Munich Center for Technology in Society Technische Universitat Miinchen

From Proof Theory to Machine Learning

Challenges of Responsible Software and Al

Klaus Mainzer

Emeritus of Excellence
Technical University of Munich

Senior Professor
Eberhard Karls University of Tlbingen

Munich Center for Technology in Society Technische Universitat Minchen

G. W. Leibniz: Mathesis Universalis -
erification by Algorithms

Dualsystem

\‘ L AN

Zehnersystem

0 -

1 W‘})\s : ‘ In _his_“mathesis universalis” G. W.

; @Q{" A Leibniz (1646-1716) demanded the

; ») - theory of a universal formal

3 ? T - language (lingua universalis) to

j 3 3 G represent human thinking by calculation
, procedures (algorithms) and to

. = = .~ implement them on mechanical

S N, Ex calculating machines.

Mathematical theorems should be verified by “machines” (ad abacos). But also
all kinds of practical problems should be solved by mechanical procedures
for benefits of mankind.

Munich Center for Technology in Society Technische Universitat Miinchen

Trust & Provability in Mathematics and Society

Nowadays, mathematical arguments often have become so complicated that a
single mathematician rarely can examine them in detail: They trust in the expertise

of their colleagues. The situation is similar to modern industrial labor world:
According to the French sociologist Emile Durkheim (1858-1917), modern

industrial production is so complex that it must be organized on the principle of
division of labor and trust in expertise, but nobody has the total survey.

On the background of critical flaws overlooked by the scientific
community, Vladimir Voevodsky (1966-2017, IAS Princeton, Fields
medal) no longer trusted in the principle of “job-sharing”. Humans
could not keep up with the ever-increasing complexity of mathematics.
Are computers the only solution? Thus, his foundational program of
univalent mathematics is inspired by the idea of a proof-checking
software to guarantee trust & verification in mathematics.

Munich Center for Technology in Society Technische Universitat Miinchen

Incorrectness of Programs leads to Catastrophies

Crash of Ariane 5 by Killed by a machine by massive overdoses of Software failure of BOing 737 Max 2019
software failure 1996 radiation - Therac-25 1985-87

Dramatic accidents highlight the dangers of safety-critical systems
without software verification .

MCT

Klaus Mainzer

Munich Center for Technology in Society

ok~ W D=

Introduction: Challenges of Artificial Intelligence
Foundations of Constructive Proof Theory

From Constructive Proof Theory to Proof Assistants
Verification in Machine Learning

Verification and Trust in Mathematics, Computer
Science, and Society

Technische Universitat Minchen

Munich Center for Technology in Society Technische Universitat Miinchen

1. Introduction: Challenges of Artifical Intelligence

1.1 From Digital Computer to Al

1.2 Machine Learning and Neural Nets

1.3 Machine Learning and Internet of Things

1.4 From Certification of Al-Programs to Responsible Al

1.1 From Digital Computers to Al

Munich Center for Technology in Society Technische Universitat Minchen

Turing Machine and Computing

Infinite Taps

Alan M. Turing
(1912-1954)

1/0(0]0|1 (1|10

Fead fWrite Head

Zantrol Lnit

Every algorithm (computer
program) can be simulated
by a Turing machine
(Church’s thesis).

Munich Center for Technology in Society Technische Universitat Miinchen

What is Machine Intelligence ?

Turing Test
/ﬁJHUMAH
HUMAN
INTERROGATOR qu

Munich Center for Technology in Society Technische Universitat Miinchen

Working Definition
of Artificial Intelligence

A system Is called intelligent iff it can solve complex problems
autonomously and efficiently.

The degree of intelligence depends on the degree of the
autonomy of systems, the degree of complexity of problems
and the degree of efficiency of problem solving procedures.

MCT.

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

Al defeats Humans in a Knowledge Quiz

WATSON is a semantic search
machine (IBM) which can
understand questions and
answers in natural language by
parallel computing of phrases
with linguistic algorithms and
probabilities of answers in huge
data bases.

General parse of question.

Begin Parallel Tasks

Form hypotheses

—

Check hypotheses against facts

e

Assign confidence level 1o

hypotheses

End parallel tasks

Generate answer, or pass, based
on confidence levels.

g

Execute parallel tasks
until ne more remain
ar time is up.

Munich Center for Technology in Society Technische Universitat Miinchen

Al learns faster than Humans

' By ROMES A

et (SN 54
L R 0R00H (TE
O &+E D50 543
L e R e
e et O SE
L (R0 e
Dass (CE) 547 B : :
@3 = o - N s I r. Al vs Human
oW = [" b N . e
8 = R0 s4 - i AR : ' Game 4
M = (HIEHN) .1 , o) e S\ wmpe s (.
® = Pt L) | G T . N =] I | - ’ Alﬁ/’\ﬁﬁﬂ%ﬁ%‘;%
O = DR 4 § , Vil 2| B8] S) 3
e = OO0 W v N | “ ; [. FanHu2p
Ou = oo e N R =~ ‘ : : | B 00:00:00
®u = OCEN0 W ‘ R T R : : . Y= p—
O’ = 0 BLE g . e , ‘j::;___h{ 2
E ﬁz 4 b " L L4 - i 2 —— oo
= BEs =®L = 7B%

AlphaGo

B 00:00:00
R 1

Munich Center for Technology in Society Technische Universitat Miinchen

1.2 Machine Learning and Neural Networks

MCT.

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

Neural Networks and Learning Algorithms

Neural networks are complex systems of firing and non-firing neurons with topologies
like brains. There is no central processor (,mother cell‘), but a self-organizing
information flow in cell-assemblies according to rules of synaptic interaction (,synaptic

outputs

plasticity®).

outputs

inputs

Feedforward with one
synaptic layer

Learning algorithms:

 supervised

* non-supervised
* reinforcement
« deep learning

outputs

inputs

Feedforward with two synaptic
layers (Hidden Units)

inputs
Feedback of recurrent
neural network (RNN)

Klaus Mainzer
Kiinstliche
Intelligenz —Wann
ubernehmen
die Maschinen?

. e

MCT.

Munich Center for Technology in Society

Klaus Mainzer m

Technische Universitat Minchen

Layer 1: Net
identifies different
pixels.

Layer 2: Net learns
to identify simple
forms and shapes.

Layer 3: Net learns to
identify more complex
forms and objects (e.g.
partial faces)

Layer 4: Net learns to
identify whole human §
faces.

Spektrum der Wissenschaft

Deep Learning: How
Machines learn to learn

Deep learning relates to many-layered
neural nets identifying patterns and
profiles with increasing complexity (e.g.
human faces). Huge mass of data can be
classified into categories.

In ,,Google Brain “ (Mount View CA 2014), 1
million neurons and 1 billion connections
(synapses) can be simulated. Big Data
technology enables neuronal nets with many
(recurrent) layers which were only theoretically
possible in 1980.

==y

Munich Center for Technology in Society

Machine Learning detects Elementary Particles

Technische Universitat Minchen

il | The superb LHC (Large Hadron Collider)

performance and modern machine learning
technigues allowed us to identify the coupling
of the Higgs boson to the heaviest fermions —
explaining why there is mass in the universe.

CERN 28 August 2018

The Standard Model of particle physics
predicts that the Higgs boson H decays to two
bottom quarks b, in association with a Z
boson decaying to an electron e and an
antielectron e*.

This event must be identified among billions of data
generated by proton-proton collisions (Big Data).

Munich Center for Technology in Society Technische Universitat Miinchen

Pattern Recognltlon and Classification in Elementary Particle Physics

— »

Slqnal (s) events (e.g., Higgs boson decay
H— t+17) must be distinguished from
background (b) events.

Vector x = (x4, ..., X;,) With n quantities of an event (e.g., x;momentum of a lepton) follows a joint
probability density function with f(x|s) for signal events and f(x|b) for background events. (The density
for signal and background events are indicated by the red dots and blue triangles, resp.)

Pattern (.,event*) selection could be based, e.g., on cuts (a), linear boundaries (b), and nonlinear
boundaries (c). An optimal boundary is provably obtained by using contours of constant likelihood ratio

Ax) = ;((||b§ As probability densities are in general not known, A(x) is not computable (but finite samples

with training data by Monte Carlo methods).

Machine learning algorithms should find a function y(x) that best approximates
the likelihood ratio A(x) for pattern selection of the signal event.

MCT.

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

Machine Learning enables Medical Diagnosis

2.0 A
= { Normal
e 885.5
=% 1
'(,—’ 1.5 4
w
=
10-
-g 7885
£ 810.35%84
z A
o 0.5
= 7475
0.0

700 750 800 850 900 950 1000

m/z
D PCA SCORE PLOT
0.8}|e Normal -
0.6 e Tumor
<
_. 04 o ® °
So2f °*° - .
o Ve
o 00 2 . ® :o.) o : N
LN
€ .02 g0 . .
0.4 ©
...
06 . :
-1 -0.5 -0.0 0.5

PC2 (10.3%)

207 B 8855
= 4 B-cell
™
=
o—, 1.5 "
w
= 7885
B10- 7735 /
'g 760.4 ?,,1/2‘3
S \ 1
(73 0.5 7475 | 8384
E
0.0 s L"L“ <—

700 750 800 850 900 950 1000

m/z
E PCA SCORE PLOT
0.8 | » Normal .
e B-cell
0.6 He T-cell .
0.4} . ’
<ol | e
o2l °*° sl
S ' Ve
> { o
8 0‘O|' o o o® o . g ‘ e
a .02l e ® ¥ ® o o e
04l . »
2 ...
086 ° .

-0.5 -0.0 0.5 1
PC2 (10.3%)

N
o
J

Y
(]
|

TIC Normalized MS Signal
o Y
o o
1 1

C 8855
T-cell
7885

‘ 8384

760.4 | 810.3

747 5

KAV

0.0 +==

700 750 800 830 900 950 1000

=

m/z

[PC6 (2.3%)

PCA LOADING PLOT

02 01 00 01 02
PC2 (10.3%)

Machine learning (ML) supports
pattern recognition in complex data:
In tissue sections, normal lymph
nodes are distinguished from
cancer cells (e.g. breast cancer).

With machine learning, the pathology
in Havard improved the accuracy from
96%0 to 99,5 %. IBM Watson for
Genomics confirmed the diagnosis of
physicians in 1018 cases with more
than 99% and discovered additional
genomic events with great significance.

Munich Center for Technology in Society

Pattern Formation in the Human Brain

Technische Universitat Minchen

The brain is a complex system of billions of firing neurons. Under
appropriate conditions, neural clusters fire synchronously and organize
themselves in macroscopic patterns, corresponding to perceptions,
emotions, thoughts, and consciousness (“Brain Reading”).

MCT.

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

Simulation of Neural Cell Assemblies

=271

(a)

The location (j, k) = (50, 50) is situated ,,at the edge of chaos*, : { y/ |
where local active and stable cells become unstable and P — b |
chaotic by dissipative coupling at time t = 211 (chaos attrator). ;

The input of a neuron can be
simulated in FitzHugh-Naguma
equations (simplification of Hodgkin-
Huxley equations) by electrical
current. The degree of excitation is
denoted with voltage variable V4, the
recovery by variable V5.

V4 (50,50) =100 - 220

' .
ul») "./ \" !
'/ { .

el
|

MCT.

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

The Computational Brain and Neuromorphic Computers

>_/
[

) Neuron
(a)

N hY

Dissiq tive (diffusion) couplings

hY o el
N N/ 7
Hodgkin Huxley Cells

(b)

p|€E&=———" —>+t9

Klaus Mainzer © Leon Chua

LOCAL ACTIVITY

PRINCIPLE

. |

| external axon membrane current
Ina SOdium ion current

lx potassium ion current

I, leakage current

E membrane capacitor voltage
Ena Sodium ion battery voltage
E« potassium ion battery voltage
E, leakage voltage

Gyq SOdium ion gate (memristor)
Gk potassium ion gate (memristor)

MC;‘. | Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Parameter Explosion in Computational Brain Models

Neural networks and learning
algorithms are mathematical causal

models of brain dynamics (K.
Mainzer/L. Chua 2013).

But, the parameter explosion
(10?neurons with 10®synapses)
generates a black box of Big Data
which needs explanation of causal
Interaction between brain regions
(e.g., for medical diagnosis,
psychotherapies, legal and ethical
guestions of accountability and
responsibility).

Munich Center for Technology in Society Technische Universitat Minchen

Machine Learning and Autonomous Cars

A simple robot with diverse sensors (e.g., proximity, light, collision) and motor
equipment can generate complex behavior by a self-organizing neural network:

L_l - @Piroximity
l\’%l égllr?sion
Vit \ : Wheel

In the case of collision, the connections between the active nodes of proximity and
collision layer are reinforced bv Hebbean learnina: A behavioral pattern emerges!

Motor Action

Collision
Layer

Proximity € ¢
Layer y

Pfeifer/Scheier 1999

Munich Center for Technology in Society Technische Universitat Miinchen

Explosion of Parameters and Big
Data generate a Black Box:

How many real world
accidents are required to
teach machine-learning
based autonomous
vehicles?

Who should be responsible
when there is an accident
involving autonomous

i vehicles (ethical and legal
challenges)?

“‘Does your car have any idea why my car pulled it over?”

We need provability, explainability and accountability of
neural networks with causal models !

Munich Center for Technology in Society

Blindness of Machine Learning and Big Data

Technische Universitat Minchen

Without explanation, big neural networks with large statistical training data (Big Data) are
black boxes. Statistical data correlations do not replace explanations of causes and
effects. Their evaluation needs causal modeling for answering questions of
accountability and responsibility.

% ad
MC‘&(}{ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Causal Modeling and Machine Learning

causal learning [observations &

outcomes incl.
) changes &

causal reasoning \interVentiOnS)

A

[causal model

subsumes subsume

statistical learning

A 4

[probabilistic model

A

observations
) & outcomes
statistical reasoning

v

Peters et al. 2017, p. 6

Munich Center for Technology in Society Technische Universitat Miinchen

1.3 Machine Learning and Internet of Things

N o
MC‘&(}{ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

From the Internet to the Internet of Things

Classical
Internet iIs
separated from
physical
Infrastructures.

Internet of Things observes its physical environment by
sensors, process their information, and influence their
environment with actuators according to communication
devices.

MC’ W Klaus Mainzer m

gl Mobility as Intelligent
” Infrastructure

Networks of mobility with cloud-based
applications support safe and
autonomous driving.

¥ e ‘ Camera
" Ultrasonic es ol (80mM) -.

(~3m) <

.l
=3 v

Short-f'ange r“adar I';
(-20m) |

pe——= ,U‘Itraso,n'ic
< (~3m)

Vehicl'e-to-véhicle
communication
(~100m)

(7N &
I

Camera
JAR-Ta ENY e

Vehicle-to-Internet
communication

Cars become mobile
systems with sensors in a
global net with swarm
intelligence!

Munich Center for Technology in Society Technische Universitat Minchen

Smart Cities and Infrastructures

o&‘s‘ Global urbanization is a challenge of 21st century.

Smart cities become self-organizing complex
sytems by intelligent technologies and efficient
infrastructures.

8 smart erdam
; cl
dm

‘ 1
TWEETS " TIP OF THE WEEK LATEST NEWS

E iﬂﬁ' TheTechGan 9 &(l ud ;;5 as HP I Worl_(ing putside on solar energy, it's [|
m 3 toopen p Sm tC ty 5] N possible in Amsterdam
Malta: d 9 n \ ud computing Treat your roof to some warm insulation
riP ill be... http://bit.ly/gpdIMe in the sun
' NTCN P]
SUBSCRIBE

> MORE TWEETS > MORE TIPS Moet j je Wa{t
nicates smal
Z g ox to

Different domains (e.g., civil service, BRE oY o o ;
mobility, energy- and health system) h TR el |
must be integrated by smart RE o S Paiag S

technologies. 0 o

Projects About ASC Join Trailer Pressroom Knowledge center Contact Social m u

Avs S I st Smor iy s fnanced with support o the uropean fndfor regionl deelopment o theauropean o SRR

N o
MC‘&(}{ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Smart Grid as Intelligent Infrastructures

Many energy providers
of central generators
and decentralized
renewable energy
resources lead to power
delivery networks with
Increasing complexity.

Smart grids mean the integration of the power delivery infrastructure with a unified
communication and control network. It is a complex information, supply and delivery
system, minimizing losses, self-healing and self-organizing.

Munich Center for Technology in Society Technische Universitat Minchen

Intelligent Infrastructure of Industry

From Industry 1.0 to Industry 4.0: Towards
the 4th Industrial Revolution

bac 2o The 1st industrial
revolution introduced the
steam engine.

The 2nd industrial

A H
4. Industrial Revolution revo l uti O n-m ean S mass
based on Cyber-Physical production, divison of
Production Systems .
Industry 4.0 labour, and working on
Rl e z the assembly line.
electronics and IT fora e . .
n - ; Pyl Industry3o [€ The 3rc! ind USt_“ _6“
st AN et v % revo_lutlc_)n addlponally
Lo Nm“"“ Repdichon AN o1 g Ssom £ applied industrial robots
1784 electrical energy Industry 2.0 | & i
1. Indusirial ReVGIGHOR for furth_er automation of
mechasicel TR production.
faciities powered by
water and steam \ v Industry 1.0
End of Start of Start of today t
18th 20th 70les
Century Century L |

The 4th industrial revolution changes production on the basis of internet of

Things (IoT). Production, marketing, and trade are transformed into a more or less
self-organizing complex system.

1.4 From Certification of Al-Programs
to Responsible Al

MC.‘.{‘:" Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Correctness of Certified Programs with Proof Assistants

A program Is correct

(,certified*) if it can be

verified to follow a given
specification.

Implementation

A proof assistant proves the correctness of a computer
_ program in a consistent formalism like an exact proof in
mathematics (e.g., Cog, Agda, MinLog, Isabelle).

i Therefore, proof assistants are the best formal
Maintenance verification of correctness for certified programs.

,, Waterfall ¢
of development
in software engineering

Munich Center for Technology in Society Technische Universitat Minchen

Degrees of Certification In
Software Testing Research

Complexity

Ad-hoc Anti-model-based Model-based Theorem
testing testing testing proving

Accuracy & Security

We must aim at increasing accuracy, security, and trust in software in
spite of increasing complexity of civil and industrial applications, but

W.r.t. to costs of testin (e.g. ,utility functions for trade-off time of

delivery vs. market value, cost/effectiveness ratio of availability)

MCT.

Munich Center for Technology in Society

Klaus Mainzer

Technische Universitat Minchen

Certified Al-Programs
and Causal Learning

Statistical machine learning works,
but we can’t understand the underlying
reasoning.

Machine learning technique is akin to testing,

but it is not enough for safety-critical systems.

—> Combination of causal learning and
certified Al-programs

Munich Center for Technology in Society Technische Universitat Miinchen

2. Foundations of Constructive Proof Theory

2.1 What are Constructive Proofs?

2.2 Basics of Constructive, Intuitionistic, and
Classical Mathematics

2.3 Basics of Reverse Mathematics

2.4 Basics of Intuitionistic Type Theory

Munich Center for Technology in Society Technische Universitat Minchen

2.1 What are Constructive Proofs ?

MC Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Constructivity — Origin and Practice of Mathematics

In Euclidean geometry, proofs were supported by
constructions of figures with compass and ruler rooting in
the practice of geodetic and astronomic measurements.

In Cartesian geometry, geometric forms were replaced by
coordinates, algebraic terms, and equations.

Thus, a proof of existence means constructing a
geometric figure or algebraic solution in question.

But, what about ,,non-constructive* proofs, in
which one proves that something exists by
assuming it does not exist, and then deriving a
logical contradiction, without showing a way to
construct the thing in question?

Munich Center for Technology in Society Technische Universitat Miinchen

Computability — Origin and Practice of Mathematics

Geometric constructing and numeric computing
are the practical roots of mathematics. Since
antiquity, algorithms were supported by the
abacus and calculating boards. The intended
practitioners were businessmen and craftsmen.

Since the age of mechanization, computing was
supported by calculating machines (e.g., Leibniz,
Pascal) up to program-controlled computers (e.g.,
Babbage) in the age of industrialization.

A proof of existence means an
algorithmic solution realizable by a
computer.

Munich Center for Technology in Society Technische Universitat Minchen

Turing Machine and Computing

Infinite Taps

Alan M. Turing
(1912-1954)

1/0(0]0|1 (1|10

Fead fWrite Head

Zantrol Lnit

Every algorithm (computer
program) can be simulated
by a Turing machine
(Church’s thesis).

;;{w
Munich

Center for Technology in Society Technische Universitat Minchen

Computability of Functions

A number-theoretical function f is computable

(according to Church’s thesis) if and only if (iff) f
IS computable by a Turing machine TM.

l.e. there is a TM-program stopping for numerical
Inputs x4, ..., X, as arguments of a function f (e.g.,
X,=3, X, = 5 of the additional function f (x4, X,) = X;
+ X,) after finitely many steps and printing the
functional value f (Xy, ..., X;,)

(e.qg.f (3, 5) =8).

Munich Center for Technology in Society Technische Universitat Miinchen

Computability and Decidability

For a subset M of natural numbers, the characteristic function is
defined by

()= 1, if x element of M
"T710, if x not element of M

A numerical set M (resp. the corresponding

property or predicate) is decidable iff its
characteristic function f,, iIs computable.

e.g.. The property that a natural number is even or not can be decided by
division with 2.
Therefore, Leibniz’ ars iudicandi is made precise by Turing machines

resp. computable functions (according to Church’s thesis by p-
recursive functions).

Munich Center for Technology in Society Technische Universitat Miinchen

Computability and Enumerability

How can solutions of problems (Leibniz’ ars
Inveniendi) be found by machines?

A numerical set M (resp. the corresponding property
or predicate) is enumerable iff there is a computable

function f generating its elements f (1)=x,, f (2)=x,
...successively for all elements x,, x,, ... of M.

e.g.. The set of all even numbers is enumerable by
the computable function f (n) = 2n with
f(1)=2, f(2)=4, f(3)=6,...forn=1,2,3, ...

" at
MC Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Turing’s Non-Computable Real Number

P1--2n 213 Z13 214 215 2y Real numbers like, e.g., # = 3,1415926 ... seem to
be random, but they can be computed by an
algorithm (Turing machine) step by step. Every

P, - .22y, Zy3 74 Zys

Py - 231259 Z33 34 Z35 Zag instruction of a Turing machine and the whole

P, program can uniquely be coded by a natural
number. We consider a list p;, p,, P3, .- Of

Ps - 251 Z5y Z53 Zsq Zss Zs machine codes ordered along the sequence of

: their size.

Behind the machine codes, we note the development of the decimal fraction of
the real number computed by the corresponding machine or the line is empty.
We define a new development of decimal fraction consisting of the
(underlined) diagonal values of the list which we changed (e.g., by addition of

1): * * * *

—o Ly Ly LygLege
By definition, this real number cannot be found in the list of
computable numbers. Therefore, it is not computable.

Yy &
ﬁ(f Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Miinchen

Undecidability and Turing’s Halting Problem

In principle, there is no general

control box . _
containing procedure deciding if an
finite programs arbitrary Turing machine stops

for an arbitrary input after
finitely many steps or not
(halting problem of Turing

t)
lstop ' machines).

—

+10372501 %

4

tape-scanner-
printer-shifter

Proof: Assumed the halting problem is decidable, then we can confirm if the n-th computer
program (n =1, 2, ...) computes, stops, and prints a n-th integer behind the decimal pointin
finitely many steps. In this case, areal number which definitely cannot be contained in the
list of computable real numbers must be computable.

Consequence : There is no procedure which can check arbitrary computer
programs for infinite slopes.

Y o
MC."‘.‘ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Incompleteness and Turing‘s Halting Problem

According to Turing, incompleteness
directly follows from the undecidability of
the Halting problem: If there is a complete
formal system with formal proofs for all
mathematical truths, then there is a
procedure of deciding if a computer
program will stop or not.

We run through all possible proofs until a proof is
found that the program stops or a proof is found, that
It never will stop. In that case, it could be decided if
the computer program would stop after finitely many
steps or not — contrary to the undecidability of the
Halting problem.

sl
MCiL"' Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Hilbert’s 10" problem and Turing’s Halting problem

Algebraic equations which involve only
multiplication, addition and exponentiation of whole
numbers, are named after the third-century Greak
mathematican Diophantos of Alexandria. In 1900,
David Hilbert asked for an algorithm which will
decide whether a diophantine equation has a
solution (10% problem of his famous list of 23
problems).

In 1970, J.V. Matijasevic (V.A. Steklov Institute, St. Petersburg) proved that
Hilbert‘s 10 problem is equivalent to Turing ‘s Halting problem and,
conseqguently, not decidable. (They used results of M. Davis, H. Putnam and J.
Robinson 1961).

Munich Center for Technology in Society Technische Universitat Miinchen

Matijasevic‘s Proof

According to Lagrange’s representation of natural numbers as sum of four
quadratic whole numbers, Hilbert’s 10™ problem can be reduced to the existence
of solutions in natural numbers.

A predicate D is called Diophantine if it is definable by predicates
x+y=2zx-y=2z x¥=2zand logical operations v, a, 3:
D(xq,..,x,) © 3Ayq, ..., ¥y P(x4, ..., Xy, Y1, --., Y) With P recursive

© 3y1, 0, Yr fp(X1, o, X0, Y1, ., ¥¢) = L with computable
characteristic function f, as polynom.

Obviously, every Diophantine predicate is enumerable. It can be proven that
every enumerable predicate is Diophantine. (Matijasevic and CudnovskKij
used the Fibonacci sequence to define an appropriate diophantine predicate.)

The Halting problem can be represented by an enumerable, but not

decidable predicate. Therefore, the corresponding Diophantine
predicate is also not decidable.

Munich Center for Technology in Society Technische Universitat Miinchen

Intuitionistic Philosophy of Creative Subject

il According to Brouwer, mathematical truth is founded by
construction of a creative subject . Following Kant,
mathematical construction can only be realized in a finite
process, step by step in time like counting in arithmetic.
Thus, for Brouwer, mathematical truth depends on finite
stages of realization in time by a creative subject (in a
definition of Kripke and Kreisel 1967) :

The creative subject has a proof of proposition A at stage m
Q F A) iff

(CS1) For any proposition A,), +,, Ais adecidable function of A, i.e.
VxXeEN QX+, Ava) A

(CS2) VX, Y EN (T k2 A~ (T Fary A)

(CS3)xeN(Q A <A

A weaker version of CS3 is G. Kreisel’s “Axiom of Christian Charity” (1967)
(CC)—Fx e N-CHA)——A

y o
MC Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Intuitionistic Sets of Spreads and Fans

A spread is the intuitionistic analogue of a set,
because infinite objects are considered as ever
growing and never finished.

Therefore, a spread is a countably branching tree
/\ labelled with natural numbers or other finite objects
T and containing only infinite paths.

A fan_is a finitely branching spread.

A branch is an intuitionistic choice sequence, i.e. an
infinite sequence of numbers (or finite objects)
created step by step by alaw (algorithm) or without

law (e.g., coin). A lawless sequence is ever
unfinished.

The only available information about a lawless sequence at any stage is the
initial segment of the sequence created thus far.

Munich Center for Technology in Society Technische Universitat Miinchen

Fan Principle and Fan Theorem

The fan principle states that for every fan T in which every branch at some point

satisfies a property A, there is a uniform bound on the depth at which this property is
met. Such a property is called a bar of T.

Va € T 3x A(c_x(x)) - 3zVa €T3y < zA(c_x(y))

FA_N o with a choice sequences and a(x) the initial segment of a with
Principle: the first x elements.

FAN Every continuous real function on a closed interval is
Theorem: uniformly continuous.

Proof: Fan Principle

Munich Center for Technology in Society Technische Universitat Miinchen

Brouwer-Heyting-Kolmogorov (B_I—IK? Proof Interpretation of
the Intuitionistic Logical Constants

BHK interpretation explains the meaning of logical constants in terms of
proof constructions : (Heyting 1934; Kolmogorov 1932; Kohlenbach 2008)

There is no proof for 1.

A proof of AAB is a pair (q,r) of proofs, where g is aproof of Aandris a
proof of B.

. A proof of Av B is a pair of (n,q) consisting of an integer n and a proof g
which proves Aif n =0 and resp. B if n # 0.

. Aproof pofA - Bis aconstruction which transforms any hypothetical
proof g of A into a proof p(q) of B.

A proof p of VxA(x) is a construction which produces for every
construction ¢4z of an element d of the domain a proof p(cgz) of A(d).

A proof of 3xA(x) is a pair (c4,q), where ¢4 is the construction of an
element d of the domain and g is a proof of A(d).

Munich Center for Technology in Society Technische Universitat Miinchen

Computable Functionals and Constructive Proofs

The disadvantage of the BHK-interpretation is the unexplained notion of construction
resp. constructive proof. K. Godel wanted that constructive proofs of existential

theorems provide explicit realizers. Therefore, he replaced the notion of constructive
proof by the more definite and less abstract concept of computable functionals of finite

type.

But Godel‘s proof interpretation is largely independent of a precise definition of
computable functionals : One only needs certain basic functionals as computable
(e.g., primitive recursion in finite types) and their closure under composition.

Following Godel, every formula A is assigned with the existential formula 3xA4; (x) with
A;(x) 3-free. Then, arealizing term r with A;(r) must be extracted from a derivation of

A (,Dialectica-Interpretation ‘ 1958)

Munich Center for Technology in Society Technische Universitat Miinchen

2.2 Basics of Constructive, Classical, and
Intuitionistic Mathematics

MCT.

Munich Center for Technology in Society

Klaus Mainzer m

Technische Universitat Minchen

Constructive Mathematics with Classical Logic

P. Lorenzen (1915-1994)

In “Differential and Integral” (1964), Lorenzen used Weyl's technique in “Das Kontinuum”

(1918) to develop a predicative analysis, which can reconstruct classical analysis with the
principle of excluded middle as far as analysis is constructively founded.

The set of natural numbers is given by inductive construction of terms /, //,

Constructive sets and functions are abstractions of inductively defined terms (e.g.
variables s, t, ...,s + t,s - t) resp. formulas (e.g., s* > 1,3r r < s):

A set M is inductively defined by the equivalences

1,x1,...,X5 EM & A(X4q, ..., X;)
n+1,xq,.., X, €EM o By(n+1,xq,...,X3)

If the formula A(x4, ..., x,,,) does not contain the symbol M and the
formula By (n + 1, x4, ..., X,;;) may contain partial formulas
s,ty,...,t,, EM (Withterms s, t4, ..., t,;;), butonly suchthats <n + 1.

Munich Center for Technology in Society

Induction Principle of Predicative Analysis

The induction definition can be contracted in a comprehension scheme:

Technische Universitat Minchen

nxg .., X, EM o Ay(n, x4, ..., X7)

with formula Ay (n, x4, ..., x,,) Which only contains symbol M in partial formulas
s, tq,...,t;; € M (with terms s, t4, ..., t,;;), but only such that s < n .

Starting with the construction of natural numbers, further constructive objects are generated by
inductive construction of terms and formulas about already constructed objects:

Example: Real numbers

Definition (Equivalence of Cauchy sequences): (r,)~(s,) = (r,,) — (s,) null sequence

If A((t,,)) is an invariant formula about (¢t,,) with
(rn)~(sn) AA((ry)) = A((sy)). then write A(lim ¢,)

with term lim t,, of real numbers.

n—oo

Munich Center for Technology in Society Technische Universitat Miinchen

Constructive Mathematics with Intuitionistic Logic

In Foundations of Constructive Analysis (1967), Bishop could prove most of the
Important theorems of real analysis with constructive methods without contradicting
classical mathematics as Brouwer*‘s intuitionistic mathematics did.

Natural numbers are given as fundamental construction of the

5:‘ | \ TN .
M‘ \ ; human mind (Kant, Kronecker, Brouwer).

E. Bishop (1928-1983)

:

« A constructive set M is defined by a rule to construct an element of M In
finite steps, by a method to prove that two elements of M are equal, and a
proof that this equality =,; Is an equivalence relation.

e A constructive function f: M — N is a rule which associates an element
b = f(a) of a set N to each element a of a set M, in such a way that b can
be found by a finite routine when a is given. Equal elements of N must be
assoclated to equal elements of M.

Munich Center for Technology in Society Technische Universitat Miinchen

The Real Number System of Constructive Analysis

In Bishop‘s constructive analysis, rationals are given as expressions p/q with integers p,q
and g # 0. A sequence of rational numbers is a rule which associates to each positive integer
n a rational number r,,.

A sequence (1) of rational numbers is regular iff

|1, — T,,| <m~1 +n~1 for all positive integers m, n.

A real number Is a regular sequence of rational numbers.

Two real numbers x = (r,) and y = (s,,) are equal Iff
Ir, — s,| < 2n~1 for all positive integers n.

Notice that Bishop‘s constructive real numbers are no equivalence classes,
but identified with regular sequences of rational numbers.

Munich Center for Technology in Society Technische Universitat Miinchen

Bishop‘s Influence on Proof Systems

In 1985, Robert Constable acknowledged the influence of Bishop on the
design of NuPrl designed to ,,execute constructive proofs“ by extracting
programs from proofs:

,» ohortly after we had executed our first constructive
proof, | wrote to Bishop informing him of what | took to
be an historic event. | told him how much his writings and

his encouragement had meant to us on the long road to
this accomplishment. | was crushed to receive my letter
back unopened, marked ,,recipient deceased “,

Munich Center for Technology in Society Technische Universitat Miinchen

2.3 Basics of Reverse Mathematics

Yy &
ﬁ(f Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Miinchen

Reverse Mathematics in Antiquity

Since Euclid (Mid-4th century — Mid 3rd century BC),
axiomatic mathematics has started with axioms to
deduce a theorem. But the “forward ” procedure from
axioms to theorems is not always obvious. How can we
find appropriate axioms for a proof starting with a given
theorem in a ,backward “ (reverse) procedure ?

Pappos of Alexandria (290-350 AC) called the “forward ”
procedure as “synthesis” with respect to Euclid’s
logical deductions from axioms of geometry and
geometric constructions (Greek: “synthesis ”) of
corresponding figures. The reverse search procedure of
axioms for a given theorem was called “analysis ” with
respect to decomposing atheorem inits necessary
and sufficient conditions and the decomposition of the
corresponding figure in its building blocks.

Munich Center for Technology in Society Technische Universitat Miinchen

Classical Reverse Mathematics

Reverse mathematics is a modern research program to determine the minimal
axiomatic system required to prove theorems. In general, it is not possible to
start from a theorem t to prove a whole axiomatic subsystem T;. A weak base

theory T, is required to supplement t:

If T, + T can prove T4, this proof is called a reversal.

If T{ proves T and T, + T is areversal, then T; and 7 are said to be
equivalent over T,.

Reverse mathematics allows to determine the proof-theoretic strength resp.
complexity of theorems by classifying them with respect to equivalent
theorems and proofs. Many theorems of classical mathematics can be
classified by subsystems of second-order arithmetic Z, with variables of
natural numbers and variables of sets of natural numbers.

==y

Munich Center for Technology in Society Technische Universitat Miinchen

The Subsystems of Second-Order Arithmetics Z,

Arithmetical formulas can be classified according to the arithmetical hierarchy
Y9 11, and AY. We can distinguish 39,19, and A2- schemas of induction and
comprehension. That is also possible for the analytical hierarchy Y1, [I% and Al

A structure of an (arithmetical) set M defines its variables and non-logical
symbols (constants, operations) satisfying relations between variables : e.qg.,
Q=M,+q —q ‘@ 0q Ig <q =q) structure of rational numbers.

A model of a set of (arithmetical) formulas is a structure with the same non-
logical symbols and all formulas in the set are in the model as well.

The arithmetical and analytical hierarchies yield classifications of axiomatic
subsystems of Z, with increasing proof-theoretic power and corresponding
structures of Z,-models.

Munich Center for Technology in Society Technische Universitat Miinchen

Z,- Subsystems and Philosophical Research Programs

The five most commonly used Z, - subsystems in reverse mathematics correspond to
philosophical programs in foundations of mathematics with increasing proof-
theoretic power starting with the weakest RCAj,-subsystem .

RCAy. Turing’s computability
WKL,. Hilbert’s finitistic reductionism
ACAy: Weyl’s & Lorenzen’s predicativity

ATR,. Friedman’s & Simpson’s predicative reductionism
[13 - cA,: impredicativity

A} — CA, yields systems of hyperarithmetic analysis (Feferman et al.) with Al-
predicativism:

T is atheory of hyperarithmetic analysis iff

I. its w-models are closed under joins and hyperarithmetic reducibility

ii. it holds in HYP(x) for all x

Munich Center for Technology in Society Technische Universitat Miinchen

Constructive Reverse Mathematics

Classical reverse mathematics (Friedmann/Simpson) uses classical logic and classification of proof-
theoretic strength with RCA, (AJ-recursive comprehension) as weak subsystem.

Constructive reverse mathematics (Ishihara et al.) uses intuitionistic logic and Bishop’s constructive
mathematics (BISH) as weak subsystem of a constructive classification :

BISH = Z, + Intuitionistic Logic + Axioms of Countable, Dependent and Unique Choice

Intuitionistic Mathematics (Brouwer, Heyting et al.):

INT = BISH + Axiom of Continuous Choice + Fan Theorem

Constructive Recursive Mathematics (Markov et al.):

RUSS = BISH + Markov'‘s Principle + Church’s Thesis

Classical Mathematics (Hilbert et al.):

CLASS = BISH + Principle of Excluded Middle + Full Axiom of Choice

Munich Center for Technology in Society Technische Universitat Miinchen

Bishop‘s Constructive Mathematics BISH

BISH is an informal mathematics with intuitionistic logic and function existence axioms

Axiom of Countable Choice:
vn € NIx € X A(n,x) - 3f € XNvn € N A(n, f(n))

Axiom of Dependent Choice:
Vx€X3Iy e X A(x,y) > Vx € XIf € XN(f(0) =xAVn e NA(f(n), f(n+ 1)))

Axiom of Unique Choice:
VxeX3lyeYAlx,y) > 3f e YA vx e X A(x, f(x))

Bishop’s constructive (forward) mathematics (BISH) intends to find a constructive
substitute A’ for a classical theorem A such that

BISHF A" and CLASS A o A’

When A and A’ are not equivalent in BISH, A can sometimes be shown to do not
admit a constructive proof by giving a “Brouwerian counterexample P ” to A such

that
BISH-FA - PandBISH P

Munich Center for Technology in Society Technische Universitat Miinchen

Markov‘s Constructive Recursive Mathematics (RUSS)

RUSS is Bishop‘s constructive mathematics (BISH) with Markov‘s principle and
Church’s thesis :

The following are equivalent in BISH:

(1) Markov's principle (MP):

Va € NN(=—3n(a(n) # 0) - In(a(n) = 0)

(2) VxXER(==(0<x)>0<x)

Remark: MP is an instance of the double negation elemination ——P — P which is
rejected in INT, but accepted in RUSS.

MP is weaker than LPO. The following are equivalent with the weak Markov
principle:

(1) Weak Markov's principle (WMP):

Va € NN(vB € NN(w=anB(n) # 0 v ——3n(a(n) # 0 A B(n) = 0) » Ina(n) = 0

(2) VXER(VYRa=(0<y)Va=(y<x)—-0<x)

Munich Center for Technology in Society Technische Universitat Miinchen

2.4 Basics of Intuitionistic Type Theory

R
s}l
Technische Universitat Minchen

Curry-Howard Correspondence

In 1969, the logician W.A. Howard observed that Gentzen’s proof system of natural
deduction can be directly interpreted in its intuitionistic version as a typed variant of the

mode of computation known as lambda calculus.

According to Church, Aa. b means a function mapping an element a onto the function
value b with Aa. b[a] = b. In the following, proofs are represented by terms a, b, c, ... ;

propositions are represented by A4,B, C,

. [A] [A
Examples: Aa(Ab.a) Aa.b
B- A B

(-I) A-(B-A) (-I) A-B

A proof Is a program, and the formula it proves is

the type for the program.

Munich Center for Technology in Society Technische Universitat Miinchen

Gentzen‘s Sequent Calulus and Lambda Calculus

Intuitionistic Lambda calculus type

sequent calculus assignment rules

Fllalrzl_a Fl,x: a, FZ FX:a
Iat+p Lx:a k-t
M-a-p I Ax.t:a > B

F-a-p FI_a—>E 'HFtta->p TrRuwa
I'-p I+ tu: B

Proving I' - @ means having a program that, given values with the types listed in I,
manufactures an object of type a. An axiom corresponds to the introduction of a new
variable with a new, unconstrained type, the — | rule corresponds to function abstraction
and the — E rule corresponds to function application.

t: « means ,,t proves a“ as well as .,t Is of type a*.

Yy &
ﬁ(f Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Miinchen

Propositions as Types In Intuitionistic Type Theory

1=0 According to the Curry-Howard interpretation
of propositions as types, Xx:A.B is the disjoint
=1 sum of the A-indexed family of types B and
AVB=A+B IIx:A.B is its cartesian product.

ANB=AXB

ADB=A-B
dx:A.B = Xx:A.B
Vx:A.B =1lx:A.B

The canonical elements of £x:A. B are pairs (a, b) such that a: A and b: B[x := a] (the type
obtained by substituting all free occurrences of x in B by a). The elements of IIx:A. B are
(computable) functions f such that fa: B[x := a], whenever a: A.

MC.‘.{‘:" Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Theorem on Prime Numbers under
Curry-Howard Interpretation

The theorem expresses that there are arbritrarily large primes:

Vm:N.d3n:N.m < n A Prime(n)

Under the Curry-Howard interpretation this becomes the type of functions
which map a number m to a triple (n,(p, q)), where n is a number, p is a proof
that m < n and q is a proof that n is prime:

[Im:N.Xn:N.m < n X Prime(n)

This is the proofs as programs principle: a constructive proof that there are
arbitrarily large primes becomes a program which given any number produces a
larger prime together with proofs that it indeed is larger and indeed is prime.

Munich Center for Technology in Society Technische Universitat Miinchen

Martin-Lof¢s Intuitionistic Type Theory

J

In addition to the type formers of the Curry-Howard
Interpretation, the logician and philosopher P.
Martin-Lof extended the basic intuitionistic type
theory (containing Heyting ‘s arithmetic of higher
types HA®and Gadel‘s system T of primitive recursive
functions of higher type) with primitive identity types,
well founded tree types, universe hierarchies and
general notions of inductice and inductive—recursive

definitions.

His extension increases the proof-theoretic power of the
theory and its application to programming as well as to
formalization of mathematics.

Munich Center for Technology in Society Technische Universitat Miinchen

Intuitionistic Type Predicate Logic

Besides the given rules for II, there are analogous rules for other type formers corresponding
to the logical constants of typed predicate logic:

r-A I'x:A+B ''xAv-b:f '+ f:lix:AB TI't+aA
I'-Ilx:A.B I'-Ax.b:1lx:A.B I'+ fa:B[x = a]

[1-equality is introduced by f3-conversion and 7- conversion:

B-conversion n-conversion

I''xA-b:B TI'+aA r+ f:lx:A.B
'+ (Ax.b)a =b[x =al]:B[x:=a I'-Ax.fx=f:lix:A.B

Conguence rules preserve equality:

congruence rule

r-A=A" Ir x-A-rB=PB'
Ir+-TIix:A.B=1Ix:A".B’

Munich Center for Technology in Society Technische Universitat Miinchen

Intuitionistic Type Arithmetic

As in Peano arithmetic, the natural numbers are generated by 0 and the successor

operation s: : , ,

I'eN reoN —— N
r- s(a):nN

The elimination rule states that these are the only ways to generate a natural number.
The function f(c) = R(c, d, xy. e) is defined by primitive recursion on the natural
number ¢ with base d and step function xy. e (or Axy. e) which maps the value y for
the previous number x: N to the value for s(x):

N-elimination

FI'xNr-C I'c:N T+dC[x=0] Iy:N,z:C[x == y] + eC[x = s(p)]
'+ R(c,d,yz.e):C[x :=]

N-equality (under appropriate premisses)
R(0,d,yz.e) = d: C[x := 0]
R(s(a),d,yz.e) = e[:=a,z:= R(a,d,yz.e)]: C[x = s(a)]

Munich Center for Technology in Society Technische Universitat Miinchen

The Universe of Small Types

To overcome the impredicativity of the ,,type of all types*, Martin-L0f introduced a
universe U of small types closed under all type formers of the theory, except that it does not

contain itself: :

r-u

U-introduction

r-o:u r+1:u

r-A:U reB:U r-A:U r-B:U
r-A+B:U r-AxB:U

I'-A:U T+ B:U
'-A- B:U

r-A:U rxa-B:U r-A:U rxa-B:U
rezx:A B: U rrnx:A B: U

'-N:U

r-A:U
r-A4

MC.‘.{‘:" Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Type-Theoretic Universe U and the Grothendieck Universe

The type-theoretic universe U is analogous to a Grothendieck universe in set theory which
Is a set of sets closed under all the ways sets can be constructed in Zermelo-Fraenkel set
theory:

1. x €U,y €x=y € U (transitivity)
2. x,yeU={xy}eU

3. x e U = P(x) € U (power set)
4. {xq},, family of elementsof U, I € U = Uy x4 €U

Alexander Grothendieck (1928-2014) used his universe as a way of avoiding proper classes
in algebraic geometry. Its existence goes beyond the usual axioms of Zermelo—Fraenkel set
theory and implies the existence of strongly inaccessible cardinals.

Tarski—Grothendieck set theory is an axiomatic treatment of set theory, used in some
automatic proof systems, in which every set belongs to a Grothendieck universe. The
concept of a Grothendieck universe can also be defined in a topos (category theory).

;;{w
Munich Center for Technology in Society

Technische Universitat Minchen

The Axiom of Choice Is a Theorem In Intuitionistic Type Theory

In intuitionistic type theory, the axiom of choice is an immediate consequence of the BHK-
interpretation of the intuitionistic quantifiers:

NGO CuNl (T]x: A.Xy: B.C) = Xf: (IIx: A.B).C[y = fx]

Proof:

— Ilx: A.Zy: B. C is the type of functions which map
elements x: A to pairs (y,z) withy: B and z: C.

— The choice function f Is obtained by returning the first
component y: B of this pair.

In set theory, the axiom of choice is in general not constructive. (Types are not in general
appropriate constructive approximations of sets in the classical sense.)

MCZ Klaus Mainzer

Munich Center for Technology in Society

TUTI

Technische Universitat Minchen

General lIdentity Type Former

The rules for | express that the identity relation is inductively generated by the proof of
reflexivity (constant r):

'-A I'a:A I'+a':A '-A I'-a:A
r-I1(4,a,a") rer:1(4,a,a)

The elimination rule for the identity type is a generalization of identity elimination in
predicate logic (elimination constant J):

I-elimination

rx:Ayl(Aax)-C T'-b:A Trclldab) T+-d:iC[x=ay:=r]
r+-JCc,d):C[x=>b,y:=c]

J-equality (under appropriate assumptions)

J(rd) = d

Munich Center for Technology in Society Technische Universitat Minchen

Inductive Types In Intuitionistic Type Theory

An inductive type Is freely generated by a certain number of constructors.

Examples: a) Type N of natural humbers with constructors
e O:N
e succ:N - N
b) Type List(A) of finite lists of elements of type 4 with constructors
e nil: List(4) (empty list)
e cons: A — List(A) — List(4A) (add an element to the front of the list)
e app: List(A) — List(4) — List(4A) (concatenate two lists)

An induction principle proves a statement for a type freely generated by its
constructors.

Example: W-type W,.4)B(a) of well-founded trees with nodes labeled by elements a : A
and B (a)-many branches. We prove a statement E: W,.4yB(a) — U about all elements of the
type W,.4)B(a) by proving it for its constructor(s).

Munich Center for Technology in Society Technische Universitat Miinchen

3. From Proof Theory to Proof Assistants

2.1 Intuitionistic Type Theory and Proof Assistants
2.2 Verification of Circuits in Proof Assistants: Basics
2.3 Verification of Circuits in Proof Assistants: Applications

N o
MC‘&(}{ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

3.1 Intuitionistic Type Theory and Proof Assistant

Munich Center for Technology in Society

Terms of the Calculus of Constructions (CoC)

CoC is a type theory of Thierry Coquand et al. which can serve as typed programming language as
well as constructive foundation of mathematics. It extends the Curry-Howard isomorphism to proofs in
the full intuitionistic predicate calculus. Coc has very few rules of construction for terms:

Technische Universitat Minchen

e T isaterm (Type).

e Pisaterm (Prop).

e Variables (x,y, z, ...) are terms.

e If A and B are terms, then (AB) is a term.

e If A and B are terms and x is a variable,
then Ax : A.B and Vx : A. B are terms.

The objects of CoC are proofs (terms with propositions as types),
propositions (small types), predicates (functions that return propositions),
large types (types of predicates, e.g., P), T (type of large types).

Munich Center for Temmwm&)m/—mrsitm Minchen

Inference Rules of CoC
I' is a sequence of type assignments x4: A1, x2: 45, ...; Kiseither T or P :

I'-FA:K
I'-P: T I''x:AFHx: A

I'’'' x: A+FB:K I'x:A - N:B
I' - (Ax: A.N):(Vx: A.B):K

I - M: (Vx: A.B) ' N:A
[- MN:B[x = N]

' - M:A A=B B: K
' - M:B

Yy &
ﬁ(f Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Miinchen

Logical Operators and Data Types in CoC

Coc has very few basic operators. The only logical operator for forming
propositions is V :

A=>B =Vx:A.B (x ¢ B)

AANB =V(C:P.(A=>B=>C(C)=>C
MCHEUSE AV B =V(C:P.(A=>C)=>(B=>C)=>C

-4 =VC:P.(A=>C)

dx:A.B =VC:P.(Vx:A(B=>C))=>C

data types: booleans: VA:P.A=> A=A
naturals: VA:P.(A=A)=> (A> A)

product 4 X B: AANB
disjointunion4A+ B: AV B

Munich Center for Technology in Society Technische Universitat Minchen

Calculus of Inductive Constructions (CiC)

CiC is based on CoC enriched with inductive and co-inductive definitions with the following
rules for constructing terms:

e [dentifiers refer to constants or variables.
e (AB) application of a functional object A to B

e |x: A]B abstraction of variable x of type 4 in term B to construct a
functional object Ax € A.B

e (x:A)B term of type Set corresponds to [],c4 B product of sets.
(x: A)B term of type Prop corresponds to Vx € A B.

If x does not occur in B, A — B Is an abbreviation which corresponds to
e set of all functions from A to B
e logical implication

, Klaus Mainzer m
Technische Universitat Minchen

Inductive Types in CIC*

An inductive type Is freely generated by a certain number of constructors.

Examples: a) Type N of natural numbers with constructors
e O:N
e succ:N —» N
b) Type List(A) of finite lists of elements of type 4 with constructors
e nil: List(4)
e cons:A — List(4) — List(4)
e app: List(A) — List(4) — List(4A) (concatenate two lists)

Inductive proofs make it possible to prove statements for infinite collections of
objects (e.g., integers, lists, binary trees), because all these objects are

constructed In a finite number of steps.
An induction principle of an inductive type proves a statement for a type freely

generated by its constructors.
* C. Paulin-Mohring (1993), Inductive Definition in the System Coq: Rules and Properties (Research Report 92-49, LIP-ENS Lyon)

Munich Center for Technology in Society Technische Universitat Minchen

Co-Inductive Types in CIC*

Besides inductive types, there are co-inductive types concerning infinite objects
(e.g., potentially infinite lists, potentially infinite trees with infinite branches).

Terms are still be obtained by repeated uses of constructors such as in inductive
types. However, there is no induction principle and the branches may be infinite.

In practical domains such as telecommunication, energy, or transportation, streams
are examples with infinite execution which are defined by constructor Cons:

CoInductive Stream (A : Set) : Set :=
Cons : A —» Stream — Stream

Contrary to the inductive type of a 1ist, there is no constructor of the
empty list. Thus, finite lists cannot be constructed.

* E. Giménez (1996), Un calcul de constructions infinies et son application a la vérification de systémes communicants (PhD thesis Lyon)

Munich Center for Technology in Society Technische Universitat Miinchen

Equivalence of Streams in CiIC

Accessors of a stream 1 are defined by functions on the structure of the stream with head
hd and tail t1:

Definition Head: Stream — A := [l] Cases 1 of (Cons hd _) = hd end.

Definition Tail: Stream — Stream := [1l] Cases 1 of (Cons _ tl) = tl
end.

Two streams 1 and 1 are equivalent iff their heads are equal and their tails are equivalent. In
CiC, equivalence of streams is represented by a co-inductive definition:

CoInductive EgS : Stream — Stream —» Prop := egs : (1 , 1' : Stream)
(Head 1) = (Head 1‘') -

(EqS (Tail 1) (Tail 1')) -
(EqS 1 1').

Munich Center for Technology in Society Technische Universitat Miinchen

Production of Streams in CiC

The mapping of a given function f on two streams I and I’ is co-recursively defined in CiC:

CoFixpoint Map2 : (A, B, C : Set)
(A - B > C) - (Stream A) —» (Stream B) —(Stream C) :=

[A, B, £, 1, 1]
(Cons (f (Head 1) (Head 1')) (Map2 £ (Tail 1) (Tail 1')))

The function Prod builds the stream of the pairs, element by element, of two streams of type
(Stream A) and (Stream B) respectively. Prod is the result of the application Map2 to the

function (pair A B), where pair is the constructor of the cartesian product A *x B. In CiC, Prod is
represented by:

Definition Prod : : Set] (Map2 (pair A B))

The Cog Proof Assistant™

Cog implements a program specification which is based on the Calculus of Inductive
Constructions (CiC) combining both a higher-order logic and a richly-typed functional
language.

Technische Universitat Minchen

The commands of Coq allow

to define functions or predicates (that can be evaluated efficiently)
to state mathematical theorems and software specifications

to interactively develop formal proofs of these theorems

to machine-check these proofs by a relatively small certification (kernel)
to extract certified programs to languages (e.g., Objective Caml, Haskell,
Scheme)

Coq provides interactive proof methods, decision and semi-decision algorithms.
Connections with external theorem provers are available.

Coq is a platform for the verification of mathematical proofs as well as

the verification of computer programs in CiC.

*Y. Bertot, P. Castéran (2004), Interactive Theorem Proving and Program Development: Coq‘Art: CiC (Springer)

% ad
ﬁf Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Miinchen

3.2 Verification of Circuits in Proof Assistants: Basics

Munich Center for Technology in Society Technische Universitat Miinchen

Verification of Circuits with Co-Induction in Coqg

A hardware or software program is correct (,,certified by Cog*) if it can be

verified to follow a given specification in CIC.

Example: Verification of circuits*

The structure and behaviour of circuits can mathematically be described
by interconnected finite automata (e.g., Mealy machines). In circuits, one

has to cope with infinitely long temporal sequences of data (streams).

A circuit 1s correct iff, under certain conditions, the output stream of the
structural automaton is equivalent to that of the behavioural automaton.

Therefore, automata theory must be implemented into CiC with the
co-inductive type of streams.

* S. Coupet-Grimal, L. Jakubiec (1996): Coq and Hardware Verification: a Case Study (TPHOLs ,96, LCNS 1125, 125-139)

Munich Center for Technology in Society Technische Universitat Miinchen

Specification of Mealy Automata

A Mealy automaton is a 5-tuple (I, 0, S Trans, Out) with input set I, output set

O, state set S, transition function Trans: I xS — §, and output function
Out: IxS - 0.

]
)

—

i ;{ Trans

Out

Given an initial state s , the Mealy machine computes an infinite output
sequence (,,stream*) in response to an infinite input sequence (,,stream*).

Munich Center for Technology in Society

Implementation of Mealy Automata in CiC

Technische Universitat Minchen

Variables I, O, S : Set
Variable Trans : I - S - S.
Variable Out : I - S — O.

CoFixpoint Mealy : (Stream I) > S - (Stream O) := [inp, s]
(Cons (Out (Head inp) s) (Mealy (Tail inp) (Trans (Head inp) s)).

The first element of the output stream is the result of the application of the output function Out to
the first input (the head of the input stream inp) and to the initial state s. The tail of the output
stream is then computed by a recursive call to Mealy on the tail of the input stream and the new
state. This new state is given by the function Trans, applied to the first input and the initial state.

The streams of all the successive states from the initial one s is obtained similarily:

CoFixpoint States : (Stream I) > S —» (Stream S) := [inp, s]

(Cons s (States (Tail inp) (Trans (Head inp) s))).

MCT

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

(D)

z-

f2()

Network of Automata

In a network, automata are inter-connected by parallel composition, sequential composition,
and feedback composition of synchronous sequential devices.

Trans1 s1 Outl
Trans?2 s2 Out?
| i

Al
— o
A2

In the parallel composition of two Mealy automata A1 and A2, f = (f4, f2)
builds from the current input i the pair of inputs (f1(1), f2(i)) for A1 and
A2, output computes the global outputs of A1 and A2.

Munich Center for Technology in Society Technische Universitat Miinchen

Implementation of Parallel Automata in CiC

Variables I1, I2, 01, 02, S1, s2, I, O : Set

Variable Transl : I1 —» S1 —» Sl1. Variable Trans2 : I2 —» S2 — S2.
Variable Outl : I1 - S1 — Ol. Variable Out2 : I2 - S2 - 02.
Variable £ : I - I1*I2. Variable £ : O —» 01*02.

Local Al := (Mealy Transl Outl). Local A2 := (Mealy Trans2 Out2).

Definition parallel : (Stream I) » S1 —» S2 := [inp, sl, s2]
(Map output (Prod (Al (Map Fst (Map £ inp)) sl)
(A2 (Map Snd (Map £ inp)) s2))).

The initial states of automata A1 and A2 are s1 and s2. The input of A1 is obtained by
mapping the first projection Fst on the stream resulting from the mapping of the function f
on the global stream inp. Then (A1(Map Fst (Map f inp))s1) is the output stream A1. That

of A2 is defined similarly. Finally, the parallel composition is obtained by mapping the function
output on the product of the output streams of A1 and A2.

Munich Center for Technology in Society Technische Universitat Miinchen

Invariant Relations of Mealy Automata*

The equivalence of structure and behaviour of circuits can be proved by certain
Invariant relations of states and streams in the corresponding Mealy automata.

Consider two Mealy automata A1 = (1,0, S, Trans1,0utl) and A2 = (1,0, S,, Trans2, Out2) with the
same input set and the same output set. Given p streams, a relation which holds for all p-tuples of
elements at the same rank is called an invariant of these p streams.

In CiC, an invariant relation P with respect to input set I and the state sets §; and S, can be definied by
co-induction:

CoInductive Inv [P : I —» S1 —» S2 — Prop]
(Stream I) > (Stream S1) > (Stream S2) —» Prop :=
CInv : (inp : (Stream I)) (stl : (Stream S1)) (st2 : (Stream S2))

(P (Head inp) (Head stl) (Head st2)) -
(Inv P (Tail inp) (Tail stl) (Tail st2)) -
(Inv P inp stl st2).

*S. Coupet-Grimal, L. Jakubier, Hardware Verification using co-induction in Coq (Laboratoire d‘Informatique de Marseille, URA CNRS 1787)

Munich Center for Technology in Society Technische Universitat Miinchen

Invariant State Relation of Mealy Automata in CiC

Let R be a relation on the state space $; X S, and P arelationon I X §1 X S5.

R is invariant under P for the automata A1 and A2 iff

ViEIV51651VSZ ESZ
(P(i, s1, s32) ANR(s1, s2)) > R(Trans1 (i,s1), Trans2 (i,s5)).

The invariance of relation R can be implemented into CIC :

Definition Inv under := [P : I—> S1—> S2—- Prop][R : S1—-S2 - Prop]
(i : I)(sl : S1) (s2 : S2)
(P i sl s2) » (R sl s2) (R (Trans 1 i sl) (Trans2 i s2)).

An output relation is strong enough to induce the equality of the outputs of two automata:

Definition Output rel := [R : S1—> S2 - Prop]

(1 : I)(sl : S1) (s2 : S2)
(R sl s2) > (Outl 1 sl)=(0Out2 i s2).

Munich Center for Technology in Society Technische Universitat Miinchen

Proof Scheme for Circuit Correctness.

The correctness of a circuit is proved by the equivalence of its structure and behaviour which are
represented by two composed Mealy automata. The equivalence of composed Mealy automata can
be proved by the equivalence lemma of invariant relations (which is also represented in CiC) :

If R is an output relation invariant under P that holds for the initial
states, If P is an invariant for the common input stream and the state
streams of each automata, then the two output streams are equivalent.

Lemma Equiv_2 Mealy

(P : I »>S1 »> S2 —» Prop)(R : S1 —» S2 — Prop)

(Output rel R) - (Inv_under P R) - (R sl s2) —

(inp : (Stream I)) (sl : S1) (s2 : S2)

(Inv P inp (States Transl Outl inp sl) (States Trans2 Out2 inp s2)) —
(EgS (Al inp sl) (A2 inp s2)).

Proof by co-induction

MC.‘.{‘:" Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

3.3 Verification of Circuits in Proof Assistants: Application

Munich Center for Technology in Society Technische Universitat Minchen

Certification of a 4 by 4 Switch Fabric

A switch fabric is a network topology in which nodes interconnect via
one or more switches. The switching element performs switching of data
from 4 input ports to 4 output ports and arbitrating data clashes
according to the output port requests made by the input ports.*

The most significant part for verification is the Arbitration Unit. It

decodes requests from input ports and priorities between data to be sent,
and then performs arbitration.

* Local area network based on ATM (Systems Research Group, Cambridge University)

Munich Center for Technology in Society Technische Universitat Miinchen

Structure of the Arbitration Unit

The arbiration unit is the interconnection of three modules:

e FOUR_ARBITERS performs the arbitration for all output ports
(following Round Robin algorithm)

e TIMING determines when the arbitration process can be triggered.

e PRIORITY_DECODE decodes the requests and filters them according to
their priority

fs 1
TIMING] routeEnable
I J 1
act 7
(ItReq f X2, Grant
pri 1 PRIORITY_DECODB FOUR _ARBITERS
route L J 4% 4 1 J—— output Disable

4% 2 4

MCT

Munich Center for Technology in Society

(1)

(2)

(3)

(4)

()

(6)

Klaus Mainzer m

Technische Universitat Minchen

Outline of the Proof of Correctness*

The correctness of a switch fabric requires an equivalence proof of its structural automaton and behavioural
automaton. It follows from the verification of its modules that compose the Arbitration unit.

Proof that the behavioural automata for TIMING, FOUR_ARBITERS, and PRIORITY_DECODE
are equivalent to the three corresponding structural automata.

Construction of the global structural automaton structure_ARBITRATION by interconnecting the structural
automata of the three modules TIMING, FOUR_ARBITERS, and PRIORITY_DECODE .

Construction of the global behavioural automaton Composed_Behaviours by interconnecting the behavioural
automata of the the three modules TIMING, FOUR_ARBITERS, and PRIORITY_DECODE .

Proof that Composed_Behaviours and structure_ARBITRATION are equivalent (which follows from (1)
and by applying the lemmas stating that the equivalence of automata is a congruence for the composition rules).

Proof that Composed_Behaviours is equivalent to the expected behaviour Behaviour_ARBITRATION.
(Composed_Behaviours is more abstract than structure_ARBITRATION)

The equivalence of Behaviour_ARBITRATION and structure_ARBITRATION is obtained from (4) and (5)
by using the transitivity of of the equivalence on the streams.

*S. Coupet-Grimal, L. Jakubier, Hardware Verification using co-induction in Coq (Laboratoire d‘Informatique de Marseille, URA CNRS 1787)

Munich Center for Technology in Society Technische Universitat Minchen

Advantages of the Cog Proof Assistent
for Verification of Software/Hardware

e In Coq, a verification of a computer program is as strong and save as a
mathematical proof in a constructive formalism.

* The use of Coq dependent types provide precise and reliable
specifications.

e The use of Coq co-inductive types provide a clear modelling of streams In
circuits (without introducing any temporal parameter).

e The use of Coq co-induction allows to capture the temporal aspects of the
proof processes in one lemma.

e The hierarchical and modular approach allows correctness results in a
complex verification process related to pre-proven components.

Munich Center for Technology in Society Technische Universitat Miinchen

4. Verification in Machine Learning

3.1 Basics of Machine Learning
3.2 Causal and Statistical Learning
3.3 Testing, Verification, and Certification of Programs

3.4 Perspectives of Responsible Al

MCT.

Munich Center for Technolo gy in Society

Technische Universitat Minchen

4.1 Basics of Machine Learning

MCT.

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

Neural Networks and Learning Algorithms

Neural networks are complex systems of firing and non-firing neurons with topologies
like brains. There is no central processor (,mother cell‘), but a self-organizing
information flow in cell-assemblies according to rules of synaptic interaction (,synaptic

outputs

plasticity®).

outputs

inputs

Feedforward with one
synaptic layer

Learning algorithms:

 supervised

* non-supervised
* reinforcement
« deep learning

outputs

inputs

Feedforward with two synaptic
layers (Hidden Units)

inputs
Feedback of recurrent
neural network (RNN)

Klaus Mainzer
Kiinstliche
Intelligenz —Wann
ubernehmen
die Maschinen?

. e

Munich Center for Technology in Society

Technische Universitat Minchen

Definition of a (Finite Size Recurrent) Neural Network

A (recurrent) neural network IV Is presented by a directed graph of nodes called neurons.

Each neuron updates its activation value by applying a composition of a one-variable function
with a linear combination of the activations of all neurons x; (j = 1, ..., N), the external inputs

uy (k =1, ..., M), and synaptic weights of rational coefficients a;;, b;j, c;.

iji
Each processor‘s (cellular) state 1S updated by

xi(t+1) = U(Z}Vﬂ a;jx;(t) + 211‘11 b;ju;(t) + c;)

with x; states of activation, u; inputs at the previous instants, synaptic weights a;;, b
sigmoid (e.g., saturated-linear) function o

ij» Ci, and

[0,ifx<0
o(x) =<x,if0<x<1
1,ifx>1

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

Equivalence of Neural Networks, Automata, and Machines

outputs

AFFN

inputs

digital McCulloch-Pitts net
with integer weights

outputs

inputs

digital net
with rational weights

outputs

inputs

analog recurrent net
with real weights

/

[[|

D N

control
unit

~

input tape

finite automaton

-

read/write head

L]

[[|

control
unit

~

storage

Turing machine

_—

read/write head

L |

L []

control
unit

~

Oracle (polynomially

restricted

storage

Turing oracle machine

recognition of
computable ¢, regular)
languages

recognition of
computable (,, recursive)
languages

(Chomsky grammar)

**

recognition of (non-recursive) =
languages (beyond Chomsky)

* S.C. Kleene (1956); **, *** H.T. Siegelmann, E.D. Sontag (1995), (1994); K. Mainzer (2018)

Munich Center for Technology in Society Technische Universitat Minchen

Acceptance and Recognition of Languages

A language L < {0,1}" is accepted by a formal net IV if, for every word w €
L, w 1s accepted by IV, and for every word w & L, w Is rejected or not
classified by V.

L is recognized or decided by net W if L is accepted by V' and its complement
IS rejected by V.

Let T: N — N be a total function on natural numbers.

The language L is recognized or decided in time T by the V if any word
w € {0,1}7 is correctly classified in time not greater than T(|w|).

Verification of Neural Networks
and Learning Algorithms

Technische Universitat Minchen

Digital neural networks are equivalent to appropriate automata
(with respect to certain cognitive tasks).

The structure and behaviour of automata can be implemented
Into the Calculus of inductive Constructions (CiC).

Thus, in principle, their conformance could verify the

correctnesss of circuits of automata and, therefore, the correctness
of neural networks in Coq.

Even analog neural networks (with real weights) could be
Implemented into CiC extended by higher inductively defined
structures in HoT T to verify their correctness in Cog.

Munich Center for Technology in Society Technische Universitat Miinchen

4.2 Causal and Statistical Learning

Munich Center for Technology in Society Technische Universitat Minchen

What does Probabilistic Reasoning
and Pobabilistic Learning mean?

Probability theory is based on a model of a random experiment or probability
space (Q, F, P) with 2 set of all outcomes (data), F collection of events A €
2, and P measure assigning a probability to each event.

Probabilistic reasoning tries to infer properties of the outcomes (data) of

random experiments from a given mathematical structure (Q, F, P).

Probabilistic learning tries to infer properties of the underlying statistical
model from the outcomes of experiments.

Munich Center for Temmwm&)m/—mrsitm Minchen

Example of Probabilistic Learning

Example :

Given (x4, ¥1), ..., (x,,, ¥,) Observed data with x; € X inputs and y; € Y outputs (1 < i < n).
Metric spaces X and Y are equipped with the Borel o-algebra.

Assume that each (x;, y;) is independently generated by the same unknown random experiment,
I.e. realizations of random variables (X1,Y4), ..., (X;,, Y,,) i.i.d. (independent and identically
distributed) with joint distribution Py y and measurable function X: @ — X as random variable.

Try to infer properties of joint distribution Py y such as:*

(i) the expectation of the output f(x) = E[Y|X = x] given the input (regression)

(i) a binary classifier assigning each x to the class that is more likely:
f(x) = argmax,cyP(Y = y|X = x) withY = {1}

(ii1) the density px y of Px y (assuming it exists)

* Vapnik 1998

% ad
MC‘&(}{ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Causal Modeling and Machine Learning

causal learning [observations &

outcomes incl.
) changes &

causal reasoning \interVentiOnS)

A

[causal model

subsumes subsume

statistical learning

A 4

[probabilistic model

A

observations
) & outcomes
statistical reasoning

v

Peters et al. 2017, p. 6

Munich Center for Technology in Society

Definition of Structural Causal Models

Technische Universitat Minchen

A structural causal model (SCM) € = (S, Py) consists of a collection S of d structural
assignments X; = f;(PA;,N;)(j = 1, ...,d) with PA; < {Xl, -, Xa} \ {X;} parents of X;

and a joint distribution Py over the (jointly independent) noise variablesN = N4, ..., N4
(i.e. Py product distribution).

The graph G of SCM is generated by one vertex (node) for each X; and directed edges
from each parent in PA; to X;.

X; Is called direct effect of the elements of PA; as direct causes of X;.

Proposition on Entailed Distributions

An SCM € defines a unique distribution P§ over the variables X = (X4, ..., X4) such

MCT

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Minchen

Proofs of Causal Structures

Under the assumption of different types of structural models € (i.e. theories of mathematical
laws) with Gaussian noise, causal graph structures G can be provable identified from the joint
distribution of data. (Results for non-Gaussian noise are also available.)

Types of structural models | Types of equations Condition on functions | Proofs of uniquely identifiable
causal graphs

Structural Causal Models
SCM (general)

Additive Noise Models
ANM

Causal Additive Models
CAM

Linear Gaussian

Linear Gaussian with equal
error invariance

X _f](XPA i’

A= (XPA,-) =

=))+

kEPAj

Xj = 2 Bjr (Xi) + N;

kEPA]’

Xj = 2 Bk (Xy) + N;

KEPA;

nonlinear

nonlinear

linear

linear

yes

yes

no

yes

Peters et al. 2017, p. 138

Munich Center for Technology in Society Technische Universitat Miinchen

4.3 Testing, Verification, and Certification of Programs

Munich Center for Technology in Society Technische Universitat Miinchen

Correctness of Certified Programs with Proof Assistants

A program is correct (,,certified*) if it can be

verified to follow a given specification.

Design A proof assistant proves the correctness of
l a computer program in a consistent
_ formalism like a constructive proof in
Implementation
" Therefore, proof assistants are the best formal

mathematics (e.g., Coq, Agda, MinLog).
_ verification of correctness for certified programs.

,, Waterfall ¢
of development
in software engineering

Maintenance

Munich Center for Technology in Society Technische Universitat Minchen

Ad-Hoc and Empirical Testing versus Model-Based Testing

Empirical testing lays directly on the analysis of program executions. It collects
Information from executing the program either after actively soliciting some
executions, or passively during operation and try to abstract from these some
relevant properties of data or of behavior.

On this basis, It is decided whether the system conforms to the expected behavior.

Model-based testing uses a model of the system that is based on the design.
From this model, test input is automatically generated and executed by a test tool.

The output of the system is automatically compared to the output specified by the
model of the system (conformance of implementation with specification).

If the system passes all the generated tests, then the system is considered to be
correct.

Munich Center for Technology in Society Technische Universitat Miinchen

Test Tool Architecture of Model-Based Testing

Test
specification > Te_St Adapter s Implemen
Engine P . g tation

Environment

The test engine iImplements the test generation procedure:

It steps through the specification of the model and computes the sets of allowed input and
output actions.

If an output action is observed, then the test engine evaluates whether this output is

allowed by the specification of the model (conformance of implementation/specification).

If some output is observed that is not allowed according to the specification, then the test
Is terminated with the verdict fail. As long as the verdict fail is not given, the test
terminates with the verdict pass.

MCT

Munich Center for Technology in Society

Klaus Mainzer

! § |

%Pnoﬂrnun ,
ﬁcnmymnnu ?

,‘ 1 nlnmzanoanamemaIMcs 937
Computer Sciejite, agd Pmlosonny

Kiaus Mamzer 8, ot
* Peter Schuster 'r‘a

: ‘ JHefmut ?chw/ﬁ:hte"hberé
- E

g

3 2
O A

? .
9 \Pé’b’orld Scientific

Proof Assistants

A proof assistant proves the correctness of
a computer program in a consistent
formalism like a constructive proof in
mathematics (e.g., Coq, Agda, MinL.og,
Isabelle).

Therefore, proof assistants are the
best formal verification of correctness
for certified programs.

There are restricted practical applications (e.g., Metro line in
Paris with Coq), but not for increasing complexity in industry.

TUTI

Technische Universitat Minchen

Munich Center for Technology in Society Technische Universitat Minchen

Degrees of Certification In
Software Testing Research

Complexity

Ad-hoc Anti-model-based Model-based Theorem
testing testing testing proving

Accuracy & Security

We must aim at increasing accuracy, security, and trust in software in
spite of increasing complexity of civil and industrial applications, but

W.r.t. to costs of testin (e.g. ,utility functions for trade-off time of

delivery vs. market value, cost/effectiveness ratio of availability)

N o
MC‘&(}{ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

4.4 Perspectives of Responsible Artificial Intelligence

;;{w
MC‘&(} Klaus Mainzer

Munich Center for Technology in Society

Certified Al-Programs

Statistical machine learning works,
but we can’t understand the underlying reasoning.

Machine learning technique is akin to testing,
but it is not enough for safety-critical systems.

—> Combination of causal learning
with certified programs of model-based testing,
satisfaction techniques, and theorem proving

Munich Center for Technology in Society Technische Universitat Miinchen

Proof Theory Mathematics
(e.g., type theory) (e.g., analysis, homotopy
theory)

,» Trust & \erification by

Type-checking “

Computer Science Science and Society
(e.g., theorem prover) (e.g., Al, Big Data)

Munich Center for Technology in Society Technische Universitat Miinchen

References:

Bertot, Y.; Castéran, P. (2004): Interactive Theorem Proving and Program Development. Cog Art: The Calculus of
Inductive Constructions. Springer: New York.

Bishop, E.; Bridges, D. (1985): Constructive Analysis. Springer: New York.

Howard, W. A. (1969): The formulae-as-types notion of construction. In: Seldin, J. P.; Hindley,
J. R. (eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press: Boston,
MA, 479-490.

Kohlenbach, U. (2008): Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer: Berlin.

Lorenzen, P. (1965): Differential und Integral. Eine konstruktive Einflihrung in die klassische Analysis. Akademische
Verlagsgesellschaft. Frankfurt.

Mainzer, K. (2018): The Digital and the Real World. Computational Foundations of Mathematics, Science,
Technology, and Society. World Scientific Singapore.

Mainzer, K; Schuster, P.; Schwichtenberg, H. (Eds.) (2018): Proof and Computation. Digitization in Mathematics,
computer Science, and Philosophy. World Scientific Singapore.

Mainzer, K. (2019): Artificial Intelligence. When do Machines take over? Springer (Translation of 2nd German
edition 2019)

Martin-Lof, P. (1998): An intuitionistic theory of types. Twenty-five years of constructive type theory (Venice, 1995).
In: Oxford Logic Guides 36, Oxford University Press: New York, 127-172.

Palmgren, E. (1998): On universes in type theory. In: G. Sambin, J. M. Smith (eds), Twenty-five years of constructive
type theory, Clarendon Press: Oxford, 191-204.
Peters, J.; Janzing, D.; Scholkopf, B. (2017): Elements of Causal Inference. Foundations of Learning Algorithms. MIT
Press; Cambridge Mass.

Weyl, H. (1918): Das Kontinuum. Kritische Untersuchungen tber die Grundlagen der Analysis. De Gruyter: Leipzig.

MCTS TLm

Munich Center for Technology in Society Technische Universitat Miinchen

KLAUS MAINZER

INFORMATION

ALGORITHMUS - WAHRSCHEINLICHKEIT
KOMPLEXITAT - QUANTENWELT - LEBEN.
GEHIRN - GESELLSCHAFT

M Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

=4 iitetl and i
and the Real World {he Real world } €55¢ nt Id I S {

e . Computational Foundations of Mathematics,
In the 21st century, digitalization is a global challenge of mankind. Even

for the public, it is obvious that our world is increasingly dominated by Science, Technology, and Philosophy
powerfulalgorithms and big data. But, how computable is ourworld? Some A

people believe that successful problem solving in science, technology,

and economies only depends on fast algorithms and data mining.

Chances and risks are often not understood, because the foundations of

algorithms and information systems are not studied rigorously. Actually,

they are deeply rooted in logics, mathematics, computer science and

philosophy. v S & ‘i 5. .
Therefore, this book studies the foundations of mathematics, computer " vl o " - g) I ‘ ‘ r(c ‘ n a r

science, and philosophy, in order to guarantee security and reliability
of the knowledge by constructive proofs, proof mining and program
extraction. We start with the basics of computability theory, proof theory,

and information theory. In a second step, we introduce new concepts sty ik g PR ™ -l KL t . !
of information and computing systems, in order to overcome the ; . - k. . e 3
gap between the digital world of logical programming and the analog A % e b+ a

world of real computing in mathematics and science. The book also
considers consequences for digital and analog physics, computational
neuroscience, financial mathematics, and the Internet of Things (loT).

[e9Yy 23 pue

|MELY

World Scientific -
www.worldscientific.com \\% World Scientific

10583 he

Munich Center for Technology in Society Technische Universitat Miinchen

SPRINGER BRIEFS IN COMPLEXITY

Klaus Mainzer

Die Berechnung der Welt
| S N
Klaus Mainzer - Leon 0. Chua

_ The Universe
as Automaton

Von der Weltformel

RS zu Big Data

B From Simplicity
g and Symmetry to
% Complexity

Munich Center for Technology in Society

Kiinstliche Intelligenz — Wann iibernehmen die
Maschinen?

Jeder kennt sie. Smartphones, die mit uns sprechen, Armband-
uhren, die unsere Gesundheitsdaten aufzeichnen, Arbeitsabliufe,
die sich automatisch organisieren, Autos, Flugzeuge und Droh-
nen, die sich selber steuern, Verkehrs- und Energiesysteme mit
autonomer Logistik oder Roboter, die ferne Planeten erkunden,
sind technische Beispiele einer vernetzten Welt intelligenter Sys-
teme. Sie zeigen uns, dass unser Alltag bereits von KI-Funktionen
bestimmt ist.

Auch biologische Organismen sind Beispiele von intelligenten
Systemen, die in der Evolution entstanden und mehr oder weni-
ger selbststandig Probleme effizient l6sen konnen. Gelegentlich
ist die Natur Vorbild fiir technische Entwicklungen. Haufig fin-
den Informatik und Ingenieurwissenschaften jedoch Losungen,
die sogar besser und effizienter sind als in der Natur.

Seit ihrer Entstehung ist die KI-Forschung mit grofien Visionen
tiber die Zukunft der Menschheit verbunden. Lost die , kiinstliche
Intelligenz® also den Menschen ab? Dieses Buch ist ein Pladoyer
fir Technikgestaltung: KI muss sich als Dienstleistung in der Ge-
sellschaft bewihren.

ISBN 978-3-662-48452-4

9 !8 4‘

3662048452

» springer.com

Klaus Mainzer

jUBUIYRSE} AP U3WY3UIQN uuep — zuabijja3u] aydipsuny

Klaus Mainzer

Kunstliche
Intelligenz —Wann
ubernehmen

die Maschinen?

v

@ Springer

TUTI

Technische Universitat Minchen

