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Introduction

Poisoning attacks (also called backdoors)

ML model trained by a company (attacker) and bought by
a customer (victim)
Attacker trained secret pattern in the model called
backdoor
Model behaves behaves wrongly when it sees data with
secret pattern
→ Attacker can launch undetected attack on victim with
the secret pattern
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Introduction

Setup

Two large Network Intrusion Detection datasets
UNSW-NB15
CIC-IDS-2017

Extract features such as: Source port, destination port,
mean packet size, std. dev. of packet interarrival time...
DL and RF classifier

April 2, 2020 Walling up Backdoors in Intrusion Detection Systems by Maximilian Bachl 2



Introduction

Implementation of the Backdoor

Modify TTL of first packet by incrementing/decrementing
it by 1
Attacker can then make an attack look benign
Should not change accuracy on original data

For defense:
Assume a clean validation dataset is provided by the vendor of
the ML model
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Introduction

Classification metrics
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Explainability

Explainability techniques

PDP: How does changing a feature change the prediction
ALE: Same like PDP but only “realistic” feature
combinations
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Explainability

PDP/ALE for standard deviation of TTL
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Explainability

PDP/ALE for mean of TTL

100

101

102

103

104

105

O
cc

ur
re

nc
e 

fr
eq

ue
nc

y

ALE, Deep Learning
ALE, Random Forest
PDP, Deep Learning
PDP, Random Forest
mean(TTL) occurrence

0 50 100 150 200 250
mean(TTL)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PD
P/

AL
E

April 2, 2020 Walling up Backdoors in Intrusion Detection Systems by Maximilian Bachl 7



DL poisoning defences

Overview

Pruning: Remove unused neurons
Fine-tuning: Retrain network with clean data
Fine-pruning: Both
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DL poisoning defences

Correlations between backdoor and neuron
activations (ideal results)
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DL poisoning defences

Correlations between backdoor and neuron
activations (results for CIC-IDS-2017)
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DL poisoning defences

Fine-tuning
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DL poisoning defences

Conclusion

Pruning doesn’t work
Fine-tuning works but is unusably slow
Fine-pruning works for one dataset after extensive
experimentation by hand
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RF poisoning defences

Overview

Remove leaves that are not commonly used
Additionally only consider “benign” leaves
Additionally also consider depth in the tree: Cut shallow
leaves first
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RF poisoning defences

Toy example step 0
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RF poisoning defences

Toy example step 1
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RF poisoning defences

Toy example step 2
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RF poisoning defences

Cut only benign nodes; shallow ones first
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Discussion

Conclusion

PDP/ALE can unveil odd behavior
Artifact of classifier or backdoor?

Common defences for DL don’t seem to work for IDS!
RFs can be defended by our method

Core insight:
Always include a validation dataset when sharing a
security-critical ML model!
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