

Walling up Backdoors in Intrusion Detection Systems

Maximilian Bachl, Alexander Hartl, Tanja Zseby, Joachim Fabini

Technische Universität Wien, Vienna, Austria

Poisoning attacks (also called backdoors)

- ML model trained by a company (attacker) and bought by a customer (victim)
- Attacker trained secret pattern in the model called backdoor
- Model behaves behaves wrongly when it sees data with secret pattern
- $\blacksquare \to \mathsf{Attacker}$ can launch $\mathbf{undetected}$ attack on victim with the secret pattern

Setup

- Two large Network Intrusion Detection datasets
 - UNSW-NB15
 - CIC-IDS-2017
- Extract features such as: Source port, destination port, mean packet size, std. dev. of packet interarrival time...
- DL and RF classifier

Implementation of the Backdoor

- Modify TTL of first packet by incrementing/decrementing it by 1
- Attacker can then make an attack look benign
- Should not change accuracy on original data

Implementation of the Backdoor

- Modify TTL of first packet by incrementing/decrementing it by 1
- Attacker can then make an attack look benign
- Should not change accuracy on original data

For defense:

Assume a clean validation dataset is provided by the vendor of the MI model

Classification metrics

Explainability techniques

- PDP: How does changing a feature change the prediction
- **ALE:** Same like PDP but only "realistic" feature combinations

PDP/ALE for standard deviation of TTL

PDP/ALE for mean of TTL

Overview

- **Pruning:** Remove unused neurons
- Fine-tuning: Retrain network with clean data
- Fine-pruning: Both

Correlations between backdoor and neuron activations (ideal results)

Correlations between backdoor and neuron activations (results for CIC-IDS-2017)

Fine-tuning

Conclusion

- Pruning doesn't work
- Fine-tuning works but is unusably slow
- Fine-pruning works for one dataset after extensive experimentation by hand

Overview

- Remove leaves that are not commonly used
- Additionally only consider "benign" leaves
- Additionally also consider depth in the tree: Cut shallow leaves first

Toy example step 0

Toy example step 1

0=benign, 1=attack

dashed line: leaf that is going to be cut

Toy example step 2

Cut only benign nodes; shallow ones first

Conclusion

- PDP/ALE can unveil odd behavior
 - Artifact of classifier or backdoor?
- Common defences for DL don't seem to work for IDS!
- RFs can be defended by our method

Conclusion

- PDP/ALE can unveil odd behavior
 - Artifact of classifier or backdoor?
- Common defences for DL don't seem to work for IDS!
- RFs can be defended by our method

Core insight:

Always include a validation dataset when sharing a security-critical ML model!

Walling up Backdoors in Intrusion Detection Systems

Maximilian Bachl, maximilian.bachl@tuwien.ac.at Alexander Hartl, alexander.hartl@tuwien.ac.at Tanja Zseby, tanja.zseby@tuwien.ac.at Joachim Fabini, joachim.fabini@tuwien.ac.at

Technische Universität Wien, Vienna, Austria