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Abstract
In 1973, Dag Prawitz conjectured that the calculus of
intuitionistic logic is complete with respect to his notion of
validity of arguments. On the background of the recent dis-
proof of this conjecture by Piecha, de Campos Sanz and
Schroeder-Heister, we discuss possible strategies of saving
Prawitz’s intentions. We argue that Prawitz’s original seman-
tics, which is based on the principal frame of all atomic sys-
tems, should be replaced with a general semantics, which also
takes into account restricted frames of atomic systems. We
discard the option of not considering extensions of atomic
systems, but acknowledge the need to incorporate definitional
atomic bases in the semantic framework. It turns out that
ideas and results by Westerståhl on the Carnap categoricity
of intuitionistic logic can be applied to Prawitz semantics.
This implies that Prawitz semantics has a status of its own as
a genuine, though incomplete, semantics of intuitionstic logic.
An interesting side result is the fact that every formula satisfi-
able in general semantics is satisfiable in an axioms-only
frame (a frame whose atomic systems do not contain proper
rules). We draw a parallel between this seemingly paradoxical
result and Skolem’s paradox in first-order model theory.
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1 | INTRODUCTION

At the beginning of the 1970s, Dag Prawitz developed a validity-based proof-theoretic seman-
tics (Prawitz, 1971, 1973, 1974) and conjectured that the formal system of intuitionistic logic is
sound and complete for it (Prawitz, 1973, p. 246).1 His completeness conjecture was challenged
by Piecha, de Campos Sanz and Schroeder-Heister (Piecha et al., 2015; Piecha & Schroeder-
Heister, 2019). The current paper discusses the incompleteness argument and makes a proposal

1The completeness conjecture was initially formulated only for minimal logic, but intended, of course, also for full intuitionistic logic, see
Prawitz (2014).
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for a refinement of this semantics to which the arguments against completeness are no longer
applicable, and for which completeness can be established at least by classical reasoning related
to Kripke semantics. We confine ourselves to propositional logic, as this is sufficient to make
our point.

The argument developed here, namely that incompleteness holds with respect to the distin-
guished structure of atomic systems considered by Prawitz, but not for a general semantics tak-
ing all potential atomic structures into account, is not completely novel. We (Piecha &
Schroeder-Heister, 2016) remarked ourselves that Prawitz semantics can be seen as based on a
specific Kripke model, and a more general semantics based on all Kripke models might be a
possible solution to the completeness problem. Goldfarb (2016), Litland (2012) and Stafford
and Nascimento (2023) developed in detail methods to embed Kripke semantics in a general
proof-theoretic semantics, allowing them to achieve semantical completeness. We will comment
on their methods in Section 7. In this paper, we discuss these issues from a philosophical point
of view as near as possible to Prawitz’s original point of view, including the problem of referring
to extensions of atomic systems in the semantics of hypothetical reasoning, without digging too
deep into technical details.2

A caveat applies to our use of the term ‘Prawitz semantics’. Although there is a general
framework that can be subsumed under this term, several variants of it have been presented and
discussed by Prawitz up to now, some of which differ in crucial respects from one another. Even
in the early publications of Prawitz (1971, 1973, 1974), where its fundamentals are laid down,
significant differences can be found, which affect the issue of completeness. This paper relies on
the version proposed in Schroeder-Heister (2006), which does not in every respect correspond to
what Prawitz put forward in the early 1970s. Therefore, in what follows, ‘Prawitz semantics’
means a certain interpretation of Prawitz’s early semantical works, which may deviate in critical
aspects from the semantics that Prawitz sees as his conceptual achievement. Section 5 provides
further comments on this issue.

2 | PRAWITZ’S PROOF-THEORETIC SEMANTICS: BASIC
FEATURES

Prawitz’s completeness conjecture refers to a semantics that is primarily a semantics of deriva-
tions or proofs and only secondarily a semantics of formulas or sentences. In this semantics,
Prawitz defines the validity of arguments with respect to atomic systems S. (For a detailed
reconstruction of this semantics, see Schroeder-Heister, 2006; for a comprehensive discussion of
Prawitz’s validity-related concepts, see Piccolomini d’Aragona, 2023.) In the simplified proposi-
tional case considered here, formulas are built up from atomic formulas (in short: atoms), which
are sentence letters (denoted by lower case letters a,a1,a2,…,b,c,…), by means of the logical
constants ^ , _ , !, ⊥ and ¬, where ¬A stands for A! ⊥ . Arguments are formula trees,
which structurally look like natural deduction derivations, with the crucial difference that their
nodes are not necessarily applications of the common introduction and elimination rules for
logical connectives, but arbitrary inference steps of the form

Δ1

⋮
A1 …

Δn

⋮
An

B

(1)

2A preliminary version of the paper by Stafford and Nascimento (2023) came (anonymously) to my attention at the end of May 2022,
when the topic and content of my talk at the Rolf-Schock-Prize conference (originally scheduled for 2020) had already been fixed. By
then, I had only been aware of Goldfarb’s (2016) Kripke-style completeness proof and of Litland’s (2012) related proposal to prove
completeness.
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where the Ai and B are any formulas and the Δi any finite sets of formulas, and where the Δi tell
which formulas can be discharged at this step in the argument tree. As a Δi may be empty, it is
obvious that (1) is a general schema for inference steps under which the standard introduction
and elimination steps fall. Prawitz uses the term ‘argument’ rather than ‘proof’ or ‘derivation’
for such a tree, as one can well talk of a wrong or invalid argument, whereas talking of a ‘wrong
proof’ or a ‘wrong derivation’ is at least dubious. When we say ‘this proof is wrong’ we really
mean ‘this alleged proof is not a proof for what it claims to be’; that is, ‘this argument is inva-
lid, i.e., is not a proof’. Other terminologies are ‘proof skeleton’, ‘proof structure’, ‘proof candi-
date’ or related terms not implying correctness or validity. An atomic system S, also called
‘base’, is a system of atomic production rules, that is, of rules of the form

a1 … an

b

for atomic a1,…,an,b, where the premisses can be lacking, in which case the rule is an axiom. A
base thus constitutes a formal system for the derivation of atoms. Actually, it is a system for the
derivation of atoms from atoms. Conditional atomic derivations do not play a role in the defini-
tion of validity, but need to be considered in certain proofs (such as that of Theorem 9) or in
the discussion of alternative approaches to semantics (see Definition 11).

A closed argument is an argument, whose end formula does not depend on an assumption.
An open argument is an argument, whose end formula depends on at least one (undischarged)
assumption. As introduction inferences in the standard sense fall under the general schema (1),
we can define a canonical argument to be an argument using an introduction rule in the
last step.

The validity of an argument is not only defined with respect to a base S, but also with
respect to an argument reduction system (called ‘justification’), that is, a set of argument trans-
formations which transform a given argument into another one. We do not discuss here the pre-
cise formal structure of such a reduction system, as it is not crucial for the point we are going to
make and refer the reader to the discussion in Schroeder-Heister (2006). The reader may ima-
gine reductions and permutations in proofs of normalisation, or, more generally, something
analogous to a term rewriting system, where the terms are now arguments.3

The definition of S-validity for closed arguments runs roughly4as follows.

– Every closed derivation in S is S-valid.
– A closed canonical argument is S-valid, if all its immediate subarguments are S-valid.
– A closed non-canonical argument is S-valid, if it reduces to an S-valid canonical argument

or to a closed derivation in S.

These clauses do not say how to handle absurdity ⊥ and thus negation. Prawitz actually
formulates his completeness conjecture for minimal logic, where we have no full negation
(Prawitz, 1973, p. 246). The standard procedure to consider ⊥ to be a constant for which there
is no introduction rule and therefore no canonical proof, which gives one the ex falso quodlibet
principle by vacuous quantification, is not a viable option—see the remark at the end of this
section. However, as we are dealing with atomic systems, there is something corresponding to
absurdity, namely the fact that an atomic system S may be inconsistent in the sense that any
atom is derivable in it. This happens, for example, when S contains all atoms as axioms. If we
consider the inconsistency of S, that is, ‘S a for all a, to be the content of ⊥ in S, we may add
in the definition of validity as a clause for ⊥ :

3As we have not just trees, but also a discharge structure within trees, rewriting of λ-terms may be the closest analogy.
4‘Roughly’ means that the justification on which the reductions are based is not specified here as an explicit parameter in addition to the
base S. See Prawitz (1973), Schroeder-Heister (2006) and Piccolomini d’Aragona (2023) (Ch. 3) for details.

PRAWITZ’S COMPLETENESS CONJECTURE: A REASSESSMENT 3
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– The one-step derivation ⊥ is S-valid, if S is inconsistent, that is, if for all a: ‘S a,

and extend the clause for non-canonical arguments to:

– A closed non-canonical argument is S-valid, if it reduces to an S-valid canonical argument
or to a closed derivation in S or to an S-valid one-step derivation ⊥ .

Adding a clause for open arguments, this gives us the definition of S-validity, which has the
form of a generalised inductive definition.

Definition 1. (Validity of arguments)

1. Every closed derivation in S is S-valid.
2. The one-step derivation ⊥ is S-valid, if S is inconsistent, that is, if for all

a: ‘S a.
3. A closed canonical argument is S-valid, if all its immediate subarguments are

S-valid.
4. A closed non-canonical argument is S-valid, if it reduces to an S-valid canoni-

cal argument or to a closed derivation in S or to an S-valid one-step deriva-
tion ⊥ .

5. An open argument

A1 …An



B

where all open assumptions of D are among A1,…,An, is S-valid, if for every extension
S0 �S and for every list of closed S0-valid arguments

i

Ai

the closed argument

1 n

A1 …An



B

is S0-valid.

The point of considering extensions of atomic systems in Clause 5 is to guarantee that
S-validity is monotone with respect to S; that is, that valid arguments continue to be valid, if
our knowledge base S is extended. Furthermore, it excludes certain ‘void’ validities in open
arguments, which are due to the fact that the particular base S under consideration does not
allow the derivation of the assumptions. It also ensures that validity of atomic consequences is
stable, which means that S-validity of an argument of an atom from atomic assumptions coin-
cides with derivability in S. Finally, and most importantly, it secures that the logical constants
characterised in terms of validity are the intuitionistic ones in Heyting’s sense (see Section 8).
When no base extensions are considered, these properties are lost, and the semantics becomes
classical if the metalanguage is classical (see Section 4).

4 SCHROEDER-HEISTER
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An argument is considered to be logically valid, if it is valid with respect to any base S,
which, in view of the monotonicity of S-validity with respect to S, means the same as ;-validity,
that is, validity with respect to the empty base.

We write Γ⊨ SA (for finite Γ), if there is an S-valid argument of A from Γ (i.e. an S-valid
argument for A, whose set of open assumptions is contained in Γ). We write Γ⊨A, if there is a
logically valid argument of A from Γ. We write ‘ Γ, ⊨Γ and ⊨ SΓ, when we mean ‘ A, ⊨A
and ⊨ SA, respectively, for every A in Γ.

Remark. Note that ‘For every S there is an S-valid argument for A from Γ’ and
‘there is an argument for A from Γ which is S-valid for every S’ are equivalent, as
the first formulation implies that there is an ;-argument for A from Γ, which, due to
the monotonicity with respect to bases, is an S-argument for A from Γ for any S.

It is easy to see that ⊨ S and ⊨ are consequence relations satisfying the following condi-
tions, where S is the set of all bases and ‘S means derivability in the base S.

Lemma 2. (Basic properties of ⊨ S and ⊨ )

(At) ⊨ Sa, ‘S a.
(⊥) ⊨ S ⊥ ,For all a : ⊨ Sa.
(^) ⊨ SA^B, ⊨ SA and ⊨ SB.
(_) ⊨ SA_B, ⊨ SA or ⊨ SB.
(!) ⊨ SA!B,A⊨ SB.
(⊨ ext

S ) Γ⊨ SA,For all S0 �S : ð⊨ S0Γ) ⊨ S0AÞ.
ð⊨ Þ Γ⊨A, For all S �S : ð⊨ SΓ) ⊨ SAÞ.
ð⊨ 0Þ Γ⊨A,For allS �S :Γ⊨ SA.

Note that ð⊨ 0Þ is immediate from the definition of ⊨ , and ð⊨ Þ is an immediate conse-
quence of ⊨ ext

S and the fact that ⊨ is the same as ⊨ ;. Note also that in clause (⊥ )
‘For all a : ⊨ Sa’ is equivalent to ‘For allA : ⊨ SA’ (where A can be non-atomic).

For what follows, we just need to deal with these conditions, independent of whether they
result from a definition of validity for arguments. We could as well consider the clauses
(At),ð⊥ Þ,ð^Þ,ð_Þ,ð!Þ,ð⊨ ext

S Þ in Lemma 2 to be a definition of S-consequence ⊨ S, and define
Γ⊨A as Γ⊨ ;A, which gives us the clauses (⊨ ) and (⊨ 0). This would be a sentence semantics
rather than a proof or argument semantics, as we would directly define valid S-consequence
between sentences rather than considering it to be established by S-valid proofs from assump-
tions. Though of less expressive power, sentence semantics is technically easier to handle than
proof semantics. Prawitz’s completeness conjecture was posed within a framework of proof
semantics. See Section 5 for further discussions of this issue.

Now, let IPC be the intuitionistic propositional calculus with the standard constants ^ , _ ,
!, ⊥ and ¬, where ¬A stands for A! ⊥ , and let ‘IPC stand for derivability in IPC. Then,
given the above semantics, soundness of IPC means

For any Γ andA : if Γ ‘IPC A, then Γ⊨A;

and completeness of IPC means:

For any Γ andA : if Γ⊨A, then Γ ‘IPC A:

PRAWITZ’S COMPLETENESS CONJECTURE: A REASSESSMENT 5
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It is easy to see that IPC is sound. Prawitz’s completeness conjecture can then be formulated as:

IPC is complete:

Remark on negation. In standard intuitionistic logic, ¬A is understood as A ! ⊥ ,
where absurdity ⊥ is a nullary logical constant which (by definition) never holds. In
a natural deduction-based framework this means that ⊥ is a constant for which
there is no introduction rule and therefore ex falso quodlibet as elimination rule. If
we used this idea in the present framework, we would have to stipulate that ⊥ holds
in no base, that is, ⊭ S ⊥ for every S. This would lead to the consequence that ¬a
never holds in any base S, for ¬a means a ! ⊥ , that is, ‘a holds in no extension of
S’ (because ⊥ holds in no base and thus in no extension of S). However, as a is con-
tained in some extension of S, this statement is false. Thus, ¬¬a holds in any S.
Consequently, as can be easily shown, ¬¬A holds in any S, provided A does not
contain ⊥ (this corresponds to Counterexample 1 in Goldfarb, 2016). This is due to
the specific structure of Prawitz semantics, which, unlike Kripke semantics, is based
on a single frame of bases ordered by set inclusion, and in which every atom a not in
S becomes eventually valid in an extension S0 �S (just add a as an axiom to S). This
again means that we would not be able to semantically force ¬a to be valid (in some
S). One way out is to consider ⊥ an atomic formula rather than a logical constant,
for which ex falso quodlibet holds in all atomic systems. Then, we can force ¬a to
hold in S by having a) ⊥ as a rule of S. This is the way followed in most presenta-
tions of validity-based semantics. Our procedure above corresponds to this. How-
ever, as we prefer to have ⊥ as a logical constant rather than an atom with an
associated ex falso rule, we define the validity of ⊥ in S as the derivability of every
a in S. Technically this comes to the same as taking ⊥ to be atomic. Conceptually,
it has the advantage that ⊥ continues to be a logical constant.

3 | RECAPITULATION OF THE INCOMPLETENESS RESULT

In Piecha et al. (2015) and Piecha and Schroeder-Heister (2019), Piecha, de Campos Sanz and
Schroeder-Heister showed that Prawitz’s completeness conjecture does not hold. In Piecha
et al. (2015), this was shown for a particular form of formal bases, which may contain higher
level rules, namely rules allowing one to discharge rules as assumptions (admitting formula-
discharging rules would be sufficient). In Piecha and Schroeder-Heister (2019), incompleteness
was demonstrated in a more general setting without any presupposition about the form of rules
in bases. We recapitulate our findings in a slightly revised form.5

By an abstract semantics, we understand an arbitrary set S of entities, for each S �S a con-
sequence relation ⊨ S as well as an additional consequence relation ⊨ such that the conditions
(⊥ ), (^ ), (_ ), (!), (⊨ ), (⊨ 0) of Lemma 2 are satisfied. As these conditions are part of the
lemma, this means that Prawitz semantics as described in the previous section is an abstract
semantics. Note that the characteristic conditions chosen for an abstract semantics are those
conditions in Lemma 2, which neither refer to the internal structure of bases nor to any ordering
relation between bases. In Lemma 2, only the conditions (At) and (⊨ ext

S ) refer to the fact that
bases are sets of atomic rules generating a derivability relation ‘S and that they are ordered by

5These revisions concern minor changes in terminology, the explicit consideration of soundness and the explicit consideration of
absurdity ⊥ . In Piecha and Schroeder-Heister (2019), the latter could be omitted as we assumed soundness of IPC without further proof.

6 SCHROEDER-HEISTER
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set inclusion. Because we disregard (At) and (⊨ ext
S ) in the definition of an abstract semantics,

we must explicitly state (⊨ ) and (⊨ 0), which in the presence of (At) and (⊨ ext
S ) are deducible

from the other clauses of Lemma 2.

Definition 3. An abstract semantics is given by a set of entities S, consequence rela-
tions ⊨ S for each S �S and a consequence relation ⊨ , such that the following con-
ditions are satisfied:

(⊥) ⊨ S ⊥ ,For allA : ⊨ SA.
(^) ⊨ SA^B, ⊨ SA and ⊨ SB.
(_) ⊨ SA_B, ⊨ SA or ⊨ SB.
(!) ⊨ SA!B,A⊨ SB.
ð⊨ Þ Γ⊨A, For all S �S: ð⊨ SΓ) ⊨ SAÞ.
ð⊨ 0Þ Γ⊨A,For allS �S :Γ⊨ SA.

In the rest of this section, when considering ⊨ S and ⊨ , we always refer to an abstract
semantics in the sense of this definition.

The conditions of an abstract semantics establish soundness.

Lemma 4. IPC is sound with respect to any abstract semantics.

For the proof one just has to go through the rules of, for example, a sequent system for IPC.
We consider the generalised disjunction property for an arbitrary consequence relation ⊩

in the language of IPC :

GDPð⊩ Þ If Γ⊩A_B, where _ does not occur in Γ, then Γ⊩A or Γ⊩B.

This property holds for derivability ‘IPC in IPC ; that is, we have GDPð‘IPCÞ.6
We can show the following.

Lemma 5. If the generalised disjunction property holds for any ⊨ S, that is, for all
S: GDPð⊨ SÞ, then for all A,B1,B2

¬A!ðB1_B2Þ⊨ ð¬A!B1Þ_ð¬A!B2Þ,
that is, Harrop’s rule

¬A → (B1 ∨ B2)
(¬A → B1) ∨ (¬A → B2)

is valid.

The proof essentially relies on the fact that in IPC any negated formula ¬A is equivalent to
a disjunction-free formula A0. Using soundness (Lemma 4) and condition (⊨ 0), we obtain
¬AS⫤⊨ SA0. Harrop’s rule is the standard example of a rule which, though admissible, is not
derivable in IPC. Therefore, assuming that the generalised disjunction property holds for any
⊨ S, we have refuted Prawitz’s completeness conjecture with Harrop’s rule as a
counterexample.

6A stronger version of GDPð‘IPCÞ, in which it is only assumed that _ does not occur positively in Γ, was proven by Harrop (1960) and,
in a natural deduction setting, by Prawitz (1965). Note that ‘GDP’ for ‘generalised disjunction property’ has already been used with a
somewhat different meaning; see the survey by Chagrov and Zakharyashchev (1991), p. 208.

PRAWITZ’S COMPLETENESS CONJECTURE: A REASSESSMENT 7
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That GDPð⊨ SÞ holds for any S can be reduced to GDPð⊨ Þ by the following principle,
which says that the base S of non-logical consequence ⊨ S can be ‘exported’ as a set of assump-
tions (S ∗ ) of logical consequence ⊨ .

(Export) For every base S, there is a set of _ -free formulas S ∗ such that for all Γ and all
A: Γ⊨ SA,Γ,S ∗ ⊨A.

Lemma 6. (Export) þGDPð⊨ Þ)GDPð⊨ SÞ for all S.

Therefore, by Lemma 5 we obtain Harrop’s rule as a counterexample to completeness by
assuming (Export) and GDPð⊨ Þ. If we nevertheless assume that IPC is complete, we can infer
GDPð⊨ Þ from GDPð‘IPCÞ. This yields the following result:

Lemma 7. (Conditional incompleteness) If IPC is complete, then under the condi-
tion of (Export), Harrop’s rule is valid; that is, IPC is not complete.

This gives us as a corollary:

Corollary 8. (Export) ) IPC is incomplete.

The corollary is based on an indirect argument in the constructive sense. Harrop’s rule is
not established as a counterexample to completeness outright. By means of Lemma 7 we have
reduced the assumption of completeness to its own contradictory and thus to absurdity, which
by (constructive) reductio ad absurdum yields incompleteness.

This result holds for any abstract semantics in the sense of Definition 3. If we consider the
concrete case of Prawitz semantics, in which bases are sets of production rules for atoms, for
which the principles (At) and (⊨ ext

S ) hold (Lemma 2), we can show that (Export) holds.

Theorem 9. (Export) holds for Prawitz semantics; thus IPC is incomplete with
respect to Prawitz semantics. More precisely, (Export) holds for any semantics that
has the properties listed in Lemma 2.

The proof is given in Piecha and Schroeder-Heister (2019, Lemma 3.6).
This means that Prawitz’s completeness conjecture cannot be upheld as it stands. However,

there is a possible way out. Before presenting it, we discuss another option, which at first glance
might represent a way out by itself.

4 | NON-EXTENSION SEMANTICS

The proof of Theorem 9 heavily relies on the extension property (⊨ ext
S ). Thus, our incomplete-

ness result crucially depends on it. The extension property, which is reminiscent of the interpre-
tation of implication in Kripke semantics, has certainly an intuitive motivation. If a base S
represents one’s knowledge at a certain stage, extending S means extending this knowledge.
The semantical value of an implication should remain stable under such extensions; that is,
passing from the antecedent to the conclusion of an implication should remain possible when
our knowledge base becomes larger. Technically, this property guarantees monotonicity of con-
sequence statements with respect to bases. It also gives the logical connectives, in particular
implication, their intuitionistic meaning, as we see in Section 8.

One might, however, argue that a base is not something that describes factual knowledge,
which may increase over time, but something that has a definitional status, that is, something

8 SCHROEDER-HEISTER
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that determines the meaning of atomic expressions. It is therefore not something that may be
increased, as extending a definition changes the meaning of the definiendum. This might be the
reason why Prawitz after 1971 does not mention the extension clause in validity semantics. In
2016, Prawitz makes this point explicit: ‘To consider extensions of the given base in this way is
natural when a base is seen as representing a state of knowledge, but is in conflict with the view
adopted here that a base is to be understood as giving the meanings of the atomic sentences.
For instance, the argument representing reasoning by mathematical induction […] ceases to be
valid relative to the arithmetical base […] if we require […] that validity be monotone with
respect to the base.’ (Prawitz, 2016, p. 18, footnote 12). It is clear that when we consider, for
example, a base consisting of principles such as the inductive definitions for plus and times, we
would not consider extensions of these definitions (but only extensions of the given base by fur-
ther definitions).

This is certainly a crucial point. However, we cannot do justice to it by just replacing the
extension clause (⊨ ext

S ) with a corresponding clause not referring to extensions, that is, by
replacing Clause 5 in Definition 1 with the following clause

50. An open argument

A1 …An



B

where all open assumptions of D are among A1,…,An, is S-valid, if for every list of closed
S-valid arguments

i

Ai

the closed argument

1 n

A1 …An



B

is S-valid.
This corresponds to replacing clause (⊨ ext

S ) in Lemma 2 with

(⊨ S) Γ⊨ SA,ð⊨ SΓ) ⊨ SAÞ.

Such a change in the definition of validity makes the situation even worse, as far as the com-
pleteness of IPC is concerned. Whereas for an abstract semantics in the sense of Definition 3 we
established incompleteness of IPC only under the condition of (Export), we can now achieve
incompleteness unconditionally, albeit using classical logic.

Lemma 10. (Incompleteness for non-extension semantics) IPC is incomplete with
respect to any abstract semantics satisfying ð⊨ SÞ.

Proof. We validate the classical disjunction principle

A!ðB1_B2Þ⊨ ðA!B1Þ_ ðA!B2Þ,

PRAWITZ’S COMPLETENESS CONJECTURE: A REASSESSMENT 9
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that is, the rule

A → (B1 ∨ B2)
(A → B1) ∨ (A → B2)

as follows:

A⊨ S B1_B2

)ð⊨ SA) ⊨ SB1_B2Þ; by ð⊨ SÞ
) ð⊨ SA)ð⊨ SB1 or ⊨ SB2ÞÞ; by ð_Þ
) ð⊨ SA) ⊨ SB1Þ or ð⊨ SA) ⊨ SB2Þ; by classical ðmetaÞlogic
)A⊨ SB1 orA⊨ SB2; by ð⊨ SÞ:

(We do not need the supposition that _ does not occur in A; so, A,B1 and B2 stand
for arbitrary formulas.) ▪

Thus, we have proved the validity of a rule, which, unlike Harrop’s rule, is not even admissi-
ble in IPC. This is a classical proof. That is, classically the assumption of completeness of
IPC leads to a contradiction. Claiming that completeness can nonetheless be proved by
intuitionistic (and thus also by classical) means implies claiming a classical contradiction. Given
that these proofs can be coded in first-order arithmetic and that classical arithmetic and Heyting
arithmetic are equiconsistent, such a claim cannot be upheld. In simpler terms, inconsistency is
a negative result, and on the negative side classical and intuitionistic logics coincide.

There is a further point that relates to atomic stability and that does not use classical logic.
In Definition 1 the S-validity of a closed non-canonical argument of an atom a is defined via a
closed derivation in S to which it reduces, or in terms of sentence semantics, ⊨ Sa is understood
as ‘S a. Thus, it is natural that a1,…,an ⊨ Sa is equivalent to a1,…,an‘S a. However, the official
meaning of a1,…,an ⊨ Sa, in terms of sentence semantics, is

⊨ Sa1,…, ⊨ San ) ⊨ Sa:

Definition 11. (Stability) S is called stable, if the following holds:

(At0) a1,…,an ⊨ Sa, a1,…,an‘Sa.

In extension semantics stability is easy to prove, as we can add the assumptions a1,…,an to
S and thus obtain an extension S0 of S with a1,…;an as axioms. (At0) is crucial in establishing
(Export) and therefore incompleteness in extension semantics (see Remark 3.5 and Lemma 3.6
in Piecha & Schroeder-Heister, 2019). However, in non-extension semantics (At0) says, in view
of (At),

ð‘S a1,…, ‘S an ) ‘S aÞ, a1,…,an‘Sa:

In other words, the rule

a1 … an

a

is admissible in S if and only if it is derivable in S. The coincidence of admissibility and deri-
vability is also called ‘structural completeness’. This means that in non-extension semantics, S

10 SCHROEDER-HEISTER
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is stable only if it is structurally complete. Therefore, if we want to have stability, very many
bases are disregarded. This is an unwanted, or at least peculiar behaviour of non-extension
semantics.

In fact, if we interpret the right arrow on the right side of (⊨ S)

⊨ SΓ) ⊨ SA

classically as

⊭ SΓ or ⊨ SA,

then we obtain a semantics which is throughout classical, rather than the intended intuitionistic
one. This can be seen as follows. In view of the classical reading of (⊨ S), any implication
A ! B with B different from ⊥ can be read as ¬A _ B. For any A, let ⟦A⟧ be the set of bases,
in which A holds: ⟦A⟧¼fS : ⊨ SAg. Let 0 be the set of inconsistent bases:
0¼fS : ⊨ SA for allAg, which means that 0¼ ⟦⊥ ⟧. Let 1 be the set S of all bases. For a set of
bases M, let M¼ðS ∖MÞ[0. Then, ⟦¬A⟧¼ ⟦A⟧, and the structure hPðSÞ,0,1, [ , \ , i,
which is the algebra of semantical values of formulas, is a Boolean algebra.

We have argued that passing from extension semantics with the principle (⊨ ext
S ) to non-

extension semantics with the principle (⊨ S) is a wrong strategy for intuitionistic semantics.
That one needs to incorporate somehow the idea of bases-as-definitions as opposed to bases-as-
states-of-knowledge is nonetheless a crucial point. However, by simply removing the extension
feature we do justice neither to bases-as-states-of-knowledge nor to bases-as-definitions. The
idea of bases-as-definitions introduces an entirely new aspect into validity-based proof-theoretic
semantics, which needs further discussion. Piecha and Schroeder-Heister (2016, 2017) have initi-
ated such a discussion by using the idea of definitional reflection, which goes back to
Hallnäs (1991). Definitional reasoning does not compete with knowledge-state reasoning, but is
an independent additional topic that should be incorporated in a joint framework. In such a
framework, atomic bases would consist of a knowledge-representing and a definitional part.
Consequence with respect to such a base would be denoted by Γ⊨ D,SA, where D would stand
for the definitional and S for the knowledge-representing part. With respect to the knowledge-
representing part, the semantics would be an extension-semantics, as we definitely would like to
have monotonicity for states of knowledge. With respect to the definitional part, the semantics
would be a novel non-extension-semantics. It is not clear at all, what such a semantics may look
like, but it is definitely not just a simplified or restricted variant of knowledge-state semantics.

We agree completely with Prawitz in that the definitional aspects of atomic bases need to be
addressed and that it is a desideratum to develop tools for this. But this issue does not affect the
incompleteness of IPC pointed to here, which relates to states of knowledge and not to defini-
tions. The completeness of IPC which can be secured after all according to the proposal made
in Section 6, builds on bases which represent states of knowledge.

5 | INTERIM DISCUSSION: PROOF SEMANTICS VERSUS
SENTENCE SEMANTICS AND THE ISSUE OF UNIFORM REDUCTION

As indicated in the last paragraph of the introduction (Section 1), we are relying on the seman-
tics presented in Schroeder-Heister (2006). In this section, we sketch in which respects it differs
from concepts originally found in Prawitz (1971, 1973, 1974) and why we prefer it in the present
context. Nothing in the following sections depends on this discussion; so, a reader who is not so
much interested in these conceptual issues may skip it and pass to the presentation of an alter-
native semantic framework in Section 6.

PRAWITZ’S COMPLETENESS CONJECTURE: A REASSESSMENT 11
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We distinguished between proof semantics and sentence semantics. We started with proof
semantics as the Prawitzean framework and then passed over to sentence semantics by identify-
ing certain conditions satisfied by the given proof semantics (Lemma 2). These conditions of
sentence semantics we used to demonstrate incompleteness. Moreover, all discussions con-
cerning a possible way out of the incompleteness trap in the following sections are carried out
in this framework. Sentence semantics is the framework in which a great deal of proof-theoretic
semantics is conducted today, and from which significant results have been obtained. One might
even say that sentence semantics is the basis on which the current success and progress of proof-
theoretic semantics builds. This does not mean that the clauses of sentence semantics must be
exactly of the kind presented here. For example, the widely discussed approach by Sandqvist
which he called ‘base-extension semantics’ (Sandqvist, 2015) is based on different clauses. How-
ever, it is still sentence semantics, that is, semantical values are attached to sentences and conse-
quence statements in the form of an inductive definition of validity. In our discussions here we
follow this methodology.

The fact that the original proof semantics in Prawitz’s sense can be framed as a certain sen-
tence semantics, for which we have incompleteness and possible solutions to it, relies on certain
conceptual decisions within proof semantics made in Schroeder-Heister (2006), which are not
mandatory. Proof semantics can be formulated in ways that cannot be captured by sentence
semantics, and a close inspection of early works of Prawitz (1971, 1973, 1974) shows that he
had some such aspects in mind. This can best be illustrated by considering the notion of logical
consequence, which in sentence semantics is understood as

ð⊨ Þ Γ⊨A,For all S �S : ð⊨ SΓ) ⊨ SAÞ:

Logical consequence here means the preservation of validity in every atomic system S, quite analo-
gous to the classical idea of logical consequence as truth-transmission in every model. However,
in the corresponding proof semantics in Prawitz (1973, 1974), the transformation of validity is
something that is required to happen in a uniform way. It is demanded that there is a single
reduction procedure which does not depend on specific atomic systems but works for all S in
the same way, that is, schematically. More precisely, in Prawitz (1973) validity is defined for
pairs hD,J i consisting of an argument D and a set of reductions J (‘justifications’) such that
certain reducibility conditions (corresponding to our Definition 1) are satisfied. Logical validity
then means the availability of such a set of reductions J . As this selection of J is independent
of atomic systems, it is uniform with respect to them. In Prawitz (1973, 1974), this uniformity
requirement is not explicitly emphasised (this has been done in public first by Piccolomini
d’Aragona, 2023, Ch. 7.1 and Piccolomini d’Aragona, 2024 in connection with our incomplete-
ness result), but we clearly think that the definitions given by Prawitz can and should be inter-
preted that way.

Now, this uniformity of reductions with respect to atomic systems cannot be expressed in
sentence semantics. On the right side of ð⊨ Þ, we have a quantification over S and an implica-
tion between validity statements, which do not say anything about the form of the procedure
being used in proof semantics to establish validity. Therefore, insisting on the uniformity of
reduction procedures with respect to atomic systems blocks the connection between proof
semantics and sentence semantics. This means, in particular, that the incompleteness results as
recapitulated here are not applicable to proof semantics.

The incompleteness result might nevertheless hold for uniform proof semantics. To establish
it there, one would have to use methods that do justice to the uniformity requirements. One
would essentially have to check, whether the export condition (our Theorem 9) can be proven
for this semantics. We have not done this so far.

It is not even clear whether uniform proof semantics is stricter in effect than the non-
uniform semantics used in this paper. Even though the uniformity requirement intends a stricter

12 SCHROEDER-HEISTER
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reading of logical consequence, no example has been found so far of a formula which is logi-
cally valid in non-uniform proof semantics but not logically valid in uniform proof semantics.
If we suppose that IPC is complete with respect to uniform proof semantics, such an example
would be a direct counterexample to completeness for non-uniform semantics, which we have
not found so far. Our proof of incompleteness is indirect, and Harrop’s rule was not established
as a counterexample to completeness outright (see the paragraph immediately after
Corollary 8).7So it cannot be excluded that the uniformity requirement, though conceptually
(‘intensionally’) different from the non-uniform semantics on which our investigations are
based, actually leads to the same logically valid consequences.

It should also be mentioned that in Prawitz (1973, 1974), the uniformity requirement goes along
with a variant of non-extension semantics to which the discussions in Section 4 are not applicable
without restrictions. This issue cannot be discussed here and must be left to a thorough discussion
and comparison between uniform and non-uniform semantics. Interestingly, in Prawitz (1971) it is
still non-uniformly requested for the validity of proofs that for every S, there is a reduction proce-
dure (rather than uniformly: There is a reduction procedure which works for all S); also, the
approach there is an extension semantics. This corresponds to our way of proceeding here.

Besides the technical comparison between the uniform and non-uniform versions of proof-
based semantics, we should, as another desideratum of validity-based proof-theoretic semantics,
answer the question: Are there any philosophical reasons why one of these approaches is prefer-
able over the other one? Perhaps we have two semantical paradigms that have their respective
strengths and weaknesses, and whose consequences we need to investigate without philosophi-
cal preference.

For the rest of this article, the reader should keep in mind that we are working with a spe-
cific variant of proof semantics which can be expressed in sentence semantics. Even though Pra-
witz would stick to the uniform approach, which cannot be equivalently formulated in terms of
sentence semantics, we still use the term ‘Prawitz semantics’ for what we are discussing here, as
it is a framework coined by Prawitz (and present in Prawitz, 1971). Our semantic framework is
interesting in any case as it relates a certain variant of proof semantics via a corresponding sen-
tence semantics to novel developments in proof-theoretic semantics. Much of the discussion in
what follows, for example on the structure of semantical values, on general versus principal-
frame semantics etc., can be understood also from the viewpoint of uniform semantics, even
though it would not appear there as motivated by an incompleteness result, which we do not
have (yet?) for uniform validity.

6 | GENERAL SEMANTICS VERSUS PRINCIPAL-FRAME
SEMANTICS

For an abstract semantics in the sense of Definition 3, instead of bases in the concrete sense of
sets of atomic rules, we considered a set of entities S without specified internal structure. In
particular, we did not assume that there was an ordering between elements of S, which in the
concrete case would be the subset order. The abstract result that the condition (Export) implies
the incompleteness of IPC is independent of the subset order.

However, in the concrete case of Prawitz semantics, where we could verify (Export) and
therefore establish incompleteness (Theorem 9), we relied on the particular internal structure of
the set of bases S, namely that its elements are atomic systems, that is, sets of atomic rules,
which are ordered by the subset relation. Moreover, we assumed

1. that S is the set of all bases, that is, all possible sets of atomic rules and

7Actually, as Stafford (2021, Lemma 5.5) has shown, it is not a counterexample.

PRAWITZ’S COMPLETENESS CONJECTURE: A REASSESSMENT 13
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2. that Prawitz semantics is an extension semantics, that is, that the principle (⊨ ext
S ) governs

hypothetical consequence with respect to A.

Our proposal to reassess Prawitz’s completeness conjecture is to revise the first principle and
correspondingly change the meaning of (⊨ ext

S ) in the second principle. As mentioned in
Section 1, this corresponds to proposals also made by Goldfarb (2016), Litland (2012) and Staf-
ford and Nascimento (2023).

This revision is not considered just a formal idea, but has a strong philosophical underpin-
ning. When talking about extensions of formal systems to be considered when defining the
meaning of hypothetical consequence, the intuition is that a base represents in a way our state
of knowledge, and its extension represents a possible extension of our knowledge, based on fur-
ther ‘experience’. However, such an extension ordering should not necessarily be the full subset
ordering. We would certainly expect that an extension of our knowledge as given by an atomic
base should be a superset of this base, but it is not at all clear that any superset should represent
a knowledge extension. We might assume that knowledge extensions are coarser grained than
the very fine-grained superset relation. If we take this possibility into account, we might con-
sider the set S of bases underlying the extension ordering of our semantics to be a proper subset
of the set of all bases. Borrowing a terminology from modal logic, we call such a set S of bases
a frame. The principle (⊨ ext

S ) would then be reformulated with a reference to the frame S as

(⊨ ext
S,S) Γ⊨S,SA,For all S0 �Swith S0 �S : ð⊨ S0Γ) ⊨ S0AÞ.

Consequence in the frame S is then consequence ⊨ S with respect to all S �S:

ð⊨SÞ Γ⊨SA,For all S �S :Γ⊨ SA.

Logical consequence would then be consequence in all frames:

ð⊨ ) Γ⊨A,For allS :Γ⊨SA.

From the point of view of this refined semantics, Prawitz semantics is a semantics that con-
siders just a single frame, namely the set of all bases (ordered by the subset relation). If we call
this the principal frame P and the corresponding semantics the principal-frame semantics, then
we have shown that the intuitionistic propositional calculus IPC is incomplete with respect to
principal-frame semantics. We have shown that it is not the case that for all Γ and all A,

Γ⊨ PA)Γ ‘IPC A, ð2Þ

where P is the set containing all bases.
However, when we consider a semantics with respect to the set of all frames, which we call

general semantics, this negative result does not continue to hold. For general semantics, com-
pleteness means

Γ⊨A)Γ ‘IPC A,

that is,

ðFor allS :Γ⊨SAÞ)Γ ‘IPC A: ð3Þ
By strengthening the antecedent of the completeness claim from ‘Γ⊨PA’ in (2) to
‘For allS :Γ⊨SA’ in (3), we have weakened the completeness claim itself so that (3) may still
hold though (2) has been refuted.

14 SCHROEDER-HEISTER

 17552567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/theo.12541, W

iley O
nline L

ibrary on [19/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



It is the case indeed that for general semantics, completeness of IPC in the sense of (3) can
be demonstrated. In general semantics, the methods of Kripke semantics can be applied (though
the Kripke framework is, of course, non-constructive). Assuming Γ⊬ IPCA, we can construct (in
the classical sense of construction) a countermodel, which is given by a frame S and an element
S �S such that ⊨ SΓ but ⊭ SA. For the details of this construction, see Section 7.

If one inspects the proof of (Export) (our Theorem 9, and Lemma 3.6 in Piecha &
Schroeder-Heister, 2019), on which our proof of incompleteness crucially rests, it turns out that
it is assumed throughout that arbitrary extensions of a base are available, that is, we are work-
ing in the principal frame. And if we inspect the Kripke-style construction of a countermodel, it
turns out that, as a countermodel, a base is constructed within a frame, which is not the princi-
pal frame (see Section 7); that is, the countermodel is a model in general semantics, but not in
principal-frame semantics.

Our conclusion is that with respect to principal-frame semantics, Prawitz’s completeness
conjecture fails, but that with respect to general semantics, his conjecture holds true, at least if
one accepts Kripke’s nonconstructive methods. The step from principal-frame semantics to gen-
eral semantics is not really big: One just would accept that there are various possible ways of
extending one’s knowledge and that, in order to achieve logical validity, validity should be
expected with respect to each of these possibilities.

The situation arrived at is closely related to what we find in second-order logic. There we
also have both a completeness and an incompleteness theorem. Second-order logic is incom-
plete, if we consider only full structures, in which predicate variables run over all elements of
the corresponding power set. However, it is complete, if we consider general structures, in which
the domain of variability may be a proper subset of the power set, depending on the structure
considered. The semantics based on full structures corresponds to our principal-frame seman-
tics, and the semantics based on general structures corresponds to our general semantics. As in
our case, incompleteness and completeness can coexist and depend on which sort of semantics
is chosen. See van Dalen (2004), Ch. 4), where also an elementary example of a second-order
set of formulas is given, which has a model, but not a principal model, and thus establishes
incompleteness for principal models. Completeness for general semantics was proven by
Henkin (1950).

A further possible refinement of general semantics consists in defining validity not only with
respect to the set of all frames but also with respect to a selected class C of frames:

ð⊨ CÞ Γ⊨ CA,For allS�C :Γ⊨SA.

This would enable us to investigate whether certain semantic or syntactic features depend
on which set of frames is chosen. So far, we have considered the set U of all frames and the set
P that only contains the principal frame. But there are other options. We might consider, for
example, the set A of all frames, whose bases contain only axioms (see Section 7), or the set
B of all frames, whose bases contain only axioms but are closed under certain boundary rules,
or the set V of all frames which are closed under the union of bases, or the set E of all frames
which are closed under union of bases and extension of bases with axioms, etc. Closer inspec-
tion of the proof of (Export) (our Theorem 9 and Lemma 3.6 in Piecha & Schroeder-
Heister, 2019), which leads to inconsistency, shows that it presupposes that in the frame
S considered, for two bases S,S0 �S, their union S[S0 is in S as well and that, furthermore,
every extension of an S �S by additional axioms is in S. This means that IPC is incomplete
with respect to E; that is, it does not hold that

Γ⊨ EA)Γ ‘IPC A:

A particularly interesting class of frames studied by Nascimento (2024) is the set F of
focused frames, which have a base S as their bottom node and contain all bases S0 extending S,

PRAWITZ’S COMPLETENESS CONJECTURE: A REASSESSMENT 15
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and for which IPC is complete. Conceptually, F has the advantage that a frame in F is deter-
mined by a base S so that, when defining logical validity, we can quantify over bases rather
than frames, which is very natural from the model-theoretic point of view. Thus, we have
incompleteness with respect to P and E, but completeness with respect to U and F. We also
have completeness with respect to B, if we choose the boundary rules specified by
Goldfarb (2016) or Litland (2012) (see the remark at the end of Section 7).

Results of this kind invite one to study in more detail, which classes of frames yield com-
pleteness and which classes of frames do not, or even beyond that which logic, possibly deviant
from intuitionistic logic, corresponds to which class of frames. Such investigations would be
analogous to methods in modal logic, where the study of correspondence between features of
frames and syntactic features belongs to the standard repertoire. In general, this means that our
results open up a wide field of study beyond Prawitz’s completeness conjecture.

7 | THE STRUCTURE OF THE COUNTERMODEL: DO WE NEED
PROPER RULES?

A Kripke-style completeness proof proceeds by constructing a countermodel to a non-derivable
formula, where this countermodel is build up from syntactic entities. In predicate logic, one
speaks of a ‘term model’. In fact, this construction uses methods similar to Henkin’s complete-
ness proof for first-order logic. Depending on which variant of completeness proof is chosen,
the countermodel constructed looks different. Such a countermodel is not normally a proof-
theoretic base within a frame in the sense of Section 6. Crucial for our purpose here is that a
‘conventional’ Kripke countermodel can be isomorphically translated into a frame S together
with a base S in our sense so that the pair hS,Si ‘essentially is’ a Kripke countermodel.

As we only consider propositional logic, we rely on the presentation in Schütte (1968).
Given a formula A which is not derivable in IPC , let sðAÞ be the set of all subformulas of A. A
subset D of sðAÞ is called distinguished, if the formula ⋀D!WðsðAÞ ∖DÞ is not derivable in
IPC. Let D be the set of all distinguished subsets of sðAÞ ordered by the subset relation, together
with a valuation which at a point D�D assigns truth to all atoms in D and falsity to all atoms
not in D. This represents a Kripke-structure. We can show that this Kripke-structure verifies, at
a point D, all formulas in D and falsifies all subformulas of A which are not in D. As for a non-
derivable A, we can always construct a distinguished D⊆ sðAÞ not containing A, hD,Di is a
Kripke countermodel to A, as it falsifies A at point D within D.

This Kripke-structure is no frame in the sense of our semantics, as its reference points D are
sets of subformulas of D rather than bases (i.e. sets of atomic rules). Such a D can, however, iso-
morphically be turned into a base, and the Kripke structure into a frame. Take sufficiently
many sentence letters c1,c2,… not occurring in A, and use them to code all compound sub-
formulas of A, that is, all subformulas of A except the sentence letters occurring in A. Let D0

result from D by replacing compound subformulas of A by their codes. Then D0 is just a set of
sentence letters. For any D1,D2 �D, it holds that D1 ⊆D2 if and only if D0

1 ⊆D0
2, which means

that we have an order isomorphism. Let D0 be the set of all D0 such that D�D. Then, D0 repre-
sents a frame in our sense which is isomorphic to the Kripke structure. If A is false in a reference
point of the Kripke structure, it is invalid in the corresponding reference point in the frame.

This means that Kripke-(Henkin-)style reasoning gives us a frame and a base in this frame,
which invalidates a formula underivable in IPC. To mimic the structure of the Kripke frame,
we used some coding of formulas via additional propositional letters, but we did not bother
about these propositional letters, as they are not contained in the formula A under
consideration.

From the proof-theoretic viewpoint, it is interesting that we do not need proper rules in the
countermodel constructed, but just axioms, namely the propositional letters representing true

16 SCHROEDER-HEISTER

 17552567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/theo.12541, W

iley O
nline L

ibrary on [19/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



atomic propositions. This means that we have completeness not only with respect to all frames,
but already with respect to the set of frames, whose bases contain only axioms and no proper
rules. Let us call such a frame an axioms-only frame. IPC is complete with respect to the class
A of axioms-only frames. If by satisfiability of a formula A we understand the availability of a
frame S and an element S �S such that A is valid in S with respect to S, we obtain the
following:

Theorem 12. If a formula A is satisfiable at all, it is satisfiable in an axioms-only
frame.

This sounds paradoxical at first glance, given that it is one of the crucial issues of proof-
theoretic validity that its bases are genuine production systems and are not just sets of axioms
representing a valuation of atoms. Satisfiability in axioms-only frames thus appears to go
against the spirit of proof-theoretic semantics. However, this situation is not more paradoxical
than Skolem’s paradox. Even though every satisfiable first-order formula is satifiable in a
countable structure, this is not normally considered to speak against the uncountable in itself,
as uncountable structures have significant features of their own. Similarly, bases with proper
rules have significant features of their own that deserve to be (and are being) studied, even
though satisfiability per se does not depend on the availability of proper rules. Both Skolem’s
paradox and the above theorem result from the particular feature of the counterexample con-
structed in the completeness proof—in the case of Skolem’s paradox, it is the countability of the
constructed term model; in our case, it is the fact that the model construction only needs
axioms.

Remark. Goldfarb (2016), Litland (2012) and Stafford and Nascimento (2023)
prove completeness in a more general setting. Whereas above a specific form of the
Kripke-style completeness proof was considered, and the constructed countermodel
was coded in the proof-theoretic framework, Goldfarb, Litland and Stafford &
Nascimento present methods to code arbitrary finite-tree Kripke models and thus
can adopt any kind of completeness proof based on such models. Goldfarb works in
a framework in which bases only consist of axioms, but where a frame is related to a
global set of boundary rules. These boundary rules are used to code the accessibility
structure of a given Kripke model: Reference points are coded by atoms and the
accessibility of a from b by the atomic rule a) b. Litland works in a similar frame-
work, which is technically related to Golfarb’s approach, but with the crucial differ-
ence that he formally distinguishes verifiers of atoms from the atoms themselves and
lets the boundary rules operate on these verifiers.8 Stafford and Nascimento work
(essentially) in the same framework as defined in this paper. Like Goldfarb, they
code reference points by atoms. Given a base Sw corresponding to a reference point
w and coded by c, this base contains the atoms evaluated as true in w and in addition
the vacuous rule c0 ) c0, where c0 is the code of the immediate predecessor (accessi-
bility-wise) of Sw. To all authors, the remarks made above on the axioms-only para-
dox apply: Satisfiability implies axioms-only satisfiability. Even though they are
using proper inference rules to code the order structure of their respective frame, this
usage is not ‘genuine’, as these rules do not contribute to the validity of a formula in
a base (in Stafford and Nascimento’s version the rules are deductively void anyway).

8As to the publishing dates, though only published in 2016, Goldfarb’s manuscript dates from 1999 (and was made available by Michael
Dummett at the first Tübingen conference on proof-theoretic semantics in that year—the manuscript of Dummett’s reply to Goldfarb’s
theses is lost). Thus, Litland’s doctoral dissertation of 2012 was able to build on Goldfarb’s ideas and to develop them further.

PRAWITZ’S COMPLETENESS CONJECTURE: A REASSESSMENT 17
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To Goldfarb and Litland, the axioms-only paradox may perhaps not sound para-
doxical, as they work in an axioms-only framework with added boundary rules.

8 | CARNAP CATEGORICITY OF PRAWITZ SEMANTICS AND THE
INTENDED MEANING OF THE LOGICAL CONSTANTS

If we consider just the calculus of intuitionistic propositional logic IPC, the meaning of the logical
connectives is not fully determined. For example, both classical and intuitionistic connectives obey
the laws of IPC. However, given a specific semantics for which IPC is sound, we may ask whether
this semantics delivers a single interpretation of the IPC connectives, or whether there are different
interpretations compatible with it. This question, which for classical logic was posed by Car-
nap (1943), and which has occasionally been referred to in inferentialism and proof-theoretic
semantics (e.g. Murzi & Hjortland, 2009), was given a precise model-theoretic rendering by
Westerståhl et al. (Bonnay & Westerståhl, 2016 for classical logic, and Tong & Westerståhl, 2023
for intuitionistic logic). Tong and Westerståhl show, for various intuitionistic interpretations of
IPC, that they are unique. In Kripke semantics, such an interpretation, and thus the notion of
uniqueness, is relative to a given frame. As this uniqueness property holds for all frames, Tong and
Westerståhl speak of ‘Carnap categoricity’ of IPC with respect to Kripke semantics.

As Carnap categoricity is based on a uniqueness concept for single frames, it can be applied
to any single-frame semantics, in particular to Prawitz’s principal-frame semantics. Here, we
would speak of Carnap categoricity if uniqueness of interpretation holds for the single frame
under consideration. It turns out that in this sense IPC is indeed Carnap categorical under Pra-
witz’s principal-frame semantics. This can be seen as follows. We rely on the terminology and
the results of Tong and Westerståhl.

For any A, let again ⟦A⟧ be the set of bases, in which A holds: ⟦A⟧¼fS : ⊨ SAg. Let 0 be
the set of inconsistent bases: 0¼fS : ⊨ SA for allAg, which means that 0¼ ⟦⊥ ⟧. Let 1 be the
set S of all bases. In order to interpret intuitionistic implication, a set M of bases is called
upward closed if for bases S,S0:

S �M and S0 �S )S0 �M:

Due to the extension condition (⊨ ext
S ), ⟦A⟧ (for any A) and 0 are upward closed; 1 is trivially

upward closed. Let S" be the set of all bases S0 �S (i.e. the smallest upward-closed set con-
taining S). Let U be the set of all upward-closed sets except the empty set.9 Then Prawitz
semantics can be viewed as assigning to every A an upward-closed set ⟦A⟧ �U as its semantical
value in the following way.

Let v be a valuation function, which assigns an upward-closed set to every atom a, that is,
vðaÞ�U. Then, we assign semantical values to formulas according to the following
definition.

Definition 13. Assignment of semantical values to formulas.

⟦a⟧v ¼ vðaÞ ⟦⊥ ⟧v ¼0 ⟦> ⟧v ¼1

⟦A^B⟧v ¼ ⟦A⟧v\⟦B⟧v ⟦A_B⟧v ¼ ⟦A⟧v[⟦B⟧v
⟦A ! B⟧v ¼fS :S " \ ⟦A⟧v ⊆ ⟦B⟧vg:

9That we exclude the empty set of bases as a possible semantic value of formulas is due to our non-standard way of treating absurdity
and negation, which is itself due to the specific single-frame structure of Prawitz semantics. The semantical value of absurdity, that is, 0,
is the set of all inconsistent bases rather than the empty set of bases. See the remark on negation at the end of Section 2.
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If we deal not just with principal-frame semantics but with semantics based on more than a
single frame, we would have to relativise ⟦A⟧v to the frame considered, for example, by writing
⟦A⟧Sv . The valuation v0ðaÞ :¼fS :‘S ag is distinguished. ⟦A⟧v0 gives us the intended semantical
value of the formula A in Prawitz semantics, so we may define ⟦A⟧ :¼ ⟦A⟧v0 . However, it
should be emphasised that Prawitz semantics makes perfect sense with respect to arbitrary valu-
ations v as presented in Definition 13 and that IPC is sound for interpretations using such valu-
ations. Carnap categoricity crucially depends on this feature.

If we denote the set-theoretical operation on upward-closed sets that in Definition 13 corre-
sponds to ! by v:

MvN :¼ fS :S"\ M⊆Ng,

then it can easily be seen that

hU,0,1, \ , [ , vi

is a Heyting algebra. Tong and Westerståhl demonstrated that this is the only possibility to
interpret the logical connectives in U, with the sole precondition that conjunction is interpreted
by intersection. If the logical constants are interpreted by 00,10, \ , [ 0,v0 rather than
0,1, \ , [ , v, and IPC is sound with respect to this interpretation, then the resulting algebra

hU,00,10, \ , [ 0,v0i

is a Heyting algebra identical to

hU,0,1, \ , [ , vi:

In this sense, Prawitz semantics is a (Carnap) categorical semantics of intuitionistic logic:
intuitionistic, as the interpretation of the connectives yields a Heyting algebra, which is the
intended interpretation; and categorical, as it has no unintended (‘non-standard’) interpreta-
tion. Prawitz’s principal-frame semantics describes exactly the intuitionistic connectives. The
arguments above can easily be carried over to general semantics and to semantics with respect
to certain classes of frames. However, the point we wanted to make here is that Prawitz seman-
tics as it stands has the fundamental property of categoricity.

Even though IPC is incomplete for Prawitz semantics, that is, does not generate all laws that
are semantically valid, it nevertheless gives the connectives a unique meaning in the light of this
semantics. One might even argue that categoricity is more important than completeness. When
passing to advanced systems, we are loosing completeness anyway, so it is perhaps not wise to
insist on it for propositional logic. What is more important from the viewpoint of proof-
theoretic semantics is its unique determination of meaning. We distinguish between the meaning
of the connectives and the laws that hold in virtue of this meaning. The first might be called the
intensional and the second the extensional context of semantics. Intensionally, Prawitz seman-
tics does for IPC what it supposes to do: giving the connectives their intuitionistic meaning in a
proof-theoretic manner. Only extensionally, it lacks a certain feature, namely completeness,
which calls for an investigation into which superintuitionistic logic calculi might be complete
for Prawitz semantics. However, in such a logic (see Stafford, 2021), the meaning of the connec-
tives would still be intuitionistic and would be described by the above Heyting algebra.10In any

10Incidentally, there is an analogous situation with the proof-theoretic concept of uniqueness. In intuitionistic logic, the introduction and
elimination rules for a connective c uniquely determine its meaning in the sense that two copies of the introduction and elimination rules
for c and c ∗ , respectively, yield the interderivability of c and c ∗ . This interderivability persists if the logic is extended with additional
superintuitionistic principles.
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case, Carnap categoricity, which is a concept at the level of the widely discussed notions of har-
mony and uniqueness, deserves to be investigated in much more depth in proof-theoretic
semantics.

9 | CONCLUDING DISCUSSION

Prawitz’s validity-based semantics renders intuitionistic propositional logic IPC incomplete,
because Harrop’s rule, which is only admissible, but not derivable in IPC , can be validated.
Therefore his completeness conjecture cannot be upheld in its original form. Two basic strate-
gies are possible as way out.

1. We might change the semantics and look for a plausible modified version of it, for which
IPC is complete.

2. We might change the logic and look for a plausible modified version of it, which is complete
for Prawitz semantics.

The second option leads into the area of logic intermediate between intuitionistic and classi-
cal logic. In view of the counterexample to completeness, of particular interest is logic stronger
than IPC (‘superintuitionistic logics’), in which the disjunction property still holds (see
Chagrov & Zakharyashchev, 1991; Kleene, 1962). Stafford (2021) has made a big step in this
direction by showing that general inquisitive semantics is equivalent to Prawitz semantics when
in atomic systems rules that discharge assumptions are admitted.

Using the first option, we would look for modifications of Prawitz semantics, which are con-
ceptually plausible and render IPC complete. In this paper, we have discussed two possibilities,
a favourable one and the one that we discarded. The one we favoured is to give up Prawitz’s
focus on a single structure of atomic systems, according to which formulas are evaluated in the
frame of all bases, which we called ‘principal-frame semantics’. Formulas should instead be
evaluated in the multiplicity of all subsets of the set of atomic systems, called ‘general seman-
tics’. Through general semantics, we gain access to Kripke-style completeness proofs and can
re-establish completeness, at least if we are prepared to accept the classical methods on which
they rest. We have completeness with respect to general semantics and incompleteness with
respect to principal-frame semantics. This coexistence of incompleteness and completeness is
analogous to the situation in second-order logic, where we have incompleteness with respect to
full models, but completeness with respect to general models; so, it is not an absolutely novel
phenomenon.

What we discarded was a specific modification of Prawitz semantics supposed to take defini-
tional reasoning into account: namely the idea to remove the consideration of extensions of
bases for the validation of hypothetical reasoning. Simply disregarding extensions leads to even
bigger problems with completeness; it actually leads to a classical rather than intuitionistic
semantics. We nevertheless totally agree with Prawitz that definitional reasoning must be incor-
porated in proof-theoretic semantics. However, this should be done in a different way, being an
issue on top of extension semantics and nothing that replaces extension semantics. A potential
candidate for definitional clauses are boundary rules that work for all bases likewise and that
are not extended when bases representing one’s knowledge state are extended.

We discussed alternatives to Prawitz’s validity semantics as first laid out by him in Pra-
witz (1971, 1973), still keeping intact its fundamental orientation: the view of introduction rules
as primary meaning-giving inferences. In particular, a valid canonical proof of a disjunction
A_B assumes that either a valid proof of A or a valid proof of B is given, to which the step of
disjunction introduction is applied. There are many other approaches to validity in proof-
theoretic semantics; some come to similar, some to different conclusions as far as completeness
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is concerned. For an overview of such approaches, see the survey by Piecha (2016) and the dis-
cussion by Stafford (2024). In particular, we have not dealt here with validity concepts based on
elimination rules, which would interpret disjunction by the (‘indirect’) rule

A ∨ B

A
⋮
C

B
⋮
C .

C

In particular, the fact that in a semantic clause for disjunction based on this rule, the minor pre-
miss and conclusion C can be assumed to be atomic—as proposed by various authors including
Prawitz11—leads to interesting semantic frameworks beyond our scope here, which include
completeness proofs for IPC : in Litland (2012) by using Kripke semantics, in Sandqvist (2015)
by using atomic higher-level rules and in Oliveira (2021) by adapting a method of complemen-
tation of arguments originally suggested by Dummett (1991, Ch.13).

An interesting general phenomenon is the axioms-only paradox, namely the fact that if a
formula is satisfiable at all, it is satisfiable in a frame whose bases have only axioms and no
proper rules. This requires a further discussion of the role of rules at the atomic level. To
describe one’s state of knowledge, proper rules are perhaps not needed. On the other hand, one
would need them to represent definitional reasoning, as inductive definitions are essentially sys-
tems of rules (see Aczel, 1977). This again points to the desideratum to develop a semantic
framework that includes both states of knowledge and definitions.

It could be shown that Tong and Westerståhl’s (2023) results on Carnap categoricity of
IPC are applicable to Prawitz semantics in a straightforward manner. This semantics thus
exhibits a fundamental feature, which in proof-theoretic semantics has not received the atten-
tion it deserves. The property of categoricity qualifies Prawitz’s principal-frame semantics as a
genuine intuitionistic semantics for IPC , even though completeness is lacking.

I would like to finish with a personal remark of gratitude to Dag Prawitz. My work on the
proof-theoretic foundations of logic, and indeed most of my career, would not have been possi-
ble without Dag’s guidance both through his publications and through numerous discussions
we had on issues of proof-theoretic semantics. I am extremely grateful to Dag for this, and I am
delighted that his outstanding achievements in logic and the philosophy of logic have been
recognised and honoured by the Rolf Schock prize. I am proud to be a contributor to this spe-
cial issue of Theoria commemorating the event.
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