
LINUX First Contact

Thomas Schanz
IAAT - University of Tuebingen

4. September 2019

http://astro.uni-tuebingen.de


CONTENTS 1

Contents

1 Preamble 3

2 Introduction 4

3 Operating Systems 5

4 Login 7

5 The User-Interface 9

5.1 The Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 The Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 System-Shutdown 13

7 Processes 15

8 The Filesystem setup 17

9 The HOME-directory 22

10 Execution PATH 24

11 LINUX Configuration 26

12 Console commands (most wanted) 27

12.1 ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
12.2 pwd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
12.3 cd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
12.4 cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
12.5 mv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12.6 rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12.7 echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12.8 cat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.9 grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.10 more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.11 less . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.12 tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.13 touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.14 mkdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
12.15 rmdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
12.16 find . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12.17 ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
12.18 kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12.19 chown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12.20 chgrp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.21 chmod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



CONTENTS 2

12.22 uname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.23 man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.24 df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.25 top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12.26 reboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.27 shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.28 which . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.29 ln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.30 tar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.31 gzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12.32 bzip2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.33 date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.34 who, w, finger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.35 sudo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
12.36 su . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
12.37 passwd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12.38 env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12.39 ssh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12.40 scp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.41 script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 File-Permissions 48

14 Terminals 51

15 The Shell 53

16 Pipes 55

17 Editors 57

18 The Clipboard 59

19 Applications 59

20 Administration 61

21 Installation 63



1 PREAMBLE 3

1 Preamble

Hello? Yes? Megadodo Publications, home of The

Hitchhiker’s Guide to the Galaxy, the most totally

remarkable book in the whole of the known Universe, can I

help you?

What?

Yes, I passed on your message to Mr Zarniwoop, but I’m

afraid he’s too cool to see you right now. He’s on an

intergalactic cruise.

Yes, he is in his office, but he’s on an intergalactic

cruise.1

LINUX is a Universe on your desktop.

Even after a livetime working with LINUX you will be surprised by discovering
something new from time to time. LINUX is a Universe on your Desktop. If you really
want to know how Computers work you should investigate LINUX further. LINUX is
completely open. You can look into any detail of LINUX and you can contribute to its

further development if you like. LINUX provides you with all tools and information for
software development without any payment, all you have to spent is some time.

But also if you don’t want to become a software developer, LINUX is worth a glimpse.
LINUX is completely free and one of the most stable and secure operating systems in

the world. It provides you with plenty of free tools and software suits and behind
LINUX is no company that is spying on your privacy or collecting data for their own
business benefit. You will recognize that the higher amount of time you may have to

spent at the beginning is a very good investment after a second consideration.

This introduction is for those who will encounter LINUX the first time, may be just as a
User or already as an Admin of their first own LINUX installation. It should be clear,
that this manual is fully incomplete and just scratching the surface of this fascination

operating system.

Have a lot of fun!

1Douglas Adams - The Hitchhikers Guide to the Galaxy



2 INTRODUCTION 4

2 Introduction

power On a new adventure

LINUX is an open, network capable, multiuser, full-multitasking operating system that
supports symmetric multiprocessing and real time execution. LINUX is a free version of
the UNIX operating system which was invented in 1969 by the Bell labs (USA) to run on
Mainframe- and Supercomputers and received contributions from various IT companies
like: SCO, IBM, SGI, NEXT, DEC, APPLE, Sun-Microsystems and Hewlett-Packard
since then.

... modern LINUX systems are 64 Bit. There are two major LINUX families which are
spread widely in various distributions:

• BSD based (Berkeley) LINUX
(Debian/Ubuntu/Xandros/Knoppix)
dpkg - Package-Manager, apt- Advanced Package Tool, synaptic

• System V based LINUX
(Fedora/RedHat/Suse/Mandrake/Scientific-LINUX)
rpm - Package-Manager, yum - Yellowdog Updater Modified, yumex

besides that there are still some commercial UNIX systems available, like AIX (IBM),
SOLARIS (ORACLE) and HP-UX (HP).



3 OPERATING SYSTEMS 5

3 Operating Systems

The operating system of the computer is the interface between the software and the hard-
ware of the computer. The architecture of the computer can be compared to a multi storey
building as it is shown in Figure 1.

KERNEL

HARDWARE

LINUX

systemsystem calls

driver

(computer)

(shell)
operating−

command interpreterDesktop Console

application command

Figure 1: The setup of the LINUX operating system is comparable to a multi floor building. The
Hardware in the basement is isolated from the applications in the upper floors by the KERNEL. The

KERNEL is the heart of the LINUX system. It controls the hardware alone and multiplexes the
system calls of the various running commands and applications to access the systems hardware.

The basement contains the hardware, the processing unit, the memory, disk drives, graph-
ics hardware and so on. Above at ground floor, there is the operating system. Its purpose
is to control the hardware layer below by so called ’drivers’. The upper floor holds the
applications or programs that run on the system. The applications communicate by so
called ’system calls’ with the operating system. Their access to the hardware is always
controlled by the layer of the operating system, applications can never have direct access
to the hardware! The main tasks of the operating system are:

1. it defines a specified interface to applications for the coordinated access to the hard-
ware of the computer. This is especially for programmers of particular importance

2. it allows the access to the hardware of the computer

3. it coordinates the access of simultaneously running applications to the hardware of
the computer

4. it isolates the data of different users and limits their access to the system or to the
data of other users

5. it provides a number of tools in order to manipulate files

In principle, computer could also run without any operating system. In that case however,
the programmer would need to have exact knowledge of all the details of the particular



3 OPERATING SYSTEMS 6

hardware to make an application run stable. Because the hardware of different computers
today varies in many aspects, this would be hardly a good approach for software develop-
ment. As a further disadvantage only a single program could be running simultaneously
on that kind of computer system. Small microcontroller systems built for a single purpose
can still work today without any operating system. The applications in this cases have to
be especially constructed for the particular microcontroller hardware.

• Modern operating systems like LINUX are ’multiuser capable’. This means that
more than one single User can be logged in to the machine simultaneously over the
network. The applications this Users run will not conflicting in any way with the
applications of any other User, nor with the data the Users are using or generating.
Any User that has an account on the system will have his own private user directory
(HOME-directory) which can not be accessed by any other User. The operating
system coordinates the access of different Users to the machine and keeps their
activities isolated from each other.

• A ’network capable’ operating system allows the Users to login over a remote
network. Users can login via network from a remote computer or terminal to the
host computer and start a session. The output of applications on the host computer
is than directed and routed automatically to the remote terminal or displayed on the
remote computer. The Users logged in over network will neither conflict with any
other user login via network nor with a User that may be logged in at the Console
of the host computer locally.

• A ’multitasking capable’ operating system can operate more than one single ap-
plication on the same computer hardware at the same time. Multitasking is one of
the main requirements for a multiuser operating system. But also one single User
may want to run several applications simultaneously on the system. The Operating
system will multiplex the hardware access of the applications to the computers hard-
ware in a very fast time frame. This will normally not be recognized by the Users.
Besides the Users, also the operating system itself will always run several applica-
tions on the system because the operating system is nothing else than a collection of
applications.

• LINUX is ’multiprocessor capable’. If the computer hardware offers more than
one single processing unit, a multiprocessor capable operating system can distribute
the processing of application on the number of available units in order to speed
up the processing time. In case of multitasking the operating system will try to
distribute the processing tasks equally to the available processing units (symmetric
multiprocessing). Most modern computers provide multicore CPUs today which
can be used by multiprocessor capable operating systems.

• Some LINUX systems are also ’realtime capable’. This means that the applica-
tions have access to the hardware on a realtime basis. Normal operating systems
process data in a sequential order where interrupts can happen at any time and delay
the execution. For most applications this is no disadvantage. In general modern
computers are so fast, the User will never recognize that the application was inter-
rupted during execution. However there are cases where the execution of commands



4 LOGIN 7

is highly time critical and must be guarantied performed within a particular time in-
terval. In many measurement applications in physics time is a crucial parameter and
a signal is directly correlated to time. In such cases a ’realtime’ operating system
can be necessary where executions can be synchronized on specified clock cycles
of the systems hardware. A realtime operating system provides a special realtime
scheduler to force the execution of applications in realtime.

A computer lets you make more

mistakes faster than any

other invention - Mitch

Ratcliffe

4 Login

After booting the LINUX system correctly, the Login-Manager is started, showing a lo-
gin screen as shown in Figure 2.

In order to login you must type in your login name, the corresponding password and press
'Enter'.

The system will log you in with a graphical Window-Manager that provides the Desk-
top and the Console as interfaces to the system. This ’Desktop-Manager’ can vary from
LINUX distribution to LINUX distribution a little bit. There are at least a dozen differ-
ent Desktop-Managers widely distributed and available for most LINUX distributions,
GNOME, KDE, XFCE, LXDE, CDE are the most popular. Common to all Desktop-
Managers is the capability to control the computer via mouse, they also provide a ’File-
Manager’ and an ’Application-Manager’. The File-Manager allows you the access and
manipulation of files and folders via mouse: creating, naming, copying, moving and
deleting. The Application-Manager provides an easy access to applications. Many in-
stalled applications can be selected for execution via the Application-Manager. This is
however usually limited to those application that make use of a window based user in-
terface. Console type programs are often not accessible via the Application-Manager
because they don’t generate graphical output.

The Desktop-Manager also provides functionality for system administration, software
installation, user logout or for shutting down the computer system. When you logout from
the system, all user files and desktop settings usually will be saved and made available
again at the next login.

LINUX systems are multiuser capable! As a default every User gets his own work space
on the Filesystem, the ’HOME’-directory. The HOME-directories contains all data, fold-
ers and files that belong to a particular User. No User can look into the data of any
other User without permission, the HOME-directories are completely isolated from each
other by default. The access to the data of other Users is in LINUX controlled by File-
Permissions. File permissions can be changed by the User via Address-Flags if he wants
to grant other Users the access to his data.



4 LOGIN 8

Figure 2: How the Login-Manager looks like on your system depends on your distribution and your

individual installation. LINUX provides a variety of different Login-Managers. Common to all is
that they will request your Login-Name and a Password. Most Login-Managers also provide a menu

where you can select the kind of Desktop-Manager (KDE/GNOME/CDE..) you want to launch for

your session and some buttons to properly shutdown the system in case you cant login for some
reason. The shutdown option however will not be offered on public systems where other Users may

be working on the machine.

Behind every great computer

sits a skinny little geek

No User is allowed to change system data that belong to the LINUX operating system!
There is no way for a normal User to damage or destroy the LINUX operating system
neither by accident nor with purpose. Only the Super-User (system administrator) can
change system files! However normal Users can destroy their own data if they are not
careful enough. The strict separation of user-data and system-data makes LINUX rel-
ative secure against computer viruses or any kind of malicious software. A potential
damage will be always limited to the Users own work area, the HOME-directory. If you
run your own LINUX system with Super-User privileges you should be operating with
extreme caution! With Super-User permissions you can harm and destroy the complete
operating system including all user datas just by mistake or accident. For this reason you
should never login with Super-User privileged when this is not necessary. Even if you are
the systems administrator you should always login merely with your User account and
change into Super-User privileges (su- command) only for the time frame this is really
required.

Be aware, with Super-User privileges you can destroy the LINUX operating system

completely (only the software, not the hardware)! If you delete the KERNEL for

instance, lets say by accident, your system will never boot up again :-( .

LINUX systems you do not administrate yourself may not be allowed to be shutdowned
by normal Users! There can be dozens of Users be logged in to the system, working on



5 THE USER-INTERFACE 9

important issues. If a User could shutdown the system all other Users would be logged
out immediately from their sessions without any warning! The shutdown of a system is
therefore restricted to Super-User privileges only. But even if you are the Super-User you
should be careful before you shutdown the system. If there are other Users working on
the system you should consult them by time and grant them a couple of minutes or hours
to end their sessions themselves before you shutdown.

Even worse than an unannounced system shutdown is a power failure or the sudden power
off of the computers hardware! You should never switch off the computer without shut-
ting down the LINUX operating system properly before! As long as the operating system
is running, many processes will cache their data in memory. Even if you save data to a
disk drive, the operating system will not execute the storage command immediately and
can delay the actual writing operation for some time, keeping the data in the systems
volatile memory. If you switch off the computer without warning, the operating system is
not able to flush the data down to disk drive just in time, you will produce a real data loss
on the system and the Filesystem will become corrupted! LINUX will try to repair the
Filesystem at the next booting of the system automatically. In most cases this works well,
in some rare cases however, the damage to the Filesystem is severe, the operating system
may stay damaged beyond repair and you need to install LINUX anew. Besides some
continuous rumour: You can never destroy any hardware of the computer by switching it
off deliberately, only the software of the operating system can be damaged or destroyed.
You can always make a new installation!

So hands off the power switch! You should only shutdown LINUX systems that you

own yourself and only switch off a running computer when you exactly know what

you are doing!

At the source of every error

which is blamed on the

computer you will find at

least two human errors,

including the error of

blaming it on the computer

5 The User-Interface

In order to start an application the User will need some kind of User-Interface to the com-
puter. This can be either a graphical user environment, enabling the User to interact with
the computer via mouse, or it is a Terminal emulation providing a Commandline inter-
face where the computer is controlled by written commands. From here on, the graphical
user environment is called the ’Desktop’ and the Commandline interface is called the
’Console’. Both User-Interfaces possesses their pros and cons and are shown in Figure 3
for illustration. The Desktop is usually easier to operate for beginners. It is meant to be
intuitive and mimics a kind of office environment for the operation of the computer. Most
commands will be replaced by mouse moving and clicking. It is quite the right choice



5 THE USER-INTERFACE 10

to consume the daily news magazine or for browsing through the Internet. In contrast to
the Desktop is the Console. The Console is a much more powerful interface as the Desk-
top, it provides a programmable Shell which can automate the execution of applications
or commands via pipelines and scripts. Commands are typed into the Console via the
keyboard. Usually the operating system provides a few dozen commands as a baseline
which can easily increase into the hundreds if additional software packages are installed.
In principle there is no difference between a command and an application. All applica-
tions can also be called from the Commandline by typing their execution name. The great
variety of commands and command options makes the reputation of the Commandline as
complicated and less user friendly, but it is also the source which makes the Console such
an incredible powerful interface. Most computer experts prefer the Console. A typical
Console is shown in Figure 6. The complete interactions with the computer is performed
by typing commands.

Desktop

Console

Figure 3: The two command interfaces of LINUX: Desktop and Console. In principle you could
configure LINUX to launch only a Console without the Desktop, in former times this was once

the default. Modern LINUX however will always launch the Desktop first. The Desktop provides

the Console on a window system and permits the launch of several Consoles at once running in
multitasking. The screenshot here shows a running CDE Desktop with a Dashboard that provides

push buttons to launch the Console and other applications.

An example: Imagine you want to replace the string „AIT“ by the string „IAAT“ in
all files with the file extension ’.tex’ which are spread over 600 subdirectories on your
system. To perform this task with the Desktop you may open all 600 subdirectories by



5 THE USER-INTERFACE 11

mouse click and open all ’.tex’-files in those subdirectories with a Texteditor. In the
Texteditor you use the search and replace function to make the changes. On the Console
instead you can go to the corresponding ’root’-level directory and just type the following
Commandline which will perform the task in a few seconds:

[~]> for i in ’find . | grep .tex’ do; sed -i -e "s/AIT/IAAT/g" $i; done’.

The great power of the Console is, that it provides a programmable interface!

5.1 The Desktop

There are a number of different Desktops available for LINUX. Some imitate MICROSOFT
WINDOWS and offer a menu driven way to launch applications. Others make use
of a dashboard like shown in Figure 5 that provides direct access to the most vital
daily required functions of the system. Common to all Desktops is that they provide
a File-Manager to the Filesystem of the computer where files and directories can be ac-
cessed and manipulated via mouse movements and interactions. Applications are usually
launched via a menu system or via an Application-Manager, both are operated by mouse
also.

Figure 4: Screenshot of the running ’WINDOWMAKER’ Window-Manager.

There are plenty of different Desktops available for LINUX. The most common Desktops
are:



5 THE USER-INTERFACE 12

• KDE - Desktop:
very powerful and well equipped Window-Manager, slow and demands lots of re-
sources

• GNOME - Desktop:
The Fedora LINUX standard Window-Manager, powerful and well equipped, slow,
demands lots of resources

• XFCE - Desktop:
powerful and well equipped Window-Manager, light and fast

• LXDE - Desktop:
well equipped Window-Manager, light and fast

• UNITY - Desktop:
the Ubuntu LINUX standard Window-Manager

• MATE - Desktop:
compact and fast Window-Manager

• CDE - Desktop:
compact and fast Window-Manager, industry standard on UNIX for more than a
decade

• FVWM - Desktop:
very simplistic Window-Manager, fast and compact, from the early days of LINUX

• WINDOWMAKER - Desktop:
very light and fast Window-Manager

Printer, drop a file
here to print it.

You can put often
used software into  
Subsliders and launch 
them from there ...

Launch Firefox
Internetbrowser
by pressing the
symbol ...

Logout and 

Desktop Areas

you can control the
Line Interface, here

all the graphical software
on the system ...

... launch Terminal
console for Command

commands
computer by typing

 ...

your data ...

Mountbay

... here you find 

... here you can launch
AppManager

FileManager

shutdown computer

Trashcan

Mount and unmount
buttons for USB drives
CD−ROM drives and
auxiliary devices ...

... here you can
set your default
Terminal, Editor, 
Shell ...

Figure 5: The dashboard of CDE provides direct access to all vital functions of the system.

The different looks and feels of different LINUX distributions is mainly caused by the
choice of the Desktop. Most distributions have strong preferences to one Desktop or an-
other. On the baseline„ different LINUX systems are very much alike, its the choice of
the Desktop that make them appear such different from each other. Most Desktops make



6 SYSTEM-SHUTDOWN 13

use of different window decorations and window widgets.

Usually the Desktop can be chosen freely by the User via a menu of the Login-Manager
screen before logging in to the system.

5.2 The Console

The other User-Interface is the Console. On the level of the Console all LINUX distribu-
tions are almost identical! The Console is mainly influenced by the Terminal-Emulation
and the Shell that is used to provide it, see also chapter 15 and 14. The Console is just a
window that provides a Commandline Interface to the computer system, see also Figure 6.

Figure 6: The Screenshot shows a typical Console. The Console here displays the result of the ’ls -l’
command in the HOME-Directory of the User ’ts’ on system ’thales’.

Build a system that even a

fool can use and only a fool

will want to use it

6 System-Shutdown

How is a LINUX system shutdown properly?



6 SYSTEM-SHUTDOWN 14

Because LINUX is a multiuser operating system only the system administrator is allowed
to shutdown the system, in general normal Users will not have the privileges! The first
step to shutdown the system is to inform the logged in Users and wait until they have
logged out and quit their sessions!

It is possible to configure LINUX in a way that normal Users can shutdown the sys-
tem also. In this case Users can shutdown the system via some shutdown buttons of the
Desktop-Manager. For standalone LINUX systems at home such an option is very useful.
The permission to shutdown the system for certain normal Users can be configured by the
Super-User by editing the ’sudo’-configuration file ’/etc/sudoers’ and adding the appro-
priate usernames. The specified Users can shutdown the system either by selecting the
shutdown option from the Desktop-Manager or by typing the following Commandline to
the Console:

[~]> sudo shutdown -h 0

(the password of the User may be requested again)

The letter ’-h’ means ’halt’, the system will definitely stop and power down, not reboot!
The number ’0’ means that there is no shutdown delay granted. When you issue the
shutdown command all Consoles of all Users will display a shutdown warning. The
Users are ultimately told to logout. You can set the number to ’60’ and grant a logout
time of 60 minutes. If you are not alone on the system you should always grant some
time for the Users to stop their working and logout from the system by themselves. If
you type in the number ’0’ the system will shutdown instantly. Only do that if you are
alone on the system!

If you are the administrator on the system and know the Super-User password you can
also acquire Super-User privileges by logging in as Super-User permanently. For this you
type the command 'su -' into the Console, the Super-User password is required. If you
can login as Super-User you can shutdown the system by typing the shutdown command
directly:

[~]> shutdown -h 0

or

[~]> reboot -h

ATTENTION!

you must wait until the message:

Halted, you may now cycle power

appears. Do not cycle power before this message!

On modern computer systems LINUX makes the computer cycle power itself after the
'shutdown' command was completed.

ATTENTION!



7 PROCESSES 15

Be careful always to shutdown the operating system properly, never cycle power

before the shutdown has fully completed, a defective operating system and data loss

may result otherwise!

Brian Kernighan has an

automobile which he helped

design. Unlike most

automobiles, it has neither

speedometer, nor gas gauge,

nor any of the numerous idiot

lights which plague the

modern driver. Rather, if

the driver makes any mistake,

a giant "?" lights up in the

center of the dashboard.

"The experienced driver", he

says, "will usually know

what’s wrong."

7 Processes

The Heart of the LINUX operating system is the ’KERNEL’. The KERNEL is a special
program (e.g. vmlinuz-4.8.13-100.fc23.x86_64) in the directory ’/boot’ of the Filesys-
tem, that is executed at system start. The KERNEL executes the complete control to the
hardware of the computer and the so called ’process scheduling’ which coordinates the
execution and the access of applications to the hardware.

At boot time the LINUX system will start the KERNEL program first. The KERNEL
will launch the ’init’-process which is the very first process running on the system. What
the computer really executes are not programs, the computer executes ’processes’, pro-
grams launch a number of processes! The very first process is the ’init’-process with
the process-ID number '1'. Starting with this first process, all further processes will be
forking from the ’init’-process as it is shown in Figure 7.

The ’init’-process is also called the ’Parent’-process of the system. All later processes
are ’Child’-processes of the ’init’-process. ’Child’-processes will inherit all parameters
that were used to call their ’Parent’-process. If a ’Parent-Process’ is killed, all its ’Child’-
processes will be ended also (different from real live). At boot time the ’init’-process is
forked in a great number of ’Child’-processes which makes the operating system working.

As a last step at booting the system will start the Login-Manager. When the User is log-
ging in, the user login-process will become the ’Parent’-process of all the Users future
processes, it will fork again and again further. If the login-process would be killed ac-
cidentally, it would immediately quit also all of the Users Child-processes and the User
would be logged out instantly.



7 PROCESSES 16

fork fork

fork

fork

forkfork
fork

B

D E F

C

G

init

login

I K

parent

child(init)

fork

child(init)

child(B) child(B) child(B) child(C)

child(F)

Processes:

child(login) child(login)

Figure 7: At boot time the KERNEL is starting the ’init’ process, it has the process-ID number ’1’.
All further processes will be launched out of the init-process by a method called forking. Forking

means the init-process is the ’Parent’-process and will duplicate all its launch parameters to his

’Child’-processes. Using the command ’ps -fe’ you can display a list of all running processes on
your system -> see below. The PPID is the Process-ID (PID) of the ’Parent’-process. Process-ID

number ’3730’ is here the login-process of the user ’schanz’ for instance. The colors refer directly

to the illustration in Figure 1.

As in certain cults it is

possible to kill a process if

you know its true name. -

Ken Thompson and Dennis M.

Ritchie

Every time a program or command is executed in the Console, the Parent-process of the
Console is forking into one or several Child-processes. The Parent-process is blocked for
the time frame the Child-processes are running and continues after the Child-processes
have completed. In this case, such a Child-process is considered a ’Foreground’-process.
This is the default.

It is possible to start processes as ’Background’-process. For this the particular applica-
tion is called with a '&' sign behind the program- or command-name. The Parent-process
will generate Child-processes also in this case but it will not wait until the Child-process
has completed and will continue immediately. For instance:

[~]> firefox &

will start the ’Firefox’-Webbrowser as an Background-process. The Console will be
immediately freed to receive and execute further commands. The Child-process (firefox)
in this case will run as a Background-process to its Parent-process, the Console.

It is also possible to put a process into Background even if it was initially called as a
Foreground-process. For this just go to the Console the Foreground-process was launched
from and press 'ctrl z' on the keyboard to suspend the Foreground-process. Subsequently



8 THE FILESYSTEM SETUP 17

you can type 'fg' (foreground) to the Console in order to start the Foreground-process
again (stop suspension) or you type 'bg' (background) to the Console to put it into Back-
ground.

If you press 'ctrl c' on the keyboard, the Console stops the execution of a Child-Fore
ground-process immediately. This is often used to stop a program or command before
normal completion.

The command 'ps' (process status) or 'ps -fe' will display a list of all running processes.
This will give you an overview of the processes launched by applications, about the
process-IDs and the Users who launched it. The program 'top' displays a table of pro-
cesses that have the highest processing demands on the system, you can use ’top’ to
identify the processes that do cause the highest load on the system.

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 08:54 ? 00:00:01 init [2]

:

root 1225 1 0 08:54 ? 00:00:00 udevd --daemon

daemon 2577 1 0 08:54 ? 00:00:00 /sbin/portmap

statd 2589 1 0 08:54 ? 00:00:00 /sbin/rpc.statd

root 2924 1 0 08:54 ? 00:00:00 /usr/sbin/rsyslogd -c3

root 2935 1 0 08:55 ? 00:00:00 /usr/sbin/acpid

root 3669 3662 0 08:55 ? 00:00:00 /usr/sbin/gdm

:

schanz 3730 1 0 08:55 ? 00:00:00 /usr/bin/gnome-keyring-daemon -d --login

schanz 3731 3669 0 08:55 ? 00:00:00 /bin/sh /usr/bin/startkde

:

Using the command 'kill' you can force specified processes to be stopped and removed
from further process scheduling. The command will be discussed in more detail later.

8 The Filesystem setup

All LINUX systems are using a hierarchical Filesystem setup as it is shown in this para-
graph and illustrated in Figure 8. The entire operating system is organized by this Filesys-
tem setup. For the User it is very useful to have an idea about the structure of the Filesys-
tem and to know where certain files of the operating system are located. The Filesystem
contains all files and folders of the operating system.

The Filesystem can be extended when you attache and mount additional disk drives like
CDROM disks or USB sticks. Not all parts of the Filesystem however must be writable.
CDROMs for instance can only be accessed for reading.

All files of the Filesystem are either accessible by command via Console or graphically
via the File-Manager of the Desktop as it is shown in Figure 9. The File-Manager of
the Desktop has the ability to mask such files their names start with a dot ’.’ . The file
’.bashrc’ for instance will not be displayed by the File-Manager of the Desktop by default.

The Filesystem contains many files or different filetypes for different purposes. Many
filetypes are internally organized in ASCII and can be read by an usual Texteditor, most



8 THE FILESYSTEM SETUP 18

kernel

/
usr

boot
etc

home

.bashrc

var
dev
root

bin
mnt
media
opt

schanz

bin

tmp

tenzer
tmp

tmp

programs

programs
.cshrc

directories

directories (open)

file / application

config file / script

Figure 8: LINUX uses a hierarchic Filesystem setup. The top level directory is called the ’root’-

level directory ’/’ of the system, all subdirectories will branch from here. The Filesystem contains
all files and directories of the LINUX system including all user data. File- or directory-names are

called ’relative’ as long the complete path from the ’root’-level down is not explicitly given. There
can be different files or directories with the same ’relative’ name be in existence in the Filesystem,

like the ’tmp’-directory in this example. In order to change the Command-Prompt into the directory

’tmp’ of the User ’schanz’ you either know where the prompt currently is, than you can address the
change ’relative’. Assuming the Command-Prompt is at ’/home/tenzer/tmp’ the addressing for the

change using relative addressing would be: ’cd ../../schanz/tmp/’. Otherwise you could always use

’absolute’ addressing to perform the change by typing: ’cd /home/schanz/tmp/’ which would work
from everywhere in the Filesystem the same way.



8 THE FILESYSTEM SETUP 19

filetypes however are binary coded and only readable by a corresponding software.

Figure 9: All files and directories of the Filesystem can either be accessed by the Console (left) or

via a graphical File-Manager that usually belongs to the Desktop (right).

There are filetypes for all kinds of applications, image-files, movie-files, document-files,
sound-files and so on which have a different internal data structure. The File-Manager
of the Desktop can distinguish between different filetypes and will show different pic-
tograms according to the data the file is containing. The File-Manager will also link the
filetypes to corresponding default applications that are attached to the particular filetype.
Clicking the mouse on the filetype will then automatically launch the default application
and load the file. Many File-Managers can also link secondary applications to a filetype
that can be selected via mouse from a menu if required. Some File-Managers can display
a preview of the file in the pictogram of the filetype. In general the File-Manager will
recognize if the filetype contains any program data or is an executable application. If the
file is an application, the File-Manager will launch it the moment you click the mouse on
it.

Besides launching corresponding applications the File-Manager allows also the ’copy’
or ’move’ or ’remove’ of any files. Usually this is executed by ’drag and drop’ oper-
ations. When you drag and drop a file from a particular folder into another folder the
File-Manager will execute the appropriate ’copy’ or ’move’ operation. You can also drag
and drop a file on the Trashcan symbol of the Desktop in order to remove it from the
Filesystem completely. There are plenty of additional functions concerned with the File-
Manager of the system that are beyond the scope of this document and depends on the
particular File-Manager. Please consult the documentations for the File-Manager that is



8 THE FILESYSTEM SETUP 20

installed on your system for further informations.

Computers are unreliable, but

humans are even more

unreliable. Any system which

depends on human reliability

is unreliable. - Gilb

From here on we want to focus more on the functionality of the Console which is much
more common and generalized for the different kinds of LINUX distributions, in fact its
identical at any LINUX system.

The Filesystem can be easily accessed via the Commandline interface of the Console,
which provides a number of commands for Filesystem navigation and file manipula-
tion, see chapter 12. All files and folders of the LINUX system are rooted to the top
level directory of the Filesystem which is called the ’root’-directory and shorted by
the slash ’/’ symbol. Because the Filesystem is hierarchic there can be many layers
below the ’/’-directory. When a file is located in a subdirectory of ’/’, the path to
the file can be specified in an ’absolute’ manner if the name starts with the ’/’. The
KERNEL ’vmlinuz-4.8.13-100.fc23.x86_64’ for instance may have the ’absolute’ path
’/boot/vmlinuz-4.8.13-100.fc23.x86_64’ because it is located in the subdirectory ’boot’
of the root-directory ’/’. The use of ’absolute’ pathnames makes the addressing of a
file always unambiguous in the hierarchy of the Filesystem. In contrast to ’absolute ad-
dressing is ’relative’ addressing. For ’relative’ addressing you always need to know the
location of the ’Command-Prompt’. The Command-Prompt is a pointer that defines from
which Filesystem location the addressing of a filename will be started. The command 'cd
/home/schanz/tmp' for instance will move the Command-Prompt of the Commandline
into the subdirectory ’tmp’ of the HOME-directory of User ’schanz’. The Command-
Prompt will ’change directory’ (cd) to ’/home/schanz/tmp’. The User ’schanz’ that is
located in the HOME-directory ’/home/ schanz’ could achieve the same just by typing
’cd tmp’ because the Command-Prompt of User ’schanz’ will be pointing to the directory
’/home/schanz’ after login per default. Absolute pathnames are always unambiguous,
’relative’ pathnames require to know where the Command-Prompt is currently pointed.
You can always find out where the Command-Prompt is currently pointed by typing the
’pwd’ command into the Commandline:

[~]> pwd

which will give you the current position, maybe ...

/home/schanz

The designation of the 'root'-directory depends on the context, don’t be confused! The
'root'-directory of the system is located at ’/’, the 'root'-directory of the User ’schanz’ is
located at ’/home/schanz’ instead. In the future we will refer to this 'root'-directory of the



8 THE FILESYSTEM SETUP 21

User as his ’HOME’-directory only. There may be ’root’-directories of some application
software installations also. To make things worse, the Super-User of the system is called
the ’root’-User! This is because in former UNIX days the HOME-directory of the Super-
User was not located under ’/home/root’ or ’/root’ as it is today but directly in the root-
directory ’/’ of the system. Can you still follow? :-)

The most important subdirectories of the ’root’-directory ’/’ are:

/usr : contains most of the operating system and open source applications

/etc : contains the configuration of the operating system, of services and applications

/boot : contains the KERNEL and the Bootloader

/home : contains the user-HOME-directories

/var : contains log-files of the operating system and of applications

/dev : contains device driver of the KERNEL

/root : contains the configuration of the ’root’-User (Super-User)

/tmp : contains temporary files and folders to run the system

/bin : contains the executables of the core operating system

/sbin : contains applications for devices (e.g. Filesystem operations)

/mnt : contains mounted disk drives

/media : contains mounted media systems of portable devices (USB-Sticks .),

that will be mounted via automounter

/opt : contains commercial applications and software

/

ls

cp

rm

date

grep

touch

bin (here are the LINUX console−

commands of the core system)

Figure 10: The ’/bin’ directory contains the Console commands of the core operating system.

The main part of the LINUX Console commands is located under ’/bin’ (core commands)
or under ’/usr/bin’, illustrated in Figure 10 and 11. Also most applications will be in-
stalled under ’/usr/bin’. The difference between commands and applications is marginal,
in principle commands are also applications.

In the directory ’/usr’, most of the LINUX operating system is located. Besides system
commands (bin) it contains also user applications, software libraries (lib), definitions
for software development (include), the compiler and all the corresponding documenta-
tions of the software (man). The software libraries are mostly so called ’shared libraries’
(shared objects (.so)). They contain precompiled system calls that can be linked dy-
namically into applications and will be used by a large number of software applications
together. This enables a fast and compact software development. The disadvantage, is



9 THE HOME-DIRECTORY 22

bin

/

lib

gcc

libtiff.so

man

local

bin
lib
include
man

src

tiff.c

gimp

include

tiff.h

tiff.1.gz

usr
(here is the LINUX software located

and higher system commands also)

(contains precompiled system libraries

for the LINUX software)

(contains declarations for the system

libraries for software development)

(contains the documentation of the

software and system libraries)

(folder for public domain software)

(folder for source files of the software)

Figure 11: The ’/usr’ directory contains the largest part of the software that makes the LINUX
operating system.

one of the shared objects modified or upgraded, a large number of application might be
affected. Typical LINUX systems use a number between 500 and 1500 shared objects,
all located under ’/usr/lib".
The distribution of software to the subdirectories ’bin’, ’lib’, ’include’ and ’man’ is typ-
ically for LINUX. You may find this structure also in other directories of the Filesystem
besides ’/usr’.

9 The HOME-directory

On LINUX systems every User has his own HOME-directory as it is illustrated in Figure
12. It has the name of the users login and is located under the directory '/home/<username>/'.
The HOME-directory of the Users is per default secured against all other Users → see
File-Permissions in chapter 13. No User is allowed to access the files of any other User.
Besides the User himself, the Super-User is the only other one on the system that can



9 THE HOME-DIRECTORY 23

look into the files of a user. You can trust, that the Super-User will not access your files
without your explicit wishes! Every User is allowed to do in his own HOME-directory
what ever he wants. He can generate an arbitrary number of files and folders as long
he does not exceed the limits of disk space of the system. On some public systems the
Super-User can grant Quotas for the disk space users are allowed to occupy. The Quotas
shall guarantee that all Users get the same amount of disk space on the Filesystem avail-
able. They prevent that one single User will occupy all the available disk space for his
own purpose.

Download

tmp
tenzer

/

schanz

.bashrc

.history

.login

.profile

.thunderbird

googleearth

.adobe

home

Desktop

directories

directories (open)

file / application

config−file / script

my_documents

gurk.jpg

gurk.mp3

my_pictures

my_music

Figure 12: The user-HOME-directory contains all the Users files and data including the local user-

specific software configurations. Most of this configuration files start with a ’.’ in the filename and
contain the private settings the User has set up in the specific software. The User is free to generate

as many files and subfolder he want inside his own HOME-directory.

The HOME-directory of a user will also contain his local configurations. This configu-
rations affects the settings of the Desktop, the Console, the Internet Browser, the eMail



10 EXECUTION PATH 24

Client and also a number of applications (most of them located in ’/usr/bin’) the User has
access to. The HOME-directories allows every user his own private configurations. The
particular config files usually have the same name as the corresponding application but
start with a '.' in the filename. Try the command ’ls -al’ to display the hidden config files
in your HOME-directory.

10 Execution PATH

A very frequent question of LINUX beginners is: „Where do I find the programs?“

This is truly not an easy question. On LINUX systems applications can be installed at
very different locations. This can depend on the LINUX distribution, on the manufacturer
of the software or on the preferences of the systems administrator. In my opinion this is
truly one of the weaknesses of LINUX compared to its predecessor UNIX. The only
common rule is that you will find the executables most probably in some subdirectory of
the system that has the name ’bin’, e.g ’/bin’, ’/usr/bin’, ’/usr/local/bin’ etc.

On UNIX-systems the application either belongs to the operating system and is located in
„/usr/bin“ of the Filesystem, or it is a commercial application and has its own installation
subdirectory you will find under „/opt/“. e.g.:

Oracle databases: /opt/oracle/bin

Adobe Reader: /opt/adobe/bin

Xilinx FPGA Development system: /opt/xilinx/bin

... etc.

On LINUX systems this is unfortunately all a bit more anarchic. Operating system com-
mands are usually located in „/usr/bin“ of the Filesystem, same as on UNIX systems.
Opensource applications meanwhile will also be installed to „/usr/bin/“ mixing up with
the commands of the operating system. Some LINUX distributions install the applica-
tions rather to „/usr/local/bin/“ or „/usr/local/X11/bin/“. Others use „/usr/X11R6/bin/“
or „/usr/share/bin/“, etc. The 'firefox' webbrowser installs itself for some reason under
„/usr/lib64/“, some applications still use the „/opt/“ directory to put their stuff in and so
on.

Is the install directory of some software not in the search path (’echo $PATH’) of the
Console, the system will not find the executable program when you type in the command
name will reply with a ’command not found’ error message. There is unfortunately no
easy solution to find a particular software and its executable on the Filesystem when they
are installed to a location that is not in the PATH of the Console. You can always use the
’find’-command if you know at least the name of the executable. Some software however
uses names for the executable that deviate from the softwares package name, you will
have a lot of fun about finding it :-).

If you can find the subdirectory that contains the executable of a certain software, you
can add this location into the search PATH of the Console in order to launch the program



10 EXECUTION PATH 25

in the future just by typing its name without any path. For this you edit the resource file
of the Shell (most probably '.bashrc') in your HOME-directory and add the new location.
The specific line in the resource file will probably somehow look like this:

PATH=/bin:/usr/bin:/usr/bin/X11:/usr/local/bin:/usr/local/bin/X11:/home/schanz/.dt/bin

:$PATH

Considering for instance, you want to add the location of NASAs HEASOFT executables
that are located under ’/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22/bin’ to
the PATH, the modifications for the PATH variable will look like this:

PATH=/bin:/usr/bin:/usr/bin/X11:/usr/local/bin:/usr/local/bin/X11:/home/schanz/.dt/bin

:/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22/bin:$PATH

Here is ’PATH’ used as an ’Environment-Variable’ that tells the Shell where to look for
executable programs. PATH contains the directories just as a list separated by ’:’. You
can display the PATH-variable if you type ’echo $PATH’ into the Commandline. After
the modification above, the search PATH contains now the directories:

/bin

/usr/bin

/usr/bin/X11

/usr/local/bin

/usr/local/bin/X11

/home/schanz/.dt/bin

/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22/bin

If you type in a command or an application name, the Shell will search in the directo-
ries shown above for the executable. The PATH mechanism of the Shell relieves you
from knowing where the executable of a certain program actually is located, just type
the name into the Commandline. If you don’t use the Bourne-Shell (bash) you have to
modify or add the PATH variable in the corresponding resource file for the Shell you are
using instead. You don’t know what Shell you are using? Type ’echo $SHELL’ into the
Commandline of the Console. $SHELL is another Environment-Variable. This will give
you an output like this:

/bin/bash

A similar mechanism is controlling the search PATH for documentations. The LINUX
system offers manuals for each command and program installed on the system. These
Man-Pages contain short descriptions how to operate the command or application includ-
ing its options. You can open a specific Man-Page for a certain command by typing the
following into the Commandline:

[~]> man <command/application name>

Try the Man-Page for the ’date’ command as an example:



11 LINUX CONFIGURATION 26

[~]> man date

This will open the Man-Page how to use the ’date’ command and will look like this:

DATE(1) User Commands DATE(1)

NAME

date - print or set the system date and time

SYNOPSIS

date [OPTION]... [+FORMAT]

date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

DESCRIPTION

Display the current time in the given FORMAT, or set the system date.

-d, --date=STRING

display time described by STRING, not ’now’

-f, --file=DATEFILE

like --date once for each line of DATEFILE

.........

All Man-Pages follow a similar setup. In order to find the Man-Page for a given input the
Shell uses an Environment-Variable again, called ’MANPATH’. The MANPATH tells the
Shell where to look for Man-Pages. You can display the content of MANPATH by typing
the following to the Commandline:

[~]> echo $MANPATH

this will generate an output like this:

/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22/man:/usr/man:/usr/local/man:

/usr/share/man

The MANPATH variable contains a list of the directories separated by ’:’, where the Shell
searches for Man-Pages.

The control of Shell functions and software via Environment-Variables is a very com-
mon mechanism on LINUX. You can display the Environment-Variables that are used
on your system by typing the command ’env’ to the Commandline. You can also add
Environment-Variables of your own to control script functions at any time you want.

11 LINUX Configuration

The ’/etc’-directory contains the global configurations of the LINUX operating system.
This concerns the booting of LINUX the same way as the configuration of networking,
the setup of the windowsystem (X11), the Secure-Shell (ssh), Filesystem configurations,
the printing system or the setup of services like firewall, printer queues, name services,
network Filesystems, dhcp and so on. Different from other popular operating systems,
LINUX is not using a database to control the settings of software applications nor the con-
figuration of the system. Instead each software has a bundle of its own config files hosted
under the ’/etc’-directory. This makes LINUX very stable and protected against attacks



12 CONSOLE COMMANDS (MOST WANTED) 27

or software failures. The configuration of different softwares or services is independent
from each other. A failure in the configuration of one application will not affect the con-
figuration of another software or services. Systems other then LINUX, that depend on
one single database mechanism for everything are much more fragile and unstable dur-
ing operation and must be rebooted the moment the database has experienced any major
changes. Figure 13 shows an illustrations of the ’/etc’-directory including some of the
most important config files of the system.

passwd

inittab

/

etc

fstab

mtab

hosts

X11

xorg.conf

app−defaults

grub.conf

resolv.conf

ssh

xinit.d

(in ’/etc’ you find the system − 
and software configurations in form

of editable resource files)

(contains a list of all mounted file−

systems)

(contains the login passwords of the

system (crypted))
(contains the configuration of the

windowmanager (X11))

(configuration of the bootloader)

(configuration of the boot process)

(configuration of the name services)

(contains the configurations of the 
(services start− and stop−scripts))

(configuration of the ssh secure−

shell)

Figure 13: The ’/etc’-directory contains most of the configurations of the LINUX operating system.

In order to change any of the global configurations of the LINUX operating system on
the Commandline you will need Super-User privileges. For beginners this is not recom-
mended! Better use one of the graphical setup tools of the Desktop if you want to change
some settings on the system.

12 Console commands (most wanted)

This chapter will give you a short overview of the most important Console commands
of the LINUX operating system. The list here is by far not complete! The LINUX



12 CONSOLE COMMANDS (MOST WANTED) 28

commands are located at the folder '/bin' of the Filesystem. The Console command ’ls
/bin’ will show you the list of commands on your computer. Be aware that there might
be additional commands also in other directories like ’/sbin’ or ’/usr/bin’. Only a small
fraction (the most important) of the actually installed commands will be discussed in this
document. Most commands have a various number of options also. You can display a
Man-Page for each command by typing ’man <commandname>’ into the Commandline
of the Console. Usually the commands in ’/bin’, ’/sbin’ and ’/usr/bin’ are all in the search
PATH of the Console, so you can type the command names without any path directly into
the Commandline for execution.

[It is] best to confuse only

one issue at a time. -

Kernighan & Ritchie

12.1 ls

The ’ls’-command (’list’) gives you a sorted list of all files and folders in the current
directory the Command-Prompt is pointing at. The kind of sorting and formatting of the
output of ’ls’ can be changed by various command options:

ls : list : list you the names of all files and folders

ls -l : list long : list you also the File-Permissions, the file size and the

creation date

ls -al : list all long : lists also hidden files and folders their names start with

a ’.’

ls -ils : list inodes : lists also the ’inodes’ (hardlinks) of particular files

ls -altr : list all long timesort reverse : list is sorted by creation date, last one

will be the newest

If you type ’ls -l’ to the Commandline you will get an output like this:

total 8128

drwxr-xr-x. 2 schanz users 4096 Mar 30 2017 Desktop

drwxr-xr-x. 2 schanz users 4096 May 24 10:01 Docs

drwxr-xr-x. 5 schanz users 4096 Aug 3 17:56 Downloads

drwx------ 4 schanz users 4096 Aug 23 16:09 Dropbox

drwxr-xr-x 2 schanz users 4096 Sep 15 2017 Mount

-rw-r--r-- 1 schanz users 590946 Aug 26 10:54 Screenshot from 2019-08-26 10-54-29.png

-rw-r--r-- 1 schanz users 7683180 Aug 26 11:03 cat.jpg

lrwxrwxr-x 3 schanz users 4096 Jul 15 14:53 gurk -> scan

drwx------ 2 schanz users 4096 May 1 2016 mail

drwxr-xr-x 2 schanz users 4096 Aug 27 12:35 scan

drwxr-xr-x 2 schanz users 4096 Jul 15 14:53 tmp

......

| | | | | | | | |

| rights links owner group bytes date time name

| (Access

| Flags)

|

d = directory -> tmp is a folder, all others are files

l = link -> gurk is a soft link, pointing to the directory ’tmp’, ’ls tmp’ will list

the content of ’tmp’, also ’ls gurk’



12 CONSOLE COMMANDS (MOST WANTED) 29

The list above shows you the content of a typically user-HOME-directory. It contains
some files the User has generated and a number of subdirectories that belong to the login.
The call of ’ls’ with the option ’-l’ shows you also the Access-Flags (File Permissions)
of the files and directories, the ’Owner’, the ’Group’ it belongs to, the ’filesize’ it is
occupying in Bytes, the ’creation date’ and the ’name’.

12.2 pwd

The ’pwd’-command (’print working directory’) shows you the working directory the
Command-Prompt of the Shell is pointing at. The input of:

[~]> pwd

will produce an output like this:

/home/schanz

the Command-Prompt is pointing here to the ’root’-directory of the User ’schanz’, his
HOME-directory that is located at: ’/home/schanz’.

If you are ever confused where in the Filesystem you are (the Command-Prompt), just
type in ’pwd’ to the Commandline.

Computers don’t actually

think. You just think they

think. (We think.)

12.3 cd

The ’cd’-command (’change directory’) will change the directory where the Command-
Prompt is pointing at. In a way you can move the Command-Prompt with ’cd’ through
the hierarchy levels of the Filesystem. You just give the ’cd’-command the new directory
you want to change to as an argument. A few examples:

cd /home/schanz : change the Command-Prompt into the HOME-directory of User ’schanz’

cd / : change the Command-Prompt into the ’root’-directory of the

Filesystem

cd /usr/bin : change the Command-Prompt into the ’/usr/bin’ directory

cd : change the Command-Prompt into your own HOME-directory

cd . : change the Command-Prompt into the current directory (no change)

cd .. : change the Command-Prompt into the next upper directory

cd - : change the Command-Prompt into the directory it was before the

last call of ’cd’



12 CONSOLE COMMANDS (MOST WANTED) 30

kernel

usr

boot
etc

var
dev
root

bin

schanz
home

/

tenzer

tmp Datei / Applikation

Verzeichnis (geöffnet)

Verzeichnis

tmp

tmp

programs

programs

my_directory

(root−directory)

Figure 14: Example for the Filesystem navigation utilizing the ’cd’-command: Considering you are
User ’schanz’ and your user-HOME-directory is ’/home/schanz’. The call of the ’cd’-command alone

without anything else will bring you (meaning the Command-Prompt of the Console) always back

into your own user-HOME-directory ’/home/schanz’. If you call ’cd ..’ you will move one di-
rectory level up, in this case to ’/home’, if you repeat ’cd ..’ again you will move up again to

’/’, this is the ’root-directory’ of the Filesystem. You can also use ’absolute’ addressing like ’cd
/home/schanz/my_directory’. This will bring you directly to ’my_directory’ anyway from which

relative position you call it. If you call ’cd /tmp’ next, you will go to ’/tmp’. The call of ’cd -’ will

bring you back into the directory you were before the last ’cd’, in this case ’my_directory’

12.4 cp

The ’cp’-command (’copy’) will copy files or directories of the Filesystem from one
location to another:

cp gurk.txt wurg.txt : makes a copy of the file ’gurk.txt’ into the file named

’wurg.txt’.

cp gurk.txt /home/schanz/ : makes a copy of the file ’gurk.txt’ into the directory

’/home/schanz’ that will be named ’gurk.txt’ and located

at ’/home/schanz/gurk.txt’

cp gurk.txt gurk.txt : makes a copy of the file ’gurk.txt’ into the file

’gurk.txt’. This command call will fail because there can

not be two files with the same name in the same directory!

cp gurk.txt / : makes a copy of the file ’gurk.txt’ into the directory ’/’

that will be named ’gurk.txt’. This command call will most

probably fail too, because normal Users have no write

permission to the ’root’-directory ’/’! It will reply:

’cp: cannot create regular file ’gurk.txt’: Permission

denied’

cp -r tmp neu_tmp : makes a copy of the complete directory ’tmp’ named



12 CONSOLE COMMANDS (MOST WANTED) 31

’neu_tmp’. The complete directory ’tmp’ including all

files inside ’tmp’ and all subdirectories inside ’tmp’

will me copied. The option ’-r’ means ’recursive’.

The ’copy’-command will generate a further instance of the file or directory, the old one
stays in place.

12.5 mv

The command ’mv’ (’move’) will move a file or a directory through the hierarchy levels
of the Filesystem or rename it:

mv gurk.txt wurg.txt : moves the file ’gurk.txt’ into the file ’wurg.txt’.

This is basically just a ’rename’ of the file name!

mv schanz tenzer : assuming ’schanz’ is a directory, the renaming works

also for directories, here into name ’tenzer’.

mv /tmp/gurk.txt /home/schanz/ : moves the file ’gurk.txt’ from directory ’/tmp’ into

the directory ’/home/schanz’. The name of the file

will be kept, the location inside the Filesystem is

changed.

mv /home/schanz/gurk /tmp/ : assuming ’gurk’ is a directory inside the

user-HOME-directory of User ’schanz’, the command will

move the complete directory ’gurk’ including everything

inside to the directory ’/tmp’ of the Filesystem. After

completing there will be a directory ’/tmp/gurk’ and no

more ’/home/schanz/gurk’!

The ’mv’-command will shift the file or directory to another location of the Filesystem.
There will always be only one single instance.

12.6 rm

The ’rm’-command (’remove’) deletes files or directories from the Filesystem. You
should handle ’rm’ with care! There is no ’undo’ for ’rm’. If you once have deleted
something it is gone for ever!

rm gurk.txt : deletes the file ’gurk.txt’ from the current directory

rm gurk.txt wurg.txt : deletes the files ’gurk.txt’ and ’wurg.txt’ from the current

directory

rm -r tmp : deletes the directory ’tmp’ recursively (all files and all

subdirectories in ’tmp’) from the Filesystem.

rm * : deletes all files from the current directory of the Filesystem.

You should avoid this for safety reasons! If you are mistakenly

not in the directory you think, you will delete everything

somewhere else! At least you should check with the ’pwd’

command where your Command-Prompt actually is before you

execute an ’rm *’.

If you want to delete all files from a particular directory,

its saver to call the ’rm’-command stating the directory name

explicitly as an absolute path, e.g. ’rm -r /home/schanz/tmp’

or ’rm /home/schanz/tmp/*’

rm /home/schanz/tmp/* : deletes all files in the directory of ’/home/schanz/tmp/’

12.7 echo

The ’echo’-command prints a string of letters or the content of an variable:

echo "Hello World" : prints the string "Hello World" on the Console.

’echo’ is usually used in scripts to print text onto the

Console

echo $PATH : prints the content of the Environment-Variable PATH.

The ’echo’-command is mostly used in Scripts to produce a text output to the Console.



12 CONSOLE COMMANDS (MOST WANTED) 32

12.8 cat

The ’cat’-command (’concatenate’) prints the content of a file onto ’stdio’ (standard I/O)
of the Console. Example:

[~]> cat .bashrc

prints the content of the file ’.bashrc’ onto the Console.

An elephant is a mouse with

an operating system

12.9 grep

The ’grep’-command can be used to search for a particular string in a readable ASCII
coded file. Assuming you want to display all files in your HOME-directory that contain
your login name as a string (e.g. ’schanz’):

[~]> grep schanz *

The star ’*’ causes grep to look into every file of the current directory for the string
’schanz’. The output of ’grep’ will give you the filename of any file that contains the
string together with the line in the file that contains the string to the Console.

If you want to know if a certain user account (e.g. ’root’) exists on your system you can
grep the passwd file in the ’/etc’ directory of the system:

[~]> grep root /etc/passwd

Is there an entry for ’root’ inside the file ’/etc/passwd’, it will produce an output like this
to the Console:

root:x:0:0:root:/root/:/bin/bash

or on more recent LINUX-Systems that don’t use a ’root’-login anymore for security
reasons something more like this:

operator:x.11:0:operator:/root:/sbin/nologin

Try the last call of ’grep’ with your own login name if you like.

In general the ’grep’-command is used to search for specific word in a file or in a number
of files.

12.10 more

The ’more’-command displays the content of a file onto ’stdio’ (standard I/O) of the
Console on a page basis. In contrast to the ’cat’-command the Console is not scrolling
automatically when the output is larger than one single page. You can continue the output
of ’more’ by the ’Enter’- or by the ’Space’-key of the keyboard:

[~]> more .bashrc

will display the content of the file ’.bashrc’ to ’stdio’ on a page basis.

In general ’more’ is a paging program to display extensive text outputs to the Console
that provides some means of navigation.



12 CONSOLE COMMANDS (MOST WANTED) 33

12.11 less

The ’less’-command displays the content of a file onto ’stdio’ (standard I/O) of the Con-
sole on a page basis. In contrast to the ’cat’-command the Console is not scrolling auto-
matically when the output is more than one single page. You can continue the output of
’less’ by the ’Enter’- or by the ’Space’-key of the keyboard:

[~]> less .bashrc

will display the content of the file ’.bashrc’ to ’stdio’ on a page basis.

In general ’more’ is a paging program to display extensive text outputs to the Console
that provides some

12.12 tail

The ’tail’-command displays the last n-lines of a file. This can be very useful! Many files
and log-files are very long and their output by ’cat’ or ’more’ or ’less’ is cumbersome
because these commands always open the complete file. In particular logfiles are often
only interesting in their last few entries. Using ’tail’ you can limit the output to the few
interesting ’n’-lines at the end of the file. You can display the last 10 lines of the system
logfile for instance:

[~]> sudo tail -10 /var/log/messages

The command above will display you the last 10 entries of the KERNEL-log-file ’/var/log/
messages’. The KERNEL-log-file will grow with any new system call but only the last
entry is of most interest and tells you if the last system call was successful. You will need
here the command ’sudo’ also, because ordinary Users usually will not have any access
to the KERNEL-log-file of the system.

[~]> sudo tail -f /var/log/messages

You can instruct ’tail’ to give you a running update of the logfile ’/var/log/messages’.
Using the option ’-f’ tells ’tail’ to display only the last modified line of the logfile and
keep it updated with any new line coming in. This is ideal to follow the running changes
in a logfile.

12.13 touch

The ’touch’-command will update and modify the timetag of a files or generate an empty
file. This can be useful because some scripts test the occurrence of files or their last
update date. The call of:

[~]> touch gurk.txt

updates the timetag of the file ’gurk.txt’. If ’gurk.txt’ does not exist, the file will be gen-
erated anew without any content (file size zero).

The ’touch’-command just touches the file, it does not modify anything besides the time
tag.



12 CONSOLE COMMANDS (MOST WANTED) 34

Do you guys know what you’re

doing, or are you just

hacking?

12.14 mkdir

The ’mkdir’-command (’make directory’) will generate a new folder. For instance you
can put the Command-Prompt in your HOME-directory (just type in ’cd’ to the Console
will do the job) and generate there a new subdirectory named ’myfolder’:

[~]> mkdir myfolder

This will generate a directory with the name ’myfolder’ in your user-HOME-directory.
Considering you are User ’schanz’ this will produce the directory ’/home/schanz/myfolder’.

You also can generate a complete hierarchy of directories and subdirectories with one
single call of ’mkdir’ by using the option ’-p’:

[~]> mkdir -p folder1/folder2/folder3

Considering again that you are User ’schanz’ and you issue the command in the ’my-
folder’ directory that was generated at the command before, you will generate the follow-
ing hierarchy of directories: ’/home/schanz/myfolder/folder1/folder2/folder3’. If you is-
sue the command just in the HOME-directory instead it will generate the folders: ’/home/
schanz/folder1/folder2/folder3’. The position of the Command-Prompt determines where
the directory will be generated.

12.15 rmdir

The ’rmdir’-command (’remove directory’) will delete a directory from the Filesystem.
Considering you are in your HOME-directory and want to remove the directory ’my-
folder’, than you can call the command:

[~]> rmdir myfolder

You can also call the command with an absolute path in order to avoid any ambiguity.
This will work from any position of the Command-Prompt it will have in the Filesystem:

[~]> rmdir /home/schanz/myfolder

Instead of ’rmdir’ you can also call the command ’rm’. The directory must be empty in
order to remove it from the Filesystem. If you want to delete a directory including its
content you have to issue the ’rm’-command with the option ’-r’ (recursive):

[~]> rm -rf /home/schanz/myfolder

This will remove everything inside the folder ’/home/schanz/myfolder/’ and at the end
the folder ’myfolder’ itself.



12 CONSOLE COMMANDS (MOST WANTED) 35

12.16 find

Using the ’find’-command you can search the Filesystem of the computer for a articular
name. The command can be used in plenty of varieties. The normal ’find’-command will
be called as follows:

[~]> find <where> <mode> <what> <output>

’Where’ in the Filesystem will be searched, what kind of search ’mode’ will be per-
formed (by name, by timetag ..), ’what’ will be searched (what namestring) and where
will the ’output’ be directed to. A few examples:

find . -name gurk -print : searches inside and down below the current directory ’.’ the

Command-Prompt is pointing at. It will search a file with the

’name’ that is ’gurk’. The output will be directed to ’print’

that means into the Console (default).

The command will actually search the name ’gurk’ in the list

of filenames in the current directory and all its

subdirectories and give the result as a list to the Console.

find /usr -name gurk : will search in and below the directory ’/usr’ for the name

’gurk’

find /usr -name ’*gurk*’ : will search in and below the directory ’/usr’ for a string’

that contains the name ’gurk’ in some combination.

find . : will produce a list of all files and folders in the current

’.’ directory and all its subdirectories.

find . -type f : will only search for files and no directories. Will give a

list of filenames in and below the current directory.

find . -type d : will only search for folders and not for files. Will give a

list of dirnames in and below the current directory.

find . -type d -name a* : will find all directories that start with the letter ’a’

in and below the current directory.

find / -name "*.txt" -size +12000c : will find all files in and below ’/’ there name is

ending with ’.txt’ and they are bigger than 12000

Bytes.

find / -name core -exec rm -f ’{}’ \; : will find all files with the name ’core’ in and

below ’/’ (the complete Filesystem). The output

list will be send to the command ’rm’. This

means all files with the name ’core’ will be

searched and deleted in the complete Filesystem!

The way to combine the ’find’ command with other command and to use it is virtually
endless. There can be approximately 40 different search criteria applied to the ’find’
command. Please look up the Man-Page of ’find’ for further information.

If it’s not in the computer,

it doesn’t exist

12.17 ps

The ’ps’-command (’process status’) will display a list of processes currently started on
the Console:

[~]> ps



12 CONSOLE COMMANDS (MOST WANTED) 36

The list contains the Process-IDs (PID), the Terminal (TTY) from where the particular
process was started, the consumed CPU processing time (TIME) and the name of the
process (CMD):

PID TTY TIME CMD

5684 pts/4 00:00:00 bash

5709 pts/4 00:00:00 ps

If you call ’ps’ with the option ’-fe’:

[~]> ps -fe

you will get a list like already shown in chapter 7. The list contains all currently started
processes on the whole system.

12.18 kill

Using the ’kill’-command you can force a process to quit before its normal execution will
end. There are several priorities for ’kill’, see also the Man-Page of ’kill’: → ’man kill’:

kill <PID> : PID is the process number you want to kill. The PID you can find

by using the ’ps’-command. ’kill’ will ask the program to quit.

In this priority the program will be granted enough time for a

ordered shutdown and to flush out data to disk if necessary.

kill -9 <PID> : The priority ’-9’ will force the process to quit immediately.

There will be no time for the program to save data, data loss can

be the result! You normally will use this priority to kill a

software that has been crashed already, hence data loss will be

involved anyway.

The ’kill’-command is generally used to kill processes that have hang up or generate an
abnormal high amount of CPU load.

Computer programmers never

die, they just get lost in

the processing

12.19 chown

The ’chown’-command (’change owner’) will change the owner of a file or directory.

Each file and directory of the Filesystem has his ’owner’ which is normally one of the
Users of the system -> see also chapter 13 File-Permissions. The commands ’chown’,
’chgrp’ and ’chmod’ allows you to set and modify the Access-Flags that control the File-
Permissions to a particular file or directory. This determines who else on the computer
has the right to ’read’, ’write’ or ’execute’ the file or directory. For instance:

[~]> chown schanz gurk.txt

will change the ’owner’ of the file ’gurk.txt’ to the owner ’schanz’.



12 CONSOLE COMMANDS (MOST WANTED) 37

12.20 chgrp

The ’chgrp’-command (’change group’) will change the group a file or directory belongs
to.

Each file and directory of the Filesystem belongs to a specific ’group’ which may include
a number of users -> see also chapter 13 File-Permissions. The commands ’chown’,
’chgrp’ and ’chmod’ allows you to set and modify the Access-Flags that control the File-
Permissions to a particular file or directory. This determines who else on the computer
has the right to ’read’, ’write’ or ’execute’ the file or directory. For instance:

[~]> chgrp users gurk.txt

will change the ’group’ belongings of the file ’gurk.txt’ to the group ’users’.

12.21 chmod

The ’chmod’-command (’change mode’) will change the access mode of a file or di-
rectory. Each file and directory of the Filesystem is using a number of Access-Flags to
control the access by other Users of the system -> see also chapter 13 File-Permissions.
The flags determine who else on the computer has the right to ’read’, ’write’ or ’execute’
a file or directory. For instance:

[~]> chmod 744 gurk.txt

will change the flags for the access of the file ’gurk.txt’ to the new mode ’744’ -> see also
chapter 13 File-Permissions for more details.

12.22 uname

The ’uname’-command displays information about the release version of the LINUX
operating system:

[~]> uname -a

will produce a Console output like:

Linux atlas.local.de 4.8.13-100.fc23.x86_64 #1 SMP Fri Dec 9 14:51:40 UTC 2016 x86_64

x86_64 x86_64 GNU/Linux

This will tell you that the system has the computer name ’atlas’ with the domain ’lo-
cal.de’, the Kernel has the release number ’4.8.13-100’, is a ’Fedora 23’ operating sys-
tem for a ’x86’ CPU architecture that is ’64’ bit wide. The system will support ’SMP’
(symmetric multi processing) and was compiled on ’Fri Dec 9 14:51:40 UTC 2016’.

12.23 man

The ’man’-command will display the Man-Page for a specified command. Each com-
mand that is installed on the system has a user manual that describes how the command
will be operated and what options the command has to offer. It is useful to make yourself
acquainted with the commands on your system by reading this manuals. There are far
more commands and options on the system than this document here can present you!



12 CONSOLE COMMANDS (MOST WANTED) 38

[~]> man man

will produce the following output to the Console:

MAN(1) Manual pager utils MAN(1)

NAME

man - an interface to the on-line reference manuals

SYNOPSIS

man [-c|-w|-tZ] [-H[browser]] [-T[device]] [-X[dpi]] [-adhu7V] [-i|-I]

[-m system[,...]] [-L locale] [-p string] [-C file] [-M path] [-P

pager] [-r prompt] [-S list] [-e extension] [--warnings [warnings]]

[[section] page ...] ...

man -l [-7] [-tZ] [-H[browser]] [-T[device]] [-X[dpi]] [-p string] [-P

pager] [-r prompt] [--warnings[warnings]] file ...

man -k [apropos options] regexp ...

man -f [whatis options] page ...

DESCRIPTION

man is the system’s manual pager. Each page argument given to man is

normally the name of a program, utility or function. The manual page

associated with each of these arguments is then found and displayed. A

section, if provided, will direct man to look only in that section of

the manual. The Default action is to search in all of the available

.....

Using the option ’-k’ you can search among all Man-Pages on the system for a special
search string. This can be very useful when you don’t know exactly where a special topic
is discussed and what commands are involved. For instance if you want to know which
commands and Man-Pages are concerned with ’tapes’ on your system you can type in:

[~]> man -k tape

This will produce an output like below, containing all Man-Pages that have something to
do with the ’tape’ subject.

amanda-taperscan (7) - Amanda Taperscan Algorithms

amcheckdb (8) - check Amanda database for tape consistency

amfetchdump (8) - extract backup images from multiple Amanda tapes.

amflush (8) - flush Amanda backup files from holding disk to tape

amlabel (8) - label an Amanda tape

amrmtape (8) - remove a tape from the Amanda database

amtape (8) - Control Amanda changers

amtapetype (8) - generate a tapetype definition by testing the device directly

smbtar (1) - Shell script for backing up SMB/CIFS shares directly to UNIX tape

drives

st (4) - SCSI tape device

tapelist (5) - The list of Amanda volumes in use

tar (5) - format of tape archive files

We are drowning in

information but starved for

knowledge. - John Naisbitt,

Megatrends



12 CONSOLE COMMANDS (MOST WANTED) 39

12.24 df

The ’df’-command (’disk free’) will show you the current usage of the Filesystem and
how much space is still left on the diskdrive:

[~]> df

will show you an output like:

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda5 80431944 46051704 30294480 61% /

tmpfs 1009936 0 1009936 0% /lib/init/rw

udev 10240 884 9356 9% /dev

tmpfs 1009936 12 1009924 1% /dev/shm

/dev/sda3 198337 34907 153190 19% /boot

192.168.0.1:/mnt/dsk2/ 3845710848 3476797440 173562880 96% /mnt/dsk2

The list will show you the attached Filesystems, the currently amount of space that is al-
ready occupied and the space that is still free and also the corresponding hardware devices
and mount points. In the example shown above the ’root’ directory of the Filesystem is
stored on the device ’/dev/sda5’ and mounted to ’/’. Its usage is at 61%. The device
’/dev/sda3’ hosts the boot partition and the KERNEL with a usage of 19% and the mount
point ’/boot’. The last entry contains a network Filesystem that is mounted from another
computer (Server - 192.168.0.1) to the directory ’/mnt/dsk2’. It has a usage of 96%,
however the disk has a size of 3845710848 kByte that is approximately 4 TByte of disk
space. The network Filesystem is linked into the local Filesystem and can be accessed
exactly the same way as the Filesystems that are hosted on the local diskdrives.

12.25 top

The ’top’-command will give you a list of processes that have the highest CPU usage on
the system. When you type:

[~]> top

into the Console it will produce an output like:

top - 14:35:23 up 6:08, 5 users, load average: 0.12, 0.10, 0.18

Tasks: 223 total, 2 running, 221 sleeping, 0 stopped, 0 zombie

Cpu(s): 3.3 us, 0.8 sy, 0.0 ni, 95.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem : 1991500 total, 724244 free, 223524 used, 1043732 buff/cache

KiB Swap: 3905532 total, 3905532 free, 0 used. 1492352 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

2334 schanz 20 0 588020 57776 42100 S 2.3 2.9 0:02.27 konsole

2165 schanz 9 -11 454840 10632 9164 S 1.3 0.5 8:39.30 pulseaudio

1688 schanz 20 0 304372 24296 15488 S 0.7 1.2 4:29.11 Xorg

2370 schanz 20 0 55056 4216 3460 R 0.7 0.2 0:00.21 top

18120 schanz 20 0 587468 19064 15628 S 0.7 1.0 0:22.17 konsole

21 root 20 0 0 0 0 S 0.3 0.0 0:02.36 rcuos/1

8789 schanz 20 0 454800 2968 2864 S 0.3 0.1 0:01.74 sd_espeak

1 root 20 0 128256 4676 3360 S 0.0 0.2 0:04.40 systemd

2 root 20 0 0 0 0 S 0.0 0.0 0:00.01 kthreadd

3 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/0

5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H

7 root 20 0 0 0 0 S 0.0 0.0 0:05.64 rcu_sched

8 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_bh

9 root 20 0 0 0 0 S 0.0 0.0 0:04.15 rcuos/0

10 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcuob/0

11 root rt 0 0 0 0 S 0.0 0.0 0:00.04 migration/0

12 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 lru-add-drain

13 root rt 0 0 0 0 S 0.0 0.0 0:00.04 watchdog/0



12 CONSOLE COMMANDS (MOST WANTED) 40

From the list above you can learn that the current CPU usage of the system is at 0.12 (load
average: 0.12 : 12%), there are 223 processes launched on the system, two process are
running, 221 sleeping. The machine has 2 GByte of memory (1991500 total) from which
224 MByte (223524 used) are in use and 1.04 GByte allocated for cache. Approximately
700 MByte (724244) are still ’free’ for usage. So far the machine does not make any use
of swap memory (0 used). The list below gives you the momentary rank of processes in
terms of CPU load. The issues of ’top’ are only running snapshots of the system and will
change from second to second. For further information, see also the Man-Page of ’top’,
type ’man top’.

The goal of Computer Science

is to build something that

will last at least until

we’ve finished building it.

12.26 reboot

The ’reboot’-command is used to restart the computer from scratch. The command will
stop all running programs immediately, logout all Users and reboot the system. You
should never reboot a system if other Users are logged in to the system. The ’reboot’
command requires Super-User privileges and can not be launched by normal Users, how-
ever standalone systems like laptops are often configured to permit also normal Users to
’reboot’ the system. See also chapter 6 for further information.

12.27 shutdown

The ’shutdown’-command is used to shutdown the computer and switch off power. The
command will stop all running programs, logout all Users and shutdown and power off
the system. You should never shutdown a system if other Users are logged in to the sys-
tem. The ’shutdown’ command requires Super-User privileges and can not be launched
by normal Users, however standalone systems like laptops are often configured to permit
also normal Users to ’shutdown’ the system. See also chapter 6 for further information.

12.28 which

Using the ’which’-command you can find out the location of a command or an application
in the search PATH of the Commandline:

[~]> which reboot

will show you the location of the ’reboot’-command:

/usr/bin/reboot

The ’reboot’-command is located at ’/usr/bin’. You can find out from where a command
is executed. This can be important when you are using a local software version of a par-
ticular command that has the same name as the system installed command. Using ’which’
you can find out which of the installed versions is actually launched by the Commandline
of the Console.



12 CONSOLE COMMANDS (MOST WANTED) 41

12.29 ln

The ’ln’-command (’link’) is used to link different names to a file or directory. This
can be very useful if you want to offer a certain file or directory for different Users by
different names without producing several instances. For example: You are the Admin
of the system and want to offer news-magazines on your system to different Users. The
news-magazines are pdf-files in the directory ’/dsk2/magazines’. Using ’ln’ you can
offer the files to different Users in a very easy way, you just link the files into the Users
corresponding HOME-directories:

[~]> ln -s /dsk2/magazines /home/schanz/magazines

[~]> ln -s /dsk2/magazines /home/tenzer/magazines

This will map the folder ’magazines’ from ’/dsk2/magazines’ to ’/home/schanz/magazines’
and ’/home/tenzer/magazines’. The folders ’/home/schanz/magazines’ and ’/home/tenzer/
magazines’ are actually only pointers to ’/dsk2/magazines’. This linking avoids the dupli-
cations of the folder ’/dsk2/magazines’ and the files it is containing. When User ’schanz’
is calling the ’ls -l’ command in his HOME-directory the link to the ’magazines’ folder
is displayed as:

lrwxrwxr-x 1 root root 21 2014-09-07 19:22 magazines -> /dsk2/magazines

Simply by calling the command:

[~]> cd magazines

in his HOME-directory User ’schanz’ can change into the ’magazines’-folder and will
have immediate access to the magazine pdf-files. This will be identical for the User
’tenzer’ also. All the linked folders are giving access to the same files without wasting
disk space by multiple instances.

12.30 tar

The ’tar’-command (’tape archive reader’) will archive a number of files or directories
into one single archive. Originally ’tar’ was used to archive or disarchive files and di-
rectory via tapedrive onto a magnetic tape. Since magnetic tapes are obsolete for home
usage today, ’tar’ is nowadays used to archive great number of files and folders into one
single archive-file. This can be very useful for instance to encapsulate a number of files
that belong to a certain project into one single file (tar-archive) that can be used for stor-
age or for easy transportation. The tar-archive can further be compressed with the ’gzip’-
or ’bzip2’-command for efficient file transfer also. Tar-archives are very common under
LINUX as containers for file-projects, picture-collections, or for backup purposes. In
principle you can archive a complete Filesystem that contains some 10 thousand files and
folders into one single tar-archive-file. The complete Filesystem hierarchy will stay intact
inside the archive. After expanding the archive, the original hierarchy of files and folders
will be reproduced exactly and reinstalled again. The ’tar’-command is used to archive
and to disarchive tar-archive-files as well. Consider you want to archive your local ’tmp’-
directory in your user-HOME-directory you can call the command as follows:

[~]> tar cvf tmp.tar tmp



12 CONSOLE COMMANDS (MOST WANTED) 42

In this example the ’tmp’-directory including all its files and subfolders will be archived
into the single tar-archive-file ’tmp.tar’. The options ’cvf’ means ’create’, ’verbose’,
’file’. It will ’create’ an archive-’file’ (no tape) and display (’verbose’) all files and folders
that are archived on the Console during packing.

After archiving, you can easily put the tar-archive-file onto an USB-Stick or send it some-
where via email attachment. The receiver can disarchive (expand) the tar-archive-file
again simply by calling the ’tar’ command with a different options:

[~]> tar xvf tmp.tar

The option ’x’ means ’expand’. The command call above will expand the tar-archive-file
(’tmp.tar’) into the original folder ’tmp’ containing all files and subfolders in the original
hierarchy structure as it was before.

The question of whether

computers can think is just

like the question of whether

submarines can swim. -

Edsger W. Dijkstra

12.31 gzip

The ’gzip’-command can compress files of any kind, it is mostly used to compress and de-
compress tar-archive-files. The compression by ’gzip’ is without any loss and reversible,
it is just shrinking the filesize and spares a lot of diskspace. The ’gzip’-command is used
for compression and decompression as well, depending on the options you are using:

[~]> gzip -9 tmp.tar

In this case the file ’tmp.tar’ will be compresses into the file ’tmp.tar.gz’ which is often
also just named as ’tmp.tgz’. The file extension ’.tgz’ tells you that it is a compressed
tar-archive-file. The ’tmp.tgz’ file can be largely reduced in files size compared to the
original uncompressed file ’tmp.tar’. The amount of compression depends on the internal
setup of the file, in this case on the contents of the tar-archive.

The decompression of a compressed ’.gz’-file will be executed by calling the ’-d’ option
of the ’gzip’-command:

[~]> gzip -d tmp.tar.gz

This will decompress the file ’tmp.tar.gz’ into the original file ’tmp.tar’ again.



12 CONSOLE COMMANDS (MOST WANTED) 43

12.32 bzip2

The ’bzip2’-command can compress files of any kind, it is mostly used to compress
and decompress tar-archive-files. The compression by ’bzip2’ is without any loss and
reversible, it is just shrinking the filesize and spares a lot of diskspace. The ’bzip2’-
command is used for compression and decompression as well, depending on the options
you are using. The compression rate of ’bzip2’ is higher than that of the ’gzip’ compres-
sor:

[~]> bzip2 -9 tmp.tar

In this case the file ’tmp.tar’ will be compresses into the file ’tmp.tar.bz2’ which is often
also just named as ’tmp.tbz’. The file extension ’.tbz’ tells you that it is a compressed
tar-archive-file. The ’tmp.tbz’ file can be largely reduced in files size compared to the
original uncompressed file ’tmp.tar’. The amount of compression depends on the internal
setup of the file, in this case on the contents of the tar-archive.

The decompression of a compressed ’.bz2’-file will be executed by calling the ’-d’ option
of the ’bzip2’-command:

[~]> bzip2 -d tmp.tar.bz2

This will decompress the file ’tmp.tar.bz2’ into the original file ’tmp.tar’ again.

12.33 date

The ’date’-command is used to display or modify the current system time. If you have
Super-User permissions you can use ’date’ also to set the system time. If you call ’date’
you will get just an output like this:

Wed Aug 28 17:02:01 CEST 2019

You can also use the command ’cal’ that will plot you a small calendar into the Console.

12.34 who, w, finger

The ’who’-command will show you who else is working on the system. The command
gives you a list of all logged in users and tells you how (from where) these Users are
logged in to the system. The call of ’who -a’ will produce an output like:

system boot 2014-07-08 08:51

run-level 5 2014-07-08 08:51

LOGIN tty3 2014-07-08 08:51 1855 id=3

LOGIN tty2 2014-07-08 08:51 1853 id=2

LOGIN tty6 2014-07-08 08:51 1861 id=6

LOGIN tty4 2014-07-08 08:51 1857 id=4

LOGIN tty5 2014-07-08 08:51 1859 id=5

a107 - tty7 2014-07-08 08:52 old 2046 (:0)

a107 + pts/0 2014-07-09 17:22 old 8389 (:0.0)

root + pts/1 2014-09-09 10:35 . 5482 (triton.local.de)

schanz + pts/2 2014-09-09 10:37 . 5514 (phobos.local.de)

pts/3 2014-08-11 09:18 28188 id=ts/3 term=0 exit=0

pts/4 2014-08-12 11:20 3678 id=ts/4 term=0 exit=0



12 CONSOLE COMMANDS (MOST WANTED) 44

This list shows you the ’login-name’, the ’terminal emulation’, the ’time of login’ and
the ’location’ from where the User has logged in.

The command ’w’ and the command ’finger’ will produce comparable outputs.

12.35 sudo

The ’sudo’-command (’substitute user do’) allows you to launch commands or programs
with the identity of another User, considering you know the password of this other User.

If you don’t give a specific user name the command will give you Super-User privileges
temporary if you are listed in the ’sudo-configuration-file’ - ask your Admin. You will
acquire the other privileges only temporary for the single command you call by the ’sudo’.
Usually you call ’sudo’ together with the command you want to execute with Super-User
privileges like: ’sudo <command>’. For instance if you want to mount a disk drive this
could be done like:

[~]> sudo mount /dev/sdb1 /mnt/dsk3

The command above will mount a disk partition under the device name ’/dev/sdb1’ into
the directory ’/mnt/dsk3’ of the Filesystem.

As Super-User you can free specified Users from the password request when you add
them to the sudoers list under ’/etc/sudoers’. Be very careful to open Super-User per-
missions to normal Users, they may have a lack of experience or responsibility to use it
properly!

12.36 su

The ’su’-command (’substitute user’) will give you permanently the privileges of another
User or of the Super-User assuming you know the password of the particular User or the
Super-User. If you call the command ’su’ into the Commandline the Console becomes
permanently a Super-User-Console. Some recent LINUX distributions don’t allow this
mechanism anymore for security reasons, they only permit the call of commands with
Super-User privileges via the ’sudo’ mechanism. Of course you can modify any system
to allow the ’su’ again if you know how to do it.
Assuming you are User ’schanz’, you can become the User ’tenzer’ just by typing the
’su’ command into the Console like:

[~]> su - tenzer

The system will ask you the password of User ’tenzer’. If you type in the correct password
you will become the User ’tenzer’ permanently in the current running Console. Your
HOME-directory will change from ’/home/schanz’ to ’/home/tenzer’ and the resource
files of the User ’tenzer’ will be executed. You should be prepared that the User ’tenzer’
may have configured his account differently than you have configured your own account
(other Terminal, other Shell, other Editor ...). If you type the command ’exit’ you will
drop out and become yourself (User ’schanz’) again.



12 CONSOLE COMMANDS (MOST WANTED) 45

If you call the ’su’ command as ’su -’ without any user name you will acquire full Super-
User privileges and become the ’root’-User of the system. The system will request the
Super-User password! In this case your HOME-directory will change to ’/root’ and the
resource files hosted under ’/root’ will be executed. Be prepared that the ’root’-User may
have another Shell as the normal User and some things may work differently. As ’root’-
User you can read, write and execute any file on the system including private files of
any Users. Even if possible, the reading of private user files is an absolute NO GO. Its
considered a violation of trust and will never be executed by any responsible administrator
nor it will be tolerated at most companies or public organizations! You will getting in
great trouble if you do it!
You should only stay ’root’-User as long it is required. When you call the command
’exit’ in the Console you will drop out from ’root’-User and become your normal User
again.

The trouble with computers is

that they do what you tell

them, not what you want. -

D. Cohen

12.37 passwd

The ’passwd’-command allows you to change your password. The system will ask you
for your old password first and then for the new password. The system administrator
can setup constraints for passwords and an expiring date when the password will become
invalid.

12.38 env

The ’env’-command (’environment’) will display all Environment-Variables of your lo-
gin. When you call the ’env’-command in the Console it will give you a list like this:

MANPATH=/usr/man:/usr/contrib/X11R6/man:/usr/local/man:/net/usr/man:/opt/wabi/man:/opt

/man:/usr/share/man

SSH_AGENT_PID=1817

HOSTNAME=atlas.local.de

XANBIN=/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22

TERM=xterm-256color

SHELL=/bin/bash

HISTSIZE=500

PGPLOT_RGB=/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22/lib/rgb.txt

PGPLOT_FONT=/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22/lib/grfont.dat

HEADAS=/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22

WINDOWID=54525957

FTOOLS=/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22

LD_LIBRARY_PATH=/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22/lib

LHEASOFT=/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22

USERNAME=ts

PAGER=/bin/more

PATH=/opt/heasoft-6.22.1/x86_64-unknown-linux-gnu-libc2.22/bin:/home/ts/.dt/bin:/bin:/



12 CONSOLE COMMANDS (MOST WANTED) 46

usr/bin:/sbin:/usr/sbin:/usr/bin/X11:/usr/local/bin:/usr/local/bin/X11:/usr/contr

ib/bin:/usr/contrib/bin/X11:/opt/Xilinx/14.7/ISE_DS/ISE/bin/lin64:/usr/dt/bin:/op

t/fv5.4:/usr/local/bin

BROWSER_PATH=/bin/firefox

EDITOR=/bin/vi

LANG=C

....

Many settings of the user-account are controlled by Environment-Variables. You can
display the content of any Environment-Variable to the Console when you type in the
command ’echo $<environment-variable>’ to the Commandline.

There is is no reason for any

individual to have a computer

in their home. - Ken Olsen

(President of Digital

Equipment Corporation),

Convention of the World

Future Society, in Boston,

1977

12.39 ssh

The ’ssh’-command (’Secure-Shell’) allows you to login to a remote system that is at-
tached to your computer via network or via the Internet. This will only be successful
if the remote host has an ssh-daemon running and you have a valid user-account on the
remote system. Considering your login on the remote system is ’schanz’ and the name of
the remote system is ’demokrit’. Then you can launch an ’ssh’ session by typing:

[~]> ssh schanz@demokrit

The remote system, in this case ’demokrit’ will reply with a password request:

schanz@demokrit’s password:

At this point you have to type in your password you have on the remote system ’demokrit’
(not the local system). If the login is successful the remote system will reply something
like this:

Last login: Wed Mar 27 18:02:44 2013 from triton.local.de

demokrit:[~]>

Considering you are now logged in as User ’schanz’ on the remote system ’demokrit’.
You can use the remote system via Console the same way as you are using your local
system. Most of the commands are common to most LINUX systems, they will also run
on the remote system. This is however restricted to Console commands and applications.
If you want to start a software that may want produce a graphical output you must initiate
the ssh connection by using the option ’-X’ or ’-Y’ in the first place. For instance:

[~]> ssh -X schanz@demokrit



12 CONSOLE COMMANDS (MOST WANTED) 47

This will start an ’ssh’ session that directs any graphical output to the window-server of
your local system. The windows will open on your local computer, the program generat-
ing the windows is running on the remote computer.
You can end the ’ssh’ session just by typing ’logout’ or ’exit’ to the remote Console. Of
course you can also just close the remote Console window on your local computer.

If the name of the remote system is not known at your local system (e.g. ’demokrit’),
you can also use the IP-address (here 192.168.0.215) of the remote system to initiate the
’ssh’-session:

[~]> ssh -X schanz@192.168.0.215

If you login at your IAAT-account at the University of Tuebingen via ’ssh’, then you
should use the domain name ’astro.uni-tuebingen.de’. Considering you are User ’schanz’
this would look like this:

[~]> ssh -X schanz@astro.uni-tuebingen.de

the Secure-Shell (ssh) will initiate an encrypted connection to the remote host that is
considered secure for data interchange.

12.40 scp

The ’scp’-command (’Secure Copy’) works similar to the ’ssh’ command. The ’scp’
command allows you to copy files and other data from your local system to a remote
system or from a remote system to your local system. If you want to copy files from your
local system to the remote system you type something like:

[~]> scp /home/schanz/tmp/* schanz@demokrit:/home/schanz/

This would copy all data from your local directory ’/home/schanz/tmp/’ to the ’schanz’
HOME-directory on the remote system ’demokrit’. The remote system ’demokrit’ will
request the password of the User ’schanz’ on ’demokrit’.

schanz@demokrit’s password:

If you want not only copy files but also directories via the ’scp’-command, you must use
the ’-r’ option (recursive) of the ’scp’ command. During the copy the ’scp’-command
will keep the complete directory hierarchy of the copied directories intact, exactly like it
is on the local system.

[~]> scp -r /home/schanz/tmp/* schanz@demokrit:/home/schanz/

During copy ’scp’ will issue a running list of all files and directory that are copied. The
output may look somehow like this:

filesystem.fig 100% 6940 6.8KB/s 00:01

LINUX_FirstContact.aux 100% 2979 2.9KB/s 00:00

LINUX_Anleitung2014.log 100% 24KB 24.4KB/s 00:00

.....

If you want copy files from the remote system to the local system you initiate the ’scp’-
command like this:

[~]> scp -r schanz@demokrit:/home/schanz/tmp/* /home/schanz/

The command above copies all files and directories of the folder ’/home/schanz/tmp/’ of
the remote system to the local directory ’/home/schanz/’ on your local system, keeping
the folder structure intact.



13 FILE-PERMISSIONS 48

12.41 script

The ’script’-command can be very useful if you want a complete record of the commands
that you typed into the Console during your login session. ’Script’ will log everything
you type into the Console in the file ’typescript’ that is hosted in the directory where you
have launched the ’script’ command in the first place. Just type into the Console:

[~]> script

A process is started that will record everything you type to the Console into the file
’typescript’ until you press ’ctrl d’ on the keyboard and quit this recording. You can
open the file ’typescript’ in order to analyze your session in detail afterwards.

LINUX was not designed to

stop you from doing stupid

things, because that would

also stop you from doing

clever things. - Doug Gwyn

13 File-Permissions

The File-Permissions control the access to files and directories on your LINUX system.
There are three categories for which File-Permissions are defined for the files and direc-
tories of the Filesystem. These three categories are:

OWNER GROUP OTHER

The File-Permissions are controlled by ’Access-Flags’ and can be displayed by the com-
mand ’ls -l’ and manipulated by the commands 'chown', 'chgrp' and 'chmod'. The
command ’ls -al’ will produce an extended output like:

dr-xr-xr-x 2 root sys 1024 Nov 17 14:02 bin

dr-xr-xr-x 7 root sys 1024 Nov 28 23:12 config

-rwxr-xr-- 1 schanz users 400 Dec 12 00:10 gurk

| | | | | | | |

| rights links owner group Bytes date name

| Access

| Flags

|

Typ: d = directory; l = link; b/c = devices

Every file and directory of the system has an ’owner’ and belongs to a ’group’. The
Access-Flags control the access to the files and directories by the ’owner’, by ’group’
members or by ’others’ that means anybody else on the system.

d r w x r w x r w x <- Access-Flags

| | | |

Typ owner group others (rest)



13 FILE-PERMISSIONS 49

The letters refer to: ’r’ (readable), ’w’ (writeable) and ’x’ (executable). Using the flags
’rwx’ you can specify for each of the three categories owner/group/others the rights you
want to grant for the particular file or directory. For instance:

- rwx r-x r-- 1 schanz users 400 Dec 12 00:10 gurk

This would mean for the File-Permissions to the file ’gurk’ for instance:

owner: r w x : the owner of the file, User ’schanz’, can read, write and execute

the file

group: r - x : members of the group ’Users’ can read and execute the file, but can

not write the file, means they can not delete it also!

others:r - - : all others can read the file but have no permission to write nor to

execute the file.

The Access-Flags can be modified by the command 'chmod'. The numerical argument of
the ’chmod’-command encodes the new settings of the Access-Flags. The command:

[~]> chmod 744 gurk

will change the status of the Access-Flags of the file ’gurk’ into:

- rwx r-- r-- 1 schanz users 400 Dec 12 00:10 gurk

Why is that so? Why does the value ’744’ modify the Access-Flags into ’rwxr--r--’?

The numbers in the argument of the ’chmod’-command (here ’744’) are treated as hex-
number and translated into a binary number representation. In this case the hexnumber
’744’ is converted into ’111 100 100’. This bitcode is combined with the Access-Flag-
patter ’rwx rwx rwx’ and multiplied on a bit basis into the resulting Access-Flag-pattern
’rwx r– r–’. Some examples:

hexadecimal : binary : Access-Flags

0 : 000 : ---

4 : 100 : r--

5 : 101 : r-x

6 : 110 : rw-

7 : 111 : rwx

Launch a Console and change the Command-Prompt into the directory ’/home’:

[~]> cd /home

Call the command ’ls -l’, you will see something like this:

total 32

drwx------ 51 a107 users 4096 Aug 29 11:09 a107

drwx------ 33 cde users 4096 Jul 9 17:09 cde

drwx------. 25 tenzer users 4096 May 2 18:28 tenzer

drwxrwx--- 2 prakt ait 4096 Aug 12 2010 prakt

drwxr-xr-x 2 root root 4096 Aug 30 2012 printer

drwxr-xr-- 25 schanz users 12288 Jun 26 19:22 schanz



13 FILE-PERMISSIONS 50

You see the user-HOME-directories (the accounts) on your system. Most of the Users
in this example belong to the Group ’users’. Like usual the Access-Flags of most Users
(a107, cde, tenzer) is set to hexadecimal ’700’. This is the default and means it is ’rwx
— —’. Only the User himself has access (read, write, execute) to his corresponding
HOME-directory! For all Users of the Group ’users’ and for all ’others’ Users the File-
Permissions to the HOME-directories of these User is limited to (-, -, -), hence they have
no access at all!

However, User ’schanz’ has changed his Access-Flags into ’754’. This means, he self
has the File-Permissions (read, write, execute), all members of the Group ’users’, where
he belongs to, will have the File-Permissions (read, -, execute) and all Others users on
the system have the File-Permissions (read, -, -) to the HOME-directory of User ’schanz’.
Therefore all Users on the system that belong to the Group ’users’ can access the HOME-
directory of ’schanz’ for reading and executing files but not for writing or deleting files.
Users outside the Group ’users’, all Others, can still access the HOME-directory of
’schanz’ for reading files, but they can neither execute a file from there nor they can write
or delete one. The modification of the Access-Flags for files and directories, explicitly
for the HOME-directory can be only changes by the User himself. You can isolate your
HOME-directory completely or grant limited access for other Users to certain files.

Never make anything simple

and efficient when a way can

be found to make it complex

and wonderful

As you can see there is also a user ’printer’ in the example. The ’Owner’ of ’printer’ is the
’root’-User (Super-User) and ’printer’ belongs to the Group ’root’. The Super-User has
File-Permissions to ’read’, ’write’ and ’execute’ files in the HOME-directory of ’printer’,
members of the Group ’root’ can still ’read’ and ’execute’ files in the HOME-directory
of ’printer’, same as all Other users on the system that do not belong to the Group ’root’.
That is the meaning of the Access-Flags ’755’ (rwx r-x r-x) set for the HOME-directory
of ’printer’.

The Access-Flags of LINUX grant every User on the system exactly the amount of pri-
vacy that he wants to have. You can isolate your data completely from any other User,
grant some Users of special groups some limited access or even open your account to
everybody and everything else on the system completely. The last however would not
be recommendable, considering that opening your account completely to others would
also mean that everybody else on the system can delete your data. Make sure you be
aware what levels of access you grant to other people and how the Access-Flags for your
account are set.



14 TERMINALS 51

14 Terminals

The Console provides a Commandline Interface to control and program your computer.
In the early days of UNIX, computers didn’t have graphical displays nor a Desktop, they
were completely operated via Console. These Console was usually a Terminal that was
attached to one of the serial ports of the computer like shown in Figure 15. A Terminal is
an electronic device capable to communicate with the computer on a serial cable. It has
no own processing unit, mass memory or disk drives but provides a display for written
output and a keyboard to type in commands. The Users were usually connected via
Terminal to the computer, directly or via a network. Using the Terminal the Users could
access all computer functions by command, writing and executing programs, writing or
receiving emails, etc, short, everything that did not require a pixel based high resolution
graphical output. The Terminal was the only interface to the computer. Today, many
servers, mainframes and super-computers that have no need for graphics still work on
that basis.

Figure 15: A Terminal of the Hewlett-Packard Company. Such Terminals were used to communicate

to a host computer. The display shows the output of the ’top’-command on the Console, launched by

User ’schanz’ on the system ’regulus’.

When it comes to the Console, LINUX is still using Terminals today! These Terminals are
no longer electronic devices connected to the serial port of the computer but emulations
that run on the Console or in a matter provide the Console. Of course there were different



14 TERMINALS 52

Terminals in the past. Every big company tried to make their own Terminals the new
computer industries standard. Most of this different Terminal types survived until today
as Terminal-emulations added also by a few generic Terminals that had never a physical
hardware counterpart. Different LINUX distributions may advertise different Terminals,
fortunately most Terminals are very similar to each other. As a LINUX User you don’t
need to bother very much about it. Figure 16 shows such a Terminal emulation running
the ’top’-command on a LINUX system.

Nevertheless here is a short list of some popular Terminal emulations on LINUX:

(1) konsole (default at KDE)

(2) xterm (x11 default)

(3) gnome-terminal (default at GNOME)

(4) rxvt

(5) dtterm (default at CDE)

(6) hpterm (only HP-UX systems)

(7) aterm

Figure 16: A Terminal emulation of an HP-Terminal running the ’top’-command for User ’schanz’

on a the system ’regulus’. If you compare the Picture to Figure 15, you will recognize the similarity
of the emulation to the original hardware Terminal.



15 THE SHELL 53

If it happens once, it’s a

bug. If it happens twice,

it’s a feature. If it

happens more than twice, it’s

a design philosophy

15 The Shell

The Shell provides a kind of programming language and the command interpreter that
runs on the Terminal. There are of course more than one Shell interpreters available on
LINUX, one for every taste and every programming language. Why one Shell if you can
have seven? The most common Shells under LINUX are:

(1) sh /bin/sh Bourne-Shell classical LINUX/UNIX-Shell

(2) bash /bin/bash Bourne again Shell improved bourne ’sh’, most common Shell on LINUX

(3) csh /bin/csh C-Shell a Shell that uses C language syntax

(4) tcsh /bin/tcsh Tenex C-Shell improved C-Shell

(5) ksh /bin/ksh Korn-Shell very popular among administrators

(6) zsh /bin/zsh Z-Shell very much like ’ksh’, powerful

(7) xonsh /bin/xonsh Python-Shell a Shell that uses Python language syntax

Each of these Shells has its own resource files that are stored in the HOME-Directory of
the User and commonly starts with a ’.’: '.bashrc' for the 'bash' or '.csh' for the 'csh' etc. In
the resource files you can define the behaviour of the Shell, Environment-Variables like
$PATH and command aliases for instance.

Cutout of the '.bashrc', the resource file of the ’bash’-Shell:

############ bashrc ##########

# Set up finder

function findx ()

{ grep < /.log/findDB $* | more;

}

# Set up pager

PAGER=/bin/more

export PAGER

# include dot in search path, but not for root !

# Set up the search paths:

PATH=$HOME/.dt/bin:/bin:/usr/bin:/sbin:/usr/sbin:/usr/bin/X11:/usr/local/bin:/us

r/local/bin/X11:/usr/contrib/bin:/usr/contrib/bin/X11:/usr/dt/bin:$PATH

export PATH

PATH=$HOME/.dt/bin:$PATH

export PATH

# Set up the Manpath:



15 THE SHELL 54

MANPATH=/usr/man:/usr/local/man:/net/usr/man:$MANPATH

export MANPATH

# Set prompt:

if [ -O /etc/passwd ]; then

export PS1="\$system:\[\W] # "

else

export PS1="\h:[\W] > "

fi

# Aliase

alias ll=’ls -l’

alias cls=clear

alias h=history

alias md=mkdir

alias rd=rmdir

alias dir=ls

alias copy=cp

alias m=more

alias del=rm

alias da=’ls -al | more’

alias rename=mv

alias et=$HOME/.dt/bin/defedit

stty erase "^H" kill "^U" intr "^C" eof "^D" susp "^Z" hupcl ixon ixoff tostop

EDITOR=/usr/bin/vi

export EDITOR

BROWSER_PATH=/usr/local/bin/firefox

export BROWSER_PATH

Most Shells maintain a list of the last inputted commands in a so called 'history'. When
you type in the command ’history’ (if you are using the 'bash') it will show you the list
of the last 500 commands. You can look up the call of earlier commands and just recall
them by the ’arrow’-keys (up and down) on the keyboard or by calling the appropriate
history number. Most Shells also use command completion. Just type the first few letters
of a command and then press the 'tab'-key of the keyboard. The Shell will try to guess
which command you meant to have next and makes suggestions if there is more than
one possible command choice available. This function is very useful for the daily use of
the Commandline, it speeds up Commandline interactions tremendously. The following
gives you an example about how such a history list can look like:

: :

492 man man

493 uname -a

494 ps

495 man ps

496 su -

497 ls -al

498 ssh root@rigelD

499 grep root /etc/passwd

500 vi .bashrc

501 history

Most LINUX commands will send their output to „stdio“ (Standard I/O), that means
directly into the Console. This can be problematic if the output of a command is very
extensive because the Terminal will start to scroll and its hard to follow.



16 PIPES 55

Therefore you can directing the output of any command directly into a file. This file you
can open by an Editor later for further analysis. In order to direct the ’stdio’ output of a
command into a file, you just add the '>' sign together with a filename for the logfile to
the command call:

[~]> history > mylogfile.log

This will direct the output of the command (in this case ’history’ – 500 lines ) into the log-
file 'mylogfile.log' which will be newly generated for this purpose. You can search further
for a special string in this ’mylogfile.log’ by using the ’grep’-command for instance:

[~]> grep jpg mylogfile.log

Using the ’logfile’ mechanism above, every new call of the command will generate the
’mylogfile.log’ anew, the former ’mylogfile.log’ will be overwritten. If you want to add
the output of a particular command to a logfile without overwriting its content, you can
make the command call by using the '>>' sign instead.

[~]> history >> mylogfile.log

This will add the output of ’stdio’ of the command (’history’ in this case) just at the end
of the already existing logfile ’mylogfile.log’ without overwriting the old part. You can
concatenate the command output of several ’stdio’ outputs into one single logfile.

Any sufficiently advanced bug

is indistinguishable from a

feature. - Rich Kulawiec

16 Pipes

Pipes '|' can connect the output of one command to the input of another. This is a clever
way to construct pipelines. The classical way would be to write a script that calls several
commands one after another and connect the output and inputs of these commands via
temporary files or variables. Pipes instead are a much more elegant way to connect and
combine commands with each other.

Considering you want to know how many pictures of the filetype 'jpg' in your HOME-
directory are? So lets go to your HOME-directory first, type:

[~]> cd

Using the ’ls’-command you can display the files in your HOME-directory, but probably
there are no pictures on the ’root’-level of your HOME-directory. Maybe there are some
’jpg’-pictures in one of the subdirectories or in one of the hidden directories (those which
start with a ’.’). You could use the ’find’ command to search all subdirectories below your
HOME-directory. Try:

[~]> find .

This will give you a long list of all files below your HOME-directory, not only the picture-
files of the ’jpg’-type. To filter out only the ’jpg’-files you could use the ’grep’-command
and connect it by using a PIPE with the output of the ’find .’ command, try:



16 PIPES 56

[~]> find . | grep .jpg

The ’grep .jpg’-command will filter out only the lines that contain the ’.jpg’ string and
display them. If you want, you can sort the output of this commands alphabetically with
the ’sort’ command. Just add the ’sort’-command by using another PIPE, try:

[~]> find . | grep .jpg | sort

This will give you a sorted list of the files below your HOME-directory that contain the
string ’.jpg’. You can direct this list into a file if you want it for later:

[~]> find . | grep .jpg | sort > my_sorted_jpg_list.log

If you want to know how many files of the type ’.jpg’ are there, you can let it count by
the ’wc’ (word count) command. Just add the ’wc’-command by using another PIPE, try:

[~]> find . | grep .jpg | sort | wc -l

The output of this pipeline will give you only one single number, the number of ’jpg’-
files below your HOME-directory. You want to know how many ’.jpg’-files are in the
complete Filesystem of your computer? No problem, type:

[~]> find / | grep .jpg | sort | wc -l

Here we have replaced the ’find .’-command by ’find /’. The command ’find /’ will search
everything below the ’root’-level directory ’/’ instead. You will see a lot of ’Permission
denied’ if you try this, because as a normal User you will not have permissions to look
into most of the directories of the system. Hence the call will only count ’.jpg’-files that
can be seen by normal Users! It will also run quite a while, because its scanning the
complete Filesystem. Doing it on my file server I found the number: 211096

You can use the PIPE mechanism also to direct the command output to a paging pro-
gram. Considering the ’history’-command from above again. The output of ’history’ is
quite extensive and makes the Terminal scrolling away. You can direct the output of the
’history’-command very easily by using the PIPE mechanism into a paging program like
’more’ or ’less’. Try:

[~]> history | less

The PIPE will direct the output into the paging program ’less’ where you can scroll the
list by the cursor keys of the keyboard. You can also try the pager program ’more’ instead:

[~]> history | more

You should always use a paging program and the PIPE mechanism when the output of
a command is extensive. Usually even the call of the command ’ls -al’ in your own
HOME-directory will produce more output than the Terminal can display at once. Try;

[~]> ls -al | less



17 EDITORS 57

Using pipelining you can produce very powerful system command functions just by com-
bining the various commands that come with your LINUX distribution just for free. To-
gether with PIPE the commands of the operating system build a kind of construction set
that can produce amazingly outputs!

I think there’s a world

market for about five

computers. - attr. Thomas

J. Watson (Chairman of the

Board, IBM), 1943

17 Editors

Whats an Editor?

An Editor is a software that allows you to open and manipulate the content of any file on
your computer. The kind of Editor you will need most is the Texteditor. The Texteditor
can open ’readable’ text files of any kind. The LINUX-files are usually divided in ’read-
able’ files that contain ASCII signs, and ’unreadable’ files that contain binary code for
machine execution. The terms ’readable’ and ’unreadable’ just refers here to the use with
Texteditors. Files that can be read by Texteditors are usually plain text-files, readme-
files, log-files, configuration-files and so on. Machine coded files that are unreadable by
Texteditors are usually program-executables, function-libraries, image-files, sound-files,
compressed-document-files and so on.

The most common use for Texteditors on a LINUX system is the setup of configuration-
files. Most global configuration files of the system are located in the ’/etc’-directory,
the User dependent configuration files however usually are hosted in the user-HOME-
directory of the User, commonly they start with a ’.’ in the filename. You can look up
many of this local configuration files when you go to your user-HOME-directory (’cd’)
and type in the command ’ls -a’ or ’ls -al | less’. Most files that you can see starting with
a ’.’ will be used for configuration. In order to open or modify these configurations, you
need some Texteditor.

Some most common Editors under the LINUX system are:

(1) ’vi’ : very simplistic and powerful Editor for system administration,

it is often considered cryptic and complicated by beginners. A

Console based Editor for professionals.

(2) ’emacs’ : can run on the Console as well as in a window based mode, very

extended functionality, very common among software developers.

(3) ’nedit’ : simple window based (graphical) Editor, easy to use also for

inexperienced users.

(4) ’gedit’ : The GNOME Editor, window based graphical Editor, easy to use.

(5) ’kate’ : very powerful graphical Editor, slow and big.



17 EDITORS 58

(6) ’dtpad’ : simple graphical Editor, available only on CDE systems

(7) ’pico’ : simple Console based Editor

You should prefer an Editor that can also run in a Console mode. Suppose you want edit-
ing a file on a system that does not support any graphical output like embedded systems,
routers, micro controllers, the Raspberry-Pi or you have a secure shell connection to a
remote system without graphics or you just have a damaged system after a crash that can
not start graphics temporarily. You will still be able of editing files and repair the system
using a Console based Editor, a graphical Editor will not be of any use in such circum-
stances! Figure 18 shows a screenshot of four running Editors on the ’LXDE’-Desktop:
’emacs’, ’vi’, ’pico’ and ’kate’.

Figure 17: Screenshot of some running LINUX Editors. Upper left: ’Emacs’, upper right: ’vi’, lower

left: ’pico’, lower right: ’kate’. The ’copy’ and ’paste’ via the Clipboard is just done by marking the
textfield you want to copy via the left mouse button (here seen in the emacs window -> gray) and

drop it at the position you want to paste it via the middle mouse button (here in the kate window).

In order to open a file, lets say the config file of the Bourne-Shell ’.bashrc’ in your
HOME-directory, you just call the name of the Editor together with the file you want
to open, try it!



18 THE CLIPBOARD 59

[~]> gedit .bashrc

I’ve finally learned what

"upward compatible" means.

It means we get to keep all

our old mistakes. - Dennie

van Tassel

18 The Clipboard

The ’Clipboard’ mechanism allows you to ’copy’ and ’paste’ textfields from one appli-
cation into another just by marking them with the mouse of the computer. The Clipboard
of LINUX works different than you may know it from Microsoft WINDOWS. In LINUX
you can ’copy’ a textfield from the Console or from a document you have opened via
Editor just by framing it with the left mouse button. For ’paste’ you point the mouse to
the receiving window and press the middle mouse button in order to drop the textfield.
The Microsoft WINDOWS based ’copy’ and ’paste’ mechanism using ’ctrl c’, ’ctrl v’
will not work on most LINUX applications! In contrary, ’ctrl c’ is usually used to stop
an application, try ’ctrl c’ on a running command. For instance you can start the ’emacs’
Texteditor from the Console, just type:

[~]> emacs

If you click now into the Console and press ’ctrl c’ on the keyboard, the Emacs Editor
will be stopped immediately again, ’ctrl c’ stops the execution of the Child process on
the Console. If you press ’ctrl d’ you will quit the Console as well! There are some
exceptions like OpenOffice which where originally developed for WINDOWS that can
also use ’ctrl -c’ ’ctrl -v’ for the Clipboard like it is common on WINDOWS systems.

19 Applications

The mechanism for the installation of software depends on your LINUX distribution.
Currently there are two major LINUX branches that dominate the LINUX market. These
two branches are ’Debian’ and ’Fedora’ and they use different software for package man-
agement and installation. The Debian systems are using the Commandline based 'dpkg'
Package-Manager and the 'apt' installation software. As a graphical installation software
’synaptic’ is used. In contrast, the Fedora based systems have the 'rpm' Package-Manager
and the 'dnf' Commandline installation software. As graphical interface, the software
’yumex-dnf’ is used. Older Fedora based systems still use 'yum' as Commandline in-
staller instead of 'dnf', and ’yumex’ as graphical interface instead of ’yumex-dnf’. The
graphical interfaces are very easy to use because they present you a complete list of the



19 APPLICATIONS 60

available software from various repositories in the internet. You can install new and ad-
ditional software just by clicking with the mouse on it. Console based installers like ’apt’
and ’dnf’ are a bit more difficult to handle but more powerful also. For further informa-
tion, please consult the Man-Page, type ’man dnf’ or ’man apt’. I personally recommend
you to install a graphical Package-Manager software like ’synaptic’ or ’yumex-dnf’ on
your system!

Figure 18: The YUMEX graphically installation software offers a simple interface to software repos-

itories and all the available software that can still be installed on your Fedora (rpm) based LINUX

system.

On a Debian based system just type ’apt-get install synaptic’ to the Commandline of the
Console and the ’synaptic’ software will be downloaded and installed automatically. If
you need ’root’-User privileges, type: ’sudo apt-get install synaptic’.

If you are using a Fedora based system you type ’dnf install yumex-dnf’ instead to down-
load and install the ’yumex-dnf’ graphical package management software automatically.
If you need ’root’-User privileges, type: ’sudo dnf install yumex-dnf’.

WARNING!

The installation of software usually affects and concerns all Users of a system, therefore
it requires Super-User privileges! Normal Users are not allowed to install software to the
system or remove software from the system by using the package management system.
If you need a special software that is not installed on the system or a software upgrade →
ask your Admin to install it!



20 ADMINISTRATION 61

In a limited way Users can also install and run additional software into their own HOME-
directories. In general this is not supported by the Package-Manager but can be done
manually by the User if he knows how to do it (→ configure → make → make install).
Larger software installations however will most probably not fit in the user space and will
require a global installation.

If builders built buildings

the way programmers wrote

programs, then the first

woodpecker to come along

would destroy civilization

20 Administration

The administration of the LINUX system is certainly beyond the scope of this manual.
Unfortunately there is still no common graphical administration software for LINUX
so far. Most LINUX distribution cook their own solutions in order to configure and
administrate the system. Many distributions have no graphical admin tools at all and rely
on the Commandline skills of their Users and Admins. Under the terms of administration
are the following tasks:

(1) setup and deleting of user accounts
(2) diskdrive management, installation, formatting, mounting, Logical Volume man-

agement
(3) network configuration
(4) system backup
(5) installation and configuration of new hardware
(6) language and keyboard setup
(7) system time and date setup
(8) firewall configurations
(9) printer configuration and the management of printer-queues
(10) configuration of the graphical system and the display resolution
(11) configuration of services (cron/automounter/cups/nfs/samba/sshd etc ...)
(12) configuration of daemons and servers
(13) installation and upgrade of software

etc....

In general you can always admin a LINUX system completely over the Commandline
of the Console. Most of the configuration will be done by config files that are hosted
somewhere below the ’/etc’-directory of the system. In many cases however these tasks
require expert knowledge. I recommend to consult an user or admin forum in the internet
that is related to your particular LINUX distribution. Be careful not to exercise instruc-
tions that do not exactly match your LINUX release or distribution. The administration
of LINUX can vary a lot between different versions and distributions!



20 ADMINISTRATION 62

On Fedora based distributions there exists a number of small graphical admin tools for
many purposes. These tools all start with the word 'system-...'. You can type 'system' on
the Console and then press the 'tab'-key of the keyboard. The command completion will
show you a list of commands that start with the word ’system’:

system-config-boot

system-config-users

system-config-firewall

system-config-network

system-config-services

...

Using this tools even a beginner can admin many aspects of the Fedora-LINUX system.

The probably best and most complete admin tool among LINUX systems is the 'yast' soft-
ware of the SUSE-Distribution (Fedora based). Yast provides a detailed Administration-
Manager where you can admin nearly every function of the system via mouse by a graph-
ical user interface, see also Figure 19. Such a complete admin environment you normally
find only among commercial UNIX operating systems like IBMs AIX ('smit') or HP-UX
by Hewlett-Packard ('sam').

Figure 19: Screenshot of the YAST system Administration-Manager on SUSE-Linux (OpenSUSE).

YAST gives a good example how system administration can be simplified on a graphical interface.

On any other LINUX distribution besides SUSE, you can still admin the system by using
the graphical admin tools that are provided by certain Desktop-Managers like KDE or
GNOME. These Desktop-Managers usually integrate a lot of admin functions directly in
their graphical setup. The ’Settings’-Manager of GNOME or ’system settings’ of KDE



21 INSTALLATION 63

will provide graphical tools for most administration tasks you usually have to do on a
LINUX system and they are independent of the particular LINUX distribution.

There are never any bugs you

haven’t found yet

21 Installation

Finally some hints for the LINUX initial system installation. Normally LINUX today
comes on a live-CD/DVD where you can boot a LINUX from the CD/DVD and than
decide if you want continue with a fully LINUX installation. Most of the files will then
be installed from a repository in the internet. If you install LINUX yourself, make sure
that you also install the development packages for your distribution! This will allow you
later to compile and install additional software or to modify and rebuild the KERNEL for
special purposes. Especially for people working in science or in software development,
a working compiler is a mandatory requirement on the system! You can check if the
development package is installed just by typing:

[~]> gcc -v

to the Commandline of the Console. If your system responds with a ’Command not
found’ than you should install the development packages for your distribution. You
should also make sure you have OpenGL support for the graphical window system. Many
recent programs have extended visualization properties which you cant use properly with-
out OpenGL drivers. If applications like ’GOOGLE EARTH’ or ’STELLARIUM’ are
very slow you most probably are missing the correct drivers for your graphics system.
You can try to find and install the proper drivers from a repository for your system as
discussed in the chapter 20.

If you install LINUX the first time, maybe for curiosity reasons, you should consider to
do it on a separate computer and not on your main working computer with all your emails
and the layout for the new hospital you have worked on for the past 6 month. Of course
it is possible to install LINUX along with WINDOWS on the same system, making it a
dual boot system. The best way to investigate LINUX is to use an old computer that you
don’t need for anything else anymore and install LINUX there. You will find out that
most LINUX distributions run much faster and take less resources than most commercial
operating systems. Hence a LINUX installation can often still run well also on an older
computer. If you are new in LINUX be prepared to kill the system by accident, that’s
pretty normal at the beginning! When you have Super-User privileges and delete the
KERNEL by chance, the system will never booting up again ever. Its better you create a
desktop computer lab in your own office to investigate the LINUX Universe in safety!



21 INSTALLATION 64

This document was fully created on a LINUX system (Fedora 23)! The software involved
was:

(1) the ’vi’ Editor

(2) ’texlive’ the LaTeX document preparation system

(3) ’xlatex’ LaTeX control interface

(4) ’xfig’ vector graphics design software

(5) ’gimp’ gnu image processing software

(6) ’xv’ image processing software

(7) ’convert’ Commandline image converting software

(8) ’ispell’ syntax and spell checker software

(9) ’firefox’ internet browser

The program isn’t debugged

until the last user is dead

(p) 2019


	Preamble
	Introduction
	Operating Systems
	Login
	The User-Interface
	The Desktop
	The Console

	System-Shutdown 
	Processes 
	The Filesystem setup
	The HOME-directory
	Execution PATH
	LINUX Configuration
	Console commands (most wanted)
	 ls
	 pwd
	 cd
	 cp
	 mv
	 rm
	 echo
	 cat
	 grep
	 more
	 less
	 tail
	 touch
	 mkdir
	 rmdir
	 find
	 ps
	 kill
	 chown
	 chgrp
	 chmod
	 uname
	 man
	 df
	 top
	 reboot
	 shutdown
	 which
	 ln
	 tar
	 gzip
	 bzip2
	 date
	 who, w, finger
	 sudo
	 su
	 passwd
	 env
	 ssh
	 scp
	 script

	File-Permissions 
	Terminals 
	The Shell 
	Pipes
	Editors
	The Clipboard
	Applications
	Administration 
	Installation

