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Introduction

Poisoning attacks (also called backdoors)

m ML model trained by a company (attacker) and bought by
a customer (victim)

m Attacker trained secret pattern in the model called
backdoor

m Model behaves behaves wrongly when it sees data with
secret pattern

m — Attacker can launch undetected attack on victim with
the secret pattern
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Introduction

Setup

m Two large Network Intrusion Detection datasets

= UNSW-NB15
m CIC-IDS-2017

m Extract features such as: Source port, destination port,
mean packet size, std. dev. of packet interarrival time...

m DL and RF classifier
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Introduction

Implementation of the Backdoor

m Modify TTL of first packet by incrementing/decrementing
it by 1
m Attacker can then make an attack look benign

m Should not change accuracy on original data
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Introduction

Implementation of the Backdoor

m Modify TTL of first packet by incrementing/decrementing
it by 1
m Attacker can then make an attack look benign

m Should not change accuracy on original data

For defense:

Assume a clean validation dataset is provided by the vendor of
the ML model
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Introduction

Classification metrics
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Explainability

Explainability techniques

m PDP: How does changing a feature change the prediction

m ALE: Same like PDP but only “realistic” feature
combinations
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Explainability

PDP/ALE for standard deviation of

TTL
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Explainability

PDP/ALE for mean of TTL
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DL poisoning defences

Overview

m Pruning: Remove unused neurons
m Fine-tuning: Retrain network with clean data

m Fine-pruning: Both
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DL poisoning defences

Correlations _between backdoor and neuron
activations (ideal results
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DL poisoning defences

Correlations between backd%or and neuron

activations (results for CIC-I

Correlation coefficient
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DL poisoning defences

Fine-tuning
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DL poisoning defences

Conclusion

m Pruning doesn't work
m Fine-tuning works but is unusably slow

m Fine-pruning works for one dataset after extensive
experimentation by hand
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RF poisoning defences

Overview

m Remove leaves that are not commonly used

m Additionally only consider “benign” leaves

m Additionally also consider depth in the tree: Cut shallow
leaves first
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RF poisoning defences

Toy example step 0
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RF poisoning defences

Toy example step 1
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Step 1
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RF poisoning defences

Toy example step 2
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RF poisoning defences

Cut only benign nodes; shallow ones first

Classification performance
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Discussion

Conclusion

m PDP/ALE can unveil odd behavior
m Artifact of classifier or backdoor?

m Common defences for DL don’t seem to work for IDS!

m RFs can be defended by our method
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Discussion

Conclusion

m PDP/ALE can unveil odd behavior
m Artifact of classifier or backdoor?

m Common defences for DL don’t seem to work for IDS!

m RFs can be defended by our method

Core insight:

Always include a validation dataset when sharing a
security-critical ML model!
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