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Abstract

In the automotive industry, the compilation and maintenance of correct product configuration data is a complex task.
Our work shows how formal methods can be applied to the validation of such business critical data. Our consistency
support tool BIS works on an existing database of Boolean constraints expressing valid configurations and their
transformation into manufacturable products. Using a specially modified satisfiability checker with an explanation
component, BIS can detect inconsistencies in the constraints set and thus help increase the quality of the product data.
BIS also supports manufacturing decisions by calculating the implications of product or production environment
changes on the set of required parts. In this paper, we give a comprehensive account of BIS: the formalization of the
business processes underlying its construction, the modifications of satisfiability-checking technology we found nec-
essary in this context, and the software technology used to package the product as a client—server information system.
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1. INTRODUCTION stages in the production chain, like sales, engineering, as-

) ) . . sembly, or maintenance. The requirements on the PDM sys-
Product configuration plays a key role in markets for highly (o, may differ greatly from one stage to the othfright

pomplex products such as in__the auto_r_notive or computeg; al., 1993; Timmermans, 199However, the majority of
industry(McDermott, 1982; Ginter & Kihn, 1999These ., mmercially available configuration tools concentrate on

industries manage to deliver personalized products with th@, o s5jes aspect, as the survey of Sabin and Weigel indicates

price advantages of mass production by allowing C“Stom(Sabin & Weigel, 1998

ization within standardized high-volume product lines. In this paper, we focus on the configuration requirements
Especially in Europe, car buyers prefer built to orderfqm the engineering and manufacturing departments, which

products created by customizing each vehicle from a very,.q gimjjar in the sense that the product has to be consid-

large set of configuration options. For example, the Mer-g a4 not merely in functionakales categories, but down

cedps C-class of passenger cars allows more than ,1’099 the level of parts assembly. Especially in the automotive
options, and an average of more than 30,000 cars will bg,qstry, where, as in our case, an individual vehicle can

manufactured before an order is repeated identically. Heavy,sist of up to 15,000 parts, this rules out the use of con-
commercial trucks are even more individualized, and every,antional sales cohfigurators,. Haétp98 introduced the
truck configuration is built only a very few times on average. ,tions of high-level and low-level configuration, where

Electronic product data managemeRDM) systems are e |ow level is characterized by noninteractive, procedural

therefore employed to maintain all knowledge about conyocessing. In this sense we address low-level configura-
figuration options within a product line. The need for con- ion here.

figuration(or use of configuration datanay occur at several DaimlerChrysler AG employs the mainframe-based PDM

systemDiaLoG to manage all possible configurations of the
Reprint requests to: Carsten Sinz, WS, Sand 13, 72076 TubingerVi€TCedes lines of passenger cars and commercial vehicles.
Germany. E-mail: sinz@informatik.uni-tuebingen.de DiaLoG maintains a database of sales options and parts
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together with a set of logical constraints expressing valithen used to complete the order by implied equipment op-
configurations and their transformation into manufactur-tions(consider a police caand to check the validity of the
able products. Some of the constraints represent generatder by running it against the constraints set. Every flaw in
rules about valid combinations of sales options; other forthe constraints may lead to a valid order being rejected,
mulae express the condition under which a part is includedesulting in lost revenue, or an invalitlonconstructible
in the order’s parts list. It was found that it is not humanly order being accepted, possibly resulting in the assembly
possible to keep a database of thousands of logical corline being stopped.
straints that is absolutely defect free, especially because it BIS can help to discover such flaws by formally verify-
is under constant change that is due to the phasing in andg consistency conditions on the constraints, without test-
out of models and parts. Thus, formal verification method-ing any real or imaginary orders. As an example, BIS can
ologies are highly desirable to weed out residual defectgheck for each of the thousands of sales options whether
that are hard to capture by traditional quality assurancéhey can possibly be contained in at least one vatidnu-
methods. facturable order. BIS can also deal with partially specified
Therefore, our system BI&iichlin & Sinz, 2000 was  orders, checking, for example, which engine options are
developed as an extension Baroc to help the product still valid given a preselected body and interior or which
documentation staff increase the quality of the product datgparts cannot possibly be part of any vehicles that go to a
We first created a formal model of the business processesertain country. This use of BIS concerns the validation of
encoded iDiaLoc and converted global consistency asser-a static set of constraints.
tions about the product database into formulae of an ex-
tended propositional logic. BIS itself employs satisfiability
(SAT)-checking techniques to draw logical conclusions from
sets of Boolean configuration constraints. By plugging intoThe manufacturing PDM system determines the hill of ma-
the existing formal product documentation, BIS can vali-terials needed for assembly at a certain plant on a certain
date consistency assertions on the constraints database atate. Flaws in the manufacturing constraints may lead to
calculate the effects of configuration changes on the set aduperfluous parts ordered or necessary parts lacking. Prod-
required partéKuchlin & Sinz, 2000; Sinz & Kiichlin, 2001  uct documentation at the manufacturing stage is character-
BIS is especially geared toward the industrial context. Itized by frequent temporal change: Parts may be available
is packaged as an object-oriented client—server informationr unavailable at certain points in time or may be ex-
system with an application-specific graphic user interfacechanged by successor models; subassemblies may shift from
BIS works on an extended propositional logic that allows ain-house production to external procurement; and assembly
compact formulation oh-out-ofk constraints, which are lines may be reconfigured. Additionally, changes on the
common in our application area. Its prover component proengineering level usually have a direct impact on the man-
vides both efficiency on large input¥aiser & Kuchlin,  ufacturing documentation. To name just a few, think of the
2001a) and an explanation of failed proof attempts, that arephasing in and out of supplementary equipment or whole
invaluable for locating defects in the databd&aiser & model lines or sharpened or relaxed constraints between
Kichlin, 200Db). BIS therefore preserves the formula struc- parts or subassemblies due to further product development.
ture of the database, avoiding conjunctive normal formHere, configuration requirements are similar to the engi-
(CNF) conversion; for unsatisfiable sets it calculates a min-neering stage, in that the product has to be considered not
imal set of those constraints and their constituents that armerely in functionalsales categories but down to the level
the root cause of the failed pro@Kaiser, 2001; Kaiser & of parts assembly.
Kichlin, 200b). We have also developed parallel SAT A specialized version of BI§Sinz & Kiichlin, 2001
checkers to test the speed limits of the syst@&ochinger contains two methods, the5-method and the 3-point ap-
et al., 2001 proach, to compute the changes induced on the parts level
by high-level product changes. These methods generate prop-
ositional formulae that are then checked for satisfiability.
Thus, both model year change and production relocation
At the engineering stage, a PDM system is employed t@an be handled.
maintain a database that describes, independent of any ac-
tual orders, the total set of products that the manufacturer i
able and willing to build. Due to the size of this set, its
description must be made implicit by listing all constraints The BIS system is founded on state of the art SAT-checking
governing admissible combinations of optiofBreuder, techniques. Our initial feasibility study determined test
1998. The origin of the constraints may vary from market- the time no other technique we tried could come close in
ing to physical to legal considerations. speed; in particular, no variation of binary decision dia-
Traditionally, a sales person will discuss the individualgrams that we tried could handle formulas of our sizes.
order with the customer. The engineering PDM system isSATO (Zhang, 1997 was the first system with which we

1.2. Configuration at the manufacturing stage

1.1. Configuration at the engineering stage

1.3. Prover technology
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could prove an interesting set of assertions on realistic inen the proof procedure like explanation and their integra-
puts. Subsequently, we developed our own SAT checkers ition into BIS, followed by a short exposé of the BIS soft-
response to the demands of our application: speed, explavare architecture in Section 7. In Section 8 we summarize
nation, and improved documentation logic. our experiences with formal methods in industry, in Sec-
First, our prover avoids the initial conversion of the inputtion 9 we compare them with related work, and in Sec-
to CNF. Our formulas are so large that naive CNF convertion 10 we give a brief conclusion.
sion by applying the distributivity law failed for lack of
memory and time. Advanced method$seitin, 1970;
Somenzi, 1998were successful, but they still took about as
long as the SAT checking proper. Speed is important in our
application, because thousands of theorems must be provddhe PDM systemDiaLoc is used in its two variants,
while the documentation specialist waits. DiaLoG/E andDiaLoG/P, in the engineering and produc-
Second, an explanation component was added to BIS. Ition departments, respectively, of DaimlerChrysler AG for
industrial applications, the real value of formal validation is configuration of its Mercedes lines. Our description is in
as a sophisticated debugging aid rather than as a tool fderms of the abstract logical model that we had to derive for
total verification. Even if all validations succeed at the endour verification purpose&ichlin & Sinz, 2000.
of a development cycle, there is no guarantee that the prod-
uct documentation is totally correct. However, every time a,
validation attempt fails, it is desirable to understand the
cause and correct the documentationthe product itself. In the terminology of Sabin and Weig@l998, DiALOG is a
In our case, the product documentation is set up by a groupule-based reasoning system for batch configuration. It con-
of experienced application experts and is almost defect freesists of function-oriented and parts-oriented levels. The for-
A failed assertion usually points to an exotlwut possibly — mer is driven bycodesandrules Rules on this level serve
costly) case that is rather difficult to trace for a human two functions: they describe constraints between codes and
expert. Therefore, it is absolutely necessary for BIS toare used for completing partially specified orders. Codes
quickly and succinctly explain the causes of a failure tomay either beequipment codeésales optionsor control
prove an assertion. In our case a failed proof correspondsodes(internal steering codes, e.g., for producjiomhe
to an unsatisfiable set, and BIS computes a minimal set dfunctional level constitutes a description of the set of man-
constraints and their constituents that are the root cause offacturable products from an engineering point of view,
unsatisfiability. The need for explanation is a further reasorwhich we will also call thgproduct overviewn the follow-
to avoid CNF conversion, because this destroys the originahg. The parts-oriented level is characterized by a modular-
formula structure and may introduce extraneous variableszed hierarchical parts list, where alternatives are selected
which renders an explanation in terms of the CNF formbased on rules. These rules contain the function-oriented
rather useless. sales and control codes and therefore provide the mapping
Third, one of the best means to avoid defects in the prodfrom the high-level functional to the low-level aggrega-
uct documentation is an adequate documentation logic thaional views. The structure of the product is reflected in the
allows natural and perspicuous formulations of the busiimodule hierarchy. More information on the documentation
ness constraints. Boolean logic is a good choice becausermntethod and a synopsis of the requirements from different
is easy to understand and admits decision procedures amgpartments can be found elsewh@¢échlin & Sinz, 2000;
efficient provers. However, popular constraints such as “&aiser & Kiichlin, 200D).
car must have exactly one motor out of a set of options” A customer’s order withidiaLoG/E consists of a model
translate into rather complex sets of constraints. Therefordine selection together with a set of equipment codes that
we extended Boolean logic by a general selection operatatescribe additional features. Each cddgquipment code or
and built a prover for the extended logic. This approachcontrol code is represented as a Boolean variable in the
also trades documentation space for verification time. documentation. It is set tue (1) exactly when the piece
The remainder of this paper is organized as follows. Inof equipment is chosen by the customer. Thus, an order is a
Section 2 we begin with an exposition of the documentafixed assignment to the propositional variables of the prod-
tion method used at DaimlerChrysler. In Section 3 we giveuct documentation. Alternatively, we identify an order with
a rigorous formalization of the algorithms used for orderthe set of codes that are assigned to true. For homogeneity,
processing and configuration in the engineering and manuparts may also be viewed as Boolean variables, although
facturing stage, followed in Section 4 by a summary ofthis correspondence is utilized neither in thesLoG sys-
validation properties we identified as important, togethertem nor in our formalization. Orders are processed in three
with their translations into formal consistency assertionsmajor steps, as depicted in Figure 1: order completion, con-
In Section 5 we describe the management of change at thstructibility check, and parts list generation. All of these
manufacturing level and how it can be handled using for-steps are controlled by rules. Rules can be of three different
mal methods. In Section 6 we then turn to special demandypes, reflecting the three order processing steps. All rules

2. PRODUCT DOCUMENTATION FOR
DAIMLERCHRYSLER'S MERCEDES LINES

.1. Documentation at the engineering stage
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R are of the formR = (F,, x), whereF, is a propositional
logic formula andx is the data entity to which the formula
is assigned, which can be either a code or a part. A rule’s
formula is built from the usual Boolean connectivés],
and -, and from the codes serving as propositional vari-
ables. No restrictions are placed upon the structure of the
rules’ formulae, so there is no particular restriction to Horn
formulae. The whole order processing is controlled by eval-
uating the rule’s formulae under tHeomplete variable
assignment induced by the customer’s order and executing
suitable actions based on whether the formula evaluates to
true (1) or false(0).

Let us denote by.x andC.x the respective unique sup-
plementing and constructibility rules that are associated with
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Order‘s Parts List

H} 2

Customer‘s Order

H = W

Checked and Supplemented
Customer‘s Order

Supplemented
Customer‘s Order

Fig. 1. Processing a customer’s order.

codes of a possibly supplemented order must be valid
in a constructible order, and nonconstructible orders
are rejected.

Parts selection rulesThe parts list is hierarchically struc-
tured using modules, positions, and variants. Parts
are grouped into modules depending on functional
and geometrical aspects, positions contain mutually
exclusive alternative parts, called variants, for each
installation point. A partp is selected based on its
part selection rulé.p: partp is included into the bill
of materials forO if and only if the rule’s formula
P(p) evaluates tdrue under the checked and possi-
bly supplemented orded. Consider, as an example,
an orderO consisting of the codes M628 and 494,

each code. For a supplementing rul8x or a construct-
ibility rule C.x, we use the notatioS(x) or C(x), respec-

tively, to refer to the rule’s propositional formula. Similarly,

for parts selection, we use the notatiBp to indicate the
unique part selection rule of pgst andP( p) to denote the

that is, O = {M628,494. Assume that this order is
left unchanged by the order completion process and
that it is constructible. Then the part selection rules
are evaluated undeD’s associated variable assign-

formula of ruleP.p. Table 1 shows examples.
We now describe the actions of each rule type in more
detail.

Supplementing rulesThe order completion or supple-

Constructibility check ruleConstructibility of a custom-

ment, which is the functio®(M628) = O(494) =1
andO(x) = 0 for all otherx. Evaluating, for example,
81263As part selection rule shown in Table 1, we
find that it evaluates to true, becau€€M628) = 1
and O(260) = 0. Therefore part 81263A is included

_ orde into the bill of materials for orde®.
menting process adds implied codes to an order. The

supplementing formul&(x) of rule Sx specifies the  The exposition laid down in the last section presents a
condition under which code is added to ordeO.  gimplified view of the functioning of th®iaLoc system.
WhenS(x) evaluates to true under the variable assign-The real system knows, for example, different kinds of con-
mentinduced by, thatis, wherDis a(logical) model  stryctibility and supplementing rules. It is also possible to
of S(x), then codex is added to that order. The order haye several rules of a kind for each code or no rules at all.
completion process is repeated until no further changegioreover, part selection rules use a different formula en-
result. We denote b{p — O the action of adding coding. A formalization of this less abstract view Dfa-
codex to orderO resulting inO’" when formulaS(x) LoG can be found elsewher&inz, 1997.

evaluates to true undeé. We will now turn to documentation at the manufacturing
stage and explain the extensions relative to the engineering
er's order is checked according to the following schemedocumentation just presented.

For each code there is a constructibility rul€.x. Its
formulaC(x) interrelatescwith other codes by encod-
ing, e.g., requirements or exclusion conditions for usin
codex. A code is callectonstructibleor valid within a
given orderO if C(x) evaluates to true undéd. All

g2.2. Documentation at the manufacturing stage

Engineering product documentation reflects an idealized
snapshot of the engineering capabilities at a fixed point in
time. It represents the most up to date picture of what en-

IMore precisely, we refer to the positions of parts rather than to thegIN€Ers are able to accomp“Sh' This differs from prOdUCt
parts themselve&Kiichlin & Sinz, 2000

documentation at the manufacturing level, where other is-
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Table 1. Rule examples

Rule Type Formula

S.231 Supplementing 494 (M113 0M628) T (2XXL 0494 0403L [0406L) 01-337

C.231 Constructibility (M113 0M628 0 ((M112 0M613) (R 0249 O (2XXL 04940403L J406L) 0-337)
P.81263A Part selection (M613 1 M628) [1-260

sues have to be taken into account, for example, is a parh DiaLoG’s algorithms and depend on facts not visible to
available at a certain point in time? At which production the documentation system user. As a consequence, we ei-
line can the product be assembled? Which version of th¢her have to include all the algorithmic details in our con-
product is to be manufactured? sideration or abstract from them in our examinations. We
Mainly, the difference between engineering and manuhave decided on the latter.
facturing documentation is the inclusion of time dependen- Ignoring the algorithmic details of order processing, we
cies and production circumstances into the latter. Withinconcentrate on the result of the overall order processing
DiaLoc/P this is accomplished by adding a validity time schema, that is, we try to find a manageable representation
interval and timing control codes to each rule of theof the set of all constructible ordef/hich is the product
DiaLoG/E system. InDiaLoG/P, a rule R is therefore overview in one propositional formula. This semantics of

equipped with a validity time interval the product overview in turn builds on the semantics of
individual rules, which is now introduced. DaimlerChrysler
I(R) = [t,(R), t,(R), does not use this semantics at any point withinLog to

check individual orders, but it is of great help in analysing
wheret,(R) = t,(R), indicating the earliest and latest time the system, and to express consistency assertions about the
at and between which rulR is valid; R can be either a rule base as a whole. A justification of our propositional
supplementing rul&x, a constructibility ruleC.x, or a part  Verification semantics and proofs connectiDghLoG/E'’s
selection ruleP.p. An invalid rule is interpreted as switch- rules with it can be found elsewheftgtichlin & Sinz, 2000.
ing off its action of supplementation, constructibility con- In a first step, we only consider the semantics of the
trol, or part selection. To enable more complex temporalPIALOG/E system.
processes such as the phasing in and out of parts, each ruleln our context, the verification semantics of a rule is a
additionally owns starting and stopping control codes,CC Propositional formula, denoted Hy]. Thus, for example,
and CG,, respectively, which allows an override of the time [C.x] denotes the semantics of constructibility rle. For
interval limits. Intuitively, the meaning is as follows: GC supplementing and constructibility rules, the verification
anticipates the start of the time interval, that is, rRlés ~ Semantics can also be viewed as a postcondition that holds
valid even before the start of the specified time interval,after successful execution of the rule byaroc. For part
provided that the Starting control code Q(R) is present in selection rules, the semantics denotes the condition under
the order. Analogously, CCanticipates the end of the in- Which the part is included in a given order.
terval in the sense that ruRis invalid even before the end  In Figure 2, formal definitions of the rule semantics are
of the time interval, as soon as the Stopping control Codéhown, together with some derived formulae describing fur-

CC,(R) occurs in the order. The exact formalized meaningther important properties: Formula PO describes the prod-
will be given below. uct overview, that is, the set of all constructible, fully

supplemented orders. This set is characterized by the prop-
erty that for each cod® out of the setC of all available
3. FORMALIZATION OF THE codes two properties hold: first, as a result of the supple-
DOCUMENTATION SYSTEM menting rules’ semantics, for each order satisfying the sup-

Although the rules oDiaLoG are propositional logic for- plementing formul&(x), the codeitself has to be contained

mulae and therefore have a clear semantics, this does ngithabt otrger. Th'f refl(;,-c.ts_the f{afct”that aniorderihgt ;atISerS
necessarily imply a likewise clear semantics of the docu- x) but does not containis not fully supplemented. How-

mentation system. This is due to the algorithms built intoSVel X May be_ pgrt of a fully supplemented order even if
DIALOG to interpret and execute rules. For example theS(x) is not satisfied. Second, as a result of the construct-

order in which rules are checked and codes are added duiltgility rules’ semantics, if code is part of the order, then its
nstructibility conditiorC(x) must hold. Thus, a construct-

ing the order completion process can be deeply embeddelcg)Ie and fully supplemented orde is a logical model of

PO(i.e.,O F PO) and partp is included in the bill of ma-
2By [a,b] and(a, b) we denote closed and open intervals, respectively. terials for an orde© if O k [P.p].
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Supplementing rules: Timed formula semantics:
[Sz] = S(z)=>= F ACC,(R) A =CC,(R) ift <tyu(R),
o [F,t]r == { FA-CC,(R) ifto(R) <t <t,(R),
Constructibility rules: n it > t,(R).
[Cxz] = z= C(z)

Product overview:

PO = A (|[5.:c]] A IIC’.z]I)

z€eC

Part selection rules:
[Pp] = P(p)
Order validity for order O:
O EPO
Selection of part p for order O:

0k 1Pl

Fig. 2. The verification semantics of rules.

As an example, consider the following set of rules for the
product overview:

SXx=(~z0O~y,x) Cx=(ay,X)
Sy=(zy) Cy=(zy)
Sz=(0,2 Cz=(x0O-y,2. )
Then, for example, codeis added to an ordéd if y or zis
missing, andx is constructible only ify is not part of the
order, whilezis constructible if eithex is also contained in
Ooryis missing. The verification semantics®k is[Sx] =
-z -y = xand that ofC.xis[C.x] = x = ~y. Therefore,
we have as the formula for the product overvieRO)

PO= (-mzO-y=x) O(x=-y)O
(z=y)O(y=2)0
(O=2) 0(z=x04y),

which simplifies to PO= x 0 -~y 00 =z Thus, the only

Supplementing rules:
[S.z,t] = [S(x),t]se =
Constructibility rules:

[C.z,t] z = [C(z),tce

Product overview:

PO(t) == A\ (|[S.:z:,t]] A ﬂC.m,t]])

zeC

Part selection rules:
[Pp,t] := [P(p),t]ry
Order validity for order O at time t:
O E PO(t)
Selection of part p for order O at time ¢:

O E [Pp,t]

Fig. 3. The verification semantics of timed rules.

the stopping control code is not set, and aftethe rule is
never valid. Note that, although an invalid rule’s formula is
always equivalent tal, the interpretation of the whole rule
can differ. Thus, an invalid formula in supplementing rule
Sx generates the rule semantidss x, which is equivalent
to T, and thus switches off the supplementation of crde
On the other hand, an invalid formula in a constructibility
rule C.x generates the rule semantics [ or, equivalently,
=X, which excludes coder from any order, thus switching
off constructibility of codex. Product overview, order va-
lidity, and part selection are straightforward extensions of
their untimed counterparts.

There are two final remarks. First, the range of the start-

constructible order that can possibly appear at the part sgng and stopping times, andt, can be extended by the

lection stage i = {x}.
This semantics is suitable f@iaLoc/E, but because it
does not consider validity time intervals, it has to be ex-

pseudo-values-co and —oo in order to model unbounded
time intervals. Second, if the control codes are not set, they
are initialized to their default valug. Thus, in the case of

tended by precise semantics for temporal aspects in order thspecified control codes, we get a simplified timed rule

be appropriate foDiaLoG/P. The extended semantics is
shown in Figure 3.

The general time-dependent semanifieg | s of formula
F belonging to ruleR generates a formuld’ representing
the interpretation of formuld& at timet, considering the
control codes and timing intervals of ruke Before starting
time t, of rule R, the timed formulaF’ is only valid if
starting control code Cgis set and stopping control code
CC, is not set. Betweet), andt,, the rule is valid as long as

semantics:

F ift,(R=t<t,(R),
O otherwise.

ﬂFltHR = {

4. MAINTENANCE AND VALIDATION ISSUES

Due to the complexity of automotive product documenta-
tion, some flawed rules in the database are almost unavoid-
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able and sometimes very hard to find. Moreover, the rule Ambiguities in the parts listAre there any orders for
base changes constantly, even between model year changes, which mutually exclusive parts are simultaneously
and rules sometimes introduce dependencies between codes selected?

that at a first sight seem not to be related at all. As the rule

base not only reflects the knowledge of engineers, but also Consistency of order completion is based on the assump-
worldwide legal and marketing restrictions, the complexitytion that a customer’s order that initially fulfills all con-
seems to be inherent in automotive product configurationstructibility rules is not invalidated, that is, changed to an
and is therefore hard to circumvent. order that is not constructible any more. Moreover, as the

We subdivide the validation issues into two categoriesevaluation order of supplementing rules is not explicitly
static consistency criteriand dynamic consistency crite- settled, the order of actual rule application may influence
ria. Whereas the former consider only a fixed snapshot ofhe final result. Consider as an example the supplementing
the product, and analyze properties of its documentation aulesSxwith S(x) = ~zO-yandSy with S(y) =z and an
this point in time, the latter also take the evolution of theinitial customer’s orde® consisting only of the code that
product and the production process over a whole period ok, O = {z}. First applyingSx and thenSy results in the
time into account, and investigate differences between twextended orde®’ = {x,y, z}, whereas first applyin®y
or more situations. and thenSx results inO” = {y, z}.

Of course, documentation has its own development and Besides these conditions indicating possible documenta-
history by itself. We denote this evolution consisting of tion faults, there are other tests that are of a more informa-
updates to the rules in the documentation systenddiy  tive and synoptic nature:
umentation evolutiorand distinguish two reasons for
documentation evolution, disregarding purely administra- Necessary codesCodes that must invariably appear in
tive updates not caused by external events: Either caused each constructible order.
by modifications of the product itself or by changes to
the production environment. We call the associated devel-
opmentsproduct evolutionand production evolution
respectively.

Typically, these two aspects of evolution are also sepa- Valid additional equipment option£Codes by which a
rated in the documentation. Product evolution is mainly ~ Setof orders can possibly be extended without loosing
considered in documentation at the engineering stage, constructibility.
whereas production evolution is part of documentation at
the manufacturing stage. This differentiation also carries Our BIS system does not check these criteria on the basis

over to the separation into static and dynamic consistencf €xisting (or virtual orders, but by calculating logical
criteria. conclusions from the product documentation itself.

By incorporating additional knowledge on which car mod-
els can be manufactured and which cannot, further checks
4.1. Static consistency criteria may be performed. Besides requiring additional knowl-

, . edge, these tests often do not possess the structural regular-
Independent of the real product’s properties there are cor]fy of the above criteria and thus cannot be handled as
ditions that a consistent documentation is supposed to po%'ystematically as the other tests

sess. For example, all parts should occur in at least one

constructible product instance and any equipment code

should be compatible with at least one order. We call thesg. 2. Dynamic validation criteria

a priori conditions, because no explicit knowledge of the

product and the constraints governing its constructibility isTypical questions regarding the evolution of the product
needed in order to set up these criteria. We identified thénclude:

following database consistency criteria to be of relevance:

Groups of mutually exclusive codeSets of codes from
which at most one can be present in each constructible
order.

Induced change on the parts lev&lhat are the effects
Inadmissible codedre there any codes that cannot pos- on the parts level when a change in the product over-
sibly appear in any constructible order? view takes place?

Consistency of order completiofire there any construct- Summary of product changeathich orders become con-
ible orders that are invalidated by the supplementing structible over a period of time, and which become
process? Does the outcome of the supplementing pro-  invalid?
cess depend on th@robably accidentalordering in

which cod dded? Time intervals with no constructible orders there any
ich codes are added

point of time where, according to the documentation,
Superfluous partsare there any parts that cannot occur no products, or no products with a certain property,
in any constructible order? can be built?
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The first of these questions is of the utmost importanceions F|,_,, which are defined for a formulg, a proposi-
for the production department as we will explain in detail tional variablex, and a Boolean value € {0,1} as the

later on. (unigue homomorphic extension of the function
43 E lizati f ist iteri T ifx=y,b=1,

.3. Formalization of consistency criteria Xys=10 ifx=y,b=0,
Using the formalization of Section 3, checking consistency X ifx#y,

of the documentation system can be grounded on a firm

basis. In the following, we will give encodings of all our to the set of all propositional formulae. Informally, the for-

static and dynamic consistency criteria as propositional SATula restrictiorF|,_,, can be understood as partially eval-

problems. Most of the criteria are formulated as proposi-uatingF for the assignment = b.

tional validity problems, but as the unsatisfiability of a for- _Formally defining the supplementing action relation

mula F is equivalent to the validity ok F, being able to — of Section 2.1 we get=> is the smallest rela-

check the satisfiability of a formula is completely sufficient. tion with O i) O’ provided that these three conditions

hold: O' = OU{x}, x &€ O, andO E S(x). Thus, the sup-

4.3.1. Encoding of static consistency criteria plementing action relation can be understood as a short-
Considering the informal static consistency criteria ofhand for simultaneous satisfaction of all three conditions.

Section 4.1, we can now give the following precise valida-Here, we identify the order as a set of cod@swith the

tion conditions: order as a characteristic function on the set of all known
codesC.
Inadmissible codesCodex is inadmissible iff PO - x We can now state a lemma allowing assertions involving
is valid. several computation states.
Superfluous partsPartp can be removed from a position
in the system documentation provided thatPOP( p). LEmMA 4.1. Let O=*5 O’. Then O F Fiff O k F|,_,.
Ambiguities in the parts listPartsp, andp,, which are  (See Kuchlin & Sinz, 2000). ]

assumed to be mutually exclusive, are never selectegroof.
simultaneously provided that P@- (P(p,) OP(p,)) '
holds.

First, note thaD’ = OU{x}. We prove the lemma
by induction on the structure d¢f. The lemma is obvious
] . ) ) for F = T andF = . Assume thaF is atomic, that isF =
Necessary code€Xodex is necessarily contained inany y for some propositional variablg. We distinguish two
constructible order if PG> x holds. cases. First, ik # y, theny|,_, = y and, a0’ (y) = O(y),
Groups of mutually exclusive codekhe group of codes  the claim holds. Second, ¥=y, then, byF|,_, = X|,_, =
G = {Xq,...,X,} is mutually exclusive provided that T, O k F|,_, holds, andO’ F F, becausex € O’. Now,

assumd- = - G. Becausé-G)|,_, = -(G|,_,), the induc-

PO= D —(x Ox;). tion hypothesis already proves the lemma. The ckse$
e OH andF = G OH are handled accordingly using the fact

that the restriction is a homomorphism. ]

Valid additional equipment optiong: valid order fulfill-
ing the additional restrictiorr can be extended by  Note that the consequence of this lemma also holds for
equipment optionx iff PO OF Ox is satisfiable. statesO with O ¥ S(x), but then the supplementing rule
would not be applicable. We are now placed in a position to
Whereas all these criteria can be formulated without reformally express the remaining static consistency proper-
ferring to multiple computation statésegarding the order ties about the supplementing process.
processing algorithim this is not the case any more when
we consider the question of consistency of the order com- Consistency of the order completion processt CO:=
pletion process. Here, the situation is more complicated, as ﬁxecﬂc-x]] be the verification semantics of all con-
references to at least two computation states must be made: structibility rules, that is, CO describes the construct-
in case of orders invalidated by the order completion pro- jpje, put not necessarily fully supplemented, orders.

cess, we need to compare states describing the order before  Then no orders are invalidated by the supplementing
and after adding the supplemented code; in case of ordering  process exactly when

of rule applications we have to compare two states arising

from applying different supplementing steps. COOS(X) = COl_;y

Reference to two different states, that is, two different
variable assignments, is n@irectly) possible in proposi- holds for allx € C. The order of supplementing rule
tional logic. Fortunately, however, the variable assign- application for rulesS(x) and S(y) is irrelevant pro-

ments corresponding to two different states simultaneously  vided the following holds:
under consideration are almost identical, and differ only on
very few variables. This enables us to use formula restric- CODOS(x) OS(y) = S(X)]y=1 IS(Y)|x=1-
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The last property is a sufficient, but not necessary, condiclude modifications of both the product overview and the
tion for order invariance, as it even requires permutabilityparts list.

of the two supplementing rules faandy. The general case
demands for a propositional logic specifsi()zation of he
cal) Church—Rosser property for relatieh—, and there-
fore requires encoding arbitrarily long supplementing chaing.1.1. Parts exchange

that may lead to a reunification of the initially different  The reasons that make the exchange of parts necessary can
orders. Amore in-depth discussion of the limitations of ourpe manifold, for example, technical progress, change be-

5.1. Typical scenarios of change

approach can be found in Kichlin and Sif2000. tween in-house production and external procurement, or

) ) o change of the supplier. The ways in which the exchange is

4.3.2. Dynamic consistency criteria performed may also vary. There might be a cutoff date at which
Formalizing the requirements of Section 4.2 we arrive afpartp, is replaced immediately by pass as depicted in Fig-

the following criteria: ure 4(a). Or the exchange has to take place over a period of

time during which both variants with either paxtor partp,
Induced change on the parts levdlhe implications of have to be manufactured, and for each product instance it is
changes on the product overview consist of additionakxactly determined by control codes which of the two parts
and superfluous parts. We will handle this and varioushas to be used, as shown in Figutg} A third possibility is
specializations in detail below. that the new panp, has to be used as soon as ggnuns out

Summary of product change&ssuming fixed times of stock. This is similar to the first case, but now the cutoff
and t, with t, before t,, the models of formulge date is not fixed, but variable. As none of our dynamic con-

PO(t;) O -~PO(ty) and PQt,) O ~PO(t,) describe sistency criteria directly deals with part exchange, we do not

the newly constructible and no longer constructibleCONSider this special case any further.
orders, respectively. Fixed-time as well as overlapping parts exchange can be

o . . . modeled easily with the control code and time interval ad-
Time intervals with no constructible order&ssuming  gitions of DiALOG/P.

an addjtional restrictioE on orders, the time$: dur- In the fixed-time case we get the following conditions
ing vyhlch no o_rders fulfilling propertf are construct- ¢4 the selection rule®, = P.p, andP, = P.p, of partsp,
ible is determined by andp, to model a parts exchange at tirge
T= = {t| (PO(t) OF) is not satisfiablg t,(Py) = t; t.(Py) =t;.
Computation of this set of times is accomplished by firstThe other time values,(P,) andt,,(P,) may be set to sen-
extracting all relevant starting and stopping times sible values arbitrarily, and the control codes are left
unspecified.

To model an overlapping parts exchange we need sup-
port from the control codes. Leaving the start time of the
overlap interval open, and assuming the end of the overlap
from the documentation, ordering this set such fhat at timet,, we get:

{to,...,t,} for somek andt; < t;,;, and then performing
the check whether P@) O F is satisfiable for each sample
pointt = 3(t; + t;,,) and 0= i < k. The result for such &
then holds for the whole intervt;, t;, ).

Tr = {t.(R),t,(R) | RE | {Sx,Cx}}

xeC

quantity

max N/

»>

5. MANAGEMENT OF CHANGE runout
part p,

Many years can pass between the first prototype of a nev

product and the last time an instance of it is manufactured

It is not surprising that during this period of time the prod- h

uct itself, as well as the production environment, may un-

dergo considerable change. All this has to be reflected irgtart-up

the product documentation. Among the many possiblepart P,

changes a product and its production process can underg

we pick out three exemplary situations that make up a hugt

part of the changes in the automotive industry. These ar t, t,

parts exchange, equipment code start-up and expiry, an a) b)

assembly line reconfiguration. These scenarios cover changes

of both the product and production environments and in- Fig. 4. Part exchange(@) fixed time and(b) overlapping.

>
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t,(P) =1t t,(P)=t to the actual production load. Less frequently, but entailing
CC.(P) = X, CC.(P,) = X, cpnaderab!e changes.of the documentation, en.tlre or par-
tial model lines are shifted from one assembly line to an-
wherex, is the control code of the overlap, that s, all ordersOther or even between plants. . .

The challenges for the documentation personnel are sim-

containingx, use partp, and orders not containing. use . .
partp;. Again, the remaining time values may be set to any'lar to the case of equipment code change, but they often go

suitable value, and the control codes not mentioned are Ieﬁ%ﬁlﬁfg%?iﬁgaéhlﬁeergﬁr}[hzroz‘lftg] Ilesvgl) v?/i?we:hmeinseag:g
unspecified. If the interval start time is to be fixed, this has 9 P

to be controlled using the constructibility rule of control problems as mentioned above.

codex.. Addingt, (C.x.) = t, we get the behavior depicted Moreover, at least in our case, some changes are not
in Figure 4b). documented, or not documented early enough, or even can-

not be documented at all within the PDM system. This poses
the problem of handling undocumented change. For the pur-
pose of verification, we thus need an external formalism to

~ New equipment codes may show up as part of the COngpecify certain documentation changes that cannot be han-
tinuous development of products. Other equipment codeg|eq by the PDM system itself.

may run out because they are not requested by customers
anymore or they have been integrated into standard pack-
ages. Most of these changes are triggered by the enginedr-2. Two methods to detect induced change

ing or even the sales department. This is in contrast to thEor the computation of the induced change we developed
case of timing control codes, which are set by the produc-

tion department, mainly to handle model year change. ModetlWO approaches. The first one, called theé-method, is

. . . . §uitable for handling short time intervals at a fixed pointin
year change is an important issue and requires a lot g

. . . the future, during which considerable already documented
redocumentation, as usually quite substantial parts of the .
changes are intended to take place. The second one, called
product change from one year to another. Most of th . o
) . he 3-point method, can also handle undocumented modifi-
overlapping parts exchanges mentioned above stem from_. : . X
this modification cations of the product overview and cope with larger time

What makes code startup and expiry a nontrivial docu-mtervals'

mentation task is that the high-level changes of the producé 21 Thets-Method
overview influence the low-level parts structure via the parts™ -

selection rule®.p. In case of starting and stopping control With the iﬂa-metho((jj Wﬁ_ cr;an dmg;‘f“_'”e \ll;’h'Ch za;ts fbe-
codes the direct influence is clearly visible, but this may notcoMe superfluous and which are additionally needed after a

be the case for other codes, or if a timing control code isqritical_change that is already known to oceur at a fixed

used inside a rule. timet. in the future and where t.he change is already docu-
Such induced, dependent changes are often very hard {Bented. The procedure works in three steps.

detect, as can be seen from the following example: Assume

a partp with an unrestricted validity time intervalP.p) =

(—o0,+00) and no timing control codes, and a selection rule’s

formulaP(p) = x Oy. Furthermore, let the constructibility

formula of codex be C(x) = zand assume an intended code is satisfiabl¢.

expiry for codez at timet,, which ist (C.z) = t;. Then

aftert,, p cannot be part of a valid order, because the expi-

ration ofzinduces the invalidity of codr, which forces the

selection rule op to false _ o
What makes these induced expiry parts hard to detect for is satisfiablg.

the _documentation perspnnel is that the'codes planped for Step 3:Compute the set differences = P,\P,

expiry need not occur in the part selection rule as in the A=P,\P,.

example above. Besides, for complex products, different

persons may be involved in the documentation of change. Tpe resulting set§ andA give the sets of parts that are

Automatic support by a PDM system to find such inducedsperfluous and are additionally needed, respectively, after
expiry parts is therefore highly desirable. We now presentye change. The parametehas to be chosen such that only

5.1.2. Equipment code start-up and expiry

Step 1:Determine the sd?, of needed parts just befote

P, ={p€&€ P| (PO(t. — &) O[P.p,t. — 8])

Step 2:Determine the se®, of needed parts just aftér.

P, ={pe€ P| (PO(t. + &) O[P.p, t. + 1)

and

our approach to solve this problem. the critical change falls into the time intenal — 8, t, + 8).
_ _ _ Note that this is, at least theoretically, a limiting factor of the
5.1.3. Assembly line reconfiguration +8-method, as it may be impossible to separate the critical

Our last scenario of change is largely caused by modifichange from other changes. In practice, this effect occurs
cations of the production environment. For instance, assenrarely, as the primary interest is in the situation after accu-
bly lines are reconfigured from time to time to adapt themmulating all changes at the critical tinie



Formal methods for validation of product configuration data 85

5.2.2. The 3-point method documented
Substantial changes, as required, for example, for model - Changes__f’qw'sw]
year change or production relocation, cannot be performed P { — P

in the short time interval presupposed by thé&-verification fo
method. Moreover, some changes cannot easily be mod-
elled within the documentation systddmaLog, but fit quite

naturally in the logical formulation used in BIS. We there- documented and ?:feg"fes
fore developed another methodology to determine induced undocumented e
change on the parts level. This method also allows simula- changes (A.5,S.) }:)’a=
tion and comparison of different future scenarios. f

In contrast to thet5-method, the 3-point method is ca-
pable of handling documented as well @gt) undocu-
mented change. This is accomplished by providing an tim;

external(with respect to the PDM systenfiormalism for
specifying change. The modifications that can be expressed Fig. 5. The 3-point approach.
within this formalism include

e equipment or control codes becoming valid or invalid

and Step 3:Determine the sel;; of needed parts at timig
« arbitrary code combinations becoming invalid. including undocumented changes:
In our formalism, changes are specified as modifications Pi ={p € P|(PQ, a(ty) O[P.p, ;] is satisfiabl¢.

of the product overview’s semantics. We denote the changed

semantics by PR A(t), whereC, is the set of codes for ~ Step 4:Compute the set differences
which the constructibility and supplementing rules are ig-

nored andA is an additional side condition formula. The A0 =P \Py Sio=P,\P,
changed semantics is defined by Ao =Pi\P, So=P\P;

A = P\P,  Sa=PR\Py.
PQO:, A(t) == A0 D (ISx, t] O[Cx,t]).
Xy Here, for exampleA,, indicates the additional parts
needed at timég;, ignoring undocumented changes, relative
to the parts needed at tintg The relationship between the
three sets of parts and the difference sets are graphically
illustrated in Figure 5.

To determine the impact of an intended product overview
hange on the part usage, we have to take a look at the
ifference sets. The seds,/S, indicate the overall change
betweent, andt, if the intended(undocumentedchange
really is performed, including all changes induced by al-
ready documented events. The difference #eigS,; re-

. . L flect the changes induced at timgby the undocumented
For the 3-point method, two points in timg, andt,, modifications alone. Moreover, and similar to thes-

have to be fixed, between which the undocumented chang .
should occur. Moreover, the modified product overview S:rﬁethod, the seth,o/Syo only show the impact of already

mantics PQ, A(t) with a fixed setC,, and a side-condition documented changes during the time intertgit, ).
formula A is employed to reflect undocumented changess 5 3 piscussion of both methods
The 3-point method is composed of four steps:

Validation of an invalid code, which is a code with
constructibility formulaC(x) = [J, can be achieved by in-
cluding codex into the set of newly valid cod&y,, thereby
inactivating the unsatisfiable constructibility formula for
codex. If it should be necessary, a new constructibility or
supplementing rule can be specified as a conjunctive parg
of formula A. Invalidation of codes, as well as additional
side conditions, are specified by conjunctively adding for-
mulae toA; for example~x indicates that codr becomes
invalid.

Comparing the two methods, thes-approach offers the
advantage of simplicity. To find out the impact of a change
on the parts’world only the point in time of this change has
to be specified. On the other hand, the intended modifica-
tion already has to be documented, and the time of the
change has to be fixed. Whereas this is usually the case for
) ) planned, regularly occurring events like code start-up and
Step 2:Determine the se®, of needed parts at timg  expiry due to model year change, this may not be the case

without undocumented changes: for other product modifications, for example, by further

product development. Here the 3-point method can play out
P, = {p &€ P|(PO(ty) O[P.p,t,]) is satisfiablg. its strength of handling even undocumented modification

Step 1:Determine the sel,, of needed parts at timig,
i.e. before the change:

P, =1{p € P| (PO(ty) O[P.p, to]) is satisfiable.
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events, however, at the cost of increased complexity in usagehange. One important problem related to production move-

This shows up in the need to specify the modified producff is to determine the induced parts shift.

overview semantics P a(t). In most cases, though, the  To handle this case, we use the 3-point method to find

undocumented changes follow certain patterns, so that speut precisely the induced parts shift. We settyms the

cial cases of the modified semantics may be pre-encodeapproximated time of the relocation event, agdas the

and offered as specialized tests. current time. The modified product overview semantics is
Note that the 3-point method properly includes th8-  setto PQ;.g(t), whereF is a formula describing the frac-

method. By setting,,; = t. + 6 in the 3-point method, tion of the production to be moved off.

we get a specialization equivalent to th&-approach, as As an example, let us consider the situation where the

PG5+ (t) = PO(t). In this case we hav®; = P,, and production of cars containing the motor variants M1, M2,

only the difference seté\,, and S;, are of interest. An- and M5, in cunjunction with automatic gedi) is planned

other weakness of the-s-method already mentioned in to be moved off but not for the destination countries C1,

Section 5.2.1 is that the separation of two events may b€3, and C4. The formula

impossible. The 3-point method allows us to handle such a

case by remodeling the relevant events externally. F=(M10OM2OM5)0AD-(C1OC30C4)

describes this production shift.
) . The results delivered by the 3-point method are mani-
We now show how to map two important scenarios Of¢,|q  perhaps the most important parts shift setsfarg

change to our verification formalisms. Our first case han-g | They indicate the additional and superfluous parts after
dles equipment code start-up and expiry caused by modefq re|ocation at, relative to the situation at the same time

year change, for which we use theS-method. Model year  ithout the relocation. If the overall change on the parts
change usually is accompanied by lots of changes, mainly,e| petween the current situatiéat to) and the projected
on the parts level, but also to a smaller fraction on theyation after the relocation at, also including already
product overview level. During an overlapping interval, both 4, umented product changes, is of interest, then the differ-

models from the old and the new model year h_ave to bence setd\,,/S., provide the appropriate information.
manufactured. Assume codeg andm,, are responsible for

controlling model year change, that is, orders for cars of the

old model year are tagged with codg, for the new model 6. A SAT CHECKER FOR PRODUCT
year with codem,. Assume further that the model year =~ CONFIGURATION

change is fixed to take place during the time intefglt,).

5.2.4. Mapping of typical cases

From our experiments with different methods for solving
decision problems arising from the encoding of consistency
criteria (Ktichlin & Sinz, 2000, we observed some short-
comings of current provers in handling problems stemming
from the validation of configuration data. We therefore de-
veloped our own provefKaiser, 200}, which is special-
ized for handling product configuration data.

more aftert,. In the documentation, the expiry of the old
model year is reflected by code, becoming invalid, as
well as codem, becoming mandatory &f. Moreover, some
parts may happen to havgas a starting or stopping time.
In summary, the rules changing at tiryeare:

tw(c-mo) = tlv

£(Sm) =t with S(my) =T, 6.1. Language extension

Groups of mutually exclusive codes are a characteristic prop-
as well as selection rules of pagswvith eithert, (P.p) =t;,  erty of automotive product data. Such groups enforce that
ort,(P.p) = t;. We thus set up the:5-method witht, =t,  constructible orders contain at most one, or exactly one,
and get resulting difference setsAfandS indicating ad- code of each group. In case of tbearoc system, groups
ditionally needed and superfluous parts after the graf ~ of mutually exclusive codes occur, for example, for differ-
the model year change overlap interval. Obvious starting oent engine types, interior materials, or radios; besides, each
expiring partg(i.e., parts witht, (P.p) =t, ort (P.p) =t;)  valid order contains exactly one code that determines the
may additionally be filtered out to get a more concise resultcountry for which the car is to be made.

Let us now turn to production relocation, where we con- Although such groups appear frequently, they are not
sider moving parts of the production from one assemblygiven special attention in thBiaLo documentation lan-
line (or plany to another. Of this two-sided problem of guage. This may be due to the fact that such groups cannot
moving in and off, we concentrate on the move-off part.efficiently be encoded in standard propositional logic. To
Such a kind of change cann@asily be handled within the express the mutual exclusion mftodes, a formula of size
DiaLoG/E system, as not only individual codes, but arbi- at leastO(n?) is needed. In order to overcome this restric-
trary code combinations, representing the fraction of theion, we extend propositional logic by a specgalection
production that is to be relocated, become invalid after theoperator ).
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DEFINITION 6.1. For eacm = 0 andM C {0,...,n}, Sj
is ann-ary operator, an&y (F4,...,F,) is true iff exactlyk
of the formulaeF,, .. .,F, are true for som& € M. [ ]

Thus, for exampleSp (Fy, ...,F,) denotes the fact that
at most one of the formulde,, ... ,F, is true.

Among the advantages of adding the selection operator 3

to the language are the compact formula size for symmet-
rically related subformulagdsuch as mutually exclusive
groupg and the conservation of structural properties that
are lost by other encodings, including the opportunity to
make use of the preserved structural information in auto-
matic SAT checking.

6.2. The problem of CNF conversion

87

1. F is in negation normal forniNNF), that is, nega-

tions appear only directly in front of propositional
variables;

. false and trué[1 and T) do no appear as proper sub-

formulae ofF; and

isjunctions, D(Fl, ...,F,), and conjunctions,
ﬁ(Fl, ...,Fn); are of variable arity, flattened.e., no
direct subformula of a disjunction or conjunction is
again a disjunction or conjunction, respectivelgnd

trivial cases(n = 1) are simplified to their gbvious
equivalents, which arg|(F,) = L[(Fy) = F;, () =
O,and J( ) =T.

Conversion to NNF is possible due to an extension of De-

Morgan’s law. As shown in Kaisg2001), the equivalence

Even if no restrictions are placed upon propositional for-ﬂs\r}l(,:l’ F) e S

,,,,, mm (F1,...,Fy) holds for selec-

mulae for the specification of constraints, this is often not;;y, operators.

the case for the prover language. In the domain of auto- pgeydocode for our SAT algorithm is shown in Figure 6.
matic theorem proving, formulae are frequently required intechnical details about the implementation as well as ex-

CNF in order to simplify and speed up the prover. However,
this requires an additional conversion step of generating
clauseddisjunctions of literalsfrom the input constraints.

This can either be done naively, by distributing conjunc- A1,GORITHM SATgr

tions over disjunctions and removing subsumed clauses, OfNPUT: F € SNF

by the satisfiability-conserving transformation due to Tseitin QUTPUT: 1 if F satisfiable, 0 otherwise
(1970 that introduces new variables as abbreviations forBEGIN

complex subformulae.

However, the naive conversion method may result in an
exponential blow-up of the formula, and Tseitin’s method
suffers from the fact that the SAT checker has to deal with
a larger set of variables. Moreover, CNF conversion de-
stroys the original formula structure, which is detrimental
to any explanation component.

In contrast to small academic inputs, where CNF con-
version poses no problem, our industrial inputs are so large
that naive conversion is impossible, and we need an ex-
planation of failed proofs in terms of the original con-
straints. Moreover, we found that CNF transformation took
as long as SAT checking by itself so that we wanted to
eliminate this additional intermediate step for the inter-
active use within the BIS system, where turnaround times
are to be kept small.

6.3. A SAT algorithm for formulae in selection
normal form (SNF)

We developed a prover for arbitrary propositional formulae
including our selection operatolS). The prover imple-
ments an extension of the well-known Davis—Putnam algo-
rithm (Davis & Putnam, 1960for formulae in CNF.

Input formulae to our prover have to be in SNF, which is
defined as follows. SNF denotes the set of all propositional
formulaeF including selection operato&y fulfilling three
additional properties:

IFF=TORF =zO0OR F = -z THEN
return 1
ELSE IF F' = 1 THEN
return 0
ELSEIF F = \/(F},...,F,) THEN
FORi=1TOnDO
IF SATsne(F;) THEN
return 1
FI
(00
return 0
ELSEIF F = S%(Fy,..., F,) THEN
FOR EACH M' C {1,... ,n},|M'|=k,k € M DO
IF SATsne(Ajerr Fi A /\ie{l,...,n}\M’ —F;) THEN
return 1
FI
oD
return 0
ELSEIF F = A\(Fi,...,F,) THEN
FORi{i=1TOnDO
IF F; = x THEN
return SATsng(F'|z=1)
ELSE IF F; = -« THEN
return SATsng( F'|z=0)
FI
oD
choose some variable z occurring in F'
return SATSNF(F‘EZI) OR SATSNF(FlaCZO)
FI

Fig. 6. A Davis—Putnam style algorithm for SNF formulae.
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perimental results and a comparison with the SATO SAT We now briefly present three algorithms for INO compu-
checker(Zhang, 1997 can be found in Kais¢R001), where  tation. We assume that the underlying satisfiability check-
our algorithm performed comparably or better than SATOing algorithm SAT also generates a $edf models in case

on automotive product configuration data. An executablehe input formula is satisfiable and returns the empty set
file running under Windows N/2000 is available from otherwise. We further assume that SAT returns only a small
http://www-sr.uni-tuebingen.dgedm/icnf.exe. nonempty subset of all models in case of a satisfiable input
formula. Details on the algorithms, proofs, and an empiri-
6.4. lterated SAT tests cal evaluation can be found in Kaiser and Kiicl{R001a).
Most of the consistency tests from Section 4.3 decompos@-4-1. Algorithm Basic

into large series of related SAT tests, which are typically of This algorithm(see Fig. 7 determines the sets of INO
the form PO= F, for all F, from a large seF = {F,,...,F,}.  variables by testing for each variabieccurring inF whether
Usually, allF, are small formulae compared to the PO. Thisthe formulaeF|,_, andF|,_, are satisfiable. The number
characteristic allows for heuristics to considerably speed upf satisfiability tests i$ + 2(o + n) for a formula that has
consistency testing, which is illustrated in this section forinadmissiblen necessary, and optional variables. Inves-
the detection of inadmissible, necessary, and optional coddigating at first whether a variable is necessary would result

(called thelNO problemin the following). For a satisfiable in n+ 2(i + o) calls to SAT.
formulaF, a propositional variablg is called inadmissible

if F|,_, is unsatisfiable; it is calletiecessanif F|,_g is
unsatisfiable; if neither of these two conditions hotds

static consistency criteria of Section 4.1.

ALGORITHM Basic
INPUT: Satisfiable formula F
OUTPUT: I.N.O
BEGIN
I=0.N:=0.0:=0
FOR ALL z € PropVars(F') DO
A :=SAT(F|z=1)
IF A = ) THEN
I:=1U{z}
ELSE
A := SAT(F|z=0)
IF A = ) THEN
N :=NU{z}
ELSE
0 :=0U{z}
FI
FI
OD
RETURN I. N.O
END

ALGORITHM SAT-Heuristics-Directed
INPUT: Formula F. N'. I
OUTPUT: z € PropVars(F), B € {0,1}

BEGIN
V := PropVars(F)
B:=1

IFV\ (N’ UI') # 0 THEN
choose zin V' \ (N' U I')
ELSEIFV N N’ # 0 THEN
choose zin V. N N’
ELSE
choose z in I’
B:=0
FI
RETURN z. B
END

Fig. 7. The INO algorithms Basic, Filter, and the variable selection algorithm SAT-Heuristics-Directed.

6.4.2. Algorithm Filter

ALGORITHM Filter
INPUT: Satisfiable formula F'
OUTPUT: I, N,O
BEGIN
I:=0.N:=0.I' =0.N' :=0
FOR ALL z € PropVars(F') DO
IF z ¢ I' THEN
A :=SAT(F|z=1)
IF A = ) THEN

I:=1U{z}
F := Flz—0
ELSE

I' =r'u{z}u{y|3IMecA: M [y}
N :=N'U{y|3IMeA: M | —y}
FI
FI
IFe ¢ N' Az ¢ I THEN
A :=SAT(F|z=0)
IF A = ) THEN

N :=NU{z}
F :=Flz=1
ELSE

N':=N'U{z}U{y |3IM€cA: M = —y}
I' =ru{y|3IMeA: My}

FI
FI
oD
RETURNI.N.I' "N’
END

Algorithm Basic can be improved in two ways. If some
calledoptional This definition captures the corresponding variable is not inadmissible and not necessary, SAT returns
a set of model#\. For each variabl& occurring positively
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in some model this allows the immediate conclusion that the controversial assertion, thereby localizing one cause
cannot be inadmissible. Conversely, each variable occur- of the inconsistency. Note that this set need not be
ring negatively in any model cannot be necessary. In the unique.

following 1" denotes the set of variables that are not in- 5 presentationThe conflicting minimal rule set is pre-
admissible andN’ denotes the set of variables that are not pared for presentation to the user, trying to maximize
necessary. We thus attad = 1" N N’. If the number of comprehension.

optional variables is dominant, as in our application area,
this filtering criterion can reduce the number of required
SAT tests dramatically. Moreover, by setting inadmissible
and necessary variables as soon as possible to the only valge5 1 Localization
they can take, we can gradually reduce formula size and™ "™’ o )
hence accelerate the underlying SAT algorithm. Algorithm USing the formalization PO of the product overview as

Filter in Figure 7 is an extension of Algorithm Basic and presented in Section 3, we can reduce the localization prob-
implements these ideas. lem for most controversial assertioago the computation

of a minimal unsatisfiable subformuldUs) of PO [0 a.
6.4.3. Algorithm Directed Filter Traditionally, a MUS is defined for a set of clauses. Slightly
generalized, for a conjunctidd=F, 0 - - - 0F, of a set of

returned by the SAT algorithm. The filtering works best if formulaeS= {F,,...,F} with Cbeing unsaﬂsﬁable, aMus
the models contain variables positively that have not yeff C is a subsetS’ of ELSUCh thatC’ = | keg F is still
been detected as admissible, and contain variables negansatisfiable, bu€"” = | <~ F is satisfiable for allS” C
tively that have not yet been classified as not necessary. I18'. See(Davydov et al., 1998; Kleine Biining & Xishun,
order to maximize in algorithm Filter the number of vari- 1998; Kullmann, 2000for further elaborations and special
ables for which this condition holds, we use a correspondpurpose algorithms for MUS computation.
ing variable selection strategy in the underlying Davis— So, for a contradictory formula, a MUS is a smallest
Putnam style SAT checker, as implemented by the algorithnsubset that is still contradictory. In our configuration set-
SAT-Heuristics-Directed shown in Figure 7. The secondting, the cause of an inconsistency can thus be reduced to a
value B returned by the algorithm indicates whether the(small) fraction of the rule base. Localization by MUS com-
variable should be set first to tru&) or false(0) during  putation is possible for all assertions of the form PG
model search. Thus, we obtain the algorithm Directed-Filterwhen formulated as a SAT problem, which indeed holds for
In order to check the effectiveness of our INO algo-all static and dynamic consistency properties with the ex-
rithms, we conducted experiments with a set of Mercedeseption of consistency of the supplementing process. How-
model classe&aiser & Kiichlin, 20048). The results dem- ever, using CO instead of PO allows a similar reduction in
onstrate the effectiveness of Filter and Directed-Filter comthese cases, too.
pared to Basic. Comparing Basic to Filter, improvements It turned out to be practical to extend the notion of a
between 47 and 91%, in terms of time, and 34 and 91%, iMUS to arbitrary formulae in negation resp. selection nor-
terms of SAT calls, could be measured. In addition, usingnal form. Thus, MUS computation can be performed on a
the modified variable selection heuristics SAT-Heuristics-formula representation that is much closer to the original
Directed further accelerated INO search by up to 90% andiaLoG rules.
reduced the number of SAT calls by up to 89%. For only
one formula that contained relatively few optional vari-
ables Directed-Filter performed worse.

3. ReasoningA detailed step by step derivation is gen-
erated that explains this cause of the inconsistency.

The effect of filtering depends on the s&tof models

DEFINITION 6.2. For an unsatisfiable propositional for-
mulaf in negation normal form we caff a minimal unsat-
isfiable subformuldMUS) of f, if and only if the following
conditions hold:

6.5. Explanation
1. g is obtained fronT by deleting arbitrary direct sub-

In many cases failures of consistency assertions indicate formulae of conjunctions, that is, by replacing subfor-
errors in the product documentation, and usually such de- . o0 ¢ the formh. 0O - - .,Dh b)} h 0...0Oh for
1 n 1 Tk

fects are corrected by adapting the documentation. Here the {in.. i C{L,... 0}
problem arises that the mere size of the rule base makes -
finding the cause of an inconsistency a daunting task. There-
fore, tool support can be of great help, and we integrated an 3. Removing an arbitrary direct subformula from a con-
automatic explanation facility into the BIS system. Expla- junction ofg makes the resulting formula satisfiable.
nation of failed assertions is done in three steps in BIS ]
(Kaiser & Kuichlin, 200b):

2. The formulag is unsatisfiable.

For an extension of this definition to formulae in SNF,
1. Localization: The system generates a minimal set ofwe consider selection operators as atomic formulae, thereby
rules that becomes contradictory in combination withforbidding subformula deletions under selection operators.
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Consider the formula following as an example: ear in the number of direct subformulae of conjunctions.
More details on the algorithm can be found(ikaiser &
F=aO-bO(bOd)O-alc)0dO(bO=c). (2 Kichlin, 200b). An example of a MUS calculated by BIS

is shown in Figure 8. In the upper part of the figure, each
item shows a complete rule with highlighted literals corre-
sponding to the MUS. In our formalization PO all rules are
conjunctively connected, so that each item is a direct sub-
formula of PO’s main conjunction. The lower part shows a
which is still unsatisfiable. Removing any further direct compressed view where nested subformulae that are not
subformulae of any conjunction i makes it satisfiable, part of the MUS are not displayed. We will discuss the
however. In this example, the only MUS Bfis G. In many  presentation of a MUS in BIS in more detail below.
cases a formula’s MUS is considerably smaller than the We conducted experiments with this algorithm and could
formula itself. demonstrate the practical effectiveness and applicability of
For an unsatisfiablE in selection normal form, the strat- our MUS computation approach. For the localization of
egy to find a MUS is straightforward. Initially, we talkeas  inconsistencies, the problem of finding a MUS, which in
an approximation of our MU%,,, and for each conjunc- theory belongs to the second level of the Boolean hierarchy
tion C in formula F we remove direct subformulae from (Papadimitriou & Wolfe, 1988 turned out to be tractable
Fum, as long as the resulting formula is still unsatisfiable.in our application. With only simple heuristics, it never
This leads to an algorithm with a number of SAT-calls lin- took the system more than one minute on a Sun Ultra E450

Deletingd from the main conjunction and replacitg’ d
by b in the nested conjunction results in

G=alO-=-bO(MO-alc) O(bO=c),

E Anzeigen... ;IEIEI

® 030

® (054 /(612/613 /617 /401L /402L £ 403L / 406L / 412L / 413L ¢
520L / 531L/ 536L / 537L / 543L / 5531/ 604L / 607L 4 625 / 675L /
683L / 835L / 839L / 847L 7 873L) + (M113 + MSS / (2104 7 2504 /
TS0A) + 543 + (680 + 677 / 631 / 676) + (592 / 693 / 691 + 345) + 240
+ 611+ 876 + -MOOS + (-MI111 / -498) + (-M111 / -625) + -280 +
494 + -802/ 802 + (2104 / 2504 / 7504) + 543 + (630 + 677 / 681/
676 /P34) + (5927 693 / 601 + 345) + 240 + 611 + 876 + -MOOS +
(-MI11/ -498) + (-M111 / -625) + -280 + -494) + -450 + -641 + -955
+ 056 + -050 + (070 / 570) + 074 + 975+ P08 + P00 + P27 +
P32+ -U0S)

® (-680 / (498 / 494 + M113 / 954) + -M5S + -641 + -643 + -644 + -652
+ 653+ -650 + -664 + -676 + -681 + -794 + -P33 + -P34)

® (-030 /(-L / M113 + M43 + MDOS + 242 + 260 + 275 + 404 + 405 +
680 + 774 + (873 /401) + 954 + (2114 / 2514) + -480 + -494 + -493 +
550+ R+ L + P32+ -P33+ -P34)

Feduced to the masx

® 030

®(-054 /(MSS+ __/-MOOS +  /-MODS + )+ )
® (-680 /-MS5+ )

®(-030/(-L/MO0S + 680 + 954 + _H+ L+ )

Ok Speichem.. Drucken... |

Fig. 8. AMUS in BIS.
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Table 2. The typical size of a MUS in BIS 6.5.3. Reasoning

F IS ISkl IRe| IRey | Approaches to explain the unsatisfiability of a proposi-
ALERT-05 11429 3 1139 >  tional formula are as numerous as SAT algorithms. For ex-
ALERT-22 4311 31 1017 12 ample, any execution trace of acomplete SAT algorithm, such
ALERT-25 4226 18 1011 3 asaresolution refutation tréRobinson, 196%or the search
ALERT-36 10480 27 1142 8 tree of the Davis—Putnam algoritiBavis & Putnam, 196
ALERT-37 10480 7 1142 4 . . . -

ALERT-45 10408 10 1142 4 yields an exhaustive explanation. The specific form of the

resulting explanation depends considerably on heuristics, like
variable selection for SATHooker & Vinay, 1995, which
fill some indeterminism within the general algorithm. These
heuristics critically influence the efficiency of the search, and
consequently the size of an explanation, which is the main
determinant of its quality. Besides size, intuition and intelli-
to find a MUS for formulae with several thousands of con-gibility are important factors for the quality of an explana-
junctive subformulag(|S:|), approximately 1,000 rules tion. Eventhough there is no objective measure of these two
(|Rg1), and more than 1,000 variabl@s. Table 2. Inmany  factors, we cannot leave them out because they are directly
cases, the run time was even below 1 s. related to the explanation size. For example, the listing of a
To investigate the effectiveness of MUS computation forset of constraints together with the notice that they are un-
explaining inconsistencies we collected a set of 50 formusatisfiable may be sufficient for someone who knows the for-
lae originating from alerts due to inadmissible and necesmalization and is trained in logical reasoning, whereas for
sary codegKaiser & Kiichlin, 200h) and measured some the documentation personnel atleast a step by step refutation
characteristics of MUS computation. Table 2 displays a shorin terms of codes is desirable.
excerpt of the test results. In all cases, the number of con- In BIS, we use a linear execution trace of the backtrack-
junctive subformulaé| S, |) as well as the number of rules ing SAT algorithm proposed by Davis, Logemann, and Love-
(IR, ) could be reduced by 99%. Thus, with only a coupleland (1962. Explanations therefore indeed are refutation
of constraints and smaller subformulae within these conproofs: We start with the converse of the assumption and
straints left, MUS computation enables our system to narshow that this leads to a contradiction. The applied reason-
row the cause of an inconsistency to a manageable subsetiofgy process contains immediate consequences and case dis-

the product database. tinctions. Immediate consequences are due to constraints
_ containing only a single propositional variable, and there-
6.5.2. Presentation of results fore rule out all orders either including or excluding this

In addition to the size of a conflicting rule set, the form in code. Such constraints are considered fitstit propaga-
which the result is presented to the user is important for théion). If there are no such constraints, we choose a code for
usefulness of the explanation feature. Clearly, the MUS beease distinction and explain in two steps why we did not
comes tedious to read even for small formulae, and théind a valid order with or without this code.
relation to the original formula is not obvious. On the other Figure 9 illustrates how the system justifies its con-
hand, printing the whole formula of the consistency condi-clusion that codé80 is inadmissible in a C-class limou-
tion (possibly highlighting the contained MUSields a  sine. It lists five vehicle variant$955 +R, 955 +—R,
large complex formula, even if only relevant constraints are—955 +M112, —955 +—M112+R, —955 +—M112+—R)
displayed. which all lead to inconsistencies in conjunction with code

Our answer is to list all relevant rules of the original 680. For example, an order with cod680 andM112 and
formula, and to replace within these rules any maximal ir-without 955 (case 1.2.1, Fig.)9 makes code#55, 954,
relevant subformula by a wild card like -, as shown in  M113, andRinadmissible and code®8 andL necessary.
Figure 8. In the 71-kB formalization of a C-class limousine This leads to a contradiction becaus&ecomes inadmis-
(consisting of 694 constructibility and 127 supplementingsible (due to the first part of the conjunction of the seventh
rules the system finds a total of three constraints to be-ule) and necessary at the same time. Listing with each
come contradictory in combination with tlimadmissible  reduction step the formula causing the implication would
code030. While the complete constraints displayed in themake the justification more intelligible but considerably
upper part of Figure 8 are still hard to analyze, it is feasibldonger. It should also be noted that we do not use any kind
to understand the inadmissibility of co@i80 from the max-  of SAT learning technique®ayardo & Schrag, 1997; Silva
imally reduced yet structure preserving representation i& Sakallah, 1999to shorten explanations, because there is
the lower part of the example. Here the relation to the origho obvious way to integrate this kind of argument into a
inal constraints is obvious. However, it may still not be causal explanation without confusing the user.
immediately obvious why the MUS is unsatisfiable. Hence To measure the practicability of this explanation tech-
we need more of an explanation. nique in our application domain, we tested this functional-
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@Anzeigen... - |D |£|

Reduced to the mas: -

* 630

s (L/R)

®(-MI12/-MI13+ )

* (055 /ML + )

* (054 /MBS + )

* (-680 /(498 /494 + . /954) + -MSS + )

® (408 F(-L/9S4 +  JMSS+ O+ (-RAMII2Z+ 955+ /OS54 + 0+ )
® (404 /(-L/MI12+ 055+ J+L+ )

Refutation:
1. 680 => -M55 => -054 == (955 / -055)
1. 955 =>MI113=> -Ml12=>(R/-R)

1. R => -493 => 494 == fulse.
2. -R=> L => 493 => 404 => false.

2. -955 == (MI112 / -MI112;

1. M112 => -MI113 => 498 => -R => L => faise.
2 -M112 => (R /-R}

l. R=> 498 => 494 == flse.
2 -R=>L =>-408 => 404 => fglse.
’ -l

oK Speichern... Drucken... |

Fig. 9. An example of an explanation in BIS.

ity on the minimal unsatisfiable formulaé,,) computed 23 = 8192 distinguishable cases. The actual number of

during the experiments of Section 6.5.1. We collected theases displayed in the third column of Table 3 clearly shows
total number of variable6|Vr,, |) occurring inFy,, as well  that the automatically generated justifications are even tract-
as the total number of leaves in the search tree of an unsueble for humans. Due to unit propagation, never more than
cessful complete model sear¢fSAT(Fy,)|). Table 3 lists five cases needed to be analyzed, and indeed, for most for-
the results for some of those formulae. mulae the contradiction is immediate without any case

No MUS contained more than 13 different variables whichdistinction.
limits the size of a justification to a worst-case value of

7. BIS SOFTWARE ARCHITECTURE

The BIS system has been constructed employing object-
oriented client-server technology. It consists of a general
prover module programmed in+4&- with our dedicated
Fu Ve, | |SAT(F,,)| SA‘_I'—ch.ecker as its core component; a-€ server which
maintains product data in raw and pre-processed form and

Table 3. The typical size of an explanation
in BIS

2::521:22 12 1 handles requests by building the appropriate formulae for
ALERT-25 7 1 the prover; and a graphical user interface programmed in
ALERT-36 6 2 Java, through which tests can be started and results can be
ALERT-37 4 1 displayed. The three components communicate via CORBA
ALERT-43 10 5

interfaces(CORBA, 1995, thereby achieving great flexi-
bility, allowing the placement of each component on a dif-




Formal methods for validation of product configuration data 93

f User | Test E Prover
User 1 Layer| Layer instance 1
Data
CORBA Layer
Prover
User 2 A CORBA E instance 2
E Prover
User 3 instance 3

Clients Server Components
(Java) (C++)

Fig. 10. The BIS system architecture.

ferent, suitable computer or the use of multiple instances  all key tests are available upon mouse-clicks, and all

of a componente.g., proverif the workload demands this. results are presented graphically.

Figure 10 shows a schematic view of the BIS system cystomized special testBIS implements a set of cus-

architecture. . _ tomized special tests, formulated in terms of the appli-
Within the server, theserLayer is responsible for cation. We also offer a general-purpose interface to the

authentication and handles user requests by starting the prover which allows queries about the existence of
appropriate consistency tests. Therefore it employs the \5iid orders with any property that can be described

TestLayer  which in turn is responsible for managing by a propositional formula. This permits theoretically
(i.e. scheduling, startingall consistency checks. The data powerful and academically attractive nonstandard con-
layer is used as a mediator between TestLayer and sistency checks on the product documentation, but the

the EPDM system, and supports the caching of precom-  acceptance of this tool was rather poor.

puted data. Push-button technologyfhe logical prover component

runs a decision procedure and needs no assistance in
8. INDUSTRIAL EXPERIENCE finding a proof. Entire test sets reflecting thousands of

. . ) i proofs run at the click of a mouse.
BIS was created upon an industrial order. Since the first

feasibility study(Sinz, 1997, we have received pertinent
feedback from documentation experts usibopnro and
BIS which has influenced all aspects of the system. Here e
we summarize some key features of BIS which were nec- ~ added efficiency. We also developed several parallel
essary for its acceptance in our industrial context. Some of ~ SAT checkers but did not yet apply them in industry.
these are special cases of general remarks about FormalSoftware technologyEnd users do not like to maintain

Efficiency:Efficiency is important. Significant delays in
the workflow cannot be tolerated because they slow
productivity. We developed our own SAT checker for

Methods in industry. business critical code written in nonstandard lan-
guages. BIS is constructed using standard object-
Graphical user interfaceBIS offers an application ori- oriented software technology for industrial client—

ented graphical user interface so that all interactionis ~ server systems: Java clients+€ server, and a
done in terms familiar to the operating personnel. Users ~ CORBA-based component model. We used CORBA
do not like to type logic on command lines. Therefore to speed our development, but now a CORBA Ii-
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cense is required, which makes it difficult for depart- in details. The logical model of a system is calleglystem
ments to evaluate BIS without an up-front financial theoryby Waldinger and Stickgl1992. Thus, as observed
commitment. by Hall (1990, it is a myth that formal methods can guar-

Integration: BIS obtains data fronDiaLoc by reading ~antee that software is perfect. Formal verification of a sys-
intermediate files. This is an impediment to daily uset€mSis only possible where a complete set of specifications
because users would prefer to stay entirely within ~ Cs can be shown to be valid in the system theory, which

aLoG and have the BIS tests available as options oriMust be a comprehensive formal modes of the system.
their DIALOG Screens. This also implies that we must have formal semantics of the

programming language in whic8 is built, and that the

It is also interesting to relate our industrial experiencelogic of our system theory is compatible with our specifi-
with BIS to the debate about the industrial use of formalcation language and the verification method.
methods in computer science in gendidl Craigen et al., However, complete formal specifications and formal se-
1995. Formal methods have been associated first with thenantics just do not exist in practice. Without formal seman-
specification, verification, and validation of softwa@er-  tics, we can only verify the system theory and not the system
hart, 1990, but today they are also applied to system de-itself. In rule-based systems, at least the semantics part is
sign and hardware design together with software engineeringpanageable, due to their proximity to logic formalisms.
(Saiedian, 1996; Wing & Woodcock, 200®ccording to ~ Without a complete set of specifications, all we can do is
Wing (1990, “Formal methods are used to reveal ambigu-capture a few of the requirements formally, as alsgbf
ity, incompleteness, and inconsistency in a system,” whiclvalidation theorems, which, if they hold, will greatly in-
is exactly how we used them. crease our confidence [

On the face of it, BIS deals witfinput) data validation It has been observed by our industrial partners Enat
rather than program or specification validation. There is na.og itself contains a model of the world of design drawings
formal specification oDiaLoG, and we did not apply clas- (which is again a model of parts and assembliaad that
sical program verification techniques to its code base. HowthereforeDiaLoG’s model of the real world may be as de-
ever, we have already seen that our logical rules can bgective as the BIS model dbiaroc. Thus, ultimately we
viewed as postconditions associated with action rules thateed an automated verifiably correct translation from the
DiaLoc executes when it interprets the associated formudesign drawings to our formal models, which does not exist
lae. HenceDiaLoG can be regarded as a special kind oftoday.(The correspondence between design drawings and
rule engine and our action rules can be regarded as an eactual parts is verified elsewhere in manufactunng.
pert system with situation—action rules based on Boolean The hardest part in the feasibility study of BIS was in-
logic. This insight allows us to relate our experience withdeed to build the system theory BiaLoc, which models
BIS to reported experience with the validation of expertits inner workings as a set of action rules associated with
systems(Waldinger & Stickel, 1992 which is a special the sets of supplementation, constructibility, and parts se-
kind of software. lection formulae. Do not be misled by our sanitized, sim-

Thus, there is a view of BIS as a program verification plified, and abstract description in Section 2: we did not
system. Under this view, BIS proves assertions about thénd a scholarly document describinaroc or even the
expert system executed yaLoc: for example, a code is semantics of its language of formulae. The actions hat
necessary if and only iDiaLoc’s order processing algo- ALoc takes are encoded in COBOL and were explained to
rithm will terminate withtrue only if the code is presentin us in long hours by word of mouth, in the terms of the
the input; likewise, a code is inadmissible if and only if application specialist&éhone of them computer scientists
DiaLoc will terminate with false whenever the code is We were extremely lucky because much of the semantics of
present in the input. Because of the close association dbiaLog lies in the propositional formulae, much of the rest
action rules and postconditions, there is also a view of BISan be modeled by simple action rules associated with these
as a system for specification validation. Under this view,formulae, postconditions can be readily associated with the
the postconditions are part of the inpattput specifica- rules, and highly efficient SAT-checking methods are now
tion for the associated expert system. BIS proves assertioravailable that can efficiently handle the proof obligations.
about the postconditions that necessarily hold dften.oc Thus, we are left with a situation where the system theory
has executed the associated action rules. If an assertios not rigorously derived from the system. Hence, a formal
fails or an otherwise surprising consequence of the specifiverification of a product documentation executedim-
cation is inferred by BIS, the user may want to change tha.oc is impossible. In practice, however, even the complete
specification. Fortunately, a change of the postconditiorverification of a complex system is less important than the
implicitly changes the associated action rule, so that theliscovery of program bugs or errors. This is because the
user immediately gets a new expert system satisfying theuccessful verification will only happen once, at the end of
new postcondition. system development, whereas errors must be found during

Note that all our proofs concern the logical model of the entire development process. In our case, the develop-
DiaLoG; the real COBOL system may differ from the model ment of product documentation is really finished only when
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a model line is discontinued. Moreover, for debugging pur-9. RELATED WORK

poses even a rather loose relation of the system theory to ] . .
the system is no problem, as long as bug alerts can bA lot of different schemes for product configuration have

substantiated by running the real system on the critical inP€en suggested in the literatuf®abin & Weigel, 1998;
put. Therefore, in practice the real issue is debugging rathéptnter & Kiihn, 199§ starting with McDermott's work on
than verification in the pure sense and BIS is still veryR1 (McDermott, 1982 and Digital's XCON (Barker &
useful as a highly sophisticated formal debugging aid. ~ ©'Connor, 1989, two systems for computer system config-
Indeed, BIS found real bugs, bothaLoc’s model of uration. The scheme that is most closely relatedta-
the real world and in the real world itsel.g., in one case LOG'S _dqcumentation methoq is the constraint rule formalism
of an inadmissible code, it was found that the configuratiorPf Soininen et al(2003, which attaches stable model se-
was indeed physically impossible, because of an oversighfantics to a rule-based configuration framework. Our ex-
in the desigi It can be argued that the bugs were some-2mple from Secﬂon 3wr|tter'1 in Soininen’s formulation with
what esoteric, but this is to be expected from residual bug§0-called(weighted constraint rules reads as follows:
that have survived existing quality assurance methods. Some

of them would still have been costly in practice. X<notz false«x,y
Because debugging is the real issue rather than verifica- X<« noty false« znoty
tion, failed validations can be extremely useful, provided zey false<« y, z, notx.

that they reveal costly errors in the system that established

processes fail to expose. Two conditions are critical heret is easily verified thafx} is the only stable model of these
first, failed proofs need to be explained, and second, theules, which is in accordance with the results obtained with
explanation(which is necessarily in terms of the system our verification semantics. We do not have a proof for the
theory must be tied to a real flaw in the documentation general equivalence of both formalisms, but we hope that
system. the concordance has become apparent. Compared to Soinin-

First, a failed proof is useful only if its root cause can been’s work, our propositional verification semantics aims in
explained in a succinct and intelligible way. It has beena different direction: in their work, configuration of indi-
observed in this context that explanation is a sadly nevidual orders is the objective rather than the verification of
glected area of automated deducti@raigen et al., 1995  the rule base as a whole. For example, our semantics allows

Due to incomplete system theories, there may be failechn in-depth examination of the completion relation. More-
proofs that do not correspond to re@lpplication errors  over, consistency checks can be computed using standard
(false positives Nobody has the time and patience to sift SAT checkers.
through reams of false positives. Several times we had to Over the last years, SAT checking has gained renewed
go back and add extra axioms to our system theory tattention by the advent of both new theoretical results and
exclude false positives. False negatiasfailure to cap- improved implementatiofiZzhang, 1997; Silva & Sakallah,
ture problems can seriously undermine the credibility of 1999; Moskewicz et al., 2001A comparison of these im-
formal methods, so only well-debugged verification sys-plementations with the prover that is part of BIS can be
tems should be deployed; there is no time for experimenfound in Kaiser(2001). Whereas all other SAT checkers
tation and only a finite amount of good will on the part of require the input to be in CNF, our prover accepts proposi-
the application specialists. No logically unsound resultstional logic formulae without restrictions and offers a spe-
were ever reported for BIS. However, false positives arecial selection operator.
still a problem because the tests it performs are not even
all necessary for the correctnessdfaroc: some failed
tests reflect situations that are handled elsewhemiys ~ 10. CONCLUSIONS
I(i((;(\jvrggtli tes:i? it?ihiog]rig]esol %;;YSE{; tgﬁbgh:g/ $2allywe bglieve that the main findings of the BIS project are the
matters to the user is the correctness of the overall bus{-O“OW'ng'
ness process.

Whereas BIS has received positive evaluations by sev-
eral documentation departments, it has not been imme-
diately integrated in the business process. Established
successful business processes are extremely valuable and
very expensive to change because of many interdependent
issues. New methods, such as formal methods, must be seam-
lessly integrated into the process and function with the Prover technologyOur main contributions have been to
established workforce; in this area, BIS still has some de-  extend propositional logic by a special selection oper-
ficiencies. However, we have recently seen signs of new  ator, to develop an efficient SAT checker without CNF
commitments to BIS in the context of larger reorganizations. conversion, to provide a sophisticated explanation com-

Configuration: Formal methods can treat real-world is-
sues in the configuration of complex products at the
engineering and manufacturing stages. It is easy to see
how our methods could be applied to sales and after
salegspare parts supplybut we have not treated these
business cases here.
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