕𝑡
−

𝜕

𝜕𝑥
(𝑑𝑜𝐾𝑜𝑥

𝜕ℎ𝑜

𝜕𝑥
) −

𝜕

𝜕𝑦
(𝑑𝑜𝐾𝑜𝑦

𝜕ℎ𝑜

𝜕𝑦
) + 𝑑𝑜𝛤𝑜  ± 𝑄𝑜 = 0 

Where: 

𝜙𝑜 is a surface flow domain porosity which is unity for flow over a flat plane, and 

varies between zero at the land surface and unity at the top of all rills and 

obstructions, for flow over an uneven surface (dimensionless); 

𝑑𝑜 is the depth of flow (L); 

𝑧𝑜 is the bathymetry or bed/land surface elevation (L); 

ℎ𝑜 = 𝑧𝑜 +  𝑑𝑜 is the surface water head or elevation (L); 

𝐾𝑜𝑥 and 𝐾𝑜𝑦 are surface conductances that depend on the equation used to 

approximate the friction slopes (LT-1); 

𝑄𝑜 is a volumetric flow rate per unit area representing external sources and sinks 

(LT-1); and 

𝑡 is the time (T). 

Two different approaches are available for the surface water (overland) - groundwater 

(subsurface) flow coupling in HGS: (1) the common-node approach (Therrien and Sudicky 

1996), and (2) the dual-node approach. The common-node approach assumes continuity of 

hydraulic head between the overland and subsurface flow domains, corresponding to an 

instantaneous equilibrium between them. The dual-node approach differs from the common-

node approach in that coupling between the overland and subsurface flow domains is based on 

a first-order exchange coefficient using the concept of a coupling length (Park et al. 2009). The 

dual-node approach is more robust compared to the common-node approach because it does 

not strictly enforce pressure continuities between the overland and subsurface flow domains, 

which allows the dual-node approach to overcome certain numerical issues. Therefore, the 

dual-node approach is frequently used for applied HGS studies. The dual-node approach 

requires additional parameters to exchange flux between the overland and subsurface flow 

domains, i.e., hydraulic conductivities (𝐾𝑧𝑧, 𝐾𝑑𝑧𝑧), permeabilities (𝑘𝑟, 𝑘𝑑𝑟), and a coupling 

length (𝑙𝑒𝑥). Moreover, as the coupling length used in the dual-node approach becomes a small 

number (i.e., a few millimeters in physical hydrogeological terms), it is expected to produce 
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results similar to the common-node approach. Nonetheless, the inability to directly estimate 

the parameters required for the dual-node approach has made the application of the concept 

problematic in certain situations of sw-gw exchange (Ebel et al. 2009). The governing equation 

for the dual-node approach in HGS is represented by the exchange term (Aquanty Inc. 2015): 

𝑑𝑜𝛤𝑜 = 𝑤𝑚

𝑘𝑟𝐾𝑧𝑧

𝑙𝑒𝑥

(ℎ − ℎ𝑜) + 𝑤𝑑

𝑘𝑑𝑟𝐾𝑑𝑧𝑧

𝑙𝑒𝑥

(ℎ𝑑 − ℎ𝑜)  

Where: 

𝛤𝑜 represents flow from the subsurface system to the surface system when positive 

and vice versa when negative (L3L-3T-1); 

ℎ and ℎ𝑑 are the subsurface porous medium and dual medium heads, respectively 

(L); 

𝑘𝑟 and 𝑘𝑑𝑟 are the relative permeabilities for the porous medium and dual medium 

exchange fluxes, respectively (dimensionless); 

𝑤𝑚 and 𝑤𝑑 are the subsurface and dual-continuum volumetric fraction of the total 

porosity, respectively (dimensionless); 

𝐾𝑧𝑧 and 𝐾𝑑𝑧𝑧 are the vertical saturated hydraulic conductivities of the underlying 

porous and dual media, respectively (LT-1); 

𝑙𝑒𝑥 is the coupling length (L). 

Additionally, HGS is capable of representing discrete fractures (RQ4 in Chapter 6) that are 

represented as idealized space between two-dimensional parallel surfaces, with the assumption 

that the total head is uniform across the fracture width. HGS uses an extension of the saturated 

fracture flow equations (Berkowitz et al. 1988, Sudicky and McLaren, 1992) and an analogy 

of Richards’ equation (1931) for a porous medium to derive a two-dimensional variably-

saturated fractured flow equation with the form: 

−𝛻̅ ∙ (𝑤𝑓𝑞𝑓) − 𝑤𝑓𝛤𝑓 = 𝑤𝑓

𝜕𝑆𝑤𝑓

𝜕𝑡
 

 

Where the fluid flux 𝑞𝑓 (L/T) is given by: 

𝑞𝑓 = −𝐾𝑓 ∙ 𝑘𝑟𝑓𝛻̅(𝛹𝑓 + 𝑧𝑓) 

Where: 

𝛻̅ is the two-dimensional gradient operator defined in the fracture plane; 

𝑤𝑓 is fracture width (L); 
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𝑘𝑟𝑓 is the relative permeability of the fracture (dimensionless); 

𝛹𝑓 and 𝑧𝑓 are the pressure and the elevation heads within the fracture, respectively 

(L); 

𝑆𝑤𝑓 is the water saturation for the fracture (dimensionless); 

The saturated hydraulic conductivity of a fracture 𝐾𝑓 (LT-1), having a uniform aperture 𝑤𝑓, is 

given by (Bear 1972): 

𝐾𝑓 =
𝜌𝑔𝑤𝑓

2

12𝜇
 

Where: 

𝜌 is the density of water (ML-3);  

𝑔 is gravitational acceleration (LT-2); and 

𝜇 is the dynamic viscosity of water (ML-1T-1) 

2.2 WATRAC: Finite element particle tracking  

Particle tracking is a post-processing method, following the solution of a groundwater flow 

model, whereby infinitesimally small water parcels (particles) are released and tracked within 

the advective flow field to compute flowpaths and the travel times (Anderson et al. 2015). 

Particles can either be released within the model domain or at its boundary and tracked forward 

in time through the subsurface, or released at the point of interest (well screen or groundwater 

discharge area) and allowed to travel backwards until they reach the surface or some other 

boundary. The two options are referred to as forward or reverse particle tracking. The 

advantage of particle tracking methods is that they do not introduce numerical dispersion, 

whereas Eulerian transport schemes, such as the finite element method implemented in HGS, 

introduce numerical dispersivities that scale linearly with the grid resolution (Daus et al. 1985, 

Frind 2003). 

A well-known particle tracking routine today is MODPATH (Pollock 1989), which is available 

as a post-processing module in MODFLOW (McDonald and Harbaugh 1988). MODPATH 

uses a semi-analytic solution method by Pollock (1989) to calculate three-dimensional particle 

tracks from the steady-state flow solution generated by MODFLOW. This method requires the 

interfacial fluxes between cells and assumes that the velocity varies linearly within a cell in 

order to calculate the average velocity components. Given the entry point of a particle, the exit 

face is selected based on the shortest travel time between entry and exit points. After choosing 
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the exit face for the particle, the exit position on the selected face is calculated. This method 

avoids interpolating velocities between cells, producing physically realistic particle tracks for 

heterogeneous conditions.  

HGS does not have its own particle tracking capabilities. Therefore, I chose WATRAC (Frind 

and Molson 2004) as a post-processing particle tracker for HGS. WATRAC was developed for 

unstructured finite element grids and shares fundamental principles with the semi-analytical 

method by Pollock (1989). Alternatively, particle tracking in finite element models can be 

approached by using average elemental velocities from nodal heads (e.g., Yang et al. 2018). 

The problem arising from this approach is that elemental velocities are generally discontinuous 

across element boundaries. Higher-order interpolation schemes to interpolate velocities 

smoothly over several elements can be used (Pokrajac and Lazic 2002), but these approaches 

are inconsistent with the calculated continuous hydraulic head field and may not easily handle 

the change in flow direction at material interfaces (Frind and Molson 2004). These 

considerations are important, without them the particle tracks tend to smear through low 

hydraulic conductivity layers rather than deviating around them when encountering sharply 

contrasting hydraulic conductivities. 

The approach in WATRAC (Frind and Molson 2004) introduces the principle of cell-by-cell 

velocity interpolation into the finite element method. Thus, combining the advantages of the 

finite element method in representing complex heterogeneous systems with the advantage of 

Pollock-type particle tracking (i.e., producing the correct change in flow direction at material 

interfaces). A drawback from this approach is that fluxes approximated by WATRAC are not 

locally mass conservative. This is due to the underlying principle of the finite element method, 

which only guarantees global mass conservation, in combination with an interpolation scheme 

that does not remedy this problem. Therefore, greater numerical accuracy could be achieved 

by developing a particle tracking method compatible with HGS (Selzer 2017, Selzer and Cirpka 

2019) that uses a mass conservative approach for the determination of fluxes for unstructured 

finite elements (Odsæter et al. 2017). However, at the time of my dissertation, corresponding 

advancements in finite element particle tracking (Selzer and Cirpka 2019) was not yet 

available. 

In order to use WATRAC for HGS steady-state hydraulic head distributions, it is necessary to 

convert HGS output into a format compatible with WATRAC. Afterwards WATRAC can be 

used for either forward or reverse particle tracking. When placing particles with WATRAC, 
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the user specifies the x-y coordinates of the particle and the elemental layer of the starting 

position. The particle can be placed anywhere within a cell or element; however, the vertical 

placement of the particle is always in the center of the chosen layer.
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3.  Delineating baseflow contribution areas for streams – a model and 

methods comparison*  

 

Chapter highlights 

 Different models can calibrate acceptably well to the same data and produce very similar 

distributions of hydraulic head, but can produce different capture zones. 

 The stream capture zone is highly sensitive to the particle tracking algorithm. 

 Reverse transport is an alternative approach that provides probability intervals for the base-

flow contribution areas, which accounts for local-scale parametric uncertainty. 

 The two approaches can be combined to enhance the confidence in the final delineated 

capture zone. 

3.1 Motivation and research questions 

An environmentally sustainable stream depends on groundwater discharge for maintaining the 

steady baseflow and temperature needed to support a healthy aquatic ecosystem. Prevention of 

actual or potential threats (Cleary and Cleary 1991) to the quality and quantity of stream 

baseflow is critical to ensuring the environmental sustainability of streams. A major threat is 

                                                 
*The contents of this chapter are modified from ‘Chow, R., Frind, M.E., Frind, E.O, Jones, J.P., Sousa, M.R., 

Rudolph, D.L., Molson, J.W., and Nowak, W. (2016). Delineating baseflow contribution areas for streams – A 

model and methods comparison. Journal of Contaminant Hydrology 195, 11–22. 

http://dx.doi.org/10.1016/j.jconhyd.2016.11.001’ 

Author contribution statement: Chow, R.: Coordinated work and writing. Wrote preliminary works and original 

draft manuscript. Revised manuscript to address peer-review comments. Finalized and approved published article. 

Analyzed and evaluated all model results. Conceptualized modelling study. Preliminary results presented at the 

2011 GeoHydro conference in Québec City (Chow et al. 2011) and in University of Waterloo Master’s thesis 

(Chow 2012). Frind, M.E.: Developed FEFLOW model and analyzed FEFLOW results. Frind, E.O.: Reviewed 

preliminary works and original draft manuscript. Helped with revisions to address peer-review comments. 

Conceptualized modelling study. Provided supervision. Jones, J.P.: Developed preliminary HydroGeoSphere 

model. Reviewed preliminary works. Conceptualized modelling study. Provided supervision. Sousa, M.R.: 

Developed FEFLOW model and provided technical modelling support. Rudolph, D.L.: Reviewed preliminary 

works. Molson J.W.: Provided technical modelling support. Nowak, W.: Reviewed original draft manuscript and 

revisions. Conceptualized modelling study. Provided supervision. 

http://dx.doi.org/10.1016/j.jconhyd.2016.11.001
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land development for industrial, commercial, or residential purposes (Howard and Israfilov 

2012). Impervious surfaces such as roads, parking lots and roofs can impact groundwater 

recharge, promote storm runoff, and reduce aquifer storage (Hibbs and Sharp, 2012). 

Development can also introduce contaminants such as road salt (Bester et al., 2006) and 

increase the risk of chemical spills from point sources such as gas stations.  

In order to manage these threats and find a balance between development and the protection of 

water resources, it is necessary to identify, with some confidence, the areas that contribute 

baseflow to sensitive streams or stream reaches. Appropriate protective measures can then be 

taken, and the potential economic cost can be assessed. The only practical approach to the 

delineation of these areas is through the use of simulation models.  

Since an independent validation of model predictions is rarely possible, critical issues come 

from numerical model errors and parameter uncertainty (Section 1.1). One important source of 

numerical model errors when delineating capture zones is from selecting the appropriate model 

code. The research goals (Section 1.5) in this chapter are to identify numerical model errors 

that come from model choice and to provide practical methods that account for parameter 

uncertainty for delineating areas that provide baseflow to streams. The motivating research 

question I wish to address here is (RQ1, Section 1.5): does numerical model code choice affect 

the results of delineating baseflow contribution areas for gaining stream reaches? If yes, then 

what are the most important criteria to consider when choosing between different numerical 

model codes? 

Firstly, Section 3.2 describes previous work that was completed on this topic. Sections 3.3 and 

3.4 introduce the stream capture zone concept and describes the model codes considered in this 

comparison, respectively. Section 3.5 describes a proof-of-concept on the Alder Creek 

Watershed. Then Sections 3.6 and 3.7 describe two methods for capture zone delineation 

(CZD) and a discussion of the results, respectively. Other sources of uncertainty when 

delineating capture zones, as well as possible ways to control them, are briefly discussed in 

Section 3.8. Finally, Section 3.9 concludes the chapter.  

This chapter shows that: (1) methodologies developed for well CZD can be applied to gaining 

stream reaches, (2) given the same model conceptualization, different groundwater models can 

produce different delineation results, and (3) results from different delineation methods can be 

combined to enhance the credibility of delineated capture zones. 
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3.2 Previous work 

Preliminary results were first presented at the 2011 GeoHydro conference in Québec City, 

Canada. Chow et al. (2011) compared stream baseflow capture zones delineated using two 

different groundwater models, MODFLOW (McDonald and Harbaugh 1988) and WATFLOW 

(Molson et al. 2002) using their particle tracking codes MODPATH (Pollock 1988) and 

WATRAC (Frind and Molson 2004), respectively.  

Three conclusions were drawn in Chow et al. (2011):  

1. In principle, baseflow capture zones for reaches of gaining streams can be delineated 

using the same methodology used for well capture zones. 

2. Capture zones are highly sensitive to numerical errors and different models can produce 

different capture zones. 

3. Capture zones delineated from natural gradients are more sensitive to numerical errors 

than those for wells (i.e., larger anthropogenic gradients).  

Following Chow et al. (2011), Chow (2012) added a third model, HydroGeoSphere (Aquanty 

2015), and an alternative delineation method known as reverse transport (Uffink 1989, Wilson 

and Liu 1994, Fogg et al. 1999, Frind et al. 2006) to the comparison.  

Finally, Chow et al. (2016) added a fourth model, FEFLOW (DHI-WASY 2015), to the 

comparison, overhauled the entire analysis in order to isolate for factors affecting CZD (i.e., 

disabled unsaturated zone processes in MODFLOW, WATFLOW, and FEFLOW models 

discussed in Section 3.5.3), and performed additional quantitative analyses to compare the 

delineated capture zones (Section 3.7). 

3.3 The stream capture zone concept 

In principle, the area that provides water to a stream encompasses the watershed or catchment 

area. However, it may not be practical to protect an entire watershed. The alternative is to 

identify the portion of the watershed that contributes baseflow for a specific reach of an 

environmentally sensitive stream. Veale et al. (2014) demonstrated this approach by means of 

a limited particle tracking analysis.  

Conceptually, an area contributing to a stream reach should obey the same principles that 

govern a well capture zone. Figure 1.7 shows the similarities between well and stream capture 

zones. On this basis, much of the well-established methodology for delineating capture zones 

https://www.sciencedirect.com/science/article/pii/S0022169411005713#bb0025
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for drinking water wells should apply to streams. In the following sections, we will use the 

term “stream capture zone” to mean “baseflow contribution area for streams”.  

There are several critical conceptual differences between delineating a stream capture zone as 

opposed to a well capture zone. Three fundamental differences are:  

1. The Nature of the Gradients. Natural gradients near a stream will generally be much 

smaller than gradients induced by pumping at a well and therefore will be subject to greater 

relative numerical errors (Chow et al. 2011). In this study, the near-subsurface has been 

finely discretized vertically in order to reduce the numerical errors from natural gradients 

(Section 3.5.1).   

2. The Nature of the Source/Sink Function.  A well is a fixed-rate point source/sink, while a 

stream is a line source/sink variably distributed over the length of the stream.  Where and 

how much groundwater a stream is gaining is generally not known. This study uses a fully 

integrated state-of-the-art sw-gw model to obtain the spatial distribution and rates of 

groundwater exchange at streams (Section 3.5.2). 

3. The Significance of Transient Flow. Stream discharge is more variable in time than water 

pumped from a well. For a water supply well, the pumping rate is generally constant for 

longer periods. Conversely, flow for a stream is strongly influenced by precipitation events 

and seasonal conditions. The purpose of a capture zone is to designate an area where the 

planned land use will provide a certain measure of protection. This area cannot change 

over the seasons or from year to year. Transience can play a role in the delineation (e.g., 

Rodriguez and Nowak 2018), but in the end, the delineated area must be fixed. 

Accordingly, this study assumes a steady-state flow system and assumes that transient 

effects originating at the ground surface generally dampen out over a long period of time. 

The issue of transience is discussed further in Section 3.8.  

Present standard practice in wellhead protection is to calibrate a model to available data and 

then to use the calibrated model predictively for CZD. A wellhead protection area is the two-

dimensional areal extent of a well capture zone, commonly referred to as the contributing area 

(or area contributing recharge) to the well, which is typically used when there is a regulatory 

aspect to the area (Barlow et al. 2018). This procedure neglects structural uncertainty and 

numerical errors due to model-related differences such as the discretization scheme and the 

computational algorithm.  
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Pinder and Frind (1972) have shown that, with increased grid refinement, both finite element 

and finite difference model types converge to the same answer. However, run times increase 

with the discretization, and in practice, the time available for model runs is often limited. 

Therefore, groundwater models are often not discretized sufficiently fine. Discretization 

aspects specific to this study are discussed in Section 3.5.1. 

The computational method used for the CZD can also have a major effect on the delineation. 

Section 3.6 compares two well-known methods, particle tracking and reverse transport. 

Section 3.7 extends the comparison to different particle tracking algorithms and shows how 

they can be combined.  

In this study, four well-known model codes are used to delineate capture zones for two gaining 

stream reaches in the Alder Creek watershed in southern Ontario.   

3.4 Model codes considered and comparison approach   

The following four models were chosen for this study:   

HydroGeoSphere (HGS): This physically-based, 3D finite element numerical model 

(Aquanty Inc. 2015) fully couples variably saturated subsurface flow (modified Richards’ 

equation; Richards 1931) with surface water flow (diffusive wave simplification of the Saint 

Venant equations). The governing equations for HGS are presented in Section 2.1. As such, it 

is well suited for a stream capture zone study because it can generate its own water courses. It 

currently does not have a particle tracking routine, but is compatible with WATRAC (Section 

2.2, Frind and Molson 2004) for particle tracking. To generate capture probability plumes I 

chose the Waterloo Transport Code (WTC) (Molson and Frind 2004), a 3D advective-

dispersive mass transport code, because it is both capable of reverse transport and compatible 

with HGS.  

WATFLOW: The finite element flow model WATFLOW (Molson et al. 2002) has been used 

extensively in previous studies of the Waterloo Moraine (Martin and Frind 1998, Frind et al. 

2014). WATFLOW has an integrated automatic calibration algorithm (Beckers and Frind 

2001), a particle tracking code, WATRAC (Frind and Molson 2004), and a transport code, 

WTC (Molson and Frind 2004). WATRAC is based on the Pollock method (Pollock 1988), 

adapted for triangular prismatic elements.  
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MODFLOW 2000 (VERSION 1.19.01): The finite difference model MODFLOW 

(McDonald and Harbaugh 1988) is the most widely used groundwater code worldwide. It is 

linked to the particle tracking code MODPATH (Pollock 1988). The original FORTRAN 

version is freely available through the U.S. Geological Survey, and several graphical user 

interface (GUI) versions are commercially available. This study uses Visual MODFLOW 

(Waterloo Hydrogeologic 2015) as the GUI for groundwater flow modelling and PEST 

(Doherty 2005) for calibration. 

FEFLOW 7.0: This commercially available finite element flow and transport code is used 

widely for both industry and academic purposes (DHI-WASY 2015). FEFLOW has a 

sophisticated GUI and its own particle tracking algorithm, which is based on the 4th order 

Runge-Kutta method (Diersch 2013). The key difference between that method and the Pollock 

method is that the former smooths out particle tracks across an interface between different 

materials, while the latter has particles change direction at such interfaces, as required by theory 

(Bear 1972). As a result, 4th order Runge-Kutta particles may deviate from Pollock particles at 

material interfaces. The differences in particle tracking results depend on the degree of 

heterogeneity and discretization. The transport code also offers the user the choice between the 

conventional transport formulation and the Lichtner formulation (Lichtner et al. 2002). The 

latter makes a difference if the system contains significant areas with predominantly vertical 

velocities (Frind, M. et al. 2015). 

An overview of the model and method comparison is described in four steps (Figure 3.1):  

1. Develop a fully integrated surface water – groundwater model (HGS) to identify 

losing and gaining stream reaches (Section 3.5.2). 

2. Select saturated groundwater models and apply hydraulic properties, boundary 

conditions and exchange fluxes (Section 3.5.3).  

3. If necessary, recalibrate the selected groundwater models using an optimization 

algorithm (Section 3.5.3). 

4. Delineate stream capture zones with each model (Section 3.6). 

https://www.sciencedirect.com/science/article/pii/S0022169411005713#bb0025
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Figure 3.1: Approach to model comparison. 

3.5 The Alder Creek watershed  

The study area is the Alder Creek watershed, which is part of the Grand River watershed in 

southern Ontario (Figure 3.2). The watershed has a humid continental climate, with annual 

precipitation ranging from 780 to 1000 mm/year. It covers approximately 79 km2 and contains 

agricultural, urban, forested, and grassland regions (Jones et al. 2009).  

The Alder Creek watershed is an important water source for the Region of Waterloo 

(population 550,000). The region obtains 80 % of its water supply from groundwater sources, 

with approximately 30 % of that coming from the Mannheim well field which straddles the 

Alder Creek watershed. Due to its close proximity to the twin cities of Kitchener and Waterloo, 

the Alder Creek watershed is exposed to considerable development pressure. Understanding 

the areas that contribute to stream baseflow can help protect the aquatic ecosystems in the 

watershed.  
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Figure 3.2: Waterloo Moraine model with Alder Creek watershed. Region of Waterloo well fields (red 

dots) shown (adapted from Frind et al. 2002). 

Figure 3.2 shows the well fields (red dots) operated by the Region of Waterloo throughout the 

Waterloo Moraine area. The Alder Creek watershed itself contains 10 pumping wells and 28 

observation wells. The average water table elevation from 1991 to 2000 was mapped by 

CH2MHILL and S.S. Papadopulos & Associates Inc. (2003). The groundwater flow direction 

was interpreted to be generally from northwest to southeast within the northern part of the 

Alder Creek watershed, following the regional gradient. There is also a distinct pattern of 

convergence toward the creek at the southern tip of the watershed. 

3.5.1 Alder Creek model: conceptualization and discretization 

The original 3D Waterloo Moraine groundwater flow model (Martin and Frind 1998) was 

developed from an extensive hydrostratigraphic database maintained by the Ontario Ministry 

of the Environment. Jones et al. (2009) developed the HGS Alder Creek model as a sub-model 

of the Waterloo Moraine model to study unsaturated flow and solute transport, which required 

a high-resolution discretization of the vadose zone. Jones et al. (2009) divided the domain 

vertically into 87 elemental layers (Figure 3.3a), with the first meter below ground surface 

discretized with ten 10 cm layers, the next 19 m with fifty-seven 33 cm layers and the final 20 

m to bedrock with 20 evenly distributed layers. The present study continues using the fine grid 
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discretization for HGS in order to provide a high degree of accuracy in the calculation of the 

exchange flux (Section 3.5.2). The same discretization was used for the other two finite element 

models, WATFLOW and FEFLOW. Because of this fine discretization, inclusion of river bed 

conductance as a separate parameter was not considered necessary. 

For the Alder Creek MODFLOW model, which cannot easily handle vadose zone flow, a finite 

difference discretization scheme with a coarser lateral and vertical discretization (Figure 3.3b), 

consistent with industry standards was used (Anderson et al. 2015). The vertical discretization 

is one model layer per hydrostratigraphic layer and the lateral refinement is localized around 

the municipal supply wells. This is to avoid long simulation run times and convergence issues 

due to the rewetting of dry cells. The newest version of MODFLOW, MODFLOW USG 

(Panday et al. 2015), handles unstructured grids; however, it is not used here because it has yet 

to gain popular acceptance as the industry standard version of MODFLOW and is missing key 

post-processing functions such as particle tracking.  

For the present study, a no-flow boundary condition around the model periphery is used to 

represent a groundwater flow divide based on the topographic highs. Around the perimeter of 

the bottom-most model layer, the no-flow boundary is replaced by a constant-head boundary 

condition to allow for lateral flow representing regional flow towards the Grand River. Head 

values for this boundary were obtained from the Waterloo Moraine model (Martin and Frind 

1998). An exchange flux, discussed in the following section, is assigned to the top surface of 

the model. Figure 3.4 shows a conceptual cross section of the boundary conditions.  
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Figure 3.3: Model discretization: (a) Finite element models, (b) Finite difference model. 

 

Figure 3.4: Alder Creek watershed conceptual cross-section of boundary conditions. 
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3.5.2 The exchange flux: identifying gaining stream reaches  

CZD can only be performed on groundwater sinks. A gaining stream is conceptualized as a 

groundwater sink on the top surface of the model. Therefore, in order to delineate a stream 

capture zone, we must identify the spatial distribution of groundwater passing through the 

model top surface. In this study, HGS is used to identify this spatial distribution. 

A uniform net rainfall rate of 200 mm/year was applied to the surface of the initially saturated 

HGS Alder Creek model and run until steady-state flow conditions were reached. Jones et al. 

(2009) calibrated the hydraulic conductivity of the model manually, with the results 

summarized in Section 3.5.3.  

HGS calculates the distribution of water infiltrating and exfiltrating across the land surface 

(termed exchange flux), without the need to explicitly specify the surface water boundary 

condition. The exchange flux distribution over the Alder Creek watershed is shown in Figure 

3.5. Groundwater recharge is depicted by the warm colours (positive numbers) with most of 

the model domain having a positive exchange flux depicting recharge. Groundwater discharge 

is depicted by the cool colours (negative numbers). The exchange flux along the stream 

channels depicts areas of gaining and losing streams at steady-state; this can be conceptualized 

as the long-term average baseflow of the stream. There is a broad accumulation of net discharge 

around the outlet of stream channel in the south region. Groundwater lost to evapotranspiration 

is not explicitly accounted for since a net recharge value was applied to the model. 

Figure 3.5 also shows two gaining stream reaches, Stream Reaches 1 and 2, that were chosen 

for CZD. Both are located in the center of the model domain approximately 7.4 km upstream 

from the discharge outlet, within a well-calibrated area of the watershed (discussed in Section 

3.5.3), and are situated sufficiently far from the model boundaries to avoid boundary effects.  
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Figure 3.5: Alder Creek watershed exchange flux distribution, showing groundwater recharge, gaining 

stream reaches, and Stream Reach 1 and 2. Negative exchange flux (cool colours) is groundwater 

discharge, positive exchange flux (warm colours) is groundwater recharge. Border outlining inset for 

Figure 3.9 and 3.10.  

3.5.3 Model calibration and hydraulic head distribution 

The hydraulic properties, boundary conditions and exchange flux from the manually calibrated 

HGS model were applied to the WATFLOW, MODFLOW, and FEFLOW models. These 

models were then used to solve for steady-state saturated groundwater flow. The unsaturated 

zone was not represented in these three models because the overall shape of the steady-state 

stream capture zone was found to be insensitive to the unsaturated zone. This was tested by 

comparing the results with a simplified representation of the unsaturated zone in WATFLOW. 

Furthermore, in this hydrogeologic setting, flow through the unsaturated zone is driven by 
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gravity and is mainly in the vertical direction. Thus the inclusion of unsaturated flow, while 

potentially affecting travel time, would have no impact on the overall shape of the steady-state 

capture zones.  

Three head observations were discarded from the calibration dataset because of their close 

proximity to municipal supply wells and model limits, hence only 25 of 28 of the observed 

head measurements were used in the calibration process. HGS is computationally demanding 

when overland flow and variably saturated subsurface flow are fully coupled, requiring 

approximately 18 hours to reach a steady-state solution (using the non-parallelized version). 

While WATFLOW, MODFLOW, and FEFLOW could reach a steady-state solution (for 

saturated groundwater flow only) within 1.6 minutes, 18 seconds, and 17 seconds, 

respectively. The difference in run times played a key role in model calibration. 

It is common practice to use an automated calibration routine to reach an optimum solution 

based on an objective function. WATFLOW and MODFLOW were recalibrated using their 

respective automated calibration routines (Beckers and Frind 2001, Doherty 2005). The 

recalibration found one optimum hydraulic conductivity multiplier per hydrostratigraphic layer 

(within an order of magnitude of the initial calibrated value). The calibrated WATFLOW 

hydraulic conductivity field was applied to FEFLOW, producing identical calibration results 

because the same discretization scheme and grid applies in both models. HGS was not 

recalibrated by automatic means because of its long run times; instead, the original hydraulic 

conductivity field was used to avoid affecting the exchange flux, which would have required 

further iterative calibration steps. Slight differences in HGS hydraulic head when compared to 

the other models (only saturated flow) is due to its full sw-gw coupling and representation of 

flow in the unsaturated zone. 

Figure 3.6 and Table 3.1 show the comparison between observed to simulated heads and 

calibration statistics for HGS, WATFLOW/FEFLOW, and MODFLOW. All models produced 

acceptable calibration results when comparing observed to simulated heads, with normalized 

root mean square errors below 9 % and correlation coefficients greater than 97.5 %. Most 

importantly, the heads for all models agree well in the central area (heads ranging between 330 

and 340 m) where Stream Reaches 1 and 2 are located (Figure 3.5).  
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Figure 3.6: Calibration results for HGS, WATFLOW/FEFLOW, and MODFLOW. 

Table 3.1: Calibration results for HGS, WATFLOW/FEFLOW, and MODFLOW 

Model HGS WATFLOW/ 

FEFLOW 

MODFLOW 

Number of Observations 25 

Observation Range (m) 39.8 

Average Residual (m) -1.6 -1.6 -0.9 

Absolute Average Residual (m) 2.8 2.0 2.3 

Root Mean Square (m) 3.4 2.6 2.8 

Normalized Root Mean Square (%) 8.5 6.4 7.1 

Correlation Coefficient (%) 98.2 98.5 97.7 

Figure 3.7 shows the hydraulic head distribution for the main aquifer (Aquifer 1) for all models. 

Very similar hydraulic head distributions are produced by all four models, with high hydraulic 

head levels (approximately 360-370 m) at the northwest edge of the model domain and low 

hydraulic head levels (approximately 300-310 m) at the southeast edge. Groundwater flow is 

generally from northwest to southeast, which agrees with interpretations by CH2MHILL and 

S.S. Papadopulos & Associates Inc. (2003).  
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Figure 3.7: Simulated hydraulic heads in main aquifer: (a) HGS, (b) WATFLOW, (c) MODFLOW, (d) FEFLOW.
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3.6 Stream capture zone delineation methods 

3.6.1 Particle tracking 

The usual approach to particle tracking CZD is to place a number of particles around the screen 

of a well and to track the advective travel path of the particles in the reverse (i.e., upgradient) 

direction. In this study, the well has been replaced by a gaining stream reach. 150 and 200 

particles were placed within the vertical mid-point of the upper-most model layer for Stream 

Reach 1 and 2, respectively (Figure 3.5). Increasing the number of particles across the stream 

reaches gave essentially the same results, providing assurance that most preferred flow paths 

had been identified.  

An alternative approach is to apply both forward and reverse particle tracking where the 

forward particles are placed at or near expected recharge areas. This often helps to identify 

areas that reverse particles may have missed. In this study, forward particle tracking was not 

used because particle exit points are highly dispersed over large areas (see Figure 3.9 and 3.10), 

making this option impractical.  

Particle tracks can be sensitive to the particle starting position. Due to the inherent grid 

differences, starting positions for structured rectilinear and unstructured prismatic grids cannot 

be exactly the same, so care was taken to minimize the differences. Figure 3.8 shows the 

particle starting position for the finite difference model (MODFLOW) and the finite element 

models (HGS, WATFLOW, and FEFLOW). The particles were tracked backwards by 

advection until they reached the ground surface or no longer advanced, which occurred at 

approximately 300 years for all models.  

In order to focus on model-related differences, particle tracking was performed on only one 

calibrated realization of the hydraulic conductivity field for each model, thus neglecting 

parameter uncertainty. Section 3.6.2 describes an alternative methodology that can be used for 

a more complete analysis including local-scale parameter uncertainty. 
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Figure 3.8: Initial particle placement for Stream Reach 1. 

3.6.2 Reverse transport 

Reverse transport uses the advective-dispersive transport equation and is conceptually 

equivalent to applying the reverse particle tracking method with multiple realizations of the 

hydraulic conductivity field (Neupauer and Wilson 2001, Frind et al. 2002, Frind et al. 2006). 

The macrodispersion term in the advective-dispersion equation can be conceptualized as a term 

that represents local-scale parameter uncertainty in hydraulic conductivity (Gelhar and Axness 

1983). The transport parameters were those used previously by Frind et al. (2002), with an 

effective molecular diffusion coefficient of 10-10 m2/s, and dispersivities of 20 m, 5 m, and 

0.02 m, for longitudinal, transverse horizontal, and transverse vertical dispersion, respectively. 

These values are within the range of dispersivities given by Gelhar et al. (1992) and Engesgaard 

et al. (1996) for a model of this scale. These parameter values are equally valid for the forward 

and reverse forms of the transport equation. 

The reverse transport capture zone is expressed in terms of capture probability P. The equation 

is solved with a Type 1 (specified capture probability) of P = 1 at the stream and P = 0 at distant 

points, producing a capture probability plume (CPP) with values ranging between 0 ≤ P ≤ 1. 
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Reverse transport was run until a backwards time of 300 years was reached to obtain a capture 

probability at equilibrium. CPPs were generated with the HGS and FEFLOW steady-state flow 

field for Stream Reach 1 and 2. These CPPs were then compared to their corresponding reverse 

particle tracks. The validity and the advantages of the reverse transport method have been 

discussed, e.g., by Sousa et al. (2013).  

3.7 Results and discussion 

3.7.1 Models comparison: HGS, WATFLOW, MODFLOW, and FEFLOW 

Figure 3.9 shows the reverse particle tracks obtained for Stream Reach 1 for all four models. 

An examination of these particle tracks reveals that, for all models, the particles first descend 

to the bottom aquifer, and then turn in the upgradient (northwest) direction.  

The particle tracks from HGS and WATFLOW are very similar in distance and direction, both 

tending west, with those from HGS being shortest. The small difference can be attributed to 

the differences in hydraulic conductivity distribution resulting from recalibrating WATFLOW. 

The MODFLOW particle tracks tend to deviate farther to the northwest than HGS and 

WATFLOW; this difference is expected due to the different discretization scheme. The 

FEFLOW particle tracks show larger differences, bifurcating into two directions, one towards 

the northwest along the boundary and the other towards the south, also reaching the model 

limits. This difference is mainly attributed to the difference in the particle tracking algorithm 

(4th order Runge-Kutta method for FEFLOW vs. Pollock method for HGS/WATFLOW/-

MODFLOW).  

Figure 3.10 shows the particle tracks for Stream Reach 2. For all models, particles once again 

descend to the bottom aquifer before moving west-northwest. Particles from HGS and 

WATFLOW travel a short distance to the west, while the particles from MODFLOW and 

FEFLOW travel a greater distance and are directed more towards the northwest. Again, the 

major causes of the differences in the particle tracks between models are the discretization 

scheme (for MODFLOW) and the particle tracking algorithm (for FEFLOW). A negligible two 

out of the 200 particles applied in MODFLOW deviate from the bulk of the particles and travel 

a considerable distance along the model northwest boundary; these two particles can be 

ignored. 
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Figure 3.9:  Particle tracks for Stream Reach 1: (a) HGS, (b) WATFLOW, (c) MODFLOW, (d) FEFLOW.
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Figure 3.10: Particle tracks for Stream Reach 2: (a) HGS, (b) WATFLOW, (c) MODFLOW, (d) FEFLOW.



 Modelling Surface Water-Groundwater Exchange 

  59 

For a more quantitative assessment of the particle tracks, we can compare the envelopes drawn 

around the respective particle bundles under the different models to each other. The comparison 

will account for differences in the model and the particle tracking algorithm, but it will not 

account for parameter uncertainty. Drawing the envelope itself involves some subjectivity 

because of the gaps in the particle tracks; these gaps are mainly due to the bias imparted on the 

particles due to their starting position in the grid. These gaps will disappear when either the 

reverse transport method (see Section 3.6.2) or the Monte Carlo approach (Enzenhoefer et al. 

2014, Meyer et al. 2014) is used. 

The HGS model can be considered as the most rigorous model among those selected, therefore 

the HGS solution was selected as the benchmark solution for this comparison. However, this 

selection does not necessarily imply correctness.  

Superimposing the capture zones delineated by the other models over the benchmark HGS 

capture zone, the mismatch between the capture zones can be viewed as deviations relative to 

the HGS capture zone. Figure 3.11 gives an example for the case of the WATFLOW-HGS 

comparison. Three different deviations are identified:  

1. Deviation Type 1 (highlighted in red): The area captured by the other model but not 

captured by HGS. This area can be viewed as an area that is mislabeled as being part 

of the capture zone when compared with HGS. 

2. Deviation Type 2 (highlighted in yellow): The area captured by HGS but not captured 

by the other model. This area can be viewed as an area that should have been part of 

the capture zone generated by the other model when compared with HGS.  

3. Overlap (highlighted in green): The area captured by the HGS particle tracks and the 

area of the other model. This area can be viewed as an area of model agreement.
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Figure 3.11: Example of key areas when comparing WATFLOW to HGS capture zone for Stream Reach 

1: (a) HGS and WATFLOW particles superimposed for Stream Reach 1, (b) Deviations benchmarked 

to HGS. 

These deviations are summarized in a stacked bar graph for each of the selected models (Figure 

3.12). Analysis of the bar graph for Stream Reach 1 (Figure 3.12a) reveals that the WATFLOW 

deviations are much smaller than the deviations from the other models, suggesting that the 

manually calibrated HGS model and the automatically calibrated WATFLOW model are very 

similar. FEFLOW deviations are the largest, with FEFLOW Deviation Type 1 being far greater 

than the deviations from the other models. MODFLOW’s deviations fall between those of 

WATFLOW and FEFLOW. The causes for the deviations are as follows:  

 WATFLOW: Differences in the hydraulic conductivity distribution due to the 

WATFLOW automatic calibration routine (Beckers and Frind 2001). 

 MODFLOW: Different discretization (finite difference, coarser and rectilinear grid).  

 FEFLOW: Hydraulic conductivity from WATFLOW recalibration and different 

particle tracking algorithm (4th order Runge-Kutta method as opposed to Pollock or 

Pollock-equivalent for other models). 
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Figure 3.12: Summary of reverse particle track capture zones deviations: (a) Stream Reach 1 

Deviations, (b) Stream Reach 2 Deviations.  

Repeating the same analysis for Stream Reach 2 (Figure 3.12b), we can see that a similar 

pattern emerges. HGS and WATFLOW produce the smallest capture zones. In this case, the 

WATFLOW capture zone is much smaller than the HGS capture zone, leading to a much larger 

Deviation Type 2. FEFLOW again has the greatest Deviation Type 1, extending much further 

northwest than the HGS capture zone. MODFLOW again has deviations that fall somewhere 

in between that of WATFLOW and FEFLOW. This comparison demonstrates that CZD can 

be extremely sensitive to the post-processing particle tracking algorithm, even more so than 

the model discretization scheme. (Note that the terminology used here should not be interpreted 

as meaning correctness or lack thereof.)  

The last bar on Figure 3.12, labeled “All Models” shows the total key areas from combining 

the capture zones from WATFLOW, MODFLOW, and FEFLOW. Compared to the HGS 

capture area, the total model-related uncertainty can vary approximately 2 to 5 times in size in 

the form of a Deviation Type 1. This supports the findings of previous researchers that capture 

zone extent and direction is sensitive to small differences or errors in the hydraulic head due to 

different conceptualizations or parameter changes (Franke et al. 1998). Model calibration by 
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itself only shows that a model fits the data; it does not allow any conclusion as to which is the 

“best” model.  

3.7.2 Method comparison: reverse particle tracking and reverse transport 

Figure 3.13 shows the resulting CPPs obtained for Stream Reach 1 and 2 with the steady-state 

HGS flow field. The 0.5 probability contour is highlighted; this contour has been recommended 

by Molson and Frind (2012) as a preferred choice for CZD. The particle tracks are 

superimposed over the CPP to compare the delineation methods. 

 

Figure 3.13: HGS capture probability plume with 0.5 contour highlighted and particle tracks 

superimposed (Figure 4.11 Inset): (a) Stream Reach 1, (b) Stream Reach 2. 

In Figure 3.13a the area outlined by the 0.5 probability contour is approximately 0.67 km2. The 

predominant area contributing baseflow to Stream Reach 1 extends to the east and west of the 

stream. There is a probability of 0.01 that the area extending approximately 2.5 km west also 

contributes to the base flow. 

In Figure 3.13b the area outlined by the 0.5 probability contour is approximately 0.65 km2. The 

area contributing baseflow to Stream Reach 2 extends mainly to the north and south of the 

stream. There is a probability of 0.1 that a contribution to baseflow also comes from the area 

extending approximately 2.0 km west-northwest. The 0.01 contour reaches the limits of the 

model domain, but this minor boundary effect has no impact on the core capture zone P ≥ 0.5. 

For Stream Reach 1 (Figure 3.13a), the CPP corresponds well with the superimposed particle 

tracks. The agreement between the CPP and particle tracks is excellent, with 80 % of the 
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particles terminating within the 0.5 contour. For Stream Reach 2 (Figure 3.13b), the agreement 

is even better with 98 % of the particles terminating within the 0.5 contour. This suggests that 

baseflow for this stream reach comes predominantly from local recharge within the area of the 

0.5 contour. This reinforces the choice of the 0.5 contour as a reasonable capture zone for the 

current study. 

One important note is that only a small percentage of the total particles released travel beyond 

the 0.5 contour, these few stray particles travel within the low CPP contour range (0.01 to 0.1). 

Although these stray particles follow low probability travel paths, they can have a significant 

impact on the particle envelope and hence on the interpreted capture zone delineated by reverse 

particle tracking, as shown above. Superposition of the particle tracks on the CPP allows insight 

into the significance of outlying particles.  

Figure 3.14 shows the resulting CPPs obtained for Stream Reaches 1 and 2 with the steady-

state FEFLOW flow field, also with the 0.5 contour highlighted. Comparison between the HGS 

and FEFLOW CPP for Stream Reach 1 (Figure 3.13a and 3.14a) shows that, except for the 

southern arm of the FEFLOW CPP, the two CPPs are similar. Comparing the HGS and 

FEFLOW CPP for Stream Reach 2 (Figure 3.13b and 3.14b) shows that the agreement between 

the two CPPs is not quite as good, but both are plausible. In any case, the CPPs of both models 

could be merged by selecting the maximum value at each (x,y) point from both plumes, 

following the procedure developed by Sousa et al. (2013). 

 

Figure 3.14: FEFLOW capture probability plume with 0.5 contour highlighted and particle tracks 

superimposed (Figure 3.11 Inset): (a) Stream Reach 1, (b) Stream Reach 2.  
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However, Figure 3.14 also shows that the FEFLOW particle tracks do not agree well with their 

corresponding CPPs, with the bulk of the FEFLOW particle tracks extending a considerable 

distance beyond the 0.5 contour. This can be expected due to the particle tracking scheme used 

by FEFLOW. This method, known as the 4th order Runge-Kutta method, per definition 

generates smooth particle tracks, which is an advantage in solving the Navier-Stokes equations 

with inertia terms. However, for groundwater flow in heterogeneous media, it cannot accurately 

represent the change in the flow direction at internal material interfaces in proportion with the 

permeability ratio (Bear 1972), unless a very fine discretization is used. With the discretization 

used in this study, the particle tracks are smoothed and stretched out across natural 

discontinuities, leading to a mismatch between the FEFLOW particle tracks and the 

corresponding CPP.  

Since neither CZD approach (i.e., reverse particle tracking or reverse transport) can be 

independently verified, having two approaches producing compatible results supports the 

credibility of these approaches. It is important to note that for heterogeneous systems, the 

agreement between the two methods occurs only when particle tracking is based on the Pollock 

method.  

3.8 Future steps 

The above results show that relying solely on single-run particle tracking for CZD for complex 

systems is not recommended. Instead, particle tracking should always be used within the 

framework of a Monte Carlo procedure (see Enzenhoefer et al. 2014, Meyer et al. 2014). The 

Monte Carlo approach could be extended through methods such as Bayesian model averaging 

(Hoeting et al. 1999) to account for the between-model differences encountered in this current 

study. 

In addition, combining Monte Carlo methods (Enzenhoefer et al. 2014) with scenario analysis 

(Sousa et al. 2013) and applying reverse transport on the resultant flow fields could address 

both parameter and conceptual uncertainties. In this case, filtering for model realizations would 

be necessary, only using realizations that provide an acceptable calibration (Beven and Binley 

1992, Kavetski et al. 2003). The ensemble of capture zones for each model could then be 

merged (Sousa et al. 2013) or averaged (Ye et al. 2010). Comparing the resultant capture zones 

and their sensitivity to different types of uncertainty would be of interest in informing 

hydro(geo)logic modelling methods.  
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Another relevant direction would be to study the effects of spatial and temporal scaling in the 

forms of regional flow and transience on the stream capture zone.  Veale et al. (2014) have 

shown that the source of baseflow can be regional for larger surface water courses, such as 

rivers. The limits of the current study could be expanded to include the entire Waterloo Moraine 

in order to investigate impacts of regional baseflow to larger surface water courses. Seasonal 

transience is somewhat important in the context of well capture zones; however, it could be 

important in the context of stream capture zones. By combining transient drivers (Rodriguez 

and Nowak 2018) to stream CZD, probabilistic year-to-year variations may also be considered. 

This would require flow, particle tracking, and reverse transport to be fully integrated in one 

model. At the end, a steady capture zone could be delineated on the basis of a transient analysis 

using the precautionary principle as outlined by Sousa et al. (2013) or based on a frequency 

analysis as in Rodriguez and Nowak (2018).   

In addition to particle tracking and reverse transport, groundwater age simulation as proposed 

by Molson and Frind (2012) could be applied to the delineation of the stream capture zones. In 

this approach, a conceptual “age” mass that ages at a rate of one day per day is transported 

through the system. As the life expectancy of a particle of water (i.e. the time remaining before 

capture) is zero at the well, increasing with up-gradient distance from the well, the approach 

can be used to generate a map of life expectancy for the water particles approaching a well 

(here the stream) under local-scale parameter uncertainty. The result would be a map of 

groundwater time-of-travel zones with respect to the stream, which would be immediately 

useful for land-use planning as well as the implementation of protective measures near the 

stream. 

3.9 Conclusions 

My main motivating research question (RQ1, Section 1.5) for this study was: does numerical 

model code choice lead to uncertainties in the delineation of baseflow contribution for gaining 

stream reaches? My results have shown that areas contributing baseflow to streams can in 

principle be delineated using wellhead protection methodology. However, the delineation can 

be affected by both the choice of groundwater model and the CZD method. This multi-model 

study provides insight into some of the model-choice related uncertainties that arise in the 

delineation of stream capture zones. Different models can yield different results due to different 

parameterization, discretization schemes, and particle tracking algorithms.  
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A critical component for delineating stream capture zones is the exchange flux at ground 

surface, which can be obtained using integrated sw-gw models such as HGS. The model should 

be finely discretized near the top boundary to reduce numerical errors when calculating the 

exchange flux. After obtaining the exchange flux, the same approaches that are used for the 

delineation of well capture zones can be used for gaining streams. By exploring different 

approaches, the study provides a first basis for developing protective measures to maintain the 

quantity and quality of groundwater discharge to sensitive streams.  

The results show that one of the largest sources of deviation in CZD is the particle tracking 

algorithm, followed by the discretization scheme and the parameter distribution. This means 

that capture zone results for complex heterogeneous systems are highly sensitive to the particle 

tracking algorithm. 

The results also show that in general, for complex systems, the reverse transport approach can 

be less subjective than particle tracking. Reverse transport can be combined with particle 

tracking used as a screening tool. Agreement between particle tracking and reverse transport 

results can be seen as reinforcing the validity of the baseflow contribution area delineated. It is 

important to note that, for heterogeneous systems, the agreement between the reverse transport 

and reverse particle tracking (with random walk to account for dispersion) approaches only 

occurs when particle tracking is based on the Pollock method or other sufficiently exact particle 

tracking methods, which takes the change in flow direction at internal interfaces into account. 

In response to RQ1 formulated in Section 1.5, three recommendations for delineating baseflow 

contribution areas for streams can be drawn from the conclusions of this study: 

1. With finer discretization of the near subsurface and a fully integrated surface water – 

groundwater model, the same methods of CZD methods for wells can be applied for 

gaining streams. 

2. For heterogeneous systems with internal material interfaces, the Pollock method for 

particle tracking should be chosen over the 4th order Runge-Kutta method.  

3. CZD using particle tracking should be combined with a Monte Carlo approach or 

reverse transport to address parameter uncertainty. 

In practice, multi-model analysis may not always be feasible. In view of this limitation, it is 

important that practitioners be aware of the uncertainties that can be expected when relying on 
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a single conceptual model or a single software package. Uncertainty in groundwater 

investigations remains a fact of life, and particularly so in CZD. 

Results from this chapter support the use of HGS when simulating sw-gw exchange in the 

following chapters because of its capability for fully-coupling sw-gw flow. Furthermore, the 

conclusions from this chapter suggest that if particle tracking is required (Chapters 4 and 5) 

then it is advisable to use a large number of particles (i.e., 1000’s) and that the preference 

should be to use the Pollock method over the 4th order Runge-Kutta method (however future 

studies requiring particle tracking should use the method by Selzer and Cirpka 2019). Finally, 

when possible, advection-dispersive transport (Chapter 6) should be used over particle tracking 

because it can more explicitly account for local-scale uncertainty. 





 Modelling Surface Water-Groundwater Exchange 

  69 

4.  Sensitivity of simulated meander-scale hyporheic exchange to river 

bathymetry§ 

  

Chapter highlights 

 Simulating hyporheic exchange with a high-resolution detailed bathymetry using a 3D fully 

coupled model leads to nested multi-scale hyporheic exchange systems.  

 A poorly resolved bathymetry will underestimate bedform-scale hyporheic exchange, bias-

ing the simulated hyporheic exchange towards the meander-scale, thus leading to 

overestimates of hyporheic exchange residence times.  

 Incorporating local bedforms will likely capture the nested nature of hyporheic exchange, 

leading to more physically meaningful simulations of hyporheic exchange fluxes and transit 

times. 

4.1 Motivation and research questions 

As discussed in Section 1.3 of the introduction, developing methods to simulate hyporheic 

exchange at relevant spatial and temporal scales can help us better understand this complex 

physical phenomenon and provide us with tools to plan ecological restoration projects. I chose 

to focus on modelling hyporheic exchange at the hydrostatic-driven meander-scale (m to km) 

because the associated transit times (hours to days) are relevant for anaerobic microbial 

                                                 
§ The contents of this chapter are modified from ‘Chow, R., Wu, H., Bennett, J.P., Dugge, J., Wöhling, T., and 

Nowak, W. (2018). Sensitivity of Simulated Hyporheic Exchange to River Bathymetry: The Steinlach River Test 

Site. Groundwater, https://doi.org/10.1111/gwat.12816’ 

Author contribution statement: Chow, R.: Coordinated work and writing. Wrote preliminary works and original 

draft manuscript. Revised manuscript addressing peer-review comments. Finalized and approved published 

article. Analyzed and evaluated model results. Conceptualized modelling study. Wu, H.: Developed results and 

figures for original draft manuscript. Preliminary results presented in University of Stuttgart Master’s thesis (Wu 

2017). Bennett, J.P.: Developed conceptual and Multiple Point Geostatistics (MPS) model. Helped write MPS 

section in original draft manuscript. Dugge, J.: Developed preliminary Steinlach River Test Site HGS model. 

Conceptualized modelling study. Wöhling, T.: Reviewed original draft manuscript. Conceptualized modelling 

study. Provided supervision. Nowak, W.: Reviewed original draft manuscript and revisions. Conceptualized 

modelling study. Provided supervision. 

https://doi.org/10.1111/gwat.12816


4. Sensitivity of simulated meander-scale hyporheic exchange to river bathymetry  

70  

processes such as denitrification (Zarnetske et al. 2011, Boano et al. 2014). One recent example 

in a southwest Ontario watershed, shows meander-scale hyporheic exchange to be the 

predominant driver of acesulfame (an artificial sweetener acting as a human-specific 

conservative tracer that comes from wastewater treatment plants) into near-stream shallow 

groundwater (Hwang et al. 2019). 

One model aspect identified as contributing significantly to the predictive uncertainty of 

hyporheic exchange is the accurate representation of river bathymetry (Cardenas et al. 2004). 

Pryshlak et al. (2015) compared the hyporheic exchange fluxes between simulations with 

homogeneous hydraulic conductivity (K) and abrupt K transitions, concluding that 

characterizing K was more critical than channel morphology for predicting hyporheic 

exchange. In contrast, Tonina and Buffington (2007) have shown with both laboratory 

experiments and numerical modelling that the major mechanism for hyporheic exchange was 

bedform-induced advection. Stonedahl et al. (2013) linearized the effects of different 

topographic features (i.e., meanders, bars, and dunes) and found that dunes typically 

contributed more to hyporheic exchange than other topographic features.  

Thus, the exact role of bathymetry when simulating meander-scale hyporheic exchange (fluxes 

and transit times) is unclear because changes in bathymetry simultaneously change water stages 

in the river and the geometry of the hyporheic aquifer. The goals of this study (Section 1.5) are 

to determine the role river bathymetry plays when simulating hyporheic exchange at the 

meander-scale in a physically meaningful way, and to determine which aspects of bathymetry 

are critical so that simplifications of bathymetry do not affect hyporheic exchange too 

dramatically. 

The principal research question (RQ2, Section 1.5) for this study is: what are the most 

important aspects of river bathymetry that need to be captured in order to capture the scales of 

exchange appropriately? To make this principal question more answerable and tractable, I have 

broken it down to three sub-questions: 

1. Is bathymetry important when simulating meander-scale hyporheic exchange? 

2. What errors occur when we lack bathymetry data? 

3. What aspects of bathymetry matter the most and which can be neglected in order to 

simulate meander-scale hyporheic exchange in a physically meaningful way? 
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4.2 Approach 

In order to better understand the role bathymetry plays in simulating hyporheic exchange, I 

first created a highly parameterized, highly resolved, fully coupled sw-gw model of a river 

meander with detailed river bathymetry and then perform a numerical analysis of various 

simplified models 

I chose the Steinlach River Test Site as a basis for this modelling study because of the extensive 

site investigations characterizing its hydrogeology and hyporheic exchange (Doro et al. 2013, 

Osenbrück et al. 2013, Voronina 2013, Wöhling et al. 2016). Informed by previous field 

investigations and natural field-based tracer experiments (Osenbrück et al. 2013), the model is 

constrained. This model is then treated as a reference solution or ‘virtual reality’. Next, the 

model is rerun with simpler bathymetries and compared to the virtual reality model. This lets 

us identify the river bathymetry features that have the greatest influence on the predictive biases 

when simulating meander-scale hyporheic exchange using a simplified representation of 

bathymetry.  

Based on finding in Chapter 3, to obtain a physically consistent two-dimensional distribution 

of river stages and the associated distribution of exchange fluxes, the fully coupled sw-gw 

model HydroGeoSphere (Aquanty Inc. 2015) was used to simulate meander-scale hyporheic 

exchange as a function of realistic river bathymetry geometries. More detail on this choice is 

provided in Section 4.3.1. 

It is important to note that the purpose of this study is not to calibrate a model of the Steinlach 

River Test Site. This is not necessary in order to investigate the sensitivity of simulated 

hyporheic exchange to river bathymetry. Instead, I created a reality-inspired synthetic model 

as a benchmark for my sensitivity analysis to ensure my conclusions are in line with site 

observations and the site conceptual model developed by Doro et al. (2013) and Osenbrück et 

al. (2013). Additionally, I do not determine all factors affecting hyporheic exchange and try to 

rank them (i.e., by a global parametric uncertainty analysis). Instead, the aim is to determine 

the level of bathymetry detail necessary to simulate hyporheic exchange in a physically 

meaningful way. For additional information on the effects of subsurface parameter structure 

uncertainty when modelling meander-scale hyporheic exchange, see Chapter 5. 

As a metric for comparing different scenarios, I consider the hyporheic exchange fluxes in 

various sub-reaches of the study site and the hyporheic transit time distribution through the 
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river meander. I hypothesize that the key features to be preserved in simplified models are the 

longitudinal profile of the river bed as well as the relative location of the deepest and highest 

points within the transverse profile, because the main control on the meander-scale hyporheic 

exchange should be the longitudinal profile, while the local-scale contrasts should control 

bedform-scale exchange, which together should produce more physically meaningful 

proportions of nested multi-scale hyporheic exchange (Figure 1.2). 

4.3 Modelling hyporheic exchange at the Steinlach River Test Site 

4.3.1 Site description and previous studies  

The Steinlach River Test Site is located at the lower reach of the Steinlach River, a tributary of 

the Neckar River, which belongs to the Rhine basin in southwest Germany (Figure 4.1). The 

site is approximately 0.01 km2 in area and consists of a river meander with a relatively steep 

hydraulic gradient (≈1.2 %) along the valley. Site characterization and monitoring of sw-gw 

exchange began in 2010. Osenbrück et al. (2013) used hydraulic, chemical, and isotopic 

monitoring to confirm that meander-scale hyporheic exchange was occurring and estimated the 

hyporheic exchange fluxes and residence times. Doro et al. (2013) characterized the subsurface 

heterogeneity of the hyporheic zone and developed a conceptual hydrogeological model of the 

site based on hydrogeological and geophysical methods. The benefits of geophysical methods 

to reduce nonuniqueness in sw-gw models have been demonstrated by Ward et al. (2013). 
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Figure 4.1: Location of Steinlach River Test Site showing installed piezometers, natural springs, and 

model domain outline (adapted from Osenbrück et al. 2013). 

The depositional units present at the site are a topsoil unit and a sandy gravel (or fluvial) 

deposits, separated by a sharp contact. The topsoil unit consists of fine alluvial material with a 

high organic-carbon and clay content; these are interpreted as overbank fines. The fluvial 

deposits are heterogeneous, ranging from fine sand and silt lenses to coarse gravels, which is 

common for gravel-bed rivers. The fluvial gravel deposits are underlain by sandstone of the 

Löwenstein formation, belonging to the Upper Triassic. Since the hydraulic conductivity of 

these sandstones are much lower than the fluvial deposits, they are regarded as an aquitard for 

the purpose of this study.  

Borehole information was classified from Doro et al. (2013) into five hydrofacies: topsoil, silty 

sand, sandy gravel, gravel, and sandstone (Table 4.1).  
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Table 4.1: Hydrofacies and associated proportions at the Steinlach River Test Site 

 Hydrofacies Proportion of 

logged core [%] 

Mean K (m/s) 

1 Topsoil 23 1 ∙ 10−4 

2 Silty sand 12 5 ∙ 10−4 

3 Sandy gravel 46 1 ∙ 10−3 

4 Gravel 10 5 ∙ 10−3 

- Sandstone 8 - 

Wöhling et al. (2016) created a MODFLOW model of the Steinlach River Test Site in order to 

simulate hyporheic exchange, estimate its transit time distributions, and extend a method for 

optimal sensor placement in groundwater monitoring networks. This MODFLOW model 

served as a conceptual basis (e.g., model domain limits and boundary conditions) for the 

modelling conducted in this study.   

In the standard streamflow packages of MODFLOW (i.e., RIV, STR1, SFR1, and SFR2) 

streamflow is computed as a one-dimensional problem, implying a uniform river stage over the 

width of the river. I deemed this to be inadequate for this river, where bathymetry varies both 

in the main direction of the river and perpendicular to it. The latter causes two-dimensional 

variations of river stage that can only be simulated with river-hydraulics models that are at least 

two-dimensional. The two-dimensional variations of river stage in turn drive hyporheic 

exchange. For this reason, I decided to transfer the Steinlach River Test Site model to HGS 

(Section 2.1), a fully coupled sw-gw model. Furthermore, HGS offers a flexible discretization 

scheme for refinement along the river channel in order to incorporate detailed river bathymetry. 

Although three-dimensional river models with appropriate closure schemes for turbulence 

would give even better pressure distributions at the river bed (Trauth et al. 2013), the associated 

computational effort was assessed to be too high. 

4.3.2 Steinlach River Test Site HydroGeoSphere model  

As noted in Section 2.1, the advantage of HGS is that it calculates the spatial distribution of 

gaining and losing river reaches within the channel at high resolution without the need to 

manually prescribe these areas as a boundary condition to the groundwater flow system a priori. 
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The domain was discretized using a mesh of triangular prisms (Figure 4.2a). The element edges 

are about 20 cm long in the river and banks allowing us to incorporate bathymetric details 

consistent with the resolution of the bathymetry data (Osenbrück et al. 2013). The elements are 

discretized progressively larger away from the river, and are up to 1.5 m long near the edges 

of the domain. The model domain area is approximately 0.01 km2 (85 m x 160 m) with a total 

of 176,778 nodes and 332,920 elements. Vertically, the domain is split into 20 elemental layers, 

increasing in thickness with depth. The top layer has a minimum thickness of 0.01 m and the 

bottom layer has a maximum thickness of 0.5 m. This level of discretization was found to 

provide a sufficiently precise solution for a meander-scale model, while maintaining reasonable 

computational costs. 

 

Figure 4.2: Base Case (a) model discretization and (b) boundary conditions (Chow et al. 2018). 

Next, the upper boundary of the model was generated from a topographical survey conducted 

in 2011 and 2012 (Osenbrück et al. 2013). The topographical measurements on land and in the 

river were then interpolated separately due to the different characteristics and data densities of 

the two data sets. For the land surface measurements, I used an isotropic bicubic interpolation 

method. In the river, 540 bathymetric survey points were transformed to a flow-oriented 

coordinate system, following the approach by Merwade et al. (2005), interpolated them using 

an inverse-distance-weighting method, and transformed them back to the Cartesian coordinate 

system.  Interpolation was conducted using research codes written in MATLAB.  

Finally, the lower boundary of the model was set as a no-flow boundary, representing the 

contact between the fluvial deposits and the underlying sandstone, which was considered as an 
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aquitard (Doro et al. 2013). I generated the contact surface using the Leapfrog 3D geological 

modelling software (ARANZ Geo Limited 2017), based on borehole logs and inferred 

geological trends (Doro et al. 2013). 

Figure 4.2b shows the model boundary conditions. At the upstream inlet of the surface domain, 

a constant inflow rate of 300 L/s was specified based on the observed modal flow rate 

(Voronina 2013). A subsurface specified flux of 0.1 L/s was defined along the western side of 

the model domain to account for estimated groundwater fluxes originating from the hillslope 

(Osenbrück et al. 2013). The downstream outlet in the surface domain was set as a critical 

depth boundary, which allows water to exit freely without a user-specified rate. A default no-

flow boundary was considered at all other sides of the model domain.  

4.3.3 Virtual reality model parameterization  

The spatial distribution of hydraulic parameters within the Steinlach Test Site was generated 

in a hierarchical 3-step process, according to the two different depositional environments 

present at the site. First, the Leapfrog 3D geomodelling software (ARANZ Geo Limited 2017) 

was used to interpolate unit boundaries (i.e., topsoil and fluvial) based on borehole logs and 

bank profile information from Doro et al. (2013).  

Second, the impala multiple-point geostatistical (MPS) algorithm (Straubhaar et al. 2011) was 

used to generate the subsurface distribution of hydrofacies, which is a method that can generate 

hydrofacies consistent with site data and represents the variability, connectivity, and structural 

properties present in a given training image (Mahmud et al. 2014). The SBED reservoir 

simulation software (Geomodeling Technology Corp. 1996) was used to generate training 

images for the MPS simulation. Two training images were generated: one for the topsoil unit, 

which consisted of horizontal layers, and another for the fluvial unit (Figure 4.3), which 

consisted of sinusoidal hydrofacies elongated in the assumed direction of paleoflow (congruent 

with the current surface flow regime). Borehole data (Doro et al. 2013), sequence boundaries, 

global hydrofacies proportions (Table 4.1), and training images were loaded into impala to 

generate realizations of hydrofacies distributions for the model. Additional detailed steps in 

creating the virtual reality model and the impala files used to generate the multiple-point 

geostatistical realizations are in Appendix B. 
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Figure 4.3: Training image of the fluvial unit generated using SBED reservoir simulation software 

(Geomodeling Technology Corp. 1996). Realizations varying the hydrofacies are based on multivariate 

distributions inferred from this training image. The sinuosity was derived from analyses of the Steinlach 

River channel morphology, as well as a site conceptual model informed by geophysical and 

hydrogeological methods (Doro et al. 2013).  

Third, local-scale internal heterogeneity within each hydrofacies was represented by assigning 

a multi-Gaussian random field for log hydraulic conductivities, and then used a numerical 

spectral method (Dietrich and Newsam 1993) to generate the corresponding random fields 

inside the hydrofacies. A Gaussian covariance function was chosen to model the correlation 

structure of the random fields: 

𝐶𝑙𝑛 𝐾(𝒓) = 𝜎𝑙𝑛 𝐾
2 𝑒𝑥𝑝 (−𝑟′2) 
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, where 𝜆𝑥,  𝜆𝑦, and  𝜆𝑧 are the correlation lengths in the x, 

y and z directions, respectively, 𝜎𝑙𝑛 𝐾
2  is the variance of log K, and 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 are the separation 

distances in the x, y, z directions, respectively. The mean K-values for each hydrofacies are 

from K-ranges derived from a combination of slug and pumping tests (Doro et al. 2013) while 

accounting for scale effects (Bradbury and Muldoon 1990). Based on estimates of the average 

extents of the hydrofacies (Doro et al. 2013), the variance 𝜎𝑙𝑛𝐾
2   of log K-values was set to 0.5 

and the correlation lengths 𝜆  to 1 m and 0.1 m in the horizontal (x,y) and vertical (z) directions 

for all hydrofacies, respectively. The effective porosity was assumed to be homogeneous at 

𝜂 = 25 %. While the topsoil porosity may have a different porosity than the fluvial river 
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sediments, the hyporheic exchange occurs solely within the saturated river sediments so that 

the topsoil porosity is of minor relevance for these model simulations.  

The riverbed within the Steinlach River Test Site has been described as having minimal in-

channel vegetation, steep banks, and a bottom composed predominantly of gravels and cobbles 

(Doro et al. 2013, Osenbrück et al. 2013). Therefore, a constant Manning’s roughness 

coefficient of n = 0.02 s/m1/3 was chosen for the river reach according to the classification by 

Chow (1959). HGS does not require an explicit riverbed conductance value (i.e., MODFLOW 

streamflow packages), instead HGS uses the hydraulic conductivities assigned to the upper-

most elements within the river to compute exchange fluxes. The riverbed sediments were 

assumed to have the same hydrogeological properties of the fluvial aquifer that were generated 

with the 3-step process outlined above. This assumption is further discussed in Section 4.4.4. 

To obtain the virtual reality model, I selected a single impala realization of the hydrofacies 

distributions (out of 100 realizations) with local-scale internal heterogeneity (Figure 5.2c) 

based on its initial fit to 14 head observations (Wöhling et al. 2016), as well as the meander-

scale hyporheic exchange fluxes and transit times (Osenbrück et al. 2013). The mean K-values 

for the hydrofacies were then manually fine-tuned to better agree with this data in an effort to 

make this virtual reality model more physically meaningful. The final mean 𝐾-values for the 

virtual reality model were 1 ⋅ 10−2 𝑚/𝑠 for the gravel, 2 ⋅ 10−3 𝑚/𝑠  for sandy gravel, 4 ⋅

10−4 𝑚/𝑠 for silty sand, and 1 ⋅ 10−4 𝑚/𝑠 for topsoil hydrofacies, respectively. 

While this approach has limitations because the information content of the available data is not 

sufficient for resolving local-scale aquifer heterogeneity (Moore and Doherty 2005), the 

described method is nonetheless useful as it constrains the model parameters with a dataset that 

has a significant bearing on predicting hyporheic exchange fluxes and transit times. 

Furthermore, this approach is based on geologically reasonable assumptions about the larger-

scale features, which are simulated by MPS using facies-emulating training images (Figure 

4.3). Since I am evaluating the relative impact of different bathymetries and subsurface 

parameter structures on the predictive uncertainty, it is unnecessary to achieve a perfect 

calibration of our virtual reality model to the field data. 

4.3.4 Simulated vs. observed hyporheic exchange 

Similar to Cardenas et al. (2004) and Pryshlak et al. (2015), hyporheic exchange was simulated 

using simple advective particle tracking, neglecting diffusion and dispersion. This allows us to 
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derive unique hyporheic exchange transit time cumulative distribution functions for different 

bathymetry scenarios, while simultaneously allowing us to explicitly map the origins of the 

meander-scale hyporheic exchange. Particle-tracking methods have the advantage that they do 

not introduce numerical dispersion, whereas Eulerian transport schemes, such as the finite 

element method implemented in HGS, introduce numerical dispersivities that scale linearly 

with the grid resolution. WATRAC (Section 2.2, Frind and Molson 2004) was chosen as an 

offline particle tracker for HGS, which is based on the semi-analytical method by Pollock 

(1988). 

The HGS steady-state hydraulic head distribution was used as the flow field for particle 

tracking. Initial particle placement was within the river bed upstream of the meander every 0.5 

m in both the x- and y-directions for a total of 6,613 particles. Only particles that downwelled 

into the shallow aquifer and upwelled to the surface downstream of the meander were tracked 

forward in time with the advective flow field. Figure 4.4a shows the simulated particle 

trajectories through the Steinlach Test Site hyporheic zone and the corresponding particle 

transit times.   

The hyporheic exchange flux represented by each particle was computed using the initial 

downward elemental pore water velocities interpolated by WATRAC. The fluxes were the 

product of the advective velocities, elemental area, and porosity, divided by the number of 

particles starting within each element. Each particle was assumed to carry a constant amount 

of flux throughout its travel path and that mass balance errors using interpolated WATRAC 

velocities were insignificant. These particles were then post-processed using their flux-

weighted travel times to compute a cumulative distribution function (CDF) of transit times.  

The simulated hyporheic exchange for the calibrated model compares well with observed 

fluxes and transit times. Osenbrück et al. (2013) estimated hyporheic exchange fluxes at the 

downstream outlet spring (OS1 in Figure 4.1) to be between 1-2 L/s with an average transit 

time of approximately 7.8 days. The simulated hyporheic exchange flux was 1.7 L/s and the 

median transit time was 7.8 days. This HGS model serves as the virtual reality model of the 

Steinlach River Test Site and is subsequently referred to as the ‘Base Case’. 
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                                                                                                                                         a) Base Case b) difference between Smooth 

Bathymetry and Base Case with arrows indicating their general directions, Domain B particles that contribute to meander-scale 

hyporheic exchange in the Smooth Bathymetry contribute to bedform-scale hyporheic exchange in the Base Case; c) difference 

between Sloped Bathymetry and Base Case with arrows indicating their general directions, Domain A particles take a longer 

convoluted travel path in the Sloped Bathymetry compared to the Base Case due to a weak-sink effect in Domain B (Chow et al. 2018). 

Figure 4.4: Particle trajectories contributing to meander-scale hyporheic exchange.  
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4.4 Effects of simplified bathymetry on simulated hyporheic exchange 

To determine the sensitivity of simulated hyporheic exchange to river bathymetry, the detail in 

bathymetry is systematically degraded by sampling less bathymetric elevations from the Base Case 

to create a simplified bathymetry. Next, HGS was rerun with the simplified bathymetry to generate 

the steady-state river stage and hydraulic head distribution, which is then used to recalculate the 

hyporheic exchange fluxes and transit times. Three simplified bathymetry scenarios are 

considered: 

1. Smooth: Constant slope from river inlet to outlet and devoid of local bedforms. 

2. Sloped: Follows river slope but still devoid of local bedforms. 

3. Thalweg-Gegenweg: Interpolated from bathymetric minimum and maximum every 9 m. 

Figure 4.5 shows the bathymetries for the Smooth, Sloped, and Thalweg-Gegenweg (T-G) cases, 

including: a plan-view contour plot of the river bathymetries, vertical profiles along the centerline 

of the river, bathymetric cross-sections, and the bathymetric measurements taken from the Base 

Case to generate the bathymetry. Figure 4.6 and 4.7 shows the resulting change in the river stage 

and exchange fluxes, respectively, due to the changes in bathymetry. Figure 4.8 shows the 

subsequent change in the subsurface head distributions. The results of these three simplified 

scenarios are discussed, one by one, in the following sections. 

4.4.1 Smooth Bathymetry 

This case simplifies the river bathymetry by using only two bathymetric measurements, one point 

at the river inlet and the other at the outlet. I used a slope that was approximately constant in the 

flow-oriented direction, with all variability from local bedforms in the river cross-section removed. 

The slope is not perfectly constant due to the transformations from the flow-oriented to Cartesian 

coordinates and the merging of the river bathymetry to the land surface, however efforts were 

made to make the bathymetry as smooth and constant as possible. Figure 4.5a shows the resulting 

‘Smooth Bathymetry’. 

Figure 4.6a shows the elevation contours for the Base Case river stage and land surface, while 

Figure 4.6b shows the difference in the river stage with the Smooth Bathymetry. Here it is evident 
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that the largest changes occur along the sides of the river, with the exception of a bathymetric high 

that is removed after the (i.e.,𝑥 =  25 𝑚, 𝑦 =  130 𝑚 ) that is located in the middle of the river. 

Figure 4.7b shows the river exchange flux (exfiltration/infiltration rate) for the Smooth 

Bathymetry. Figure 4.8b shows the change in the underlying head distribution relative to the Base 

Case. Here we can see that the largest head increase occurs between 60 to 100 m in the 𝑦-direction 

and the largest head decrease occurs where the bathymetric high was removed (i.e., 𝑥 =

 30 𝑚, 𝑦 =  135 𝑚 ); from this result we would expect a larger head gradient between these two 

areas. 
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                                                                                                                                        Each includes a plan-view contour plot of the river 

bathymetry, a vertical profile along the centerline of the river (vert. exag.: x20), a cross-section (vert. exag.: x5), and the locations of 

bathymetric measurements from the Base Case bathymetry used to create the bathymetry (Chow et al. 2018). 

 

Figure 4.5: Summary of bathymetries: a) Smooth, b) Sloped, c) Thalweg-Gegenweg.  
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                                                                                                      a) Base Case surface and river stage elevation. Difference in river stage 

elevation: b) Smooth Bathymetry c) Sloped Bathymetry d) Thalweg-Gegenweg (T-G) Bathymetry. River stage differences are calculated 

relative to the Base Case, warm colours indicate that the Base Case elevation was greater and cool colours indicating the opposite (Chow et 

al. 2018). 

 

Figure 4.6: River stage differences from bathymetry scenarios:  
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                                                                                       a) Base Case b) Smooth Bathymetry c) Sloped Bathymetry              

d) Thalweg-Gegenweg (T-G) Bathymetry (Chow et al. 2018). Exfiltration (warm colours) and infiltration (cool colours) 

 

Figure 4.7: Spatially distributed river exchange flux: 
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Figure 4.8: Hydraulic head differences from bathymetry scenarios: a) Base Case 3D subsurface hydraulic 

head distribution. 3D difference in hydraulic head distributions: b) Smooth Bathymetry c) Sloped 

Bathymetry d) Thalweg-Gegenweg (T-G) Bathymetry. Hydraulic head differences are calculated relative 

to the Base Case, warm colours indicate that the Base Case elevation was greater and cool colours 

indicating the opposite (Chow et al. 2018). 
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Figure 4.10 summarizes the meander-scale hyporheic exchange fluxes and transit time CDFs for 

all bathymetry cases, respectively. The total amount of meander-scale hyporheic exchange 

increased by 27 % from 1.7 L/s to 2.1 L/s from the Base Case to the Smooth Bathymetry, 

respectively. In order to understand this change in hyporheic exchange flux, the upstream segment 

was subdivided into three domains of approximately equal area (A, B, and C) to quantify the 

origins of this flux (Figure 4.9a).  

Figure 4.9b - ‘Smooth’ indicates that, for the Smooth Bathymetry, the origins of the exchange flux 

that re-enters the Steinlach River after the bend is more evenly distributed amongst the upstream 

domains. Furthermore, the largest change in flux comes from Domain B (0.2 L/s to 0.7 L/s). 

Comparing the Base Case to the Smooth Bathymetry, the number of particles that originate from 

Domain B and reach the downstream discharge area increases from 572 to 679, respectively. 

Figure 4.4b plots the travel paths of the particles that make up this difference. The Base Case 

particles discharge to a local bathymetric low towards the Northeast within Domain B, thus never 

reaching the downstream discharge area to become meander-scale hyporheic exchange. This is 

due to the geometry of the river and the sharp decrease in the Base Case river bathymetry within 

Domain B. Conversely, in the Smooth Bathymetry these particles are driven by the larger meander-

scale gradient towards the Northwest, reaching the downstream discharge area.  

This indicates that the presence of local bathymetry contrasts can cause a shift in the scales of 

simulated hyporheic exchange. This shift in hyporheic exchange scales accounts for approximately 

32 % of the increase in meander-driven hyporheic exchange from Domain B. The remaining 

increase is due to the increase in the hydraulic gradient. The riverbed elevation throughout Domain 

B in the Smooth Bathymetry is higher compared to the Base Case (Figure 4.5a: river centerline 

cross-section between 50 to 100 m), which creates a larger hydraulic gradient towards the 

discharge area downstream of the meander. Thus, in addition to having more particles participating 

in meander-scale hyporheic exchange in the Smooth Bathymetry, the exchange fluxes are larger 

and the transit times are shorter in the Smooth Bathymetry as depicted in Figures 4.9 and 4.10, 

respectively.   
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Figure 4.9: Mass balance of meander-scale hyporheic exchange:  

 

                                                                                                         a) flux originating from upstream domains b) detailed summary from 

different bathymetry cases (Chow et al. 2018). 
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Figure 4.10: Meander-scale hyporheic exchange transit times CDFs for all bathymetry scenarios. Inset 

summary table with early-time (10%), median (50%), and late-time (90%) arrivals (Chow et al. 2018). 

We can conclude that the Smooth Bathymetry leads to a bias towards larger meander-scale 

hyporheic exchange and clearly lacks the bathymetry details necessary to accurately simulate 

meander-scale hyporheic exchange fluxes and transit times; thus more bathymetry data is 

needed, which leads to the next bathymetry scenario. 

4.4.2 Sloped Bathymetry 

In this case we go from a bathymetry with a constant slope to one that follows the slope along 

the centerline of the river. A bathymetric survey point is taken every 25 m along the centerline 

of the river for a total of twelve points. Within the cross-sections, the river bathymetry remains 

devoid of variability, similar to the Smooth Bathymetry. Figure 4.5b shows the resulting 

‘Sloped Bathymetry’.  

Figure 4.6c shows the corresponding change in the Sloped Bathymetry river stage relative to 

the Base Case. Overall, we can see that the changes in river stage compared to the Base Case 
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are smaller than for the Smooth Bathymetry. Similar to the Smooth Bathymetry, the largest 

changes in river stage occur at the sides of the river. Overall, the changes to the underlying 

head depicted in Figure 4.8c are also smaller than those of the Smooth Bathymetry. However, 

in the Sloped Bathymetry there is a local decrease in head between 55 to 75 m in the Y-

direction, which although appearing to be a small change in extent, causes a dramatic change 

in the hyporheic transit time distribution.   

The total meander-scale hyporheic exchange flux for the Sloped Bathymetry is 1.6 L/s, which 

compares well to the Base Case. Furthermore, Figure 4.9b - ‘Sloped’ shows that the proportions 

of meander-scale hyporheic exchange from the upstream domains are similar to the Base Case. 

This evidence supports the Sloped Bathymetry’s ability to capture the bedform and meander-

scale hyporheic exchange systems in the correct proportions. However, while the fluxes are 

comparable, there is a significant delay in the late-time transit times. Figure 4.10 shows 

increased skewness in the Sloped Bathymetry transit time CDF, taking approximately 330 days 

for the late-time meander-scale hyporheic exchange to reach the discharge area, compared to 

26 days in the Base Case. What is the cause of this delay?  

Most of the late-time particles originate from Domain A. Figure 4.4c compares the Base Case 

and Sloped Bathymetry particles originating from Domain A. It shows that a large number of 

the Sloped Bathymetry particles deviate northeastwardly towards Domain B, before continuing 

northwestwardly towards the downstream discharge area. Evidently, the decrease in head 

within Domain B has become a weak sink in the Sloped Bathymetry case, causing particles 

originating from Domain A to take a longer and more convoluted travel path through the 

subsurface, thus increasing their transit times. Abrams et al. (2013) defines a weak sink as a 

groundwater discharge boundary condition that lets some water pass underneath it, while a 

strong sink extracts water from the entire aquifer depth (Figure 4.11).  
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Figure 4.11: Conceptual model of a physical weak sink, which draws water from the upper portion of 

the aquifer only, and a physical strong sink, which draws water from the entire aquifer depth (Abrams 

et al. 2013). 

Abrams et al. (2013) suggests approaches to account for this weak sink problem for surface 

water modelling, however the remaining problem is that “there is no way to know whether a 

specific particle should discharge to the sink or pass through the [weak sink] cell (Pollock 

1994)”. In this modelling study, HGS does not require prescribing the spatial distribution of 

losing or gaining river reaches a priori. Additionally, in places where the river is gaining 

groundwater, we do not specify the strength of the groundwater sink.  

The results indicate that a critical component of the river bathymetry is still missing and that 

the correct locations and magnitudes of losing (groundwater sources) and gaining (strong and 

weak groundwater sinks) river reaches are not being represented with the river slope alone. 

This leads to the final bathymetry scenario. 

4.4.3 Thalweg – Gegenweg Bathymetry 

In this bathymetry, I hypothesize that the specific locations of the bathymetric highs and lows 

within the river can produce a result similar to the Base Case. For a meandering river, the 

bathymetric lows or pools are usually found along the outside of the bend, where the river flow 

rate and erosion are highest (Hooke 1975). The line connecting the deepest points of successive 

cross-sections along the riverbed is commonly known as the thalweg (German for way along 

the valley). Conversely, the bathymetric highs or the shallowest portion of a meandering river 

are usually found opposite the thalweg in the form of point bars. There is no name given for 

the line that connects the highest points in a riverbed, thus I use the term ‘gegenweg’ (German 
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for opposite way), which I define as: The line that connects the shallowest points in successive 

cross-sections along the depositional side of a river opposite the thalweg under average flow 

conditions. Figure 4.12 summarizes the Thalweg-Gegenweg concept. 

To incorporate the positions of the bathymetric highs and lows, a bathymetry was interpolated 

with the minimum and maximum bathymetry elevations every 9 m in the flow-oriented 

direction, for a total of 54 points or 27 cross-sections. The resulting bathymetry is shown in 

Figure 4.5c and is referred to as the ‘Thalweg-Gegenweg (T-G) Bathymetry’.  

Figure 4.6d shows the corresponding change in Thalweg-Gegenweg Bathymetry river stage 

relative to the Base Case. Overall, Figure 4.6d shows the smallest magnitudes in river stage 

change among all simplified bathymetries. This leads to the smallest magnitudes in head 

difference, depicted in Figure 4.8d.  

 

Figure 4.12: Conceptual drawing of the 

Thalweg – Gegenweg Bathymetry. The 

bathymetric lows can be surveyed 

following the thalweg, while the 

bathymetric highs can be surveyed by 

taking a measurement of the bank 

elevation opposite of the thalweg. I define 

the gegenweg as the line that connects the 

shallowest points in successive cross-

sections along the depositional side of a 

river opposite the thalweg under average 

flow conditions. Along the gegenweg is a 

cross-over point where the shallowest 

bank will switch to the opposite side of the 

channel, represented by the red dashed 

line (Chow et al. 2018).  

 

The resulting meander-scale hyporheic exchange fluxes and transit times from the T-G 

Bathymetry compare well to those of the Base Case (Figures 4.9b and 4.10). The results 

indicate that one can simulate hyporheic exchange at the meander scale in a physically 
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meaningful way with a bathymetry that accounts for the bathymetric highs and lows. In this 

case the number of survey points were effectively reduced by 90 % (540 to 54 points) with the 

T-G Bathymetry sampling strategy without jeopardizing the simulated meander-scale 

hyporheic exchange fluxes and transit times. The results suggest that one could design a more 

effective bathymetry surveying campaign by prioritizing the bathymetric lows and the highs 

by visually identifying the Thalweg-Gegenweg of a meandering channel, and then strategically 

taking bathymetry measurements. 

It is important to note that taking the minimum and maximum bathymetry elevations every 9 

m was sufficient for the Steinlach River Test Site because major bathymetric features existed 

at that spacing. For other rivers the necessary spacing for an accurate simulation would depend 

on the level of bathymetry contrasts. Nonetheless, the T-G Bathymetry demonstrates that 

having the positions of bathymetric highs and lows within the river can lead to more physically 

meaningful simulations of hyporheic exchange fluxes and transit times than models that neglect 

the bathymetric variation in the transverse direction altogether.  

4.4.4 Role of subsurface heterogeneity – homogeneous case 

To show that the effect of bathymetry on shifting scales of simulated hyporheic exchange was 

not due to the chosen realization of hydrofacies distributions, I conducted the same analysis 

with a homogeneous 𝐾-field using the arithmetic mean of the heterogeneous 𝐾-field (2.1 ∙

10−3 𝑚/𝑠). The last two columns in Figure 4.9b shows the resulting hyporheic exchange mass 

balance for the homogenous Base Case and Smooth Bathymetry.  Similar to the heterogeneous 

Base Case, there is an increase in meander-scale hyporheic exchange flux compared to the 

Smooth Bathymetry (1.4 L/s to 2.0 L/s) with the largest change in flux originating from 

Domain B and the same change in particle trajectories shown in Figure 4.4b.  

The same analysis with a homogeneous 𝐾-field was repeated using the geometric mean (9.4 ∙

10−4 𝑚/𝑠). This resulted in approximately the same distributions of hyporheic exchange (i.e., 

increase in flux from Base Case to Smooth Bathymetry with the largest change coming from 

Domain B), only reduced by a factor of 2.5.  
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Through this simple sensitivity analysis using a homogenous K distribution, we learn two 

important lessons with respect to the effects of simplifying bathymetry when simulating 

meander-scale hyporheic exchange:  

1. The biases towards larger meander-scale hyporheic exchange when lacking a detailed 

bathymetry are due to the bathymetry alone (that is, not from spatially varying 𝐾, 

riverbed conductance, and/or Manning’s 𝑛). 

2. The arithmetic mean produces hyporheic exchange fluxes closer to the heterogeneous 

case compared to the geometric mean, suggesting that the chosen realization of 

hydrofacies distributions is dominated by well-connected sandy gravel hydrofacies 

within the hyporheic zone. 

From this we can conclude that in our simulations heterogeneity of the subsurface hydraulic 

properties plays a larger role in determining the connectivity pathways and ultimately 

hyporheic exchange transit times. Whereas river bathymetry mainly determines the river stage, 

thus affecting the underlying subsurface hydraulic head distributions, and the proportions of 

meander-scale to bedform-scale hyporheic exchange flux.  

4.4.5 Role of river flow rate 

To see the effects of river flow rate on meander-scale hyporheic exchange, I increased the 

specified constant inflow rate at the upstream inlet, then recalculated the steady-state river 

stage, hydraulic head distribution, and meander-scale hyporheic exchange flux (MSHEF) for 

the different bathymetry scenarios. Figure 4.13 summarizes the percent change in MSHEF 

relative to the MSHEF at the average river flow rate of 300 L/s (Figure 4.9b). Figure 4.13 only 

extends the river inflow rate (x-axis) to 2000 L/s because the MSHEF was plateauing for all 

bathymetry scenarios. Even though the T-G bathymetry MSHEF appears to be still rising 

slightly (green line in Figure 4.13), it had a relative increase of 50 % at a river flow rate of 4000 

L/s, suggesting that a plateau for the T-G bathymetry scenario was also reached. River flow 

rates greater than 4000 L/s produced river stages above the river banks leading to completely 

different flow patterns.  River flow rates less than 300 L/s generally showed little change (<5 

%) in MSHEF. The lower limit of river flow (200 L/s) in these simulations coincides with the 

lower limit of gauged river flows.  
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Figure 4.13: Relative change in meander-scale hyporheic exchange flux as a function of river flow rate 

under different river bathymetry scenarios (Chow et al. 2018).   

In the Smooth Bathymetry scenario there is essentially no change in MSHEF with different 

river flow rates (red line in Figure 4.13). I believe this is because the Smooth Bathymetry 

scenario lacks small-scale bedforms where the river stage can accumulate behind. Therefore, 

with an increase in river flow rate, there is nearly a uniform increase in river stage upstream 

and downstream of the meander, thus the overall head gradient and MSHEF remain virtually 

constant.  The other scenarios show an increase in MSHEF with increase in river flow rate 

before plateauing. The slopes of this increase for the Base Case, T-G, and Sloped Bathymetries 

are difficult to predict, however the plateaus are clearly higher in the presence of more bedform 

variability. The presence of bedform variability causes a non-uniform increase in river stage 

with increased river flow rate, which produces a larger meander-scale head gradient up to a 

certain threshold. The MSHEF plateau for the Base Case, T-G, and Sloped Bathymetries are 

95 %, 50 %, and 40 %, respectively. In Figure 4.13, we can see a clear relationship between 

the amount of bathymetry variability and where this plateau is formed. 

Figure 4.13 shows that none of the simpler bathymetries can approximate the Base Case 

MSHEF response to increased river flow. This shows clear limitations to the suggested T-G 

bathymetry when simulating conditions outside of the average river flow conditions under 

which it was constructed and illustrates the need for more detailed bathymetry when simulating 

transient problems. Nonetheless, of the simpler bathymetries, the T-G bathymetry results in a 

plateau closest to the Base Case. 
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4.5 Discussion 

4.5.1 Nested hyporheic exchange systems 

Some of the earliest work investigating the effects of topography on groundwater flow patterns, 

were performed by Tóth (1963) who recognized that nested local, intermediate, and regional 

groundwater flow systems can form in low-permeable unconfined aquifers with a topography-

controlled water table (Haitjema and Mitchell-Bruker 2005). Numerous scientists have taken 

the same approach to model hyporheic exchange flow by representing the head fluctuations 

due to irregularities of the river bed by superimposing sinusoidal functions as a constant head 

boundary condition (i.e., Stonedahl et al. 2010, Zlotnik et al. 2011, Käser et al. 2013). This is 

an idealized approach of representing the head fluctuations that drive hyporheic exchange, 

neglecting the actual effects of bathymetry on the river stage and thus the underlying hydraulic 

head distribution in the river bed. While the Tóth-flow analysis has been helpful in identifying 

general key patterns of hyporheic flows, it is hardly applicable to real rivers that typically lack 

perfect periodicity. Thus, rather than using sinusoidal head boundary conditions, the actual 2D 

river stage distribution is computed using the fully coupled model HGS without relying on 

periodicity. Furthermore, the surface-flow simulations are not restricted to 1D calculations as 

typically done in regional-scale groundwater models, thus accounting for variability in river 

bathymetry over the width of the river, which is frequently observed in real rivers.  

Numerous scientists (Cardenas et al. 2004, Gooseff et al. 2006, Buffington and Tonina 2009) 

have recognized the role of geomorphology and bathymetry when producing nested hyporheic 

flow systems. Geomorphology can add a third dimension of hyporheic exchange in the form 

of river meanders (Stonedahl et al. 2010), while local contrasts in the bathymetry can produce 

nonhydrostatic pressure variations that are not represented by the Saint Venant equations 

(Cardenas and Wilson 2007a, Trauth et al. 2013).  

The hyporheic exchange scales and transit time distributions generated from 3D fully coupled 

sw-gw modelling are sensitive to the representation of river bathymetry which affects the river 

stage, exchange fluxes, and consequently the underlying subsurface hydraulic head 

distributions (Figure 4.8, respectively). Both bathymetry and river stage contribute to the 

generation of bedform-scale hyporheic exchange flow systems by creating the flow-driving 

hydraulic pressure conditions at the river bed, as well as providing pools that act like hydraulic 

shortcuts for discharging hyporheic exchange (in contrast to the riffles). 
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In other words, when detailed bathymetry contrasts are present, nested hyporheic exchange 

systems are produced (i.e., bedform-scale within meander-scale hyporheic exchange). With 

increased bathymetric contrasts, the frequency of alternating gaining and losing river reaches 

increases, thus less of the hyporheic zone and river reach participates in larger meander-scale 

hyporheic exchange. Similarly, Wang et al. (2018) investigated effects of larger-scale 

topographic mesh refinement on groundwater flow and transport, concluding that lower-

resolution/fidelity topography leads to biases towards larger-scale intermediate and regional 

groundwater flow paths, thus underestimating the quantities of small-scale local groundwater 

flow paths. 

Therefore, the lack of bathymetry detail when simulating hyporheic exchange can lead to biases 

in the scales of exchange represented. To quantify the scale bias in simulated hyporheic 

exchange from under-representing river bathymetry, a simple measure of the flushing intensity 

with depth could be calculated (Zlotnik et al. 2011).  

4.5.2 Different river systems and upscaling 

The Steinlach River Test Site has been described as a relatively homogeneous and smooth 

channel with a relatively steep hydraulic gradient, thus it is expected that the overestimation of 

larger-scale hyporheic exchange processes due to the lack of bathymetry data would be greater 

in other natural river systems with steeper gradients (i.e., braided and/or mountainous river 

systems). The greater the bathymetric contrasts, which most natural river systems exhibit, the 

more likely there will be an overestimation of larger-scale hyporheic exchange when lacking 

bathymetry data. 

Hence, in order to simulate nested hierarchies of hyporheic exchange in a physically 

meaningful way, three conditions must be met. Firstly, one must be simulating a river that has 

bathymetric contrasts (i.e., is not a smooth concrete channel). Secondly, data needs to be 

collected within the river at a high enough resolution to capture these contrasts. Thirdly, the 

model must be discretized fine enough within the river to incorporate these contrasts. In other 

words, given that the simulation is discretized fine enough within the river, and that there is 

survey data that represents the contrasts in the river bathymetry, one should expect to represent 

the nested scales of hyporheic exchange more realistically.  

The implications are that a lack of bathymetry data, which is often the case, can lead to biases 

in overestimating larger scale hyporheic exchange and residence times (Boano et al. 2014). 
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When extrapolated to account for all meanders along an entire river or rivers within a 

watershed, this can lead to gross biases of the catchment’s capacity to act as a reactor to 

attenuate pollutants (Grathwohl et al. 2013). At the catchment scale it may not be feasible to 

simulate the detailed contrasts in river bathymetry, however this study indicates the possibility 

of creating hyporheic exchange scaling factors (Boano et al. 2014) by comparing the simulated 

hyporheic exchange of a characteristic river segment with varying degrees of detail in 

bathymetry.  

4.5.3 Study limitations and future work 

In this study, I was limited to one realization of hydraulic conductivity generated using MPS, 

which allows for a better representation of laterally extensive preferential flow paths that are 

important for the distribution of flow through the riverbed and hyporheic zone (Mahmud et al. 

2014). However, it was also shown through a homogeneous K-field case that these insights 

were not due to the chosen realization of hydrofacies distributions. The study presented in the 

next chapter aims to evaluate the level of detail required in the subsurface parameterization in 

order to simulate hyporheic exchange at the meander-scale.  

Furthermore, I chose to compute the hyporheic transit time distributions using simple particle 

tracking because it is computationally inexpensive and it allowed us to derive unique hyporheic 

exchange transit time CDFs, while simultaneously allowing us to explicitly map the origins of 

the meander-scale hyporheic exchange. Future work could include using the advection-

dispersion equation to calculate the hyporheic exchange life expectancy (Molson and Frind 

2012). Although this would dramatically increase the computational demand, I would expect 

to obtain more accurate hyporheic exchange transit time distributions.  

Finally, river bathymetries evolve over time, which can have dramatic impacts on hyporheic 

exchange processes. A river meander is not a static environment but evolves due to erosional 

and depositional processes. The future of integrated sw-gw models could include feedbacks 

between the hydraulic processes that drive erosion-deposition (Merritt et al. 2003, Parker et al. 

2011, Beckers et al. 2018) and vice versa, in order to simulate the changes in hyporheic 

exchange within an ever-evolving river.  
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4.7 Conclusions 

The goal of this study was to determine the role river bathymetry plays when simulating 

hyporheic exchange fluxes and transit times and to determine which aspects of bathymetry are 

the most important to simulate hyporheic exchange in a physically meaningful way. I posed 

the motivating research question (RQ2, Section 1.5): what are the most important aspects of 

river bathymetry that need to be captured to simulate meander-scale hyporheic exchange in a 

physically meaningful way? The results of this study indicate that simulating hyporheic 

exchange with a 3D fully coupled sw-gw model is sensitive to the representation of river 

bathymetry. The river bathymetry affects the river stage, and consequently the underlying 

subsurface hydraulic head distributions. The presence of local-scale contrasts in bathymetry 

can lead to an increase in smaller bedform-scale hyporheic exchange nested within larger 

meander-scale hyporheic exchange systems. Conversely, simulations of hyporheic exchange at 

the meander-scale that lack detailed bathymetry data can lead to the overestimation of larger 

meander-scale exchange. 

In these numerical experiments of the Steinlach River Test Site, meander-scale hyporheic 

exchange was overestimated by about 27 % when challenged by limited bathymetry data. 

Overestimating meander-scale hyporheic exchange can lead to biases towards longer residence 

times. When extrapolated to account for all meanders along an entire river or rivers within a 

watershed, this can lead to gross biases in the estimated retention and pollutant attenuation 

capacity of a catchment.  

Additional bathymetry information, such as more details of the river slope alone is not enough 

to accurately simulate the locations and magnitudes of losing and gaining river reaches. Thus 

it is important to also identify the locations of local bathymetric highs and lows within the river. 

Bathymetry surveying campaigns can be performed more effectively by prioritizing 

bathymetry measurements along the thalweg and gegenweg of a meandering channel, which 

can be identified visually. I define the gegenweg as the line that connects the shallowest points 

in successive cross-sections along the depositional side of a river opposite the thalweg under 

average flow conditions. Incorporating local bathymetric contrasts will likely capture the 

nested hierarchies of hyporheic exchange systems, leading to more physically meaningful 

simulations of hyporheic exchange fluxes and transit times. 
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5.  Evaluating subsurface parameter structures to simulate meander-

scale hyporheic exchange‡ 

  

Chapter highlights 

 If the parameter structure is too simple, it will be limited by intrinsic (irreducible) model 

errors. By increasing subsurface complexity through the addition of zones or heterogeneity, 

we can begin to exchange intrinsic for epistemic (potentially reducible with additional data) 

model errors.  

 A zonated model is capable of reproducing the transit time distributions of a more detailed 

model, but only if the geological structures are known.  

 An interpolated heterogeneous parameter field (cf. pilot points) showed the best trade-offs 

between intrinsic and epistemic model errors, indicating fitness for practical applications.  

 Parameter fields generated by multiple-point geostatistics (MPS) produce transit time 

distributions with the largest uncertainties, however these are reducible by additional 

hydrogeological data, particularly flux measurements. 

5.1 Motivation and research questions 

Another model aspect identified as contributing significantly to the predictive uncertainty of 

hyporheic exchange is the structural heterogeneity of the subsurface sediments within the 

hyporheic zone (e.g., Thibodeaux and Boyle 1987, Osenbrück et al. 2013, Zhou et al. 2014, 

Stonedahl et al. 2018). The representation of riverbed and hyporheic zone heterogeneity has 

                                                 
‡ The contents of this chapter are modified from ‘Chow, R., Bennett, J.P., Dugge, J., Wöhling, T., and Nowak, 

W. (2019). Evaluating subsurface parameterization to simulate hyporheic exchange: The Steinlach River Test 

Site. Groundwater, https://doi.org/10.1111/gwat.12884’ 

Author contribution statement: Chow, R.: Coordinated work and writing. Wrote preliminary works and original 

draft manuscript. Revised manuscript addressing peer-review comments. Finalized and approved published 

article. Analyzed and evaluated model results. Conceptualized modelling study. Bennett, J.P.: Developed 

conceptual and Multiple Point Geostatistics (MPS) model. Helped write MPS section in original draft manuscript. 

Helped with article revisions to address peer-review comments. Dugge, J.: Developed preliminary Steinlach River 

Test Site HGS model. Conceptualized modelling study. Wöhling, T.: Reviewed original draft manuscript. 

Conceptualized modelling study. Provided supervision. Nowak, W.: Reviewed original draft manuscript and 

revisions. Conceptualized modelling study. Provided supervision. 

https://doi.org/10.1111/gwat.12884
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long been recognized as a significant contributor to predictive uncertainty when simulating sw-

gw exchange (Vaux 1968). Riverbed heterogeneity has been found to have a net effect on 

compressing the hyporheic zone toward the riverbed and to influence hyporheic exchange 

transit time distributions at the bedform-scale (Salehin et al. 2004, Tonina et al. 2016, Liu et 

al. 2018). Pryshlak et al. (2015) found that, for meandering rivers with strongly heterogeneous 

sediments, characterizing lithological structures or hydrofacies is more critical than 

characterizing the channel morphology when predicting hyporheic exchange residence times. 

Since this study focuses on meander-scale hyporheic exchange, I chose to ignore the finer-scale 

riverbed conductance heterogeneity typical of riverbeds, and instead focus on geological 

heterogeneities at the 10 m to 100 m scale.  

While previous studies show the effects of subsurface heterogeneity on the hyporheic zone and 

exchange rates, it remains unclear what level of detail is necessary to simulate hyporheic 

exchange transit time distributions at the meander-scale and what the expected trade-offs are 

when choosing one subsurface parameter structure over another. Therefore, my research goal 

(Section 1.5) for this chapter is to evaluate the degree of subsurface detail necessary to 

accurately simulate hyporheic exchange transit time distributions. In theory, as a model’s 

complexity increases (e.g., by introducing more processes or adding more parameters), the 

model will be able to produce output that better fits calibration data. However, with added 

complexity comes greater variability in the model output because the model has more degrees 

of freedom. Furthermore, overly complex models can easily lead to over-fitting observations, 

resulting in a decline in predictive accuracy. This is known as the bias-variance trade-off, where 

we would expect a lower bias with a more uncertain forecast (larger variance) as we increase 

the complexity in the subsurface representation of heterogeneity (e.g., Guthke 2017). Note that 

model complexity is not uniquely defined in the hydrogeological community and is a topic 

being advanced in the field of model selection (Höge et al. 2018). In this study, I use the term 

complexity to indicate the number of parameters required to model details in the subsurface 

and the required knowledge to produce it.  
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There are several approaches to parameterize the subsurface, which differ in their complexity 

and their need for data to resolve them. This study investigates three approaches based on their 

relevance to applied groundwater modelling (Anderson et al. 2015):  

1. Zonation is the most common and arguably the simplest approach used in practice. 

2. Interpolation methods such as pilot points relieve the modeller of the responsibility of 

defining a zonated pattern and are commonly used to represent the heterogeneity 

inherent in hydrogeological problems (Doherty 2003). 

3. Multiple-point geostatistics (MPS; Guardiano and Srivastava 1993) are becoming 

increasingly popular because they do not require the explicit definition of a random 

function to represent the geological architecture under investigation. Instead, MPS 

directly utilize empirical multivariate distributions implied by training images and can 

effectively capture the subsurface geometrical features crucial for characterizing fluid 

flow (Hu and Chugunova 2008).  

Although I have chosen a limited set of subsurface parameter structures to test, I have attempted 

to represent commonly applied industry-standard (zonated and pilot points) and state-of-the-

art (MPS) approaches that cover a wide spectrum of complexity. With the aforementioned 

approaches, I will test the impacts of assuming homogeneous subsurface parameter 

distributions in one or more dimensions when simulating meander-scale hyporheic exchange. 

Specifically, I will use the zonated approach to test the assumption of total and horizontal 

homogeneity by creating a 1- and 2-layer model. Next, I will use a 2D interpolation approach 

to test the assumption of vertical homogeneity by varying the subsurface parameters 

horizontally, while keeping them constant vertically. Finally, I will use the MPS approach to 

test the assumption of both vertical and lateral homogeneity by varying the parameter 

distributions in all three dimensions simultaneously. 

The principle of parsimony, the idea that a model should be made as simple as possible but not 

simpler, often guides modellers when defining the optimal level of parameterization in 

environmental models. Hill (2006) believes that parameter parsimony or the use of a small 

number of parameters is essential for effective model calibration, and that model complexity 

should be added gradually and only as necessary. Voss (2011a) adds that there are few insights 

to be gained from the time-consuming and tedious process of pushing buttons and adjusting 

knobs of highly parameterized models to fit data, instead the primary objective of a modelling 

exercise should be learning something about the system through model-based analysis. 
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However, some researchers argue that the notion of the calibrated model has no place in 

environmental models since uniqueness is always achieved at the cost of error-inducing 

simplifications (Beven and Binley 1992, Pappenberger and Beven 2006, Cirpka and Valocchi 

2016). Hunt et al. (2007) states that there are diminishing returns whereby some level of 

parameter complexity improves our simulation capabilities, but too much leads to instability, 

nonuniqueness, long model runtimes, and an increased potential for predictive error. Instead, 

it has been argued that a large number of model runs should be used within a probabilistic 

Bayesian framework to explore the range of predictive possibilities rather than making a single, 

deterministic (best-fit) prediction (Gómez‐Hernández 2006). Bayesian multi-model 

frameworks can be used to find the data amount required to justify a given level of complexity 

(Schöniger et al. 2015) and, if appropriately applied, can also enhance predictive performance 

(Höge et al. 2018). 

The principle of parsimony is similar to a literary rule for storytellers by the early 20th Century 

author Anton Chekhov known as “Chekhov’s Gun”, which states that: “If in Act One you have 

a pistol hanging on the wall, then it must fire in the last act.” This means that every element in 

a story must be necessary, and irrelevant elements must be removed; furthermore elements 

should not appear to make “false promises” by never coming into play (Bit︠s︡illi 1983). 

Chekhov’s Gun suggests to environmental modellers that only relevant model components 

(i.e., processes that significantly contribute to the desired forecast or modelling objective) 

should be included in the model, all others should be removed. The concept of Chekhov’s Gun 

is increasingly pertinent in the age of complex fully integrated hydrological models. 

These two problems (error inducing simplifications versus nonuniqueness of calibration) are 

identical to the bias-variance tradeoff mentioned above. They can likewise be categorized into 

two broad types of forecast uncertainty: (1) intrinsic and (2) epistemic (Rubin 2003, Anderson 

et al. 2015). Intrinsic uncertainty, also known as aleatoric uncertainty (Ross et al. 2009, Beven 

and Young 2013), is the inherent variability of a given problem (i.e., the model forecast from 

a chosen subsurface parameter structure) that is irreducible by more measurements or new 

knowledge. Conversely, epistemic uncertainty is the forecast variability that can potentially be 

reduced with more data.  

My motivating research question for this chapter (Q3, Section 1.5) is: what is the degree of 

subsurface detail necessary to simulate transit time distributions of meander-scale hyporheic 

exchange in a physically meaningful way (i.e., low intrinsic error, low bias)? To answer this 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=G%C3%B3mez-Hern%C3%A1ndez%2C+J+Jaime
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question, it is necessary to quantify the trade-offs from choosing between different subsurface 

parameterization structures. Additionally, I wish to determine which subsurface parameter 

structure makes the best use of hydrogeological data by reducing the predictive uncertainty 

(low epistemic error, low variance).  

5.2 Approach 

To address these questions, I first build a fully coupled sw-gw model parameterized by a 

hierarchical MPS method informed by field observations which is treated as the reference 

solution or “virtual reality” (Section 4.3 and Figure 5.1a). I then systematically test the 

aforementioned subsurface parameterization structures to determine their relative impact on 

predictive uncertainty and compare the results to the virtual reality model. The model which 

forms the basis of this study is a HydroGeoSphere model (Aquanty 2015) of the Steinlach River 

Test Site developed by Chow et al. (2018).  

 

Figure 5.1: Study concept: a) A highly parameterized complex model (virtual reality) is informed by 

site observations (reality) and is treated as a basis for comparison. This model is in turn modelled with 

simpler subsurface parameter structures to compare their relative performance; b) Model boundary 

conditions  (adapted from Chow et al. 2018).  

I expect that the simplest representations of the hydrogeological structures (i.e., a homogeneous 

one-zone model with a single effective conductivity value) will be too coarse to produce a 
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transit time distribution similar to the virtual reality model (high bias) and that geostatistical 

random fields will provide the necessary flexibility (possibly low bias, but high uncertainty). 

However, the expected trade-off will be that methods that depend on geostatistical random 

fields will yield much higher variances when predicting transit time distributions, and so they 

require more calibration data before they can strike a useful trade-off between bias and 

variance. While similar research questions have been addressed in theoretical works (e.g., 

Schöniger et al. 2014) or for different systems (e.g., Pham and Tsai 2016), I wish to derive 

recommendations specific to meander-scale hyporheic exchange. 

The following sections in Chapter 5 describe the different methods used to generate alternative 

subsurface parameter structures, followed by a description of the methods used to evaluate 

model predictive errors from the different subsurface parameter structures by comparing their 

results to the results from the virtual reality model (Section 4.3). Finally, I present the predictive 

error results, followed by a discussion and Chapter specific conclusions. 

5.3 Model modifications and alternative subsurface parameter structures 

5.3.1 HydroGeoSphere model boundary condition modifications 

The same HGS model of the Steinlach River Test Site described in Section 5.2 (Base Case) 

serves as the reference solution or ‘virtual reality’ for this study. A few slight modifications to 

the boundary conditions were made to enhance the numerical stability of the model in 

preparation for randomized subsurface parameter fields used in this study. The model results 

(e.g., transit time distributions) proved to be insensitive to these changes.  

Both surface and subsurface boundary conditions (BC) were specified either as a constant head 

or prescribed flow (Figure 5.1b). A constant inflow rate of 300 L/s was specified for the south 

inlet based on the observed modal flow rate of Steinlach River discharge (Voronina 2013). The 

subsurface BCs were defined along three sides of the model domain. A constant head of 3.80 

m and 2.25 m was specified at the upstream and downstream ends, respectively, based on 

corresponding mean groundwater levels. A constant inflow of 0.1 L/s was specified on the 

western side of the model domain to account for estimated groundwater fluxes originating from 

the hillslope (Osenbrück et al. 2013). A default no-flow boundary was applied to all other sides 

of the model domain.  

Section 4.3 provides a detailed description of the model setup and parameterization of the 

virtual reality model. Again, it should be noted that the riverbed sediments are assumed to have 



 Modelling Surface Water-Groundwater Exchange 

  107 

the same hydrogeological properties of the fluvial aquifer because this study mainly focuses 

on geological heterogeneities at the 10 to 100 m scale. Salehin et al. (2004) and Liu et al. (2018) 

have investigated the effects of riverbed conductance heterogeneity on hyporheic exchange, 

concluding that an increase in riverbed heterogeneity can increase both variability in fluxes and 

ranges in residence times. 

5.3.2 Alternative subsurface parameter structures 

In this study I consider three categories of subsurface parameter structures: (1) a zonation 

structure, (2) a two-point geostatistical interpolated structure that emulates pilot point methods, 

and (3) a hierarchical multiple-point geostatistical structure. An example of the K-distribution 

for each subsurface structure is presented in Figure 5.2. Each of the three subsurface parameter 

structures is subdivided into two subcategories that will be evaluated in this study (Table 5.1). 

Table 5.1: Summary of subsurface parameter structures to evaluate 

 Zonated  Interpolated  Multi-Point Geostatistics  

 One-Zone Two-Zone 

 
66 Pilot 

Points 

128 Pilot 

Points 

 

Hydrofacies 
Hydrofacies + 

Internal Heterogeneity 

 

5.3.2.1 Zonated model (one-zone and two-zone) 

First I test the simplest representation of the subsurface by making it a homogeneous one-zone 

model. This represents a pessimistic scenario, assuming absolutely no knowledge about major 

geological structures. Then I create a two-zone model by separating the topsoil and underlying 

fluvial aquifer. The geometry of the two layers is taken accurately from the virtual reality, 

which resembles an optimistic case of knowing the contact between hydrogeological units. The 

𝐾-range used for the one-zone model ranges from 5 ∙ 10−3 𝑚/𝑠 to 5 ∙ 10−4 𝑚/𝑠, based on 

hydrogeological tests of the fluvial aquifer (Doro et al. 2013). For the two-zone model (Figure 

5.2a), the same K-range was used to represent the fluvial aquifer, with the 𝐾-range for the 

topsoil lowered by an order of magnitude (i.e., 5 ∙ 10−4 𝑚/𝑠 to 5 ∙ 10−5 𝑚/𝑠 ). 

5.3.2.2 Interpolated model (66 and 128 pilot points) 

Next, I test 2D heterogeneous K-fields that emulate pilot point methods, using randomized pilot 

point values. The goal of the pilot point method is to provide an intermediate approach for 

characterizing subsurface heterogeneity, striking a balance between direct representation of 
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element-by-element variability and reduction of parameterization to a few homogeneous zones 

(Doherty et al. 2010). The pilot point method is commonly used to generate smoothly varying 

heterogeneous parameter fields, where all elements are assigned a parameter value by kriging 

between a number of parameter estimates available at discrete locations throughout the domain, 

the “pilot points”. I chose not to include the topsoil layer to simplify the interpolated model in 

the third dimension, allowing us to test whether a heterogeneous 2D K-field is capable of 

producing transit-time CDFs similar to the virtual reality model. 
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Figure 5.2: Examples of the different subsurface parameter structures  

 

                                                                                                                  (top row) and a fence diagram to show the internal makeup of the 

structures (bottom row): a) zonated model: two-zones separating overlying topsoil from underlying fluvial aquifer, b) interpolated model: a 

multi-Gaussian random K-field kriged from 128 equally spaced pilot points, c) Multiple-Point Geostatistics model: overlying topsoil and 

differing hydrofacies without local-scale internal heterogeneity. 
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The following steps were executed to generate random heterogeneous 2D K-fields: 

1. Sample 𝑙𝑜𝑔 𝐾 from 14 borehole locations in the virtual reality fluvial aquifer.  

2. Calculate the 2D depth-averaged arithmetic mean K for each borehole.  

3. Create a variogram from the 14 depth-averaged 𝑙𝑜𝑔 𝐾-values. 

4. Generate multi-Gaussian random 𝑙𝑜𝑔 𝐾-fields based on the found variogram (𝜎𝑙𝑛𝐾
2 =

1.5 , 𝜆 = 5 𝑚, 𝐾𝐺𝐸𝑂 = 2.71 ⋅ 10−3 𝑚/𝑠) using the spectral method described in 

Section 4.2.3 and condition the realization to the 14 K-values using the method of 

smallest possible modifications (Kitanidis 1995). 

5. Sample K from the multi-Gaussian random log K-field from previous step (4) at 

uniformly spaced interpolation points (i.e., pilot points) and apply kriging to the field. 

Figure 5.2b is an example of a field generated from 128 uniformly spaced interpolation points 

(8 × 16 points with a 10 m spacing). The choice of pilot point spacing was based on the 

Steinlach River Test Site MODFLOW model by Wöhling et al. (2016) and the 

recommendations from Doherty et al. (2010) on pilot point density. I also tested a scenario with 

approximately half the interpolation points (66 points total, 6 × 11 points with a 15 m spacing) 

to see if acceptable results could be generated with fewer parameters. Both scenarios were run 

with ensembles of 100 realizations.  

5.3.2.3 Multiple-Point Geostatistical model (with and without internal heterogeneity) 

Finally, I return to the subsurface parameter structure used to create the virtual reality model. 

The hierarchical MPS method used to create the virtual reality model is capable of generating 

multiple realizations; the single realization that is most in-line with the site data and conceptual 

model is the one used as the virtual reality model. In order to quantify the variability of the 

forecasts, I generate additional realizations varying the hydrofacies distributions using impala 

(Straubhaar et al. 2011), based on the multivariate distributions inferred from an SBED training 

image (Figure 4.3). I run one scenario without local-scale internal heterogeneity, using a 

homogeneous mean K-value for each hydrofacies. I run a second scenario with local-scale 

internal heterogeneity. The local-scale internal heterogeneity is generated using the spectral 

method, variance, and correlation lengths described previously in Section 4.3.3. This will allow 
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us to see the relative impact of local-scale internal heterogeneity on predictive uncertainty of 

transit time distributions. Again, both scenarios were run with ensembles of 100 realizations. 

5.3.3 Simulated vs. observed hyporheic exchange 

The simulated hyporheic exchange for the virtual reality model compares well with observed 

flux and transit times. Osenbrück et al. (2013) estimated meander-scale hyporheic exchange 

flux at the downstream outlet spring to be between 1 L/s and 2 L/s with an average transit time 

of approximately 7.8 days. The simulated hyporheic exchange flux was 1.9 L/s and the median 

transit time was 7.9 days. This model serves as a basis for comparison or virtual reality of the 

Steinlach River Test Site for evaluating different subsurface parameter structures. 

All models (except for the zonated ones) will intrinsically generate various levels of mechanical 

dispersion as they account for various scales of heterogeneity. I will account for differences in 

dispersion and scale in the discussion. Yet, the largest contribution for dispersion visible in the 

hyporheic transit time distributions is morphological dispersion (Rinaldo et al. 1991, Soltani 

and Cvetkovic 2017), which originates from the geometry of the river meander and the particle 

pathway length through the hyporheic zone. In other words, even with homogeneous aquifer 

properties I will produce transit time distributions with dispersion partly because of the relative 

starting position from the source (initial particle placement within upstream segments of 

downwelling) to the sink (downstream upwelling at outlet spring).  

5.4 Quantifying model predictive error  

In this study, I estimate the model predictive error for the different parameterizations (Table 

5.1) by evaluating the hyporheic exchange transit time distributions as a function of the 

subsurface parameter structure. Predictive errors are deviations to the transit time CDF 

provided by the virtual reality model. My parameter of concern is hydraulic conductivity (K) 

because it is known to vary by orders of magnitude (Freeze and Cherry 1979). Another 

subsurface parameter necessary to compute transit times is the effective porosity, which I 

assume to be constant to help simplify the analysis and because its range is small compared to 

the range of K. Furthermore, specific storage is neglected because I assume steady-state 

hydraulic head distributions in this study. 

Figure 5.3 summarizes the process used to quantify the total predictive error of hyporheic 

exchange transit times. In order to quantify the total model predictive error, I change (for each 

model) the K-values within the range and variances of those measured at the site (Doro et al. 
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2013). Thus, for a given subsurface parameter structure, I generate a number of realizations 

differing the K-values with the methods described in Section 5.3.2. The parameter values are 

either sampled regularly and independently over a specified range (for zonated models) or by 

Monte Carlo methods that repeatedly generate random K-distributions (ensembles of 100 

realizations for interpolated and MPS models). I then rerun the Steinlach River Test Site model 

for all realizations, keeping boundary conditions and model geometries constant, generating an 

ensemble of transit time CDFs per model scenario. With an ensemble of transit time CDFs, I 

then compute statistics representing total model predictive error. I subdivide total model 

predictive error into two main subcomponents: 

a) Bias – is the difference between the average ensemble value and the reference solution 

(i.e., virtual reality CDF). The difference is called the residual error. A difference is 

calculated for every percentile of the CDF and is aggregated across the percentiles by 

calculating the mean square error (MSE). 

b) Variance – is the variability or uncertainty of a model prediction calculated as the 

prediction variance of the realizations. The variance is calculated for every percentile 

of the CDF and is aggregated by calculating the average variance (𝜎𝑎𝑣𝑔
2 ). 

Thus, the total model predictive error can be plotted as the sum of the bias (MSE) and variance 

(𝜎𝑎𝑣𝑔
2 ), allowing us to quantitatively compare the predictive errors from the different subsurface 

parameter structures. The units for the bias (MSE) and variance (𝜎𝑎𝑣𝑔
2 ) are squared times (i.e., 

Days2), which may feel awkward but assures that the two types of errors are additive for a 

measure of total error.  
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Figure 5.3: Quantifying predictive errors of simulated hyporheic exchange transit time distributions. 

5.4.1 Estimating data worth for different parameter structures 

In order to evaluate the worth of specific hydrogeological data to a subsurface parameter 

structure, I condition my model-wise ensembles to data. I achieve conditioning by a procedure 

known as the smooth bootstrap filter (Pitt 2002). To do so, I compute the likelihood of each 

realization given the hydrogeological data (i.e., hydraulic head and a hyporheic exchange flux 

measurement). The closer the realization is to the given hydrogeological data the higher the 

likelihood. The likelihoods are then summed for all realizations of a given parameter structure, 

then used as the denominator to divide each likelihood. This turns each likelihood into a model 

weight that ranges from 0 to 1, with the sum of the weights adding up to 1. This means that the 

output of each realization is weighted based on how well it fits hydrogeological data. The model 

bias and variance for a given parameter structure is then recalculated based on these model 

weights (Figure 5.4). Through this conditioning we can see the relative impact different 

hydrogeological data types have on error reduction (i.e., data worth).  
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Figure 5.4: Conditioning hyporheic exchange transit time errors to hydrogeological data. 

In this study, I condition my realizations to two types of available hydrogeological data: (1) 14 

hydraulic head observations and (2) an estimate of the meander-scale hyporheic exchange flux. 

For the conditioning to hydraulic head data I use a Gaussian likelihood function (Equation 5.1) 

of the errors between the simulated (ℎ𝑠) and observed heads from the virtual reality model (ℎ𝑜) 

with a measurement error variance of 𝜎ℎ 
2 = 1 𝑐𝑚2 (equating to a 𝜎ℎ = 1 𝑐𝑚, representing the 

potential measurement error for hydraulic heads), where 𝑛 is the number of observations:  

𝐿ℎ(ℎ𝑜 , 𝜎ℎ 
2 , ℎ𝑠) ∝ 𝑒𝑥𝑝 (−

1

2𝜎ℎ 
2 ∑ (ℎ𝑠𝑗 − ℎ𝑜𝑗)2𝑛

𝑗=1 )             (5.1) 

For the conditioning to the hyporheic exchange flux, again I use a Gaussian likelihood function 

(Equation 5.2) with a mean of 𝑞𝑜 = 1.5 𝐿/𝑠 and a variance of 𝜎𝑞 
2 = 0.2 (𝐿/𝑠)2, where 𝑞𝑠 is 

the simulated hyporheic exchange flux:  

𝐿𝑞(𝑥|𝑞𝑜, 𝜎𝑞) ∝ 𝑒𝑥𝑝 (−
1

2

(𝑞𝑠−𝑞𝑜)2

𝜎𝑞
2 )   (5.2) 

Figure 5.4 summarizes the approach of conditioning total model error of an ensemble. The 

solid bar is considered “unconditional”, which is made up of equally weighted realizations. The 

hatched bar is considered “conditioned”, which is the result of re-weighting realizations based 

on hydrogeological data fit. If there is no change or an increase in total predictive error from 

conditioning to hydrogeological data, this would indicate that the data cannot constrain the 

output for this particular parameter structure. In this case, it may be necessary to obtain data at 

different locations or use a different data type in order to have a meaningful reduction in 

predictive uncertainty. To assure that 100 realizations are enough for conditioning, I checked 
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that the effective sample size is large enough to robustly estimate averaged variances (Leube 

et al. 2012). 

5.5 Results from differing subsurface parameter structures  

Figure 5.5 shows the corresponding transit time CDF error analysis for each subsurface 

parameter structure. The grey shaded areas depict the 5th and 95th percentile range of the transit 

time CDF ensemble. The darker grey shading shows the percentile ranges after conditioning to 

hydrogeological data. The percentile ranges are plotted overlapping one another with the 

narrowest uncertainty range on top. When the unconditional CDF percentile range is not 

visible, this indicates that conditioning to this particular data type is uninformative because the 

CDF percentile range is not reduced within the presented 100 day timespan. The dark red line 

is the reference CDF from the virtual reality and the black lines are the model ensemble average 

CDF. The dashed lines are the ensemble average CDF after conditioning to hydrogeological 

data. 

Figure 5.6 is a summary of the CDF error analysis translated into a stacked bar plot in order to 

compare the total predictive error from different parameter structures (solid bars) and their 

response when conditioned to hydrogeological data (hatched bars).  
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                                                                                                                                                                                               The grey shaded areas 

depict the variability or uncertainty of the transit time CDF ensemble by showing the 5th and 95th percentile range and lines represent the 

ensemble means: a) one-zone model: varying K one order of magnitude, b) two-zone model: varying K one order of magnitude for each zone, 

c) interpolated model: multi-Gaussian random field kriged to 66 equally spaced pilot points, d) interpolated model: multi-Gaussian random 

field kriged to 128 equally spaced pilot points, e) MPS model: hydrofacies distributions only, and f) MPS model: hydrofacies distribution with 

local-scale internal heterogeneity.  

Figure 5.5: Summaries of the corresponding transit time CDF error analysis for each subsurface parameter structure. 
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                                                                                                  Summary of the CDF analysis translated into bias and variance predictive 

errors presented as a stacked bar plot to compare the total predictive error from different parameter structures. Unconditional errors are 

shown as solid bars and their response when conditioned to either 14 hydraulic heads or a hyporheic exchange flux measurement are shown 

as hatched bars. The subsurface parameter structures are arranged by increasing complexity from left to right. 

 

Figure 5.6: Summary of bias and variance predictive errors. 
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5.5.1 Predictive errors from zonated models 

Figure 5.5a shows the transit time distribution summary for the one-zone model, which clearly 

lacks the ability to recreate the transit time CDF of the virtual reality. From this we can 

conclude that the one-zone model is too simple to reproduce the virtual reality CDF. Figure 

5.6a shows the corresponding predictive error summary for the one-zone model, where we can 

see a relatively large bias compared to the variance. This indicates that the one-zone model is 

very inaccurate compared to the virtual reality CDF and that it is over-confident (i.e., 

erroneous, yet narrow forecast) with a relatively low variance due to its limited K-range. The 

fact that the one-zone model has essentially no change in its total predictive error when 

conditioned to data indicates that adding more data to a model with a poor representation of 

the subsurface structure does not aid in reducing the predictive error. Instead the over-

simplified model structure requires revisions through the addition of more subsurface structure, 

i.e., by adding another zone.  

Figure 5.5b shows the transit time distribution summary for the two-zone model, which is able 

to capture the virtual reality CDF along the outer fringe of its uncertainty range. The uncertainty 

is quite high, even compared to the later model versions, because K varies globally and has a 

high sensitivity for all model predictions. The CDF variance after conditioning to head data 

shows almost no change compared to the unconditional CDF variance. There is some 

narrowing of the CDF distribution in the early transit times (between 0 % and the 60 % arrival) 

once conditioned to the hyporheic exchange flux. However, even after the conditioning to a 

flux measurement, the two-zone model has a relatively high uncertainty with respect to the 

early transit times.  In Figure 5.6b we can see that the variance produced from the two-zone 

model more than doubles (119 % increase) compared to the one-zone model. This is due to the 

greater degree of freedom from the additional zone. However, with this added variance we can 

now see a reduction in bias (17 % decrease) when conditioned to flux data. Therefore, the extra 

flexibility from the additional zone can now lead to improvements in the model’s predictive 

accuracy.  

At first sight it may be disturbing to see how predictive variance does not decrease (or even 

increases) when conditioning to data (Figure 5.6b, cond. to flux). However, variance is 

guaranteed to decrease only in a linear inverse problem (Cramér–Rao inequality, Cramér 1946, 

Rao 1945). In non-linear problems, only the information entropy must decrease, and variance 

is allowed to increase (Weiss 2005). In the zonated models, the relation between the data, the 



 Modelling Surface Water-Groundwater Exchange 

  119 

parameters, the irregularly shaped boundary conditions, and the predictive goal is in fact highly 

non-linear. 

5.5.2 Predictive errors from interpolated models 

Clearly there are limitations to simulating hyporheic exchange representing the subsurface as 

a zonated model. However, representing the subsurface heterogeneity with the detailed 

characteristics of 3D hydrofacies distribution may be infeasible and/or impractical for most 

applied hydrogeological studies. Thus, a common intermediary method to generate 

heterogeneous K-fields is by interpolation using pilot points (Doherty et al. 2010). 

Figure 5.5c shows that the interpolated model with 66 pilot points is capable of reproducing 

the virtual reality CDF. Apparently, by representing heterogeneity, the model is capable of 

reproducing both the effective mean behaviour of advection (average speed) and of dispersion 

(general shape of the CDFs). But this improvement goes along with its corresponding 

uncertainty. While the early transit times (< 40 % arrival) are relatively less uncertain 

compared to the two-zone model, uncertainty tends to increase after the 40 % arrival, indicating 

that predicting the late transit times is more uncertain than predicting early transit times. The 

uncertainty after 40 % arrival appears to be reduced by approximately the same amount by 

either head or flux data, with slightly greater uncertainty reduction when conditioned to head 

data.  

Figure 5.5d shows the transit time CDF summary when the interpolation points are 

approximately doubled to 128 pilot points. There is no longer much difference between the 

unconditional variance and variance conditioned to hyporheic exchange flux, therefore the 

variance conditioned to hyporheic exchange flux overlaps the unconditional variance which 

can no longer been seen. This indicates that the 66 pilot point model (Figure 5.5c) has more 

outlying slower-to-arrive CDFs than the 128 pilot point model.  

Figures 5.6c and 5.6d summarize the resulting predictive errors for the 66 pilot point and the 

128 pilot point model, respectively. The magnitudes of the total predictive errors between the 

two models are very similar for both the unconditional errors and errors after conditioning to 

hydrogeological data. The model error from bias is relatively small compared to the error due 

to variance. This indicates that the main drawback for this parameter structure is the 

imprecision in the solution due to nonuniqueness of the heterogeneous two-dimensional 

K-field and not its ability to produce an accurate transit time CDF.  
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Figures 5.6c and 5.6d show that the model error reduction is relatively small for both kinds of 

data, with more variance reduction from conditioning to head measurements. Regardless of the 

number of interpolation points, there is a greater reduction in variance when conditioned to 

head data, indicating that hydraulic head data are more informative than flux data for this 

parameter structure. I expected that flux data would be more informative for all model 

structures because it is more related to the simulation of transit times, however the results 

indicate that this is not the case for the interpolated model. I believe this effect is due to two 

reasons: 

1. This parameter structure lacks the confining topsoil layer. Without the topsoil layer, the 

hyporheic zone acts as an unconfined aquifer and is more sensitive to the horizontal 

changes in hydraulic conductivity.  

2. The method used to generate random heterogeneous K-fields for the interpolated model 

ensures that the overall average of each realized K-field is close to the assigned 

geometric mean. Therefore, the hyporheic exchange fluxes produced with the 

interpolated model are in a relatively narrow range (i.e., approximately 68% of the 

realizations have fluxes between 1 to 3 L/s) compared to the fluxes simulated by the 

other model structures. This narrow range of a macroscopic parameter decreases the 

worth of data that represent a large support volume (like a total flux). 

When comparing the variance between the zonated and interpolated models (Figure 5.6), we 

can see that the variance from the interpolated models is greater than from the one-zone model, 

however it is less than the variance from the two-zone model. The reason for the lower variance 

in the interpolated model compared to the two-zone model is because the two-zone model 

regularly samples K-values from the entire K-range (one order of magnitude for the topsoil and 

fluvial units), while the interpolated model randomly samples multi-Gaussian K-fields that 

have an effective mean K-value roughly equal to the geometric mean K. This results in 

hyporheic exchange fluxes and transit time CDFs that vary more for the two-zone model 

(Figure 5.5b) compared to the interpolated model (Figures 5.5c and 5.5d). In other words, the 

initial uncertainty from the interpolated model is less than that of the two-zone model because 

the randomness in K is more local and so has a smaller global impact. 

5.5.3 Predictive errors from MPS models 

Figure 5.5e shows the CDF summary varying only hydrofacies distributions. The uncertainty 

of early transit times (< 15 % arrival) is relatively low. After 15 % arrival, the uncertainty 
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begins to increase dramatically, which means that both the bulk arrival time and the degree of 

dispersion becomes highly uncertain. Figure 5.6e summarizes the predictive errors and shows 

the effects of conditioning to hydrogeological data. The CDF distributions are relatively 

insensitive to horizontal changes in simulated head distributions, thus the total predictive error 

decreases only by 16 % when conditioned to 14 head measurements. This is because the 

subsurface parameter structure of the MPS model has the confining topsoil layer (similar to the 

two-zone model), resulting in a smaller reduction in model errors when conditioned to head 

data. Conditioning to hyporheic exchange flux, on the other hand, proves to be very 

informative, reducing the total predictive error by 86 % because it is informative globally on 

the presence or absence of preferential flow paths. The relative impact of conditioning to 

different data highlights the fact that, although head data are common calibration targets, their 

ability to constrain predictive errors for travel time distributions is relatively poor, especially 

in complex parameter structures. The poor ability for head data to constrain forecasts of flow 

paths and travel times has been documented in works by Moore et al. (2005), Anderson et al. 

(2015), and Wöhling et al. (2016).  

Figure 5.5f shows the CDF error analysis from hydrofacies distributions including local-scale 

internal heterogeneity. The patterns for the CDF uncertainty are similar to those for the scenario 

where only hydrofacies vary (Figure 5.5e), except that both bias and variance are smaller. This 

becomes very clear by comparing the solid bars in Figure 5.6e and 5.6f. Here we can see that 

introducing internal heterogeneity reduces the total unconditional predictive error by 43 %. 

This is counterintuitive because, based on the theory of bias-variance trade-off, it would be 

expected that additional complexity in the form of local-scale internal heterogeneity would add 

to the total predictive error in the form of additional variance. Instead, we can see that 

introducing local-scale heterogeneity reduces both bias and variance. This is because 

introducing local-scale internal heterogeneity as a multi-Gaussian random field increases 

dispersion within each realization that smooths and counteracts the drastic effects of the MPS 

model with variable hydrofacies distributions only. This creates an ensemble of transit time 

CDFs that are more similar to each another. Another important comparison between Figures 

5.6e and 5.6f is that, once the model is conditioned to flux, both total predictive errors are 

similar in magnitude. This suggests that predictive errors from local-scale heterogeneity are 

negligible relative to the errors from hydrofacies distributions when simulating transit times at 

the meander-scale. In other words, the predictive uncertainty due to the 3D distribution of 
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hydrofacies is much greater than the uncertainty from local-scale internal heterogeneity at the 

meander-scale.  

Figure 5.6f shows that, when conditioning the realizations of hydrofacies with local-scale 

internal heterogeneity to 14 head measurements, there is small reduction in variance but at the 

cost of an increase in bias. Therefore, there is essentially no reduction in the total predictive 

error. This indicates that head data is not able to resolve the local-scale heterogeneity in the 

presence of uncertain hydrofacies distributions. Once more, conditioning to hyporheic 

exchange flux reduces the total predictive error by 82 %, indicating that calibrating to fluxes 

has a more significant influence on the predictive accuracy and precision of transit times than 

hydraulic head measurements. 

5.5.4 Optimal subsurface parameter structure and best-fit realization 

Thus, from these results (Figures 5.5 and 5.6) one may conclude that the optimum level of 

complexity to simulate meander-scale transit time distributions of hyporheic exchange would 

be the interpolated model.  

The interpolated model may be able to simulate transit time distributions with relatively low 

total model error. However, if one were to model more complex processes (i.e., reactive 

transport) that depend on the spatial distribution of connectivity, subsurface mixing, and 

contact time to specific subsurface materials, then it is likely that the interpolated model would 

lead to biases, thus requiring a more detailed representation of subsurface heterogeneity. 

Therefore, I recommend MPS for generating hydrofacies distributions with or without local-

scale internal heterogeneity for reactive transport and uncertainty quantification purposes. 

Although both the interpolated and MPS models have the problem of not being able to identify 

a unique parameter distribution based on limited data. 

Alternatively, if we were to take a deterministic approach by choosing the realization with the 

best-fit to hydraulic head (lowest root mean squared error [RMSE]) and meander-scale 

hyporheic exchange flux (MSHE) for the three different model structures, we can see that the 

simpler zonated model with two zones (Fluvial 𝐾 = 2 ⋅ 10−3 𝑚/𝑠 and Topsoil 𝐾 = 5 ⋅

10−4 𝑚/𝑠) is capable of producing results similar to the more complex virtual reality model 

(Figure 5.7 and Table 5.2). Evidently, the topsoil layer is a critical control on the hyporheic 

exchange transit time distribution and acts as a confining layer increasing the hydraulic gradient 

and velocities throughout the hyporheic zone. It is important to note that I assume to have 
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perfect knowledge of the location of the surface that divides the topsoil and fluvial aquifer. It 

would be interesting to investigate in future work the sensitivity of the transit time CDF to the 

location and three-dimensional geometry of this surface, however the important point here is 

that a simpler two-zone model is capable of producing results similar to those of a much more 

detailed model under the specific model settings in this study. 

As an additional check, a 𝐾 = 9 ⋅ 10−3 𝑚/𝑠 for the one-zone model was found to produce the 

lowest CDF RMSE (35.9 days), however it would produce a hyporheic exchange flux of 14.4 

L/s, which is far outside the range of the measured flux. Therefore, the best-fit one-zone model 

was identified to have a hydraulic conductivity of 𝐾 = 2 ⋅ 10−3 𝑚/𝑠, which has a low RMSE 

with respect to the 14 head measurements and produces a hyporheic exchange flux that is close 

to the measured flux. Figure 7 shows CDFs produced from the one-zone model with 𝐾 = 9 ⋅

10−3 𝑚/𝑠 and 𝐾 = 2 ⋅ 10−3 𝑚/𝑠, clearly showing that neither is capable of capturing the 

dispersion of the virtual reality CDF. 

 

Figure 5.7: Best-fit transit time distribution from individual realization. The model structures are listed 

from simplest to most detailed, beginning with a model that represents the subsurface hydrostratigraphy 

as one homogeneous unit to a model with 3D distributions of hydrofacies with internal heterogeneity 

(IH).  
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Table 5.2: Output of Best-Fit Realization Differing Model Structures 

 

Tracer Exp. 

(Osenbrück et 

al. 2013) 

Virtual 

Reality 

One-Zone  

(𝐊 = 𝟐 ⋅

𝟏𝟎−𝟑 𝐦/𝐬) 

Two-

Zone 

Interp. 

(NP = 66) 

Interp. 

(NP = 128) 

MPS 

(Hydrofacies 

only) 

MPS 

(Hydrofacies 

+ IH) 

10 % Arrival 

(Days) 
- 4.2 6.8 4.7 4.5 2.6 3.7 4.8 

Average Arrival 

(Days) 
7.8 7.9 17.0 8.2 6.3 9.4 7.7 10.3 

90 % Arrival 

(Days) 
- 87.5 302.0 76.6 34.0 102.5 103.9 66.9 

CDF RMSE 

(Days) 
- - 99.4 16.5 15.8 17.4 10.0 33.1 

MSHE Flux (L/s) 1.0 to 2.0 1.9 2.1 1.9 1.7 1.4 1.9 2.0 

RMSE Head 

(cm) 
- - 29 8 6 8 5 8 

This additional analysis shows that a simple zonated model of meander-scale hyporheic 

exchange is capable of simulating most of the variability in transit times when compared to a 

model with much greater structural complexity, as long as it incorporates the most important 

physical controls. In this case it appears that the topsoil layer is an important physical control 

that confines and changes the hydraulic head distributions throughout the hyporheic zone. The 

zonated model fails to capture all the inflection points or “kinks” in the CDF produced by a 

model structure with greater complexity because it lacks the preferential flow paths. Therefore, 

it is likely a zonated model will bias the amount of subsurface mixing and contact time with 

specific material types, thus rendering it unsuitable for reactive transport modelling. However, 

if one were to apply the principle of parsimony and were only concerned with estimating the 

transit time distributions of meander-scale hyporheic exchange it appears to be possible with a 

zonated model here. 

Interestingly, the interpolated model can produce a similar result without the topsoil layer, 

showing that a heterogeneous 2D K-field has enough parametric freedom to compensate for 

the lack of 3D hydrogeological knowledge. The best-fit realizations from the interpolated 

models reveals that kriging with a large number (128) of pilot points can create a CDF with 

inflections or “kinks” that can be interpreted as preferential flow paths, while decreasing the 

number of interpolation points by about half results in a CDF that is smoother and more 
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dispersive (kinkless). When we compare it to the best-fit realizations of the MPS models, we 

see CDFs similar to the virtual reality, however with differing inflection points. Since the best-

fit realization from the MPS models are "cut from the same cloth" or produced by the same 

method, it is not hard to believe that this method can produce CDFs that compare well to the 

virtual reality CDF. However, in real-world applications we are unable to resolve the 

subsurface properties in as much detail as they are in real systems. Therefore, results from the 

MPS model are only valid as an academic benchmark. Furthermore, the number of realizations 

for the interpolated and MPS models were limited in this study. If I were to run a formal 

optimization, I would likely encounter a better fit realization that exists in their vast parameter 

space. Nonetheless, the point here is that the interpolated and MPS models are capable of 

producing transit time CDFs with qualities consistent with the dispersion from the virtual 

reality model. 

5.6 Discussion and Conclusions 

This chapter was motivated by the research question (Q3, Section 1.5): what is the 

recommended degree of subsurface detail necessary to simulate meander-scale hyporheic 

exchange in a physically meaningful way? In order to answer this question, it was necessary to 

evaluate the trade-offs from choosing between different subsurface parameterization structures. 

Table 5.3 presents a summary of the trade-offs that come with choosing one subsurface 

parameter structure over the other. The results have clearly shown that the one-zone model 

cannot recreate the virtual reality transit time CDF and therefore should not be considered. The 

two-zone model is capable of producing results that fit the available field data and can 

approximate the transit time CDF of the virtual reality model, while also providing the most 

unique and parsimonious solution. However, the two-zone model has a relatively large bias 

and makes little use of hydrogeological data. The interpolated model can recreate the results of 

the virtual reality model with the lowest total model error. However, the interpolated model 

does not provide a unique solution. The MPS model also has the problem of a non-unique 

solution, has relatively high total predictive error with respect to hydrofacies distributions, but 

makes the greatest use of a hyporheic exchange flux measurement in constraining transit time 

CDFs.  
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Table 5.3: Summary of Trade-Offs from Differing Subsurface Parameter Structures 

Subsurface 

Parameter 

Structure 

Scenarios 

within structure 

 

Fits 

available 

field data 

Predictive 

coverage of 

CDF 

ensemble 

Most unique 

and 

parsimonious  

Lowest total 

predictive 

error 

Approx. 

mechanical 

dispersion / 

preferential 

flow paths 

Makes best 

use of 

hydrogeo. 

data 

Zonated 

One-Zone ✘ ✘ ✘ ✘ ✘ ✘ 

Two-Zone ✔ ✔ ✔ ✘ ✘ ✘ 

Interpolated 

66 Pilot 

Points 
✔ ✔ ✘ ✔ ✔ ✘ 

128 Pilot 

Points ✔ ✔ ✘ ✔ ✔ ✘ 

Multi-Point 

Geostatistics 

Hydrofacies ✔ ✔ ✘ ✘ ✔ ✔ 

Hydrofacies + 

Internal 

Heterogeneity 

✔ ✔ ✘ ✘ ✔ ✔ 

 

From this analysis we have seen that choosing between different structural representations of 

subsurface parameter distributions when simulating meander-scale hyporheic exchange transit 

time CDFs leads to trade-offs between intrinsic and epistemic model errors (Rubin 2003, 

Anderson et al. 2015). Intrinsic model errors are the structural limitations imposed by the 

chosen representation of subsurface parameters that cannot be reduced by more knowledge 

(i.e., new measurements), while epistemic model errors are potentially reducible with new 

knowledge. Thus, from the range of parameter structures presented in this study, we can see 

that the simplest model (i.e., the one-zone model) is constrained by intrinsic model errors 

because it lacks the flexibility to adapt to additional hydrogeological information, therefore its 

predictive errors are irreducible. Only by increasing complexity through the addition of zones 

or heterogeneity do we begin to exchange intrinsic model errors for epistemic ones. We see 

this in the two-zone scenario, where an additional zone leads to a reducible model bias when 

conditioned to hydrogeological data, at the cost of greater variance from the added flexibility 

in the model structure. At the other end of the spectrum, we see that the model errors from a 

hierarchical 3D MPS model are potentially very large but also very reducible from the right 

choice of additional hydrogeological data.   
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In general, we have seen evidence of the classic bias-variance trade-off when comparing the 

different parameter structures, but have also seen that quantifying this trade-off is complex and 

can lead to counter-intuitive results. Furthermore, this study shows that it is necessary to 

incorporate measures of data worth when comparing conceptual model structures, because this 

makes it possible to distinguish model errors caused by the model structure from model errors 

caused by a lack of data, and thus allows for the quantification of the trade-offs between 

intrinsic and epistemic model errors.  

Another general trend in the predictive uncertainty of hyporheic exchange transit time CDFs, 

regardless of the parameter structure, is that early-times are relatively less uncertain and that 

uncertainty tends to increase with increasing transit time. The greatest uncertainty appears to 

be within the tailing of the transit time distribution or at late-times. This is consistent with 

reviews of water transit time analysis and modelling by McGuire and McDonnell (2006) and 

McDonnell et al. (2010), who state that the identification of late transit times is especially 

uncertain because they are often associated with small proportions of the total mass flux. 

Nonetheless, my results indicate that the transit time distributions of meander-scale hyporheic 

exchange at the Steinlach River Test Site are above the threshold (Kiel et al. 2014) necessary 

to favour denitrification (and thus nitrogen loss), given that the right biogeochemical conditions 

are present in the subsurface. Similar to Kiel et al. (2014), I believe that my findings here only 

serve as a lower limit to the potential metabolic activity because I focus on meander-scale 

exchange. Therefore, I am likely underestimating the potential reactivity by neglecting the 

nested vertical bedform-scale exchange (Chow et al. 2018). Gomez-Velez et al. (2015) have 

consistently observed higher denitrification from vertical bedform-scale exchange in the 

Mississippi River network, thus a future research direction would be to investigate bedform-

scale exchange in more detail to understand its contribution to overall catchment reactivity 

(Grathwohl et al. 2013). 

Taking a deterministic approach and following the principal of parsimony when selecting a 

subsurface parameter structure reveals that a single best-fit realization of the two-zone model 

would be capable of reproducing the results of a more complex model that includes the 3D 

distributions of hydrofacies. However, a zonated model would likely lead to biases if one were 

to model more complex processes (i.e., reactive transport) that depend on the spatial 

distribution of connectivity, subsurface mixing, and contact time to specific subsurface 

materials. Nonetheless, with adequate geological knowledge (i.e., contacts between different 
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zones) it appears that a well-done zonated model is capable of producing a transit time CDF 

similar to one produced by a more detailed subsurface parameter distribution. Similarly, 

Wondzell et al. (2009) found that increased model sophistication when simulating hyporheic 

exchange in a small mountain stream does not necessarily lead to improved results, and that 

transit time forecasts from a homogeneous model were equal to, or better than the predictions 

from a heterogeneous model. A caveat is that my result is case-specific, however a zonation-

based model has been shown to be a robust choice (given adequate geological knowledge) 

when challenged by limited data (Schöniger et al. 2015). 

The interpolated model provides a tractable solution with relatively low model errors (mostly 

in the form of variance). However, this parameter structure requires enough data to calculate 

geostatistical properties, which in this case was 14 boreholes. Furthermore, this parameter 

structure does not provide a unique solution, but rather works better with an ensemble of 

plausible realizations. The results can then be averaged and/or provide confidence intervals.  

The MPS model provides the greatest flexibility and provides a solution that is consistent with 

representations of subsurface hydrogeological structures. However, this method requires a 

defensible training image that represents the site geology and thus requires the highest degree 

of geological knowledge, which may be uncertain and based on imperfect assumptions. In 

response to the uncertainty inherent to using a single training image, Khodabakhshi and 

Jafarpour (2013) have developed a Bayesian mixture-modeling approach that adaptively and 

efficiently samples conditional facies from multiple uncertain training images. Given there is 

a defensible training image (or an ensemble of training images), the greatest predictive errors 

come from the MPS model when defining the distributions of hydrofacies within a 

heterogeneous meander-scale aquifer. Predictive errors from hydrofacies distributions, 

although very large, can be reduced by informative data. These results indicate that an estimate 

of hyporheic exchange flux is much more informative than a small number (14) of head 

measurements when simulating transit time CDFs with 3D hydrofacies distributions.  

Furthermore, these results indicate that the uncertainty from local-scale heterogeneity within 

the hydrofacies is negligible compared to the uncertainty with respect to the hydrofacies 

distributions. This is largely due to the meander-scale focus of this study. I suspect that as the 

scale of the modelling problem increases (Figure 5.8), uncertainty from larger-scale 

hierarchical elements would dominate (Heinz and Aigner 2003). For instance, hydrofacies 

distribution could play a lesser role in larger catchment-scale problems than the spatial 
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distribution of geological contacts between aquifer compartments. If my proposition is true, 

then this could be an important insight for model up/down-scaling, because it would be wrong 

to assume that results from a sensitivity or uncertainty analysis at a certain scale is transferable 

to another scale. Thus, a separate sensitivity or uncertainty analysis would be necessary when 

changing the model scale. 

 

Figure 5.8: Concept of ‘dynamic stratigraphy’  as applied to the characterization of gravel deposits. 

The hierarchy of spatial and temporal scales is systematically studied in a process-based analysis; each 

scale has implications for hydrogeological properties. Note that different investigation tools are 

necessary for each scale (Heinz and Aigner 2003). 

This study provides a clear example of the trade-offs between intrinsic and epistemic model 

structural errors when evaluating subsurface parameter structures to simulate hyporheic 

exchange. I have demonstrated that choosing the appropriate level of detail to represent the 

subsurface parameter distributions will depend on the acceptable range of intrinsic model errors 

for the given modelling objectives and the available site data.  
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5.7 Bathymetry sensitivity vs. subsurface structure uncertainty 

Results from Chapters 4 and 5 indicate that one could achieve results similar to a more detailed 

model by simply using the thalweg-gegenweg bathymetry (54 instead of 540 bathymetric 

survey points) and a two-zone (top soil and fluvial aquifer instead of hydrofacies MPS with 

internal heterogeneity) depiction of the subsurface K-distribution. Therefore, by conducting a 

sensitivity and uncertainty analysis of the bathymetry and subsurface heterogeneity, 

respectively, the critical few factors that produce the majority of the results (i.e., meander-scale 

hyporheic exchange flux and transit time distribution) was revealed.  

Of course, this is a study specific result and I would expect that the critical factors would likely 

be different at different sites and scales. Furthermore, there is the underlying assumption that 

the benchmark ‘virtual reality’ model is sufficiently representative of a real site. However, the 

point is that sensitivity and uncertainty analyses are powerful tools that can be applied to a 

model to potentially identify the critical factors that control the model response for a forecast 

of interest. With these vital few factors in-hand one can more efficiently and effectively use 

resources to prioritize investigations into the things that matter most and in doing so save time, 

money, and perhaps help reveal more “unknown unknowns” (Section 1.1.1). 

Conclusions from Chapters 4 and 5 indicate that both bathymetry and subsurface distribution 

of hydraulic conductivity play an important role when modelling hyporheic exchange at the 

meander-scale. However, it is far easier to accurately measure channel bathymetry than to 

accurately measure the distribution of subsurface properties. Furthermore, the feasible 

parameter space for the distribution of subsurface properties is much vaster than bathymetry. 

Following the principle of parsimony (Section 5.1) for model analysis, I would recommend 

conducting a sensitivity analysis first before an uncertainty analysis, because the modelling 

objectives may be achieved through a sensitivity analysis alone. Afterwards, if the results from 

a sensitivity analysis are deemed insufficient or inconclusive and an uncertainty analysis is 

required, the results of the sensitivity analysis could help guide the design and focus of the 

uncertainty analysis to a vital few tractable modelling processes, parameters, and interactions. 
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6.  Simulating bedform-scale hyporheic exchange in a bedrock river: 

The Eramosa Bedrock River Site (EBRS)  

 

Chapter highlights 

 When challenged by limited data, a stochastic discrete fracture network framework can be 

used to represent the subsurface fractured bedrock connectivity. Thus, producing 

probabilistic distributions of the potential hyporheic exchange extents and residence times 

in a fractured rock setting. 

 The coincidence of fractures and hydraulic gradients determine the spatial extents of 

bedform-scale hyporheic exchange in a fractured rock setting.  

 Hyporheic exchange residence times in bedrock rivers at the bedform-scale are potentially 

orders of magnitude longer when compared to fluvial rivers (i.e., months to years vs. minutes 

to hours). 

6.1 Motivation and research questions 

Bedrock rivers represent a unique hydrogeological environment, in which the surface water 

flows along an exposed bedrock surface (i.e., the riverbed lacks a layer of unconsolidated 

fluvial sediment). While bedrock rivers are found throughout the world, the number of 

documented studies is limited (Figure 1.8). This may be due to the difficulties that arise from 

characterizing the geology and sw-gw exchange within bedrock river systems. Thus, most 

previous studies of hyporheic exchange are within settings with unconsolidated sediments (e.g., 

Vaux 1968, Cardenas 2008, Stonedahl et al. 2010). The water that is associated with hyporheic 

exchange in fluvial river settings (Figure 1.9) has the potential to undergo biogeochemical 

reactions, which can be attributed to the retention and degradation of pollutants within 

watersheds (Kalbus et al. 2006, Grathwohl et al. 2013, Trauth et al. 2018). However, it is 

unclear whether the same can be said for hyporheic exchange (if it occurs at all) within bedrock 

rivers. Thus, there remains a knowledge gap with respect to the nature of hyporheic exchange 

in bedrock rivers. 

A field investigation between a bedrock river, Twenty Mile Creek, and a local aquifer in 
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Smithville, Ontario, Canada by Oxtobee and Novakowski (2002) provides some important 

insights about sw-gw interactions in bedrock rivers. The intent of their investigation was to 

provide a better understanding of contaminant migration near bedrock rivers, thus hyporheic 

exchange within bedrock rivers was not their main focus. Nevertheless, their investigation 

revealed that groundwater discharge was extremely limited within Twenty Mile Creek, with 

more than 95 % of the groundwater underflowing the creek during baseflow condition. 

Furthermore, their results indicated that groundwater discharge into Twenty Mile Creek was 

primarily through discrete fractures and that poor vertical connections in the fracture network 

limited groundwater exchange. Next, Oxtobee and Novakowski (2003) developed a numerical 

model based on their field investigation, which indicated that groundwater discharge (or 

recharge) in bedrock rivers depends on the aperture size of the discharging features and the 

vertical hydraulic head distribution within the fracture network. 

In principle, the same hydrostatic and hydrodynamic drivers for hyporheic exchange at rivers 

with unconsolidated sediments can drive hyporheic exchange in bedrock rivers. However, it 

would be incorrect to assume that the same relationship between spatial scales and residence 

time scales for rivers with unconsolidated sediments (i.e., Figure 1.3) applies to bedrock rivers 

(Vaughn 1990, Tinkler and Parish 1998), simply because subsurface flow in fractured media 

behaves differently than flow in unconsolidated porous media (MacQuarrie and Mayer 2005, 

Singhal and Gupta 2010). The motivating research question is (RQ4, Section 1.5): how does a 

bedrock river system respond differently to the same hyporheic exchange drivers? Finding 

ways to simulate hyporheic exchange in bedrock rivers, which incorporate our current 

knowledge of surface flow hydraulics and groundwater flow through discrete fracture 

networks, can help us identify the factors that control the spatial extents and residence times of 

hyporheic exchange within bedrock rivers.  

This chapter examines the physical properties that govern hyporheic exchange along a 

fractured bedrock river through the use of a manually coupled numerical sw-gw model. The 

aim is to understand the role of fracture network heterogeneity on the formation of hyporheic 

exchange flowpaths and groundwater residence time distributions associated with fracture-

dominated bedrock river flow systems.  In order to simulate this in a physically meaningful 

way, it is important to support my modelling with hydrogeological data that represents a real-

life bedrock river flow system, namely the Eramosa Bedrock River Site (EBRS) located within 

the Barber Memorial Scout Camp (SC) site near the City of Guelph, Ontario, Canada.  
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6.1.1 Site description, geological setting, and previous studies  

The Eramosa River is a major tributary of the Speed River within the Grand River watershed 

near the City of Guelph, Ontario, Canada (Figure 6.1). The Eramosa River is underlain by two 

regional bedrock aquifers, known as the Guelph-Amabel Aquifers (Cole et al. 2009). The 

Guelph-Amabel Aquifers consists of densely fractured dolostone with dissolution-enhanced 

karst features (Kunert et al. 1998, Kunert and Coniglio 2002) and are the sole drinking water 

sources for the City of Guelph and surrounding region (i.e., Wellington County). Groundwater 

presently discharges from these regional bedrock aquifers into the valleys of the Speed and 

Eramosa Rivers and from pumping wells completed in the aquifers (Cole et al. 2009). The 

potential effects of increased groundwater pumping on the bedrock rivers and the surrounding 

ecosystem is poorly understood (Steelman et al 2017b). Understanding the consequences of 

groundwater withdrawal from these regional aquifers and its potential impact on local surface 

water ecosystems was the initial motivation for the University of Guelph’s G360 Institute for 

Groundwater Research, who have been conducting hydrogeological and geophysical 

investigations at the Eramosa River since 2010 (Steelman et al. 2015a and 2015b, Kennedy 

2017, Steelman et al. 2017b, Capes et al. 2018).  

Locally the Eramosa River incises the Eramosa Formation by about 2 to 3 m, exposing vertical 

and horizontal fractures with little to no fluvial deposits along the riverbed (Steelman 2017b). 

The Eramosa Formation is up to 11 m thick and is composed predominantly of fractured 

dolostone, acting regionally as a discontinuous aquitard between the Guelph-Amable Aquifers 

(Cole et al. 2009). Underlying the Eramosa Formation is approximately 3 m of the cherty, 

marble-like Goat Island Formation (Steelman et al. 2017b), which is underlain by more than 

15 m of Gasport Formation (Figure 6.2). Brunton (2009) provides a full description of these 

bedrock formations.  

The Eramosa Bedrock River Site (EBRS) is a riffle-pool-riffle sequence approximately 60 m 

in length within a channel meander of the Eramosa River that has an intact dolostone riverbed 

(Figure 6.1). An important note is that the words “riffle” and “pool” are borrowed from 

geomorphologist and river morphologists, which are well-defined and depict unconsolidated 

sedimentary features in fluvial rivers. For convenience I have used the terms to mean riffle-

like and pool-like bedform features due to their geometric similarities. However, my use of the 

words riffle and pool should not be misinterpreted to be a statement about geomorphological 

provenance. Steelman et al. (2017b) believes that the bulk of the sw-gw exchange occurs along 



6. Simulating bedform-scale hyporheic exchange in a bedrock river  

134  

the fracture networks driven by a highly variable head distribution, and that matrix storage 

could potentially support complex biogeochemical processes. 

 

Figure 6.1: Location of Eramosa Bedrock River Site (EBRS), near Guelph, Ontario, Canada.The 

Eramosa River flows in a southeasterly direction, and encompasses a riffle-pool-riffle sequence (dark 

blue) within a river meander (adapted from Kennedy 2017 and Steelman et al. 2017b). SCA1 and SCA2 

are angled beneath the river (green shading). The light blue areas within the EBRS are rubble-free 

zones where surficial fracture trace lengths were mapped (Kennedy 2017). 
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Figure 6.2: Sequence stratigraphic framework for Guelph and surrounding areas of the Niagara 

Escarpment. Relative thickness of lines separating formations reflects the greater geological time 

break. The Vinemount Member (Mb) and calcareous shales of the Eramosa Formation (Fm) are a key 

aquitard. The Niagara Falls Mb of the Goat Island Fm has a relatively low transmissivity. The key 

regional hydrogeological units include the Gasport Fm and unconfined aquifer known as the Guelph 

interface aquifer (taken from Brunton 2009).  

Kennedy (2017) developed a field-based conceptual model of the EBRS by examining sw-gw 

exchange using seepage meters especially designed for bedrock rivers, known as bedrock 

seepage meters (BSM). BSMs are based on seepage meters originally designed for rivers and 

lakebeds composed of unconsolidated sediments (Lee and Hynes 1978). BSMs (Kennedy 

2017) can be used to measure vertical and horizontal flow along horizontal (bedding plane 

fractures) and vertical (joint fractures) flow paths within a fractured sedimentary bedrock river.  

Kennedy (2017) installed 24 BSMs within the riverbed (~25 cm deep) of the EBRS pool 

(Figure 6.1). Each BSM measured groundwater seepage fluxes and hydraulic heads over a 28-

day period beginning on July 7th, 2014 and ending on August 18th, 2014. Corehole (i.e., a 
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borehole with continuous recovered core) data and a survey of exposed fractures along the 

streambed were also included in the EBRS conceptual model (Figure 6.1). 

While monitoring by Kennedy (2017) indicated the existence of sw-gw interactions at the 

EBRS (i.e., local upward gradients and groundwater discharge within the river), it remains 

unclear whether bedform-scale hyporheic exchange (i.e., closed-loops of downwelling and 

upwelling within the EBRS) or merely groundwater discharge was occurring. Therefore, by 

using a physically-based (as opposed to empirically-based) numerical modelling approach, I 

intend to simulate potential bedform-scale hyporheic exchange at the EBRS informed by the 

previous field investigations. Insights gained from the modelling could determine whether 

hyporheic exchange is possible at the EBRS, and if so, the factors that control hyporheic 

exchange within bedrock rivers. Furthermore, modelling the EBRS could inform potential 

future site investigations (e.g., locations for additional piezometers, stream gauging, fracture 

characterization), including conservative (bromide) and reactive (resazurin) tracer experiments 

to evaluate the presence (or absence) of hyporheic exchange and potential biogeochemical 

turnover within the hyporheic zone (Knapp et al. 2017). 

6.1.2 Site conceptual model and modelling approach 

A site conceptual model of the sw-gw flow system of the EBRS is shown in Figure 6.3. My 

conceptual model consists of a 2D cross-sectional representation of a 61 m long riffle-pool 

sequence following the thalweg (see Chapter 4) of the EBRS. The focus of the numerical model 

is to investigate potential bedform-scale hyporheic exchange between the Vinemont Member 

(Mb), a subunit of the Eramosa Formation (Brunton 2009, Steelman et al. 2017a), and the 

surface water of the Eramosa River. Therefore, my conceptual model extends vertically in 

depth until 303.0 meters above sea level (masl), which is the average elevation of the contact 

between the Vinemount Mb and underlying Goat Island Formation (Fm). 
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Figure 6.3: Conceptual model of bedform-scale hyporheic exchange (BSHE) at the Eramosa Bedrock 

River Field Site, a riffle-pool-riffle sequence in a fractured sedimentary bedrock river (approximately 

61 m in length). Hyporheic exchange is controlled by the open fractures, which are more hydraulically 

conductive than the surrounding matrix. Open fractures will be hydraulically connected to the porous 

matrix, and thus, support potential solute exchange (i.e., diffusion) between the two flow regimes. 

Subsurface properties can be represented as an equivalent porous medium (EPM) where a 

fractured porous rock is characterized by equal fracture and matrix properties, which could be 

obtained by weighted averaging of fracture and matrix properties such as porosity, tortuosity, 

and mineral surface areas (MacQuarrie and Mayer 2005). An EPM approach may be reasonable 

for bulk groundwater flow in settings with ubiquitous fractures that form well-interconnected 

fracture networks. However, it is inadequate for simulating transport because it would neglect 

diffusive interaction between the fractures and matrix (Chapman et al. 2014). Furthermore, an 

EPM approach has been shown to underestimate the variability and average properties 

associated with transport mechanisms (e.g., matrix diffusion, sorption on fracture walls), which 

leads to the inability of capturing local-scale measurements or tests at discrete locations within 

the subsurface (Cacas et al. 1990). MacQuarrie and Mayer (2005) have also noted that a 

consequence of averaging subsurface properties in fractured rock is that solute travel times 

(especially non-reactive ones) can be underestimated in the case of fracture-dominated 

transport.  

Due to the aforementioned inadequacies of representing fractured rock systems with an EPM 

approach, and our current understanding about sw-gw interactions within bedrock rivers 

(Tinkler and Wohl 1998, Oxtobee and Novakowski 2002 and 2003, Steelman et al. 2017b), I 
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chose to represent fractures and matrix as distinct features and to simulate coupled flow and 

transport in both the fractures and matrix, simultaneously. This is known as a discrete fracture 

network (DFN) approach (MacQuarrie and Mayer 2005). A major issue is that 3D DFN 

simulations at scales relevant to contaminant plumes are computationally expensive. As a 

possible remedy, Chapman et al. (2014) have proposed a combined EPM-DFN approach to 

simulate transport in sedimentary bedrock aquifers. The EPM-DFN approach involves using a 

3D EPM model that incorporates macro-complexity (e.g., hydrogeological units) to capture 

bulk groundwater flow, then to identify the predominant plume flow path using forward 

particle tracking from the source zone. Once the plume flow path has been identified, a 2D 

DFN cross-sectional approach is used to model transport along the plume flow path, 

incorporating fracture and matrix properties that influence plume transport.  

I can fulfill my study objectives by modelling flow and transport within a 2D DFN cross-

section. For this specific site, a full 3D EPM model of the catchment would be unnecessary to 

identify the predominant groundwater flow direction (i.e., river flow direction), therefore I am 

only using the latter DFN half of the EPM-DFN approach proposed by Chapman et al. (2014). 

I will develop a 2D DFN flow and transport model using HGS (Aquanty Inc. 2015, Section 

2.1) to simulate sw-gw exchange along the EBRS thalweg.  

A major drawback in the application of a DFN approach for contaminant transport is the 

challenge of obtaining the necessary input parameters (e.g., fracture position, density, angles, 

apertures, network connectivity, rock matrix parameters) and datasets on solute concentration 

distributions to calibrate transport parameters (Chapman et al. 2014). Due to these issues with 

DFN identifiability (see also Section 1.1.2, Sun and Yeh 1990) I have chosen to model the 

DFN within a stochastic framework. This means that I will represent the subsurface with a suite 

of statistical DFN realizations, each generated randomly, but in-line with the observed spatial 

fracture properties from local site measurements. Probability distribution functions of 

hyporheic exchange residence times and extents can be produced from a suite of statistically 

valid (with respect to fracture properties) DFN realizations. This could lead to physically 

meaningful ranges (i.e., within realistic orders-of-magnitudes) of bedform-scale hyporheic 

exchange fluxes and residence times at the EBRS and similar bedrock rivers. The following 

sections will describe the field data collected from previous site investigations at the EBRS 

(Colby et al. 2015 and 2015b, Kennedy 2017, Steelman et al. 2017b, Capes et al. 2018) and the 

process in which they were reduced to inform the 2D DFN stochastic modelling. 
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6.2 Fracture properties of the Eramosa Bedrock River Site 

The following subsections describe the reduction of data from previous field investigations 

conducted by the University of Guelph’s G360 Institute for Groundwater Research (Colby et al. 

2015 and 2015b, Kennedy 2017, Steelman et al. 2017b, Capes et al. 2018). I start with 

describing the geotechnical layers identified by a cumulative fracture intensity with depth 

analysis (Section 6.2.1), followed by an analysis of fracture dip data (Section 6.2.2). Next, I 

reduce fracture frequency data from coreholes and surficial riverbed surveys (Section 6.2.3). 

Then, I calculate fracture aperture statistics from hydraulic packer tests and bedrock seepage 

meter measurements (Section 6.2.4). Finally, I obtain all other necessary model parameters by 

reviewing site-relevant literature (Section 6.2.5). 

6.2.1 Geotechnical layers of the Vinemount Member 

Correctly identifying significant mechanical stratigraphy in rock, their lateral persistence (i.e., 

spatial distribution), and their potential vertical connectivity is known to greatly improve 

predictions of subsurface flow and transport for petroleum reservoir engineering, proposed 

high-level nuclear waste storage facilities, and other types of large subsurface engineering 

projects in hard rock (La Pointe 2010). This led me to subdivide the Vinemount Mb into 

mechanical layers (ML), which are intervals of rock that have similar fracture properties 

(Underwood et al. 2003, Shackleton et al. 2005). Mechanical layers were delineated by 

identifying inflection points on a cumulative fracture intensity (CFI) vs. depth plot (La Pointe 

2010). CFI plots for all six coreholes were generated by ordering all identified fractures by 

elevation, then assigning them a rank (La Pointe 2010).  For instance, the shallowest fracture 

was given a rank = 1 and the next shallowest fracture was given a rank = 2, with the deepest 

of n fractures given a rank = n. Rankings are then normalized by the total number of fractures 

n for each corehole to create a CFI value, which is plotted against elevation as shown in Figure 

6.4.  
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Figure 6.4: Cumulative fracture intensity of total fractures for six coreholes. The black line represents 

constant fracture intensity. Blue dots (SCA1, 2, and 3) are from the angled coreholes and red dots 

(SCV1, 2, and 3) are from the vertical coreholes. 

To determine the inflection points, the six CFFs were then combined by averaging across fixed 

depth intervals of 0.1 m along the Vinemount Mb to a single plot representing the average 

cumulative fracture intensity with elevation (Figure 6.5). I identified four inflection points (red 

dots in Figure 6.5) from the average CFI plot, which represents the contact between five distinct 

mechanical layers. The rest of this study will use these five mechanical layers to parameterize 

my Base Case discrete fracture network (DFN) model.  
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Figure 6.5: Cumulative average fracture intensity of total fractures with depth. Normalized rankings 

have been averaged across all six coreholes over fixed depth intervals of 0.1 m. Inflection points are 

marked by red dots indicating a change in fracture intensity and delineating the contact between 

mechanical layers. 

In the absence of close-proximity outcrops, fracture length statistics representative of the site 

are difficult to attain even with corehole data. Therefore, I used uniform distributions for 

generating random fracture lengths consistent with methods from Parker et al. (2018) when 

outcrop data is unavailable. Also, the mechanical layer thickness (MLT) can be a helpful 

quantity for constraining the uniform distributions for fracture lengths (Underwood et al. 2003, 

La Pointe 2010). The minimum fracture lengths will be constrained by the model discretization, 

which will be discussed in Section 6.3.1. Horizontal fracture length 𝑙h is randomly selected 

from 𝑙h,min = 0.05 𝑚 (minimum horizontal grid spacing) to 𝑙h,max = 10 ∙ MLT. Vertical 

fracture length 𝑙v is randomly selected from two uniform distributions because there it is a 

possibility that some vertical fractures will penetrate mechanical layers: (1) 90% chance from 

𝑙v,min =  0.02 m (maximum vertical grid spacing) to 𝑙v,max =  MLT, or (2) 10% chance from 

𝑙v,min =  MLT to 𝑙h,max =  1.5 ∙  MLT (Underwood et al. 2003).  
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6.2.2 Fracture dips 

Fracture dips, the angle between a horizontal plane and a fracture, were normalized by the total 

fracture count from the angled boreholes (i.e., SCA1, 2, and 3) as shown in Figure 6.6, 

irrespective of fracture strike. Frequency of fracture dips from vertical coreholes (i.e., SCV1, 

2, and 3) were ignored because vertical coreholes are biased against sampling high-angled 

fractures, and are effectively blind to vertical fractures (Munn 2012). 

 

Figure 6.6: Normalized frequency of fracture dip angles from the angled coreholes only. Fractures 

with dip angles less than or equal to 30° are assumed to be horizontal and fractures with dip angles 

greater than 30° are assumed to be vertical. 

The data indicates that a majority of fractures at the EBRS are subhorizontal (i.e., bedding 

plane fractures close to being horizontal), with approximately 78 % of fractures with dip angles 

between 0° and 10°. This suggests that flow may be controlled by subhorizontal flow paths. 

Similar normalized frequencies (1 % to 5 %) were observed for all other dip angles. Therefore, 

I chose to represent the EBRS DFN with orthogonal horizontal and vertical fractures only, 

assuming that all observed fractures with a dip angle equal to 30° or less were horizontal and 

all fractures with dip angles greater than 30° were vertical. 
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6.2.3 Fracture frequency 

Under the assumption of orthogonal fracture sets, frequency distributions of horizontal and 

vertical fractures were calculated for each mechanical layer. Horizontal fracture frequency 

statistics for each mechanical layer were computed from all coreholes and are summarized in 

Table 6.1. Where the average fracture frequency is 𝑓 ̅ and the fracture frequency sample 

standard deviation is 𝑠𝑓. 

Table 6.1: Horizontal Fracture Frequency 

Coreholes 
(Fig. 6.1 for 
locations)  

ML 1 ML 2 ML 3 ML 4 ML 5 

Horizontal Fracture Count (frac) 

SCA1 15 20 32 15 5 
SCA2 20 27 39 27 8 
SCA3 8 20 34 15 15 
SCV1 11 23 25 17 12 
SCV2 14 18 41 11 13 
SCV3 na 44 45 18 25 

 Thickness of Mechanical Layer (m) 
 0.8 1.0 2.5 1.7 2.0 
 Horizontal Fracture Frequency (frac/m) 

𝑓 ̅(frac/m) 17.0 25.3 14.4 10.1 6.5 

𝑠𝑓 (frac/m) 5.6 9.7 2.9 3.2 3.4 

na = data not available or incomplete 
 

Vertical fracture frequencies were also computed using only the angled coreholes (SCA1, 2 

and, 3) because vertical coreholes are biased against sampling high angled fractures. Table 6.2 

summarizes the vertical fracture frequencies for each mechanical layer. 

Table 6.2: Vertical Fracture Frequency  

 ML 1 ML 2 ML 3 ML 4 ML 5 
 Vertical Fracture Count (frac) 

SCA1 3 3 6 2 1 
SCA2 0 1 5 0 1 
SCA3 5 4 10 6 7 

 Horizontal Width of Angled Borehole (m) 
 0.46 0.58 1.44 0.98 1.15 
 Vertical Fracture Frequency (frac/m) 

𝑓 ̅(frac/m) 5.8 4.6 4.8 2.7 2.6 

𝑠𝑓 (frac/m) 5.4 2.6 1.8 3.1 3.0 

Kennedy (2017) summarizes a surficial fracture mapping survey in Figure D-2 of her PhD 

dissertation. Surficial vertical fracture (i.e., fractures that intersected the riverbed) trace lengths 
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(Figure 6.1) were surveyed from four areas within the EBRS (Figure D-1 from Kennedy 2017), 

providing a measure of total fracture length per unit area that is summarized here in Table 6.3. 

Where the average fracture density is 𝑓𝑑̅̅̅̅  and the fracture density sample standard deviation is 

𝑠𝑓𝑑.One area of exposed trace lengths is a rubble-free zone located within the pool of the EBRS, 

these mapped fracture traces will be used to determine the locations of vertical fractures within 

the pool (Section 6.3.2).   

Table 6.3: Vertical fracture density along streambed.

 Transect Vertical Fracture Density (m frac/m2) 
1 0.44 
2 2.45 
3 2.03 

Floodplain 1.50 
Statistics  

𝑓𝑑̅̅̅̅  1.6 

𝑠𝑓𝑑 0.9 

6.2.4 Fracture aperture 

The effective hydraulic apertures across the five mechanical layers were approximated from 

hydraulic conductivity measures derived from packer tests (Capes 2018) and BSMs (Kennedy 

2017). These measurements assess the total hydraulic conductivity of both the matrix and 

fractures. However, the presence of hydraulically connected fractures strongly dominates the 

flow. Packer testing was conducted across the Vinemount in 1.3 m and 1.5 m intervals within 

the angled and vertical coreholes, respectively. The average horizontal hydraulic conductivities 

with depth obtained from the packer tests are shown in Figure 6.7.    
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Figure 6.7: Hydraulic conductivity with depth from corehole packer tests. 

Hydraulic conductivity measurements where averaged across mechanical layers for each 

corehole, weighted by interval width. Apertures a [L] were then calculated using the 

relationship between the hydraulic conductivity of a set parallel fractures Ks [L/T] and fracture 

spacing ∆𝑥̅ [L] in an impermeable rock matrix given by Singhal and Guptal (2010):  

𝑎 = √
Ks(12 ∙ ∆𝑥̅ ∙  v)

g

3

 

Where g =  9.81 m/s2 is the gravitational constant and v = 1.0 ∙ 10−6 m2/s is the kinematic 

viscosity of pure water at 20°C. The average spacing between fractures ∆𝑥̅ was calculated by 

dividing the mechanical layer thickness by the total horizontal fracture count for each corehole. 

Table 6.4 summarizes the resulting six apertures for each mechanical layer and their averages 

(except for ML1 which is based on BSM data and trace length surveys).  
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Table 6.4: Hydraulic apertures from packer testing hydraulic conductivity 

 ML 2 ML 3 ML 4 ML 5 
 Horizontal Hydraulic Conductivity, Kx (m/s) 

SCA1 9.2E-07 2.9E-06 4.5E-05 2.1E-04 
SCA2 3.3E-06 5.5E-07 3.9E-06 1.3E-05 
SCA3 3.2E-07 1.0E-06 3.7E-06 8.7E-06 
SCV1 5.2E-06 6.4E-06 1.1E-05 6.3E-05 
SCV2 2.8E-06 4.3E-06 6.6E-06 2.0E-05 
SCV3 2.2E-06 4.4E-06 9.7E-06 2.4E-05 

 Average Spacing Between Horizontal Fractures, ∆𝑥̅ (m) 

SCA1 0.05 0.08 0.11 0.40 
SCA2 0.04 0.06 0.06 0.25 
SCA3 0.05 0.07 0.11 0.13 
SCV1 0.04 0.10 0.10 0.17 
SCV2 0.06 0.06 0.15 0.15 
SCV3 0.02 0.06 0.09 0.08 

 Calculated Hydraulic Aperture, 𝑎 (μm) 

SCA1 38 65 185 466 
SCA2 53 35 67 160 
SCA3 27 45 80 112 
SCV1 65 92 111 234 
SCV2 58 68 108 155 
SCV3 39 67 104 132 

 Hydraulic Aperture Statistics (μm) 
𝑎̅ (μm) 45 59 104 185 
𝑠𝑎 (μm) 14 20 41 132 

Hydraulic apertures for mechanical layer 1 (ML1) were derived from BSM fluxes and 

hydraulic gradients because BSMs provided measures more representative of the riverbed 

hydraulics than the floodplain coreholes. Hydraulic apertures were calculated assuming an 

average ML1 horizontal fracture spacing of 0.06 m from the six coreholes. BSMs that only 

intersected horizontal fractures were considered in my calculations for hydraulic aperture 

because some BSMs intersecting angled and vertical fractures were suspected of being leaky 

due to rock integrity issues.  
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Table 6.5 summarizes the resulting apertures from the BSMs (including their average and 

standard deviation) used to represent ML1.  

Table 6.5: Hydraulic apertures for mechanical layer 1 from bedrock seepage meters  

Bedrock Seepage Meter K (m/s) 
Calculated Hydraulic 

Aperture, 𝑎 (μm) 

1 3.5E-05 141 
3 4.6E-05 154 
8 3.6E-06 66 
11 5.4E-06 75 
12 1.1E-05 96 
14 1.7E-06 51 
19 1.9E-05 115 
23 7.7E-06 85 
𝑎̅ 9.8E-06 92 

sa 1.6E-05 36 

6.2.5 Other properties 

Here are all other necessary model parameters that were not explicitly acquired through field 

investigations at the EBRS, but were attained by reviewing site-relevant literature. 

 Hydraulic conductivity of the dolostone matrix was assumed to be isotropic and 

homogeneous with a value of 3.4 ∙  10−9m/s (Parker et al. 2018). 

 Dolostone matrix porosity was set to 4 % (Steelman et al. 2017b).  

 Longitudinal dispersivity were set to 0.1 m for both the matrix and fractures, while and 

transverse dispersivity was set to 0.01 m for the matrix (Parker et al. 2018). 

 Free-solution diffusion coefficient was set to 1 ∙ 10−5 cm2/s (Grathwohl 1998, Parker et 

al. 1994).  

 Matrix tortuosity is a scaling factor for molecular diffusion in HGS (Aquanty Inc. 2015, 

eq. 2.1, p. 34), where an effective diffusion coefficient is the product of matrix tortuosity 

and the free-solution diffusion coefficient. Matrix tortuosity is known to be related to 

matrix porosity. Shikaze et al. (1998) used a matrix tortuosity value of 0.1 when matrix 

porosity was 0.35. Therefore, I expect that the matrix tortuosity at the EBRS should be 

equal to or 1 3⁄  of the matrix porosity. I chose to use a matrix tortuosity value equal to the 

matrix porosity (4 %).  

 Effective diffusion coefficient is then 4 ∙ 10−7 cm2/s, which is in-line with Grathwohl 

(1998, Table 1.2) for tritium in a Culebra Dolomite and Parker et al. (1994) who reports 

values from 1.8 ∙ 10−6 cm2/s to 7. 5 ∙  10−7 cm2/s for fractured sedimentary rock. 
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6.3 Numerical model setup 

6.3.1 Domain extents, discretization, and boundary conditions 

The top of the model domain follows the elevation of the riverbed along the thalweg using 61 

bathymetry values (Figure 6.8a) obtained from differential Global Positioning System 

surveyed by Van Harten Surveying Inc. (Kennedy 2017). The vertical depth of the model 

domain extends downwards until 303.0 meters above sea level (masl), which is the average 

elevation of the contact between the Vinemount Mb and underlying Goat Island Formation (an 

aquitard).  

The model domain is discretized with a uniform horizontal grid spacing of 5 cm and a uniform 

vertical grid spacing of 2 cm from 303.0 masl to 310.2 masl, which coincides with the bottom 

of Mechanical Layer 1. From 310.2 masl to the top of the model domain (i.e., river bathymetry 

along the channel thalweg), the domain is discretized into 30 equal layers with a maximum 

thickness of 2 cm, which yields a total of 475,800 elements and 954,822 nodes. The maximum 

average horizontal fracture frequency is approximately 25 fractures/m in Mechanical Layer 2. 

This would compute to an average of about 1 fracture every 4 cm. All other mechanical layers 

have a lower average horizontal fracture frequency. Therefore, a vertical grid spacing of 2 cm 

was sufficient to accommodate the average observed horizontal fracture densities. The 

maximum average vertical fracture frequency is approximately 6 fractures/m in Mechanical 

Layer 1. This would compute to an average of about 1 fracture every 16 cm. All other 

Mechanical Layers would have a lower vertical fracture frequency, thus a horizontal grid 

spacing of 5 cm was sufficient to accommodate the average observed vertical fracture densities. 

Furthermore, it is important to maintain reasonable computational costs while being able to 

accommodate observed fracture densities, which in this case was a run time of just under 20 

minutes per realization with this level of discretization. 

Kennedy (2017) found that the underlying Goat Island Fm had an average K =  9.4 ∙  10−10 m/

s. Therefore, I treated the Goat Island Fm as an aquitard and assigned a Type 2 – No Flow 

boundary condition to the lower limit of the model. The left and right boundaries of the domain 

were assigned a Type 1 – Constant Head boundary condition of 311.022 m, which represents 

the average river stage elevation over the entire length of the EBRS at an average flow rate of 

1.5 m3/s (Kennedy 2017).  
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Using the same hydrostatic head value on the left and right sides of the domain is unrealistic 

since a downward hydrostatic gradient in the direction of river flow is expected for larger-scale 

(i.e., meander or catchment) representations of river stage. However, the river stage at the 

beginning (x =  0 m) and end (x =  61 m) of the EBRS was measured to be 311.02 masl and 

311.09 masl, respectively. These river stages represent the average measurements made in the 

summer months between June 18, 2014 and June 5, 2015. The higher river stage at the end of 

the EBRS (downgradient) is caused by the momentum of the river water flowing over a local 

increase in the riverbed elevation at the end of the riffle-pool-riffle sequence (see Figure 6.8a 

at x =  61 m). Since a hydrostatic gradient in the opposite direction of the river flow would 

yield physically unrealistic flows, I chose to have a zero slope for the hydrostatic head 

conditions.  

At the bedform-scale (i.e., riffle-pool-riffle), Trauth et al. (2013) have shown that hyporheic 

exchange is predominantly driven by spatially distributed hydrodynamic pressure variations 

that are produced by turbulent surface water velocity head. The boundary between surface 

water and groundwater flow domains would be best represented by a computational fluid 

dynamics model (i.e., Trauth et al. 2013). However, I used a simplified approach as a first order 

approximation that has been commonly used in other bedform-scale hyporheic exchange 

modelling studies (Cardenas 2008, Stonedahl et al. 2010, Käser et al. 2013, Pryshlak et al. 

2015). I believe this is sufficient for my modelling objectives and in order to keep 

computational costs reasonable. I chose to represent the total hydrodynamic pressure head 

htotal along the riverbed as a constant head boundary condition approximated by the modified 

representation of the basic pumping model for a single bed form (Stonedahl et al. 2013): 

htotal = hm
′ ∙  T(x) + hs 

hs is the hydrostatic head component and h′
m is the half-amplitude of the head variation given 

by: 

h′
m =

0.28 (
U(x)2

2g )

√2σt

(
2√2σt/dmax

0.34
)

n

,     if 
2√2σt

dmax
< 0.34 then n =  3/8, else n =  3/2 

Where U(x) are the average stream velocities observed between June 18 and July 30, 2014 at 

x m downstream (Table 6.6). The maximum stream depth dmax is 0.75 m and the standard 

deviation of the small topography function σt is 0.15 m. The gravitational constant g is 9.81 
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m/s2. T(x) is the small topography function, which represents bedform-scale flow-boundary 

interactions expected to be important (i.e., bars and dunes) at the riffle-pool-riffle scale, and 

was obtained using a Fourier fitting procedure (Stonedahl et al. 2010) in MATLAB. 

Figure 6.8b shows the resulting boundary condition. The hydrodynamic pressure head low is 

aligned in the area of upwelling within the first pool, which coincides with strong upwards 

gradients recorded by the bedrock seepage meters (Kennedy 2017). 

Table 6.6: Average observed stream velocities at 𝑥 m distance along thalweg of EBRS 

  

Transect x (m) Avg. Vel. (m/s) 

Tr.0 0.00 0.41 

Tr.1 11.51 0.35 

Tr.2 22.30 0.29 

Tr.2.5 27.11 0.26 

Tr.3 31.54 0.28 

Tr.3.5 36.61 0.30 

Tr.4 41.35 0.29 

Tr.5 48.66 0.28 

Tr.6 56.51 0.29 

Tr.7 61.00 0.42* 

I assume steady-state hydraulic head conditions, which conceptually represents the long-term 

average conditions at the EBRS. Therefore, I do not require specific storage parameters.  

*Interpolated value 



 Modelling Surface Water-Groundwater Exchange 

  151 

 

 

Figure 6.8: Bathymetry profile and dynamic head boundary condition: a) Thalweg bathymetry along 

riffle-pool-riffle sequence. b) Hydrodynamic head component of the top boundary condition aligned 

with measured vertical hydraulic gradient measured from bedrock seepage meters under average flow 

conditions. The hydrodynamic head component is calculated using the basic pumping model for a single 

bed form (Stonedahl et al. 2013) and added to a hydrostatic head value of 311.022 masl. 

6.3.2 Random discrete fracture network generation 

A basic assumption of a 2D cross-sectional model along a riffle-pool-riffle sequence is that 

fractures extend infinitely perpendicular to the flow direction. In other words, horizontal 

gradients orthogonal to river flow will be neglected in a two-dimensional cross-section. This 

assumption is suitable for simulating bedform-scale exchange, but may not be suitable for 

larger bar or meander-scale hyporheic exchange (Stonedahl et al. 2010). 
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A two-dimensional density is assumed from the one-dimensional fracture frequency (i.e., 

number of fractures per unit length), by considering all fractures counted within coreholes to 

be continuous throughout the sample. This assumption results in a 1:1 mapping of fracture 

frequency (1/L) to fracture density (L/L2).  

A summary of the fracture statistics used to represent the fractures numerically for each 

mechanical layer is presented in Table 6.7. To better represent vertical fracturing near-surface, 

I replaced the vertical fracture statistics for ML1 with frequency statistics from the streambed 

fractures survey (Table 6.3) and the hydraulic aperture values from the BSMs (Table 6.5). I 

also assume that the same apertures values are used for both horizontal and vertical fractures, 

which are represented by a log-normal distribution to avoid negative apertures. 

Table 6.7: Eramosa Bedrock River Site Mechanical Layer (ML) Fracture Statistics 

 
ML1 ML2 ML3 ML4 ML5 

Elevation (masl) 

Max 311 310.2 309.2 306.7 305 

Min 310.2 309.2 306.7 305 303 

 Horizontal Fracture Density (m fracture / m2) 

𝑓𝑑̅̅̅̅  17.0 25.3 14.4 10.1 6.5 

𝑠𝑓𝑑 6 10 3 3 3 

 Vertical Fracture Density (m fracture / m2) 

𝑓𝑑̅̅̅̅  1.6 4.6 4.8 2.7 2.6 

𝑠𝑓𝑑 0.9 2.6 1.8 3.1 3.0 

 Hydraulic Aperture (μm) 

𝑓𝑑̅̅̅̅  92 45 59 104 185 

𝑠𝑓𝑑 36 14 20 41 132 

The following steps are executed to generate a random DFN consistent with the summarized 

fracture statistics for the identified mechanical layers (Figure 6.9): 

1. Set number of desired DFN realizations, which I set to 100 to maintain reasonable 

computational costs. 

2. Partition model grid by collecting all nodes within defined mechanical layers. 

3. Generate random fracture densities for horizontal and vertical fractures. Distribution of 

fracture density is assumed log-normal for both orientations in order to avoid negative 

values. 
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4. Generate fractures until target fracture density is achieved. The routine for fracture 

generation is as follows: 

a. Horizontal Fractures (HF): Determine point of fracture propagation for HF by randomly 

selecting any node within the mechanical layer as fracture midpoint based on nodal 

volumes. Fractures propagate equally on both sides of this midpoint.  

b. Vertical Fractures (VF): For mechanical layer 1, there are a number of mapped fracture 

traces along the streambed within the rubble-free zone of the pool (Section 6.2.3). I 

assume these fractures propagate vertically downwards and treat them as known 

surveyed fractures, thus nodes within this surveyed rubble-free zone do not have 

random fractures propagating from the ground surface downwards. Furthermore, 

random VFs chosen to start from the bottom of ML1 and propagate upwards are 

programed not to intersect the surface (lv,max,ML1 = model surface – 0.02 m). For all 

other mechanical layers (i.e., ML2 to 5), a point of fracture propagation is determined 

by randomly selecting a node along the mechanical layer boundary with a 50/50 chance 

of fracture starting from top or bottom. If a node from the top boundary is selected, the 

fracture will propagate downwards. If a node from the bottom boundary is selected, the 

fracture will propagate upwards.  

5. Determine if newly generated fracture should be kept. A newly generated fracture is kept 

if it does not coincide with other previously generated fractures within the mechanical 

unit. Both horizontal and vertical fractures that propagate outside of the model domain are 

clipped. 

6. Calculate fracture density for the stopping criterion in step 4. Horizontal and vertical 

fracture density is calculated based on the generated fractures within each mechanical 

layer. The calculation for vertical fracture length density does not consider the vertical 

fractures generated from other mechanical units that extend upwards or downwards into 

neighboring mechanical units. I do not account for the vertical fracture lengths that extend 

beyond their mechanical layer into the adjacent mechanical layer in the calculation of 

fracture density because their overall effect on fracture length density is negligible.  

7. Repeat steps 3 to 6 until the desired number of DFN realizations are generated.  
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Note that and exception to step 4 is that there are fractures that propagate vertically downwards 

from the surface in the rubble-free zone of Mechanical Layer 1 are not treated randomly. 

Instead, their frequency and placement are treated as known values for all realizations. Their 

frequency and placement values are based on a fracture length trace study conducted by 

Kennedy (2017). Their lengths, however, are treated stochastically like all other vertical 

fractures. 

Figure 6.9: Steps for generating 2D 

discrete fracture network realizations 

for the Eramosa Bedrock River Site.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 is an example of one DFN realization (no. 39), it is vertically exaggerated 5 times 

in order to better distinguish the mechanical layers. The observed vertical fractures (blue) 

represent the mapped fracture traces in the rubble-free zone located within the pool of the 

EBRS.  
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Figure 6.10: Random discrete fracture network (Realization no. 39) based on statistics derived from 

discrete fracture mapping using acoustic televiewer logs and outcrops. Vertical to horizontal 

exaggeration = 5:1. Observed fractures in blue represent the mapped fracture traces in the rubble-free 

zone within the pool of the EBRS. 

6.4 Results 

The following sections describe the results from running the EBRS HGS model for 100 

randomly generated DFN realizations (process described in Section 6.3.2), producing an 

ensemble of model results. The boundary conditions and grid geometries (Section 6.3.1) are 

kept constant for all realizations. Sections 6.4.1 and 6.4.2 show the results from a single 

selected DFN realization (the median with respect to the ensemble of residence time 

distributions), while Section 6.4.3 shows ensemble results. 

6.4.1 Steady-state hydraulic head distribution 

Figure 6.11 shows an example of the resulting steady-state head distribution from a single DFN 

realization (no. 39). Discrete fractures are represented as light grey lines in Figure 6.11. The 

area of highest hydraulic head within the riverbed is located in the 1st riffle (Figure 6.8a). Areas 
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of lowest hydraulic head are located in the 1st and 2nd pool (Figure 6.8a). Thus, I expect that 

downwelling would occur in the 1st riffle, with upwelling occurring in the 1st and 2nd pool. 

 

Figure 6.11: Total hydraulic head distribution for DFN under steady-state (Realization no. 39), 

average flow conditions of 1.5 m3/s. Direction of river flow is in the positive x-direction. Red border 

outlining inset for Figure 6.12. Fractures removed for clarity. 

6.4.2 Transport of conservative tracer  

Transport of a conservative tracer was simulated for each DFN realization to determine the 

residence times and extents of hyporheic exchange at the EBRS. Figure 6.12 is an example of 

the resulting transport of conservative tracer selected time steps. A constant initial 

concentration c0  =  1000 mg/L (1 kg/m3) was applied over a single one-day time-step within 

the upper-most node of a vertical fracture that intersects the top surface of the model. 

Conceptually, this represents a one-day pulse of conservative tracer within a surficial vertical 

fracture. Application of the tracer for each DFN realization is in the left-most surficial vertical 

fracture between 15.0 m and 19.4 m. 15.0 m (approximately 25 % of the longitudinal domain 

length) was chosen as the left-most extent for the tracer placement because I wanted to avoid 

influence from the left-side boundary condition. 19.4 m was chosen as the right-most extent 

because it is where the elevation begins to decrease (i.e., where the pool begins). Releasing the 

conservative tracer in the left-most vertical fracture between 15 m and 19.4 m ensures that I 

am choosing the largest gradient between downwelling in the riffle and upwelling in the pool.   
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Figure 6.12: Transport of conservative tracer for a single DFN realization (no. 39). Conservative tracer is pulsed over one day into the left-most 

fracture intersecting the top surface of the model between 15 m and 19.4 m. The tracer migrates from left to right, upwelling in the 1st and 2nd pool. 

The conservative tracer is below detection (<0.0001 mg/L) after 440 years. 
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6.4.3 Analysis of hyporheic exchange residence times and extents 

In order to determine the residence times of riffle-pool-riffle hyporheic exchange, the total 

mass balance of the conservative tracer within the model domain was analyzed with respect to 

time for each DFN realization (Figure 6.13). The tracer mass that enters the system is from an 

instantaneous one-day (time-step size) pulse injection within the 1st riffle. The total tracer mass 

within the model domain increases over the injection time 𝑡0, until reaching a maximum mass 

𝑀max. Afterwards, the mass within the model domain decreases with time as the conservative 

tracer leaves the model domain through the top or side boundaries of the model.  

Solute mass leaving through the top model boundary can be conceptualized in terms of a riffle-

pool-scale hyporheic exchange, while the mass leaving through the sides of the model can be 

conceptualized as larger scale (e.g., meander-scale) hyporheic exchange, which is not explicitly 

represented in this model. It should be noted however, that conservative tracer mass that leaves 

through the sides of the model are not necessarily hyporheic exchange.  

Finally, a cumulative distribution function (CDF) of the residence times can be created by nor-

malizing the mass 𝑀(𝑡)norm leaving the entire model domain by the maximum total mass 

(Figure 6.13). Conservative tracer mass is tracked until 95 % of 𝑀max because a majority of 

the transport simulations could meet this criteria without an excessively long maximum time 

step (≤ 200 years). Therefore, all realizations still have 5 % of tracer mass left in the domain. 

 

Figure 6.13: Determination of residence time cumulative distribution function (CDF) of conservative 

tracer mass for each DFN realization: a) initial injection and determination of maximum mass 𝑀max 

in model domain, b) determination of end time when 5 % of maximum mass remains in model domain, 

c) normalize cumulative mass leaving model by 𝑀max.  

Figure 6.14 shows the resulting ensemble of bedform-scale hyporheic exchange residence time 

CDFs. The first thing to notice is the time units for the x-axis are in years. Right away we can 



 Modelling Surface Water-Groundwater Exchange 

  159 

see that the residence times for hyporheic exchange at the EBRS is orders of magnitude longer 

when compared to similar scales for rivers with unconsolidated sediments. Figure 1.3 from 

Boano et al. (2014) shows that one should expect residence times in the order of days to weeks 

for bedform-scale hyporheic exchange in rivers with unconsolidated sediments. The average 

hyporheic exchange residence time at the EBRS appears to be approximately 13 years. The 

uncertainty for the average residence time, from the 1st and 3rd quartile, ranges between 4 to 35 

years. Also, when looking at the 5th and 95th percentile ranges, one can see that the uncertainty 

range (especially at CDF values closer to one) is large. The DFN realization (no. 39) that 

produced the residence time CDF with the smallest sum of square difference (green line in 

Figure 6.14) relative to the median residence time CDF (red line in Figure 6.14) was chosen as 

the representative DFN realization, shown previously in Figures 6.10, 6.11, and 6.12.  

 

Figure 6.14: Hyporheic exchange residence time cumulative distribution functions  (CDF). Solid red 

line is the median residence time CDF from 100 DFN realizations. Green solid line is the residence 

time CDF from the realization (no. 39) closest to the median. The solid dark grey line and darker grey 

shading represent the interquartile range of the 100 residence time CDFs. The dashed grey line and 

lighter grey shading represent the 5th and 95th percentiles. 

To understand the extents of hyporheic exchange, I analyzed where the normalized mass leaves 

the domain (Figure 6.15). On average, over the 100 DFN realizations, the total mass that 
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entered the model domain after a one-day pulse injection of 1 kg/m3 was 𝑀max =  1.1 ∙ 10−4 kg. 

The blue line in Figure 6.15 shows the normalized mass leaving through the riverbed (i.e., 

model domain top surface) averaged over 100 DFN realizations. The area under the blue line 

sums to 93 %, indicating that on average a majority of the conservative tracer mass leaves 

through the riverbed. Approximately 2 % of the mass leaves through the right side of the model 

domain, while the remaining 5 % remains within the model domain after 100 years.  

Figure 6.15 shows that most of the mass leaves within the vicinity of the injection interval. The 

next most common upwelling occurs between 20 m and 30 m, which coincides with the 

hydraulic head low and the maximum observed upward vertical hydraulic gradient (Figure 6.8). 

Some minor upwelling also occurs between 40 m and 45 m, which coincides with some small 

undulations in the bathymetry within the 2nd pool (Figure 6.8). One final note is that upwelling 

also occurs to the left of the injection interval (i.e., opposite of the river flow direction), which 

is theoretically possible due to local upstream hydraulic lows caused by turbulent eddies.  

 

Figure 6.15: Average normalized mass (𝑀𝑛𝑜𝑟𝑚) leaving through the riverbed (i.e., top surface of the 

model). Blue line is the 𝑀𝑛𝑜𝑟𝑚 leaving averaged over 100 DFN realizations. The dynamic head 

component (black line) is added to a hydrostatic head component of 311.022 masl. For each individual 

realization, the first fracture from left to right that intersects the riverbed between 15 to 19.4 m (red 

line) is selected for the injection of conservative tracer.  

6.5 Conclusions and outlook 

My goals in this study were to evaluate factors controlling hyporheic exchange along a 

fractured sedimentary bedrock river by using a discrete fracture network (DFN) approach to 
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represent the subsurface within a manually coupled numerical sw-gw model.  The aim was to 

understand fracture network heterogeneity and its role in defining hyporheic exchange extents 

and residence time distributions. In order to fulfill these goals, I evaluated data uncertainty and 

modelled a conservative tracer experiment at the Eramosa Bedrock River Site (EBRS) using a 

stochastic DFN framework to represent the subsurface fractured bedrock connectivity. In doing 

so, I produced a probabilistic distribution of the potential hyporheic exchange extents and 

residence time distributions.  

The research questions I aimed to answer in this study were: can hyporheic exchange occur 

within bedrock rivers at the bedform-scale? If yes, then how is hyporheic exchange different 

in bedrock rivers when compared to fluvial rivers? Two important conclusions about hyporheic 

exchange at the EBRS can be drawn from the results. Firstly, by comparing the residence time 

of hyporheic exchange at the EBRS (Figure 6.14) to a similar scale for fluvial rivers (Figure 

1.3 by Boano et al. 2014), we can see that bedform-scale hyporheic exchange in a bedrock river 

is potentially orders of magnitude slower compared to a fluvial river (i.e., months to years vs. 

minutes to hours). Secondly, the coincidence of fractures and hydraulic gradients determines 

the spatial extents of bedform-scale hyporheic exchange. 

These conclusions suggest that residence time distributions may not be a good proxy for the 

potential natural attenuation capacity of bedrock rivers. Since hyporheic exchange residence 

times are potentially much longer in bedrock rivers than in fluvial rivers, one would expect that 

diffusion becomes a dominant process causing significant retardation of solutes that are 

delivered into bedrock riverbeds via hyporheic exchange. The fractures and void spaces would 

be expected to be the only oxygen-rich environment, while the rock matrix would be expected 

to be a very reducing environment. The reactive potential of solutes within the rock matrix may 

not be enough to induce significant degradation. Instead, back-diffusion of potential contamin-

ants from the rock matrix into the water can be a source of long-term trace contaminant 

concentrations, leading to persistent contamination problems that would be difficult to rem-

ediate in-situ. An interesting way to investigate this phenomenon further would be a reactive 

tracer experiment (Knapp et al. 2017), followed by a reactive transport modelling study.     

Numerous directions could be taken to further develop the EBRS modelling study. There are 

two immediate directions that I think have the potential to deliver critical insights. The first is 

a direct comparison of the current stochastic DFN model with an equivalent porous medium 

(EPM) model to potentially find effective dispersion and anisotropy values that could replace 
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the need for an explicit DFN model. The second is a sensitivity analysis of the various 

stochastic DFN model parameters to identify the vital few that dominate the simulated 

hyporheic exchange response. 

A future direction that would require more effort is to couple the current model to a 

computational fluid dynamic (CFD) model (e.g., OpenFOAM, Trauth et al. 2013) and include 

transient surface flows. Although I have only simulated steady-state hydraulic head conditions, 

I believe interesting insights could be gained by evaluating the transient dynamics of river flow 

rates on hyporheic exchange systems. I believe that the current computational limitations will 

be overcome in the near future and thus fully coupled three-dimensional CFD and groundwater 

flow modelling will be more accessible to sw-gw scientists and engineers.  

Nonetheless, I would imagine that during the spring, melting of snow accumulated during the 

winter would increase river flow rates and thus increase the turbulence at the EBRS. Trauth et 

al. (2013) has shown that an increase in river flow rate causes turbulence to increase, producing 

larger hydrodynamic pressure variations within the riverbed hydraulic head distribution (up to 

a certain threshold). Thus, I believe spring thaws would increase the gradients that drive 

hyporheic ex-change, leading to an increase in hyporheic exchange fluxes and a decrease in 

residence times.  

I do not believe that the increase in hyporheic exchange fluxes and decrease in residence times 

will be too dramatic because pressure propagation is generally slow in the subsurface, 

especially when hydraulic conductivity and connectivity is low. Furthermore, the exact travel 

paths would probably change due to the changes in the spatial distributions of head gradient 

under transient conditions. However, once the flow rates slow down after the spring thaw is 

complete, returning to more average rates (model river flow rate), I would expect to see patterns 

similar to the steady-state flow model presented here.  

Conversely, if river flow rates slowed down (e.g., due to an unusually dry summer), the 

hydrodynamic gradients would be smaller, and therefore residence times would be longer and 

hyporheic exchange fluxes would be smaller. If river flow rates were to slow down dramatically 

(e.g., well below model river flow rates or the river dries up), hyporheic exchange would 

eventually halt altogether. 
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7.  General conclusions  

 

7.1 Main findings and outlook 

My dissertation focused on filling knowledge gaps with regards to model uncertainties from 

numerical modelling of surface water-groundwater interactions at different scales. It is difficult 

to separate model uncertainty sources completely. Nonetheless, I have attempted to address 

three different predominant uncertainty types (Section 1.1.3: structural uncertainty, parameter 

uncertainty, and data uncertainty) at three distinct scales. To address these uncertainties, I 

developed three different models described in four chapters within this dissertation. At the 

catchment-scale (Chapter 3), I developed the Alder Creek watershed model to mainly evaluate 

the imprecision in model results from choosing between different numerical models, which can 

be considered a type of structural uncertainty.  At the meander-scale (Chapter 4 and 5), I 

developed the Steinlach River Test Site model to evaluate uncertainty that comes from the 

parameterization of river bathymetry and subsurface hydrostratigraphy. Finally, at the 

bedform-scale (Chapter 6), I developed the Eramosa Bedrock River Site model and a stochastic 

framework in order to deal with data (or the lack thereof) uncertainty inherent to representing 

groundwater flow and transport with a discrete fracture network approach.  

Chapter 3 primarily dealt with structural (conceptual) uncertainty at the catchment-scale by 

investigating uncertainties from numerical model choice. Technically, choosing between 

different numerical models is not uncertain because it is known that different model errors will 

result from different simplifying assumptions in their governing equations and numerical 

solution methods. Instead, the structural model uncertainties that I investigated in Chapter 3 

were uncertainties stemming from imprecision in the model result due to choices in available 

numerical modelling codes applied to a real-world system.  

My main research goal for Chapter 3 was to identify model errors that come from numerical 

model choice and to provide practical methods that account for parameter uncertainty for 

delineating areas that provide baseflow to receiving surface water bodies. My motivating 
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research question (RQ1, Section 1.5) for Chapter 3 was: does numerical model code choice 

lead to errors or deviations in the delineation of baseflow contribution areas for gaining stream 

reaches? To answer this question, I conducted a model and method intercomparison applied to 

the Alder Creek watershed in southwestern Ontario, Canada. Four different model codes were 

compared: HydroGeoSphere, WATFLOW, MODFLOW, and FEFLOW. Additionally, two 

delineation methods were compared: reverse particle tracking and reverse transport. My results 

indicated that the delineation of areas contributing baseflow to streams can be affected by both 

the model choice and the capture zone delineation (CZD) method. Different models can yield 

different results due to different parameterization, discretization schemes, and particle tracking 

algorithms.  

The results show that one of the largest sources of deviation in CZD is the particle tracking 

algorithm, followed by the discretization scheme and the parameter distribution. This leads to 

an important insight regarding uncertainty and its propagation throughout the modelling 

process. Beven et al. (2005) have proposed, in their model uncertainty cascade concept, that 

uncertain model input and components from the early stages within the modelling process can 

cascade and accumulate throughout the modelling process (sometimes non-linearly), which can 

potentially result in large forecast uncertainties. My results, in contrast, show that, under certain 

circumstances, the choice of the final post-processing method alone (i.e., particle tracking 

algorithm) can produce significantly different results. Thus, although the model uncertainty 

cascade concept is important in highlighting the importance and sensitivity of the choices made 

in the early stages of modelling, my results indicate that the final post-processing choices could 

also be significant. Particularly, when it comes to finite element particle tracking, the greatest 

numerical accuracy can be achieved by choosing a mass conservative approach for the 

determination of fluxes for unstructured finite elements (Odsæter et al. 2017), which will be 

compatible with HydroGeoSphere soon (Selzer and Cirpka 2019). 

Nonetheless, my findings can be reconciled with the uncertainty cascade concept (Beven et al. 

2005) because the importance of post-processing tools and their availability is still a 

consequence of initial selection between numerical model codes. In other words, it is critical 

to think through the entire modelling work flow (e.g., Figure 1.5) before choosing a particular 

model code, because that choice will be followed by model constraints based on its underlying 

assumptions and available post-processing tools. Obviously, it is imperative to choose a model 

that can, at a minimum, fulfill the initially stated model objectives. However, the chosen model 

should also be flexible to allow the modeller the option to represent their conceptual model by 
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different numerical approaches, in case the study objectives change or the initial modelling 

approach is found to be inadequate. Furthermore, the chosen numerical model code must 

provide the necessary tools to permit high-quality post-processing (e.g., MODPATH and 

ZONEBUDGET for MODFLOW). Therefore, choosing the right model must be balanced 

between having enough complexity and high-quality tools to meet the modelling objectives 

adaptively, but also as simple as possible to not overburden the modeller with excessive and 

irrelevant choices. Thinking through the entire modelling work flow can be difficult in research 

when the ultimate goal may be uncertain, but for most applied hydrological studies with 

well-defined model objectives it should be a guiding tenet when challenged by model code 

selection uncertainty.   

The issue with numerical model code choice is not only about selecting the appropriate model 

for the given objective, but once the model is chosen there may be an excessive number of 

other objective-independent model structural features that the modeller must choose to include 

(or omit) that can potentially cause imprecision in the model results (equifinality discussed in 

Section 1.1.2). This is especially true with the advent of fully-integrated physically-based 

hydro(geo)logical models (e.g., CATHY, HydroGeoSphere, Open-GeoSys, and ParFlow). This 

type of structural uncertainty stems from the multitude of choices the integrated hydrological 

modeller must make when simulating multiple environmental processes simultaneously. In 

other words, structural model choice uncertainty comes from not fully knowing how the 

numerous integrated modelling choices will combine to produce the final forecast of interest. 

Therefore, a clear problem with using fully-integrated spatially distributed physically based 

models is that there is a higher likelihood of model over-fitting as more processes and their 

parameters are added to the model (i.e., equifinality and nonuniqueness). Without developing 

the right hydro(geo)logical theories, it will become increasingly difficult to judge if a fully-

integrated hydro(geo)logical model is getting the right answers for the right reasons (Kirchner 

2006). Kirchner (2006) believes greater scientific progress can be made by combining theory 

and data, rather than by increasing the complexity of parameter-rich models to better match 

data, even if their underlying principles are unrealistic.  

One way to remedy these structural model choice uncertainties is by devoting our scientific 

resources to more benchmark and model comparison studies (e.g., Brunner et al. 2010, 

Maxwell et al. 2014, Kollet et al. 2017). Model benchmark studies, like the one I conducted in 

Chapter 3,  are especially useful when they provide modellers clear guidance in choosing the 

appropriate numerical model for common hydro(geo)logical problems, particularly when there 
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is no clear optimum (i.e., lowest resource cost to accuracy ratio) model choice a priori. 

However, too many additional benchmark studies can quickly lead to dreadful zombie-science 

(Schwartz 2013). An alternative remedy for these model structural uncertainties is by 

rigorously applying the principle of parsimony (discussed in Section 5.1) at the conceptual 

modelling stage. This means to seek simplicity in both defining the modelling problem and in 

the overall model design.  

Chapters 4 and 5 dealt primarily with bathymetry and hydraulic conductivity parameter 

uncertainty, respectively. Both chapters evaluated these uncertainties with the same meander-

scale 3D fully coupled sw-gw model of the Steinlach River Test Site. My research goals were 

to determine the level of bathymetry and subsurface heterogeneity detail necessary to simulate 

meander-scale hyporheic exchange in a physically meaningful way. My main research question 

for Chapter 4 was: what are the most important aspects of the river bathymetry that need to be 

captured in order to capture the scales of exchange appropriately? And for Chapter 5 it was: 

what is the recommended degree of subsurface parameterization to simulate meander-scale 

hyporheic exchange? 

Results from Chapter 4 indicate that simulating hyporheic exchange with a 3D fully coupled 

sw-gw model is sensitive to the representation of river bathymetry. The river bathymetry 

affects the river stage, and consequently the underlying subsurface hydraulic head distributions. 

The presence of local-scale contrasts in bathymetry can lead to an increase in smaller bedform-

scale hyporheic exchange nested within larger meander-scale hyporheic exchange systems. 

Conversely, simulations of hyporheic exchange at the meander-scale that lack detailed 

bathymetry data can lead to underrepresenting smaller bedform-scale exchange. Furthermore, 

my results indicated that underrepresenting smaller bedform-scale exchange can potentially 

lead to biases towards overestimating larger meander-scale exchange. Overestimating 

meander-scale hyporheic exchange can lead to biases towards longer residence times. When 

extrapolated to account for all meanders along an entire river or rivers within a watershed, this 

can lead to gross biases in the estimated retention and pollutant attenuation capacity of a 

catchment.  

Furthermore, results from Chapter 4 indicate that it is important to identify the locations of 

local bathymetric highs and lows within the river. Bathymetry surveying campaigns for 

meandering channels can be more effective by prioritizing bathymetry measurements along the 

thalweg and gegenweg, which can be identified visually. I define the gegenweg as the line that 



 Modelling Surface Water-Groundwater Exchange 

  167 

connects the shallowest points in successive cross-sections along the depositional side of a 

river opposite the thalweg under average flow conditions. Incorporating local bathymetric 

contrasts will likely capture the nested hierarchies of hyporheic exchange systems, leading to 

more physically meaningful simulations of hyporheic exchange fluxes and transit times.  

In Chapter 5 we saw that choosing between different subsurface parameterization structures 

leads to trade-offs between intrinsic (aleatoric) and epistemic model errors (Rubin 2003, 

Anderson et al. 2015). Intrinsic model errors are imposed by the structural limitations of the 

chosen representation of subsurface parameters that cannot be reduced by more knowledge 

(i.e., new measurements), while epistemic model errors are potentially reducible with new 

knowledge. Thus, from the range of parameter structures presented in Chapter 5, we saw that 

the simplest homogeneous one-zone model was constrained by intrinsic model errors because 

it lacked the flexibility to adapt to additional hydrogeological information, therefore its 

predictive errors were irreducible (i.e., intrinsic). We also saw that a two-zone model was 

capable of reproducing the transit time distributions of a more detailed model, but only if the 

geological structures are known a priori, which is seldom the case in applied hydrogeological 

modelling. 

Only by increasing complexity through the addition of zones or heterogeneity do we begin to 

exchange intrinsic model errors for epistemic ones. An interpolated heterogeneous parameter 

field (cf. pilot points) showed the best trade-offs between the two model errors (i.e., bias and 

variance), indicating fitness for practical applications. At the other end of the spectrum, we saw 

that the model errors from a hierarchical 3D multiple-point geostatistics (MPS) model can be 

potentially large but also reducible with the right choice of additional hydrogeological data, 

which in this case was an estimate of meander-scale hyporheic exchange flux (Osenbrück et 

al. 2013).   

Results from Chapters 4 and 5 can largely be attributed to the meander-scale focus of the model. 

I suspect that as the scale of the modelling increases (Figure 5.8), uncertainty from larger-scale 

hierarchical elements (Heinz and Aigner 2003) would dominate, while rendering the 

uncertainty from smaller-scale elements less relevant. If my proposition is true, then this could 

be an important insight for model up/down-scaling, because it would be wrong to assume that 

results from a sensitivity or uncertainty analysis at a certain scale is transferable to another 

scale. Thus, a separate sensitivity or uncertainty analysis would be necessary when changing 

the modelling scale. 
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Results from Chapters 4 and 5 also indicate that one could achieve results similar to a more 

detailed model by simply using the thalweg-gegenweg bathymetry (54 instead of 540 

bathymetric survey points) and a two-zone (top soil and fluvial aquifer instead of hydrofacies 

MPS with internal heterogeneity) depiction of the subsurface K-distribution. This ratio of a 

vital few to the trivial many factors (Juran et al. 1974) identified through sensitivity and 

uncertainty analyses often obeys (qualitatively) the Pareto principle or 80/20 Rule (Sanders 

1987), which states that typically 80 % of a desired result (majority of the total effect) comes 

from 20 % (a vital few members) of the input. In other words, the conducted sensitivity and 

uncertainty analysis of the bathymetry and subsurface heterogeneity, respectively, revealed the 

critical few factors that produce the majority of the results (i.e., meander-scale hyporheic 

exchange flux and transit time distribution).  

Although the Pareto principle is a valuable guide when tasked with identifying the most critical 

model components, it is important to note that it has clear limitations. Firstly, the Pareto 

principle is based upon empirical observations and was not intended to be used as a rule for 

action (i.e., to eliminate the 80 % or the many trivial model processes/parameters). Secondly, 

the Pareto principle only highlights the vital few factors of a particular model in a static 

snapshot, whereas reality is dynamic and ever-changing (Sanders 1987). In other words, one 

cannot fully disregard the trivial many (80 %) that may be amongst the vital few (20 %) at 

different times or under different circumstances.  

A caveat to the conclusions from Chapters 4 and 5 is that they are derived from a site-specific 

result. Therefore, I would expect that the critical few factors would likely differ at different 

sites, times, and scales. Furthermore, there is the underlying assumption that the benchmark 

‘virtual reality’ model is sufficiently representative of a real site. However, the point is that 

sensitivity and uncertainty analyses are powerful tools that can be applied to a model to 

potentially identify the critical factors that control the model response or a forecast of interest. 

With these vital few factors in-hand one can more efficiently and effectively use resources to 

prioritize investigations into the things that matter most and in doing so save time, money, and 

perhaps help reveal more “unknown unknowns” (Section 1.1.1). 

Conclusions from Chapters 4 and 5 indicate that both bathymetry and subsurface distribution 

of hydraulic conductivity play an important role when modelling hyporheic exchange at the 

meander-scale. However, it is far easier to accurately measure channel bathymetry than to 

accurately measure the distribution of subsurface properties. Furthermore, the feasible 
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parameter space for the distribution of subsurface properties is much vaster than bathymetry. 

Following the principle of parsimony (Section 5.1) for model analysis, I would recommend 

conducting a sensitivity analysis first before an uncertainty analysis, because the modelling 

objectives may be achieved through a sensitivity analysis alone. Afterwards, if the results from 

a sensitivity analysis are deemed insufficient or inconclusive and that an uncertainty analysis 

is required, the results of the sensitivity analysis could help guide the design and focus of the 

uncertainty analysis to a vital few tractable modelling processes, parameters, and interactions. 

As an outlook, the challenge of achieving a more identifiable distribution of subsurface 

properties is a persistent issue for applied hydrogeologists. Ahmed et al. (2016) have developed 

techniques to combine hydraulic tomography with geophysical measurements which seems 

promising. Furthermore, advancement in geostatistics, such as the development of Multiple 

Point Geostatistical methods that do not require a well-defined training image a priori, such as 

level set (Osher and Fedkiw 2006) and plurigaussian (Armstrong et al. 2011) methods, could 

lead to more efficient ways of exploring the vast subsurface parameter space while maintaining 

geological realism. 

Chapter 6 dealt with uncertainty predominantly from field data by developing a stochastic 

DFN framework to represent the subsurface fractured bedrock connectivity. Even though the 

Eramosa Bedrock River Site (EBRS) was relatively rich in data, compared to the average 

bedrock river site (Tinkler and Wohl 1998), a number of data gaps still remained. This includes 

the average length of horizontal fracture, the average number of vertical fractures that pass 

through a mechanical layer, dispersivities (longitudinal and transverse), and matrix tortuosity.  

As an outlook, numerous directions could be taken to further develop the EBRS modelling 

study. There are two immediate directions that I think have the potential to deliver critical 

insights. The first is a direct comparison of the current stochastic DFN model with a few 

well-selected equivalent porous media (EPM) models (e.g., a single homogeneous isotropic vs. 

anisotropic layer, 5 homogeneous isotropic layers coinciding with the mechanical layers) to 

investigate the possibility of finding effective dispersion and anisotropy values that could 

replace the need for an explicit DFN model. The second is a sensitivity analysis of the various 

stochastic DFN model parameters to identify the vital few that dominate the simulated 

hyporheic exchange response (i.e., residence time distribution and extents). This can also 

include stochastifying parameters that were assumed to be constant (e.g., dip angle, 

dispersivity, matrix tortuosity and porosity). 
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Two additional future directions that may require more effort are: (1) validate the model, since 

all available data went into building the current stochastic DFN model. Thus, another data set 

from additional field investigations (i.e., a reactive tracer test, Knapp et al. 2017) could be used 

for model validation. (2) Create a three-dimensional model of the EBRS, and (3) couple the 

current model to a computational fluid dynamic (CFD) model (e.g., OpenFOAM, Trauth et al. 

2013) and include transient surface flows. 

7.2 Scientists and their role in advancing surface water-groundwater models 

A true test for a scientific theory is to see whether it can predict a cause and effect relationship. 

Moreover, scientists are in constant search for explanations of why these relationships exist 

and to determine accurately causation from more obscure correlation (Wright 1921). As the 

old adage goes “even a broken clock is right twice a day” (Addison and Steele 1853). This 

means that even an unreliable hypothesis can still be right about something every once in a 

while, even if only by coincidence. When our hypothesis is wrong for the other 99.9 % of the 

minutes in a day, we may need to revisit and adjust our suggested explanation for the observed 

phenomenon.  

A numerical model is merely a scientific theory expressed as a set of equations arranged in a 

particular way that represents a simplified real-system. It is well understood that “all models 

are wrong” (Box and Draper 1987) because they are simplifications of a complex reality. 

However, models can still be useful given that they incorporate enough of the important 

processes under the right circumstances. For environmental models, particularly in the age of 

highly-parameterized integrated hydrological models, there is an increasing need to understand 

if we are getting the right answers for the right reasons (Kirchner 2006). 

Thus, to find out if a hydrological theory is correct, it must be tested to its limits. Therefore, 

the role of a hydrological modeller in science (excessive in engineering) should be to constantly 

find ways to falsify his/her model. In other words, the modeller should try to uncover scenarios 

and circumstances where his/her model no longer works. By seeing where the model “breaks”, 

we can determine where the limits of our current understanding are and can then challenge our 

knowledge and intuition. It is easy to find evidence to support a model, a theory, or one’s 

intuition by looking only for “white swans”, however it takes only a single “black swan” to 

prove intuition wrong (Pilkey and Pilkey-Jarvis 2007). This can be a way to gain valuable new 

insights into our system understanding that our intuition may have failed to grasp initially.  
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Analogously, a scientist to a model is like a test pilot to a prototype aircraft. Test pilots 

continually refer to what is called the “envelope” for a prototype aircraft (Wolfe 1979). The 

envelope consists of an upper and lower edge, where the upper edge marks the maximum height 

and speed that the prototype aircraft has flown before it comes apart, malfunctions, or self-

destructs. The goal of the test pilot is to continually push the upper edge of this failure envelope 

upwards by flying ever faster and higher in order to discover the absolute limits that a particular 

aircraft is capable of achieving (Tracy 2015). Valuable insights are gained by pushing the 

prototype aircraft to its physical limits. 

The upper edge of the envelope for a hydrological model is where a model is stress-tested 

(Appendix A) to the point of falsification (i.e., can no longer recreate observed data). An 

example of a model stress-test is to apply forcing outside of its original design (i.e., outside the 

calibration period) and seeing whether the model is still capable of adequately forecasting the 

system response. The scientific modeller should be continuously seeking to define (the limits 

of our “known knowns”, Section 1.1.1) and advance the upper edge of the hydrological 

modelling envelope. Furthermore, he/she will hypothesize and study in detail the reasons that 

cause a model to be falsified (thus revealing “unknown unknowns” and transforming them to 

“known unknowns and/or knowns”, Section 1.1.1). In doing so, the modeller will 

simultaneously improve hydrological modelling capabilities and advance the hydrological 

knowledge base. 

Numerical models in hydro(geo)logy will continue to be an important tool in the 

hydro(geo)logist’s tool box. However, there is a danger when “the only tool you have is a 

hammer, to treat everything as if it were a nail” (Maslow 1966). This is especially alarming for 

scientists trained in modelling schools who may erroneously believe that mathematical models 

can answer all questions. Therefore, it is important to always approach numerical models with 

a healthy level of skepticism (Pilkey and Pilkey-Jarvis 2007). Furthermore, it is critical to 

combine the model development process (Figure 1.5) with data obtained by other hydrological 

investigative tools, such as field and laboratory studies (e.g., Chapters 3, 4, 5, 6, and 

Appendix A). The idea of combining modelling theory with real-world data should be a tenet 

modellers adhere closely to, in order to make major advances in our current understanding of 

hydrological processes (Kirchner 2016).  

In today’s era of advanced computing and integrated modelling (Section 2.1) the expectations 

of models to meet evermore challenging objectives may begin to exceed our current knowledge 

of environmental systems. Presented with the challenge of increasingly complex environmental 
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problems, there is a growing need for multi-disciplinary knowledge and effective 

communication between scientists (Hunt and Zheng 2012). Hydro(geo)logists will be expected 

to defend and explain their models to economists, politicians, as well as other scientists and 

engineers. To deal with the model uncertainties of tomorrow, it will be necessary for the 

modeller to be not only an expert in modelling but also to have a firm grasp of the philosophies 

and practices of other environmental sciences and statisticians (Beven 2009). I hope that my 

work provides a small step in further uniting the disciplines of surface water and groundwater 

modelling, providing insights towards more effective solutions for surface water-groundwater 

interaction problems.  
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 Appendix A: The Comprehensive Differential Split-Sample Test 

(Motavita et al. 2019)§ 

Abstract: The choice of data periods for calibrating and evaluating conceptual hydrological 

models often seems ad-hoc, with no objective guidance on choosing calibration periods that 

produce the most reliable predictions. We therefore propose to systematically investigate the 

effects of calibration and validation data choices on parameter identification and predictive 

performance. We demonstrate our analysis on the Deggendorf/Kollbach catchment in Bavaria, 

Germany, for its long series of continuous hydrological and meteorological records. After 

classifying these data into three hydrological conditions (wet, dry and mixed) and combining 

them into periods of varied data length (2, 4, 8, 15, 20 and 25 years), we repeatedly calibrate a 

conceptual rainfall runoff hydrological model - Hydrologiska Byråns Vattenbalansavdelning 

(HBV) to these distinct data sets via Bayesian updating in a Monte Carlo setting. Then, we 

analyze predictive performance and posterior parameter statistics in various validation periods 

of distinct hydrological condition and time-series length. We call this the Comprehensive 

Difference Split-Sample Test (CDSST). Our results suggest that hydrological conditions in 

calibration tend to have a stronger impact than time-series length, and that calibrating on dry 

conditions might be a robust choice when aiming at predicting arbitrary future conditions (wet, 

dry or mixed). Furthermore, we found that posterior parameter estimates converged to a 

common optimum range with increasing data size under all investigated calibration scenarios, 

indicating that compensation of model structural errors by parameter fitting is independent of 

the chosen calibration condition. However, calibrating on time-series 8 years or longer led to 

overconfident predictions that failed to reliably envelope future data. While these findings are 

specific to our case study, we recommend using the CDSST to stress-test conceptual 

hydrological models to identify robust model parameters and/or deficiencies in the model 

structure. In general, we expect our proposed approach to be a valuable basis for model error 

                                                 
§ The abstract is from ‘Motavita, D.F., Chow, R., Guthke, A., and Nowak, W. (2019). The Comprehensive 

Differential Split-Sample Test: A stress-test for hydrological model robustness under climate variability. Journal 

of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.03.054’ 
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diagnosis in any type of dynamic environmental system model, because it answers the 

following three questions: (1) what is the importance of physical processes not explicitly 

covered by the model? (2) How much overconfidence is present in the model? And (3), what 

are case-specific recommendations for appropriate calibration and validation setups?
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 Appendix B: Creating the Steinlach River Test Site virtual reality 

(benchmark) model 

Creation of the virtual reality for the Steinlach River Test site began with the collation of 

numerous borehole observations (e.g., Doro et al. 2013). The borehole observations were 

reclassified into five hydrofacies: topsoil, silty sand, sandy gravel, gravel, and sandstone. The 

major strata boundaries were then modelled using Leapfrog 3D geomodelling software 

(ARANZ Geo Limited 2017). Note that it was necessary to constrain the Leapfrog 3D 

interpolation using bank profiles and inferred geological trends.  

The impala multiple-point geostatistical (MPS) algorithm (Straubhaar et al. 2011), as with any 

MPS method, requires training images for prior parameter distributions. The upper topsoil unit 

was represented as a uniform layer and therefore did not require a training image. The lower 

fluvial unit was modelled using the SBED reservoir simulation software (Geomodeling 

Technology Corp. 1996) to create a parameter field containing sinusoidal hydrofacies with 

concave-upward lower contact surfaces. The sinuosity was derived from analysis of the 

Steinlach River channel morphology, as well as a site conceptual model informed by 

geophysical and hydrogeological methods (Doro et al. 2013). The training image is shown in 

Figure S1. The impala algorithm was run with the default input parameters. 

Once the hydrofacies distributions were simulated using impala, heterogeneity within the 

hydrofacies was simulated using spectral methods (Dietrich and Newsam 1993) with the 

parameters outlined in the article. The simulated heterogeneity was then transferred from the 

regular simulation grid to the irregular FEM model grid using a nearest-neighbor interpolation. 

Pre- and post-processing of parameter fields was conducted using the Python programming 

language. 

Readers interested in developing parameter fields for their own sites are recommended to use 

the openly available HyVR simulation algorithm (Bennett et al. 2018) instead of the 

commercially available SBED reservoir simulation software (Geomodeling Technology Corp. 

1996). The HyVR package can simulate training images suitable for MPS methods, as well as 

horizontal major strata. The HyVR package can also generate unconditional hydraulic 

parameter fields with multiple scales of heterogeneity that have simulation outputs that are 

suitable for groundwater flow and solute transport modelling.  For more complex geomodelling 
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of major strata contacts, the open-source python module GemPy (de la Varga et al., 2019) may 

be of interest. 
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*Chow_et_al_2019_impala_files_readme.txt 

IMPALA (Straubhaar et al. 2011) input data files to create subsurface parameterization of the Steinlach 
River Test Site virtual reality (benchmark) model presented in Chow et al. (2018 and 2019). 
 
----- 
Notes 
----- 
* Impala Version 2.1 / build number 20160629 was used for the multiple-point geostatistical simulations. 

Please refer to the impala user guide for instructions on how to run this file from the command line. 
* In general, input/output parameter arrays are saved in VTK format. Data files of this type can be 

visualised with the openly available Paraview software (https://www.paraview.org/). 
 
----- 
Files 
----- 
* st_loop.in - impala input parameter file 
* topsoil.vtk - topsoil training image (uniform hydrofacies) 
* fluvial12.vtk - fluvial training image (generated using SBED reservoir modelling software) 
* zones_noPC.vtk - zones in which each training image is to be used 
* mask.vtk - defines in which grid locations properties should be simulated (no simulation at model 

top/bottom) 
* imp_logs.txt - borehole logs used for conditioning of hydrofacies, derived from site investigations 
* imp004_xxxxx.vtk - individual impala realisations (MPS outputs) 

 


