Advanced Time Series

Gauss Exercises



Ist GAUSS assignment ATS (cannot be handed in for grading!)

1. Create a standard normally-distributed random variable
(Compare page 23-29 in the introductory slides)

1.

Generate a sequence of T=1000 standard normal random variables and write the real-
izations in one column (GAUSS hint: rndn(r,c)). Produce a graph of the resulting
series. For the x-axis value you need to generate a sequence (Hint: seqa(1,1,T)). Plot
the series against this sequence.

. Compute sample means (GAUSS hint: meanc) and sample standard deviations (GAUSS

hint: stdc) of the series generated in step 1. Interpret the results.

Repeat the steps, i.e. let the program run another time. Compare your results. What
happens to your graph?

What is the function of a seed? Repeat the steps 1 to 3, but this time use a seed.

. Generate a second series that contains the cumulated standard normal random variables

generated in step 1 and plot the series. How do we call such a process?

2. Simulate an AR(1) process

. Simulate a first order AR (AR(1)) process that is defined as follows:

Yt = ¢ys—1 + €¢, where e, ~ N(0,1)

The number of observations is T = 100.

Draw the vector of residuals e; from a standard normal distribution, initialize the vector
y and define its starting value yo = 0, which is not part of the final vector y (so the first
element of y is y1). The elements of y are generated successively :

Y1 = Qyo + €1
Y2 = dy1 + €2
Ys = Qy2 + €3
and so on.

Generate the series by using a loop statement!

. Plot the realization of the process.

Write a procedure that delivers one realization (T = 100) of an AR(1) process. Hint:
Use as input variables ¢ and the number 7', as output the resulting AR(1) realization.

Simulate the process for different parameter values: ¢ = 0 (white noise) ¢ = -0.5 ¢ =
0.5 and ¢ = 1 (random walk) by calling on your procedure.

. Plot the realizations of the process for the different parameters into one graphic window

(Hint: window(r,c,t)). Give each graph a title (see page 27 on the introductory slides).



2nd GAUSS assignment ATS (can be handed in for grading!)

1. Simulate an AR(1) process -continued

1.

Use your procedure from the first assignment to simulate an AR(1) process with ¢ =
0 (white noise), ¢ = -0.5, ¢ = 0.5, and ¢ = 1 (random walk) and 7" = 100 (number of
observations).

. Analyze the stationarity properties of this AR(1) process by using simulations: Compute

ensemble means and variances for 30 realizations of your process (for every of the four
parameter alternatives). Hint: Use again a loop to generate a matrix which contains the
different realizations of the process in its columns. Visualize the means and variances
in a plot and label the axis. Interpret the graph.

Compute empirical autocorrelations (first order) by using the 30 realizations (Ensem-
bles), i.e compute Corr(y,y2) and Corr(yz, y3),..., Corr(yeg, y100)). Hint: You could use
the Gauss command corrx. It computes the correlation between columns of a matrix
and returns the corresponding correlation matrix, i.e. if y is a N x T matrix then
corrx(y) returns a 7' x T (symmetric) matrix of correlations. The ith row, jth column
element of the correlation matrix gives the correlation between column ¢ and column j.
You need to read out the correlations you want to have. There are different ways to do
this. (You could use a help matrix: If, for instance, you want to read out the diagonal
elements of a matrix, you could multiply the matrix with an identity matrix. Then all
the off diagonal elements are zero and you can use sumc to sum up the columns, which
then results in a vector that contains the diagonal elements of the initial matrix. This
18 only an example, we do not need the diagonal elements here, but...!

Plot the resulting sequence of autocorrelations in a graph and title it. Interpret the
graph.

Compute for one arbitrary realization of the AR(1) process (for every of the four pa-
rameter alternatives) the empirical autocorrelation of first order (GAUSS hint;acf) and
compare this to the theoretical value (print them to the output window) . Interpret the
result.

. Given your results of the previous questions: Evaluate if the AR(1) process is (weakly)

stationary. Does the stationarity depend on the choice of the parameter ¢? For which
parameter value is the AR(1) process stationary?

3. Simulate a MA(1) process

1.

Simulate a first order moving average (MA(1)) process that is defined as follows:
Yt = Oer—1 + &4, &0 ~ N(0, 1)

T = 100. Simulate the process for different parameter values: 6 =0.5, 8 =-0.5, § =2, 0
=-10 Plot the realizations of the process in a graph.

. Write a procedure that delivers one realization of a MA(1) process. Hint: Use as input

variables 6 and the number T, as output the resulting MA(1) realization.



. Evaluate whether the requirements for weak stationarity are fulfilled. Compute en-
semble means and variances for 30 realizations of your process (for every of the four
parameter alternatives). Visualize the means and variances in a plot and label the axis.
Interpret the graph.

. Compute empirical autocorrelations (first order) by using the 30 realizations (Ensem-
bles). Plot the resulting sequence of autocorrelations in a graph and title it. Interpret
the graph.

. Compute for one arbitrary realization of the MA(1) process (for every of the four
parameter alternatives) the empirical autocorrelation of first order (GAUSS hint;act)
and compare this to the theoretical value (print them to the output window) . Interpret
the result.

. Given your results of the previous questions: Evaluate if the MA(1) process is (weakly)
stationary. Does the stationarity depend on the choice of the parameter 67



3rd GAUSS assignment ATS (can be handed in for grading!)

1. Estimate an AR(1) process using CML

1. Use the AR simulation procedure of the 1st set of assignment. Simulate an AR(1)
process with ¢ = 0.5, ¢ = 0, 02 = 1 and T = 100.

Yo = C+ QY1 + €, €4 ~ N(OaUg)

2. The log likelihood function of an AR(1) process conditioning on the first observation is
given by:

InL= — [T;l} In(27) — {Tz_l] In(c?) — ET: {2652] ;

t=2

where €, =y — ¢ — Pyr_1.

Write a procedure that estimates the parameters (c, ¢, o) of an AR(1) process by using
the Gauss library cml (do not forget to inlcude the library into your program file). The
cml call is:

{ x,f,g,cov,retcode } = CML(dataset,vars,&fct,start)

&fct is the procedure that computes the log likelihood contributions. In our case the
one of an AR(1) process given above. Input arguments for the procedure are always a
column vector of the parameters to be estimated and a data matrix. Output argument
is the vector of likelihood contributions of each observation.

In the body of the procedure you have to read out the parameters from the input vector,
then calculate the sequence (vector) of e; and compute the loglikelihood. Hint: lagn
gives the n-th lag of matrix. Compute the lag of the series as a global variable (not
inside of the procedure). Also note that you loose one observation by taking a lag of
the series.

When you call cml, you need to provide starting values for the parameter vector.

3. Estimate ¢, ¢, and 02 and discuss your results.

4. Compute standard errors of the estimators. Test the null hypothesis Hy : parameter =
0. Computer p-values of the test-statistic. Gauss hint: cdfnc. Interpret your results.

5. Simulate the process for different values of T'= 30, T' = 50, T' = 100, T' = 200. Estimate
¢ and discuss your results.

6. Write a likelihood function for only two parameters o and ¢. Plot the likelihood as a
function of o and ¢ in a three dimensional plot (GAUSS Graph Hint: xyz/surface). Let
o run from 0.8 to 1.5 in steps of 0.05 and let ¢ run from 0 to 0.9 in steps of 0.01. Use
the graph to explain the general idea of maximum likelihood.



4th GAUSS assignment ATS (can be handed in for grading!)

1. Estimate a MA(1) process

1. Use the MA simulation procedure of the 1st set of assignment. Simulate an MA(1)
process with # = 0.5, ¢ = 0, 02 = 1, and T' = 100.

Yt = c+0e4_1 + &4, g1 ~ N(0,0?)

2. The conditional log likelihood function (assuming that eg = 0) of an MA(1) processis
given by:

T
T T g2
lnL = - 5 111(27'[') — 5 11’1(0’ ) — t:E - [W] :

where g4 =y — ¢ — Oep_1.

Write a procedure that estimates the parameters (c, ¢, o) of an MA(1) process by using
the Gauss library cml (do not forget to inlcude the library into your program file).
Remember: Input arguments for the likelihood procedure are always a column vector
of the parameters to be estimated and a data matrix. Output argument is the vector
of likelihood contributions of each observation.

3. Compute standard errors of the estimators. Test the null hypothesis Hy : parameter =
0. Computer p-values of the test-statistic. Gauss hint: cdinc.

4. Simulate the process for different parameter values of 8 = -0.5, AH =160 = 0.3 and
T = 100. Estimate 6. Discuss the maximum likelihood estimator 6.

5. Simulate the process for diﬁeren:c values of T' = 30, 50, 100, 200. Estimate 6. Discuss the
maximum likelihood estimator 6§ and its estimated standard error. How do your results
change?

6. Write the likelihood function for only two parameters o and 6. Plot the likelihood as a
function of o and 6 in a three dimensional plot. GAUSS Graph Hint: xyz.



5th GAUSS assignment ATS (can be handed in for grading!)

Testing for Stationarity - Simulating the Dickey-Fuller Test Statistics:

e Stationarity test with null hypothesis: unit root (non stationarity), i.e. that p =1
e Non-standard asymptotic distribution of unit root processes

e Inference requires simulation of asymptotic distribution

Procedure for the Dickey-Fuller test statistic simulation:

1. Simulate a random walk

2. Conduct an OLS regression and calculate the t-statistic for the null hypothesis that the
true value of p equals 1

3. Simulate the test statistic: Run Step 1 and 2 n=10000 times and sort the t-values into
quantiles

True Process:

Yt = Yt—1 T &
Case 1
Estimated Regression:
Yt = PYt—1 + & (1)
Case 2
Estimated Regression:
Yo = Q@+ pYi—1 + & (2)
Case 4
Estimated Regression:
Y=+ pyi—1 + 0t + & (3)



Programming - Case 1:

1. Simulate a random walk

1. Simulate a random walk that is defined as follows:

Y =a+ py—1 +e, e~ N(O, 02) (4)

T = 100. Simulate the process for the following parameter values: p =1, a =0,
o?=1.

2. Write a procedure that delivers one realization of the random walk process. Hint:
Use as input variables p, a and T', as output the resulting random walk realization.

2. Estimate the unknown parameters with OLS

1. Compute the estimator p in Equation (1)). First, implement an OLS estimator:
B = (X'X)'(X'Y);, X =y;, and Y contains the dependent variable y;. For
estimation do not use the starting values of y; and you loose one observation by
taking a lag of the series ;.

2. Estimate the standard error of your parameter p and calculate the t-statistic for
the null hypothesis that the true value of p equals 1.

3. Write a procedure around the OLS estimation. The OLS procedure has two input
variables. A (T x K) matrix containing K exogenous regressors (here X =y, 1)
and a (T x 1) matrix containing the dependent variable, i.e. Y = ;. As output
specify a row vector that contains the estimate for p, the corresponding standard
error and the t-statistic associated with the null hypothesis that the true value

p =1

3. Simulation of the test statistic

1. Simulate the two procedures of Step 1 and 2 n=10000 times. In order to do so,
write a loop around the two procedures. Collect the parameter estimates for p
and the corresponding standard errors and t-values in a matrix. Hint: Initialize
a matrix of dimension n x 3. Fill in the results from the simulation.

2. Sort the estimated t-values into quantiles (0.01, 0.025, 0.05, 0.1, 0.9, 0.95, 0.975,
and 0.99). Hint: Use the GAUSS command quantiled.

3. Create a critical values table for the Dickey-Fuller Test for Case 1 for sample size
T = 25 and T = 100 and for the 0.01, 0.025, 0.05, 0.1, 0.9, 0.95, 0.975, and 0.99
Quantile.

Programming - Case 2:




1. Use the procedure from Case 1 and simulate the random walk (see Equation ()
with T = 100, p =1, o =0, 0% = 1.

2. Estimate the unknown p and a parameters in Equation with OLS. Hint:
Order the matrix that contains your regressors as follows: X = y,_; ~vector of
constants.

3. Simulate the previous two steps n=10000 times. Store the parameter estimates
for p and the corresponding standard errors and t-values in a matrix.

4. Sort the estimated t-values into quantiles.

5. Create a critical values table for the Dickey-Fuller Test for Case 2 for sample size
T = 25 and T = 100 and for the 0.01, 0.025, 0.05, 0.1, 0.9, 0.95, 0.975, and 0.99
Quantile.

Programming - Case 4:

1. Use the procedure from Case 1 and simulate a random walk (see Equation (4]))
with T'= 100, p =1, a =0, 0% = 1.

2. Estimate the unknown p, 6 and a parameters in Equation (3|) with OLS. Hint:
Order the matrix that contains your regressors as follows: X = y;, 1 ~vector of
constants~time trend.

3. Simulate the two steps n=10000 times. Store the parameter estimates for p and
the corresponding standard errors and t-values in a matrix.

4. Sort the estimated t-values into quantiles.

5. Create a critical values table for the Dickey-Fuller Test for Case 4 for sample size
T = 25 and T = 100 and for the 0.01, 0.025, 0.05, 0.1, 0.9, 0.95, 0.975, and 0.99
Quantile.

Interpretation:

A researcher wants to conduct a Dickey-Fuller test to test an economic time series
for a unit root. He estimates a regression model of the form:

Y =+ pyi—1 + 0t + &4

The researcher works under the null hypothesis that the true data generating
process is given by:
Yo = Yi—1 + &

Running the regression the researcher computed the estimate p = 0.78. The
estimated OLS standard error s.e.(p) = 0.021. The sample size is 100. Use your
simulated critical values and interpret the result.



6th GAUSS assignment ATS (can be handed in for grading!)

1. Loading Data and Data Description

1. First, load the data into a GAUSS matrix. The data_var.txt file contains Swiss seasonal
adjusted macroeconomic data: quarterly Interest Rate in % (first column), quarterly
Consumer Price Index (second column), quarterly Gross Domestic Product in Swiss
(BIP) in Mio CHF (third column) and quarterly Money Stock M1 in Mio CHF (fourth
column). The first observation is from the first quarter of 1974 and the last observation
is from the first quarter of 2002. T = 113. Gauss hint: loadm all[] = data_var.txt; all2
=reshape(all,113,4);

2. Plot the four time series and describe the plot. Decide whether the time series includes

a) a constant

b) a constant and a time trend

¢) no constant and no time trend.

2. Conducting Dickey Fuller Tests

1. Conduct a Dickey Fuller test of non stationarity for all four time series. Estimate a
regression model.

Generally, the regression model is written as:
Ay = 1+ Bayi—1 + Bt + &

with Ay, =y — y¢—1, i.e. first differences of ¥, ¢ as time trend and J; as constant.

Based on your observations, if you decided that the series contains a constant, include
(1 in the regression. Else 1 = 0. Based on your observations, if you decided that the
series contains a time trend, include 3 X t in the regression. Else 3 = 0. For the first
parameter estimate (B2 use the standard error to compute the t-statistic for Hy : G = 0.

Compare your t-value with the corresponding Dickey-Fuller distribution and decide
whether you can reject or not reject the null hypothesis of a unit root. Interpret your
result.

2. Compute log differences of the series, i.e. gy = Alog(y:) = log(y) — log(yi—1).

3. Plot the series 3; and describe the plot. Decide whether the time series includes
a) a constant
b) a constant and a time trend
¢) no constant and no time trend.

4. Conduct a Dickey Fuller test on g; (for all four time series) and discuss your result.
Does g; contain a unit root?
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7th GAUSS assignment ATS (can be handed in for grading until Tue,
22nd Dec 2009!)

Estimate a GARCH(1,1) for a return series using cml

1. First, load the return data into a GAUSS matrix garch.fmt. You can load this files
with the load command (look it up in the GAUSS Help).

2. Plot the return time series. Describe the stylized facts you observe.

A simple model to account for these stylized facts ist the GARCH model.
Mean equation (y; is a log return time series):

Yt =c+et

In the following we assume ¢ = 0. Argue why this is a sensible assumption. Therefore,
&t =Yt
Variance equation:
he = wtachy + By (5)

Writing the conditional likelihood function GARCH(1,1):

1 _
_1,...90:0) =
Fyelye—1,-.-90; 0) mexp[ o }

Conditional log likelihood function:

T
Z(0) = Z log f(yelyt—1, ---y0; 0)

T

1 _

= ——10g(27r —75 log(hy) — 55 yt o)
t=1

3. Write a procedure that estimates the parameters of an GARCH(1,1) process. Hint:
First read all following remarks. Then work through them step by step.

First build the h; of GARCH(1,1) model. Hint: You need starting values for h, w and
«, [B. The starting value of the h sequence is an appropriate guess of w and «, 3 for
computing the unconditional expectation of the GARCH(1,1) process in Equation (7)),
ie. h=w/(1—a— ) withw =0.1, « =0.1, and 5 = 0.6.
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Second compute the value of the log likelihood function by plugging in &; and the
conditional variance sequence of h;.

Now write the rest of the procedure around the procedure-body. Hint: Do not forget
to define locals. Input variables of the procedure are the data y and the parameters
that are estimated. ( w, «, ). The parameters enter the procedure as one column
vector!) Remember: Output variable is a column vector that contains the likelihood
contribution of each observation.

Before you call cml make modify your parameters: In a GARCH estimation you have
to ensure that the left hand side variable of Equation is always positive. You have
to impose restrictions on your parameters. Modify your procedure the following way:
parameter = exp(parameter®). The estimated equation is then

he = exp(w*) +exp(a®)ef_y + exp(8°)hi1

. Use CML to estimate the unknown parameters; w*, o, §*. Take as starting values the
log of the starting values given above. Choose as global variables:

_cml_Algorithm =1;

_cml_LineSearch=2;

_cml_DirTol = le-5;

_cml_CovPar = 2;

. After Estimation. Transfer the estimated parameter back by taking parameter =
exp(parameter®).

12



8th GAUSS assignment ATS (can be handed in for grading!)

1. Estimate a GARCH(1,1) for a return series using cml

Estimate a GARCH (1,1) using the return data given in garch.fmt (for details see last
assignment sheet!) for:

1. unrestricted parameters
2. parameters restricted by parameter = exp(parameter™)

3. parameters that are directly restricted (to be larger than zero) by cml globals: _cml_c
and _cml_d. These are matrices that define inequalities, i.e, throughout the optimiza-
tion using cml the following inequality has to be always fulfilled:
cml_c*parametervector .gt _cml_d

Compare your results from the differnet estimations. What difficulties do you encounter?

2. Calculate standard erros using the delta method

1. To compute standard errors of the estimators w, «, 3, when estimated with the restric-
tion parameter = exp(parameter*), the delta method is required:

First, write a procedure that returns you the econmic parameters from the esti-
mated ones, i.e.parameter = exp(parameter®). Input variable is one column vector 6*
containing w*, o, §*. Output variable is one column vector # containing w, «, 3.

Second, write a procedure that returns the estimated variance covariance matrix of 6
=w, a, (. Input variables are estimated #* and the estimated variance covariance matrix
of §*. Within the procedure use the Gauss function gradp and calculate standard errors
according to the delta method summarized below. Describe shortly, how this function
works.

2. Test the null hypothesis Hy : 6 = 0.7. Hy : 8 # 0.7. Compute p-values of the test-
statistic. Interpret.

13



Delta Method

Suppose that {x,} is a sequence of K-dimensional random vectors such that x,, TN 3 and

\/ﬁ(xn - /6) i) N(07 2)

then
Vi(a(x,) — a(B8)) % N(0,A(8)SA(8))

where A () is the matrix of continuous first derivatives of a(3) evaluated at 3:

NORE

Hint: Look in the GAUSS help how the gradp function works.
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9th GAUSS assignment ATS (can be handed in for grading!)

1. Loading Data and Data Description

1. First, load the data into a GAUSS matrix. The .txt file contains Swiss seasonal ad-
justed macroeconomic data: quarterly Interest Rate in % (first column), quarterly
Consumer Price Index (second column), quarterly Gross Domestic Product in Swiss
(BIP) in Mio CHF (third column) and quarterly Money Stock M1 in Mio CHF (fourth
column). The first observation is from the first quarter of 1974 and the last observation
is from the first quarter of 2002. T = 113. Gauss hint: loadm all[] = data_var.txt;
all2 =reshape(all,113,4);

e m = money stock M1

r = quarterly average of three month Swiss franc LIBOR rate of interest

p = Consumer price index
y = GDP in 1990 Swiss francs

Write a procedure that creates the differences and log differences of some vector or matrix.
Use it to get following series: my, 7%, Pt, Ut

Denote: m; = Alogmy; 72 = Ary; pr = Alogpy; 4 = Alog yy;

( Alogmy, Ary, Alogpy, Alogy:) with Alogp, = logp: —logpi—1

Plot the levels of all variables in one window. Give the plots sensible titles. Repeat the same
for the series in differences.

2. Estimation of a structural VAR

You are interested to model the effects of Swiss Monetary policy. You consider the following
four (k = 4) Swiss variables for your analysis: the consumer price index, the GDP in 1990
Swiss francs, the money stock M1 variable, and the quarterly average of three month Swiss
franc LIBOR rate of interest.

The GAUSS code for this assignment sheet uses a procedure collection written for VAR esti-
mation (var_code.src) by Paul Fackler. Include the source file in your program file.

Structural Vector Autoregression (SVAR) in primitive form

Br;=Tog+Tixi 1+ e

E(€t€;) _ {(l)) for t=171

otherwise.

my =y10 —  b1oTt — b13Ds — bialy +  yiamu—1 + Y121 + V13De—1 + V14Ye—1 + €1t
Tt =920 — borme —  baspPr — baaYr +  Yoami—1 + YeoTt—1 + Ve3Dt—1 + Y24Yt—1 + €2t
Pt =730 — b1y — b3ty —  baaly + Y341 + V32741 + V33Pt—1 + V3401 + €3¢
Ut = a0 — barmy — byaTy — baspy +  Yarmi—1 + YaoTt—1 + Va3Dt—1 + Ya4Yi—1 + Eat
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Writing the VAR in standard form ”solves” the system

z; =B Ty + B 'T'zi1 + B lg
xp =Ao+ Arzi—1 + e

my = a1+ a11my—1 + a12Te—1 + a13p—1 + a149:—1 + € (2)
Tt = Qg0+ a21Mi—1 + a22Tt—1 + A23Pt—1 + G24Yt—1 + €2t

Pt = agp+ asimi—1 + asari—1 + a33Pr—1 + asaye—1 + €3t

Ut = Q40+ aa1My—1 + a427p1 + a43Pr—1 + A44Yt1 + €at

The innovations of a VAR in standard form are, by construction, contemporaneously corre-
lated (composite innovations/shocks).

= Estimate the VAR in standard form (see Equation (2)) using one lag and the procedure
given in the source file:

ar = var(x,lags,z,nameout);

Read the documentation of the procedure code carefully. What are the input arguments and
what are the output arguments? Which global settings do you need? Read out the vector
containing the estimated constants and a matrix containing the estimated coefficients of the
lags and print them to the output window. Make sure you know how to interpret the output
matrices.

To obtain the idiosyncratic shocks (¢;) from the composite shocks (e;) we need
the structural parameters, the matrix B

Covariance matrix of e;:
/
E(ee;) = Q

relation between shocks: e; = B~ le,

!/

E(ese})

B 'E(g¢}) [Bil]
= B'D[B7Y

To identify the structural parameters B, we decompose the variance covariance matrix of

composite innovations (Cholesky-Decomposition of €2). Note: Ordering of the variables is

important!!

= Compute estimates of B and D.
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some maths:
For any real symmetric positive definite matrix {2 exists a lower triangular matrix A with ones

along the principal diagonal and a unique diagonal matrix D with positive elements on the
principal diagonal

Q = ADA' =PP

ie. A=B7!

Q: real symmetric positive definite matrix
A: lower triangular matrix with ones along the principal diagonal
D: diagonal matrix with positive elements

[Vdi 0 0 ... 0
0 Vdo 0 ... 0
Q= ACC'A withC =| 0 0 Vds ... 0

o 0 0 ... i

[(di 0 0 0]
0 do 0 ... O
D=cC'=|0 0 d3 ... O
0 0 0 di
[ 1 0 0 0]
a1 1 0 0
A=|as1 azx 1 0
_akl aro  agsy ... 1_

and consequently: P = AC' is a lower triangular matrix.

Get the matrices B and D from P!

GAUSS hint:

load omega = varcv;

either compute P by hand (look chol up in the reference!):
or compute p via the program code:

{P_inv,P’} = recaO(omega,ind);

Which restrictions are implied by the Cholesky decomposition? Why do we need the Cholesky
decomposition at all?
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10th GAUSS assignment ATS (can be handed in for grading!)

Impulse Response and Variance Decomposition
1. Loading Data and Data Description

You are interested to model the effects of Swiss Monetary policy. The data set data_var.txt
contains the consumer price index, the GDP in 1990 Swiss francs, the money stock M1 vari-
able, and the quarterly average of three month Swiss franc LIBOR rate of interest.

2. Estimating Vector Autoregression Models

The GAUSS code for this assignment sheet uses a procedure collection written for VAR
estimation (var_code.src) by Paul Fackler. We estimate a VAR model with GAUSS. In the
7th assignment you find the model written in primitive and standard form.

1. First, use the procedure var() to estimate the VAR model. (This should be already
done in the 7th assignment. Read the documentation of the procedure code to apply
the correct global settings.) GAUSS hint: e.g. ar = var(x,lags,z,nameout);

2. Use the procedure reca0() to perform Cholesky decomposition of the innovation co-
variance matrix. GAUSS hint: e.g. {p_inv,P’} = recaO(omega,ind);

3. Produce impulse response functions

1. To compute impulse response functions you need the coefficient matrices of the VMA
representation. Use the procedure vma() to back out the VMA parameters. Report the
MA coefficient matrix for the first lag. GAUSS hint: e.g. ma = vma(ar,lags,malags);
Denote malags as the number of lags used in the VMA. malags is 10. The last row of
the ma matrix contains the constant. The first k rows contain the matrix of parameter
estimates for the first lag. The second k rows contain the matrix of parameter estimates
for the second lag. Etc...

2. In order to examine the effect of a shock in one variable on all variables in the VAR
compute impulse response functions with the procedure impulse(). Plot your results
in a comprehensive way, i.e. plot the response of one variable to its own shock and the
shock in the other three variables.

GAUSS hint: e.g. irf = impulse(ma,y_inv,outcode);

Note: The irf collects in the rows the time and in the columns the IR function values.
The first column corresponds to the responds of the first variable to a shock in the first
variable. The second column corresponds to the responds in the second variable to a
shock in the first variable. etc... The fifth column corresponds to the responds in the
first variable to a shock in the second variable. The sixth column corresponds to the
responds in the second variable to a shock in the second variable. etc...

3. Describe and compare patterns of impulse response functions by answering following
questions: How big/small are the responses to shocks, i.e. the response of one variable
to its own and shocks in the other variables? How persistent are these shocks? To
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answer the questions make one plot for every variable containing it responses to the

different shocks. Plot all four graphs into one window. In order to make some nice

graphs, look the following options up in the User Guide:

_plegstr, _pmcolor, _pcolor, _paxht, _pnumht, _plwidth, _pltype, _plegctl, _ptek
Save the graph to your folder using tkf2eps (look it up in the language reference!)

4. Conduct a variance decomposition

1. Conduct a variance decomposition with the procedure fedecomp for each economic vari-
able and plot your results in a comprehensive way.
GAUSS hint: e.g. varcom = fedecomp(irf,outcode);
Note: The varcom collects in the rows the time and in the columns the Variance De-
composition values. The first column corresponds to percent of the variance in the
first variable due to the first variable. The second column corresponds to percent of
the variance in the first variable due to the second variable. etc... The fifth column
corresponds to percent of the variance in the second variable due to the first variable.
The sixth column corresponds to percent of the variance in the second variable due to
the second variable. Plot the variance decomposition of each variable into one graph
and all four graphs into one window.

2. Discuss the results and draw a conclusion from the plots of the variance decomposition.
In particular analyze how a shock in the GDP affects the other variables e.g. How is
the proportion of the movements in a sequence due to its ’'own’ shocks versus shocks??
to the other variables?
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11th GAUSS assignment ATS: Cointegration - Engle and Granger Method
(can be handed in for grading!)

1. Loading Data and Data Description

Load the fmt-file data_abx.fmt. The file contains data on a Canadian Stock (ABX- Barrick
Gold Corporation), which is traded on the Toronto Stock Exchange and the New York Stock
Exchange simultaneously. The data includes the first two hours of trading, ranging from 1st
January 2004 to 31st March 2004, sampled at 5 minute intervals.

The first column of the data matrix consist of the time series of the log home market (TSX)
midquotes ((bid+ask)/2), the second contains the log foreign market (NYSE) midquotes, the
log CAD/USD exchange rate is included in the third column, and in the last column you find
a dummy variable indicating the first observation of a day (i.e., indicator = 1, if it is the first
observation of the day, otherwise zero)

2. Preliminary Analysis

1. After loading the data into Gauss, convert the NYSE midquote series into Canadian
dollars (note: we are talking about log series here!).

2. Plot the home market and the converted foreign market midquote series into one graph.
Interpret the graph. Which cointegration vector would you suggest?

3. Engle-Granger Method, Step 1: Auxiliary Regression

1. In order to estimate the normalized cointegration vector, run a regression of the TSX
midquotes (y1¢) on the NYSE midquotes (y2;), back out the estimated parameter and
the residual series. (If you are unsure whether or not to include a constant in the
regression, have look again at the graph you’'ve made above).

2. What is the estimated cointegration vector? What does normalized mean in this con-
text?

3. Test the residual series for stationarity. Interpret and report the result.
4. Engle-Granger Method, Step 2: VECM Estimation

1. Create return series for the midquotes (i.e. first differences). Since we want to exclude
overnight returns from our estimation, the first observation of each day has to be deleted.
To do so, make use of the first day indicator and the delif comand (Look it up in the
command reference). Note: You have to apply the same selection to the residual series
to keep both series at the same dimension!

2. Estimate the VECM using the residual series as the error correction term. (i.e. the
matrix of the two return series is the dependent variable matrix, the regressor matrix
consists of ones (constant), the residual series and the first lag of the return series):

Ay = a0+ -1+ an1Ayi—1 + a12Ay—1 + uie (6)
Ayay = a0+ 728i—1 + a21Ay1i—1 + a2 Aya—1 + uy
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3. Back out the estimated parameters. Interpret and report estimated equations of the
VECM in Equation ().

4. What could be a sensible interpretation of the correction terms coefficients (7y)?

21



12th GAUSS assignment ATS
(can be handed in for grading!)

1. Theoretical Background

Using US data on consumption C}, investment I;, and output, Y;, we want to estimate the
parameters of a Vector Error Correction model by Maximum Likelihood. Assuming that three
variables follow a VECM of order one that can be written as:

Ay = a+ Qoyi—1 + G AY—1 + 4,

Ct
where yy = | I; |, (1 is a (3 x 3) parameter matrix, o a (3 x 1) vector of constants and
Y

(o=—BA.

We know that there exist two cointegration relations between those three variables, and there-
fore B and A are (3 x 2) matrices, where B contains the adjustment coefficients and A denotes
the cointegration matrix, which if normalized as proposed by Phillips (see Hamilton page 576)
is of the form :

1 0
A= 0 1
azr as2

The disturbances €; are Gaussian and the conditional log-likelihood function is:
log L2, C1, v, Co)

= (=2)In(27) — () In|Q|
T
-1 tzl[(Ayt — Ay — a— Coye—1)' QN Ay — GAY—1 — a — Coyr—1)]

where ) denotes the covariance matrix of the error terms, n is the number of variables and
T the number of observations.

2. Data Processing

1. Load the data contained in ciy.txt into Gauss. The file contains quarterly US data for
the period 1947Q1 - 1988Q4 for the three variables log consumption (column one), log
investment (column two), and log output (column three), the number of observations
for each variable is 168.

2. Generate the following four matrices: the first contains the three variables as they have
been read in from the data file, the second includes the lag of the three variables, the
third the first differences, and the fourth the first lag of the differences. Make sure that
there are no missings in any of these matrices and that all have the same dimensions.
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3. Computing the log-likelihood Function

We will estimate the system by the Gauss procedure cml and therefore we need a procedure
that returns the log-likelihood contribution of each observation. Before you start, please read
all points listed below and work through them step by step.

1. Read in the vector contained in x1.fmt. It contains the starting values for z0.

2. All parameters needed for the log-likelihood will be passed into the procedure by a
column vector. Consequently, we have to read out the respective elements from this
column vector and reshape them into their former dimensions. The vector of parameters
is assumed to be structured as follows:

C11
12
C13
a1
C22
23
(31
(32
(33
aq
Qg
a3
z0 = Wi
w22
w33
wa1
w31
w32
asi
as2
b1
ba1
b31
b12
ba2
b32

Read out the elements of ¢; and reshape them into a (3 x 3)
matrix.

Next build a column vector that contains the constants
(051, a9, Oég)l

Then rebuild the normalized cointegration matrix A and
the matrix B by addressing the according elements in the
vector.

As far as the covariance matrix €2 is concerned, we will use
a little trick to make sure that the covariance matrix will al-
ways stay positive definite. We define: Q = PP’ (Cholesky
decomposition). Build a matrix P as given below:

wip O 0
P = w21 W22 0
w31 w32 Wws3

and get €.

3. Compute a column vector that contains the log-likelihood contribution of each observa-
tion, i.e. compute the log-likelihood function.

4. Write a procedure around the reshaping commands and the log-likelihood. Output
argument is the value of the log-likelihood function. Input arguments are the parameter
vector 0 and the data set (in our case we pass the data into the procedure via globals,
but cml demands those two input arguments). Do not forget to define local variables

in the likelihood procedure.
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4. CML Estimation

1. Use for staring values x0 the vector contained in x1.fmt.

2. Further use the following options in cml:

cmlset;
_cml_GridSearch=1;
_cml_algorithm=3;
_cml_linesearch=2;
_cml_covpar=2;
_cml_GradMethod=1;
_cml_DirTol=1e-4;
_output=1;

Since we estimate 26 parameters it might be of help to define labels for the estimated
coefficients. This can be done by:

_cml_parnames=

"zetall” | zetal2”|” zetal3”|
"zeta2l” | zeta22”|” zeta23” |
"zetaldl” | zeta32”|” zeta33” |
"const1”|” const2” |” const3” |

”omegall”|” omega22”|” omega33” |
"omegal2”|”omega31l” |’ omega32” |
9 a3177 |77 3.32” ‘

”b].]_” ’77b2177 ‘77b3177 |
77b1277 ’77b2277 ‘77b3277 7

3. Call cml and estimate the parameters. Report the estimated parameters and interpret
your results.
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5. Likelihood Ratio Test

1. Estimate the unrestricted model, i.e. (y is no more equal —BA’, but simply a (3 x 3)
parameter matrix. Report the estimated parameters. The starting values are contained
in x2.fmt in the following order:

ch

2112 Use the following cml settings:
13

)

4212 cmlset;

¢ 213 _cml_GridSearch=1;

¢ ?}1 _cml_algorithm=1;

C%z _cml_linesearch=2;

C%g _cml_covpar=2;

_cml_GradMethod=1;

_cml_DirTol=1e-4;

__output=1;

aq
(0]
a3
w11
x0 = w292
w33
w21
w31
w32
o4
(P
(s
o
(%
(9
G
(9
(85

2. Conduct a Likelihood Ratio Test: LR = 2(L(0) — L(f))

where L(6) denotes the the value of the log-likelihood function at the unrestricted
estimates and L(é) the value of the log-likelihood function at the restricted estimates
(Note: cml returns the mean log-likelihood, so it has to be multiplied by T to obtain
L(0) and L(6).) The test statistic’s distribution does not follow a standard distribution,
but requires simulation. Hamilton’s Table B.10 on page 767 contains the quantiles of
the simulated distribution. (Here we need a 5% level, case 2, g =n—h=3—-2 =1,

critical value = 8.083) Can we reject the restrictions? Report and interpret your result.
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13th GAUSS assignment ATS (cannot be handed in for grading!)

Identifying a structural VECM model with long-run and short-run restrictions

1. Preliminaries

We are revisiting Beaudry and Lucke (2009)’s study “Letting different views about business
cycles compete” to analyze the US business cycle. We are interested which effect total factor
productivity (TFP), investment specific technology (IST), asset prices and the interest rate
have on hours worked. The data set NIPA _h.txt contains quarterly data from 1955:1 to 2007:2
with log TFP, log of the real price of investment goods, log per capita S&P500 stock prices
index, log hours per capita worked and the log of the Federal Funds nominal interest rate.

1.1 Load and organize the data. GAUSS hint:
load data[]= NIPA_h.txt; data2 = reshape(data, 210,5);

The econometric model is a structural VAR

yi = c+ Py 1+ Py o+ ...+ Py p + Wy
where
Y1t total factor productivity,
Yot real price of investment goods,
ye= |yst| = stock prices,
Yat hours worked;
Yst Federal Funds interest rate;

The structural innovations u; are assumed to be uncorrelated and have standardized variances,
so that E(uu}) = I,.

In order to identify the structural innovations via the W matrix, Beaudry and Lucke (2009)
make the following assumptions:

1) only TFP shocks can have a contemporary effect on TFP

3

(1)

(2) monetary shocks do not have a contemporaneous effect on hours
(3) IST, hours and monetary shocks have no long run effect on TFP
(4)

4) hours and monetary shocks have no long run effect on the real price of investment

We use the 2step procedure described in the lecture to estimate the structural model.
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2. Estimating the reduced form VECM

Since the variables are cointegrated, the parameters are appropriately estimated in a VECM
framework. As in Beaudry and Lucke (2009), estimate the model with 6 lags and 3 linearly
independent cointegrating relations!

2.1

2.1

Estimate the reduced form VECM
Ay;=c+BA'y, 1 + CiAy 1+ + Cp71Yt—p+1 + &

GAUSS hint: use the procedure SVECM_rFORM_estimation
(]:3», A, éo» Q, ¢, \il) = red_form_estimation(l, r, data)

INPUT: data is an (T'x n) matrix of variables, 1 is the laglength and r is the cointegrating
rank

OUTPUT:

B: (n x r) matrix of adjustment coefficient

.;.>>

(n x r) matrix of linearly independent cointegrating relations
0 — BA/
¢ = [&1, &2, e ,é’p_l, ¢]’, the remaining VECM parameters

N>

T = A (B (1, - Zf;ll )A | )~'B is the long run impact matrix of the moving
average representation of the VECM

Look at your results. What is the rank of \il, what is the rank of é’o ? What should
hold for A’®¥? Check and explain intuitively!

3. Implement the identifying restrictions

3.1

Estimate W using the maximum likelihood method. Therefore, maximize the concen-
trated log likelihood function

T T A
InL(W) = constant — §|W]2 - gtrace(Wlflwflﬂ) (7)

subject to the restrictions implied by the assumptions (1) - (4).

Hint:
* 00 0 O *+ 0« 0 0
x % % % % * % % 0 0
W= % % % x x and L=YW = | x % % % %
* % % x 0 * ok k% ok
% % ok % % % % ok ok %
GAUSS hint:

Use the Gauss procedure CML and implement the long-run restrictions with the NON-
LINEAR EQUALITY option.
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First build a procedure that returns the value of the concentrated likelihood func-
tion. Input should be the 20 free parameters of the W-matrix in vector form, Wy =
[a11,a21,a29,- -+ ,as5)". In the procedure, construct the W-matrix from these param-
eters. For the likelihood function, use the estimated covariance matrix € as a global
variable. You do not need additional data.

To implement the long-run restrictions, use the CML option EqProc. The option allows
you to solve a constraint maximization problem.

CML Guide:

Nonlinear equality constraints are of the form:
GO)=0

where © is the vector of parameters, and G(©) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the user-supplied
function to the GAUSS global, _cml_EqProc.

For example, suppose you wish to constrain the product of two parameters to be equal
to 1:

proc eqp(b);
retp(b[1]*b[2]-1);
endp;

_cml_EgProc = &eqp;

In our case, you will have to build a procedure that specifies those elements of the [¥'W]
matrix that are zero. Give this procedure the name egproc. Read in W and build the
W-matrix as above. Compute L = WW using the estimated ¥ matrix as a global
variable. Return a vector containing the elements of L that are zero, e.g.

retp(L[1,1] | L[1,4] | --- | L[2,5])
Before estimation, set the following globals:

_cml_Algorithm = 4;

_cml _LineSearch = 2;

_cml_DirTol = 1e-10;

_cml_CovPar = 2;

_cml_switch = { 3 3, 1e-9 1e-9, 20 20, 1e-6 le-6};

_cml NumObs = rows(data2)-6; @ number of observations @
_cml_EqProc = &eqproc;

Choose appropriate starting values and make sure you define both procedures and the
globals before calling CML!
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3.2 Compute the W-matrix. How can you check if convergence was successful?

3.3 W is only identified locally. For example, for a given estimate W, —W will also be a
solution to the maximization problem, equation (1). Generally, we can reverse the signs
of each column of W without changing the likelihood. Since we want positive elements
on the main diagonal, reverse the sign for each column of W that has a negative main
diagonal element.

Example:

a T a -
b —y by
W= c -z = c oz
—d v —d —v
—e —w —e w

4. Interpret the results

4.1 Plot the resulting Impulse Response Functions and Variance Decompositions and in-
terpret them. Compare the results to those of Beaudry and Lucke (2009), page 15
(identification scheme ID2).

Gauss hint: Define the following globals:

1 = # of lags in the VAR

A=W

vd_plot = 0 or 1 (if 1, variance decomposition will be plotted, else IRF's)
malags = # of lags for IRF's (32 in the paper)

gammas =

PImat = {,

After that, include the pre-written source file results_plot.src.
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