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Abstract: We propose a knowledge representation based on prototype theory in order to
improve human-robot interaction. Since robots are becoming increasingly important in our
everyday life, one day they might be used to do the chores, e.g., in kitchens. In order to tidy
objects, however, robots have to be able to find the places where items belong; thus they need to
categorise them. We develop a paradigm that mimics human categorisation, in order to provide
flexible, human-like solutions. In order to identify a suitable approach to the prototype theory,
we augmented and implemented the approach by Hampton and the one described by Minda and
Smith, and compared their performance. We found that prototype models represent similarities
between objects well. Furthermore, we found that the approach described by Minda and Smith
is preferable over Hampton’s, although on the whole they do not differ to a great extent. We
provide an idea how the approach by Minda and Smith — augmented by us — could be used
in order to contribute to a human-like knowledge representation. One final question is to what
extent the proposed knowledge representation is able to reflect human categorisations and if the

resulting behaviour of a robot is intuitively understandable for users.

1. INTRODUCTION

In order to improve human-robot interaction we pro-
pose a knowledge representation based on prototype the-
ory. A successful and well-functioning interaction between
users and robots is becoming increasingly important, since
robots will be used more frequently. One example is the use
in households, especially in an ageing society. It is crucial,
however, that the actions taken and the solutions found
by a robot are intuitively comprehensible for the user.

One task in a household is to tidy up, for example in
the kitchen. Tidying up, however, is not that easy: the
place where an object usually belongs, might already be
occupied, new items may need to be tidied, or after a
relocation all the dishes have to be placed in the kitchen
in the new flat.

Such tasks rely on a classification of objects: similar
objects are usually stored in the same place. But human
classification is not necessarily unique and unambiguous.
Most people store the cutlery in one place, but what about
the eggbeater? Is that a piece of cutlery or is it rather a
cooking aid? The answer to such questions depends on
the person asked and the situation, for example whether
the drawer for the cutlery offers enough room for an
eggbeater. A good classification algorithm for a household
robot should be able to model such ambiguities and the
existence of different solutions. Rather than mimicking one
specific classification of objects, our goal is to implement
a flexible classification scheme based on existing theories
from psychology.

* This work was supported by the Ministry of Science, Research
and Art in Baden-Wiirttemberg and by the Bavarian Acedemy of
Sciences and Humanities.

Vernon et al. (2007) distinguish between two basic ap-
proaches for artificial intelligence systems: rationalist
methods and self-organising systems. We find this dis-
tinction helpful to position our method among existing
knowledge representations.

Rationalist methods — as the name suggests — try to
make an agent act rationally. In a rational view of the
world, facts are either true or false (or have a certain prob-
ability of being true or false). The basic paradigms of ra-
tionalist methods are logic (also in the form of ontologies)
and probability theory (e.g. in the form of Markov models).
The advantages of rationalist knowledge representations
are their expressive power and the strong mathematical
foundation. Ontologies, for example, are able to store a
wide range of everyday knowledge and they work well
with automatic reasoning techniques (Lemaignan, 2012;
Tenorth, 2011). But ontology classifications are unambigu-
ous: an object either belongs to a category or not and rea-
soning gives definite answers. As we have argued above, a
human-like and human-understandable classification must
allow for grey areas and situation-specific adaptations.

This may be the case, if our household robot wants to put
flowers in a vase, but there is none available. So it has to
find something that is up to the mark of a vase, except
e.g., looking nice. This vagueness can not even be well
represented by probability theory. A drinking glass is not
a vase with a certain probability, but may serve as one in
this special situation.

Self-organising methods, in contrast, try to find classifica-
tions based on data. Jikel et al. (2008) show how exemplar
models for classification can be well represented by kernel
methods from machine learning. Such methods inherently
enable an agent to adapt to a changing environment. They
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are also robust against modelling errors (because there is
practically no manual modelling involved) or data outliers.
A drawback of self-organising methods is their black-box
character. The results come from intricate computations
that are not explicable to a user. This also prohibits the
possibility of learning from human advice.

Our goal is to take the best of both worlds to find a
cognitively plausible knowledge representation that can
learn from observed data and adapt to changes and user
requirements, and at the same time comes with high
expressive power and the ability to explain its decisions.

In psychology there are several competing paradigms of
representing objects based on similarity: the prototype, the
exemplar-based model, and the theory paradigm of con-
cepts (Machery, 2009) In the exemplar-based model items
are compared to all stored exemplars that are already
classified (Medin and Schaffer, 1978). Thus representing
a high number of objects, each constituted by a certain
set of features, is infeasible for realistic scenarios.

In the theory paradigm, in contrast, a concept of a cate-
gory contains knowledge that is able to explain the prop-
erties of the category members. A theoretical concept of
a bird, for example, stores — amongst others — causal
and functional knowledge about birds; e.g., that they have
wings to fly (Machery, 2009). It is significantly vaguer
described and thus harder to implement.

In the prototype model items are represented by means
of prototypes, each constituting something like a best
example of a category (Rosch, 1975). According to this
theory, categories are not defined by clear boundaries but
by a prototype, which could be generated by taking the
average of all values of the relevant numerical features
of already learnt examples. Relevant features could be
— amongst others — height, width, and material. These
items are represented as vectors x in a multidimensional
space, the feature space (Valentine, 1991), with indices
referring to the dimensions of the space.

Our suggested knowledge representation picks up on this
theory of category representations, since items are only
compared to the prototypes and thus computationally
less expensive than exemplar-based models. In order to
be able to deal with all kinds of situations occurring
in our scenarios, the robot has to be able to broaden
categories and calculate similarities between any item and
any stored category. In prototype models similarities are
representable without difficulties. For instance, if an object
is needed that is similar to a vase, a program can easily go
through all items and identify the most similar object.

In order to develop a comprehensive knowledge repre-
sentation we first had to decide which approach to the
prototype model to work with. We chose two recent models
of prototype theory that are described in enough depth
that allows for an almost direct implementation. Thus,
we implement, augment and compare the approaches by
Hampton (1993) and by Minda and Smith (2011) with
respect to their suitability for human-robot interaction.

mugs
1 2 3 4
cups
5 6 7 8
bowls
9 10 11 12

Fig. 1. All tested items. The rows show the mugs, cups,
and bowls. See also Appendix A. (All pictures from
www.butlers.de)

2. PROTOTYPE MODELS

Both approaches represent an object by a vector, where
each component represents one attribute. They state the
prototype as a set of averages of all feature values.

We first created a database of twelve items: four mugs, four
cups, and four bowls of a European interior dinnerware
and decoration department store chain. On this basis,
we defined three categories: mugs, cups, and small bowls
(Figure 1). We used the attributes height in cm, upper
diameter in cm, charge in ml, and number of handles (s.
Appendix A).

The objects were chosen to have a high resemblance and
to allow for ambiguities. For example one of the mugs
has no handle and we have cups of different sizes. We
think that most people would agree with our categorisation
into mugs, cups and bowls, but other classifications could
still be acceptable, for example one might use Cup 8 to
eat cereals from, or Mug 3 might be accepted as a cup
because of its small size. We restricted the data set to
these 12 objects to allow for an instance-based validation.

According to our goal of a human-understandable repre-
sentation, we consider a representation as successful, if it

e correctly classifies all 12 objects into the three as-
sumed categories, but also

e allows for different classifications, possibly by recon-
figuring parameters;

e allows for automatic adaptation (learning).

2.1 Approach 1: Hampton

Hampton calculates the similarity S of an item x to a
category C' by summing up the attribute-value weights w
(Machery, 2009):

n

S(x,C) = 3 wix, i) (1)

=1
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where ¢ is the attribute and n the total number of at-
tributes of an item. He does not provide a formula for
calculating the weights though. Furthermore, he does not
account for different categories at all.

Hampton, however, provides a decision rule for the cate-
gorisation (Machery, 2009) that states that items with a
similarity S to a category C' larger than a threshold ¢ are
members of this category:

Sx,0)>t—=xeC. (2)

He does not account for the case that an item might
have a similarity larger than the threshold to two different
categories (Machery, 2009).

Further, this approach does not account for different units
of values, considerably diverging values, or discrete values.

2.2 Our augmented version of Hampton’s approach

We defined the similarity S of an item x to a category C
accordingly to Hampton’s approach:

S(x,C) = Z sime(x:) 3)

where 7 is the attribute and N, the number of attributes
that an item contains. Since in our opinion Hampton’s
notation of weights does not represent any kind of weights
at all, we called them attribute similarity sim. There is
one attribute similarity sim¢ for each attribute-value of
an item. Since Hampton, however, does not account for
different classes at all, but we had different categories, we
had to specify the attribute similarities with respect to
them. That is why our attribute similarities depend on a
certain category. So we defined simc(x;)! as being the
attribute similarity of the value — possessed by the in-
stance x for the i*? attribute — to the respective category.
As mentioned above we had the following categories:

Categories C = {mugs, cups, bowls}. (4)

We calculated the attribute similarities of all items to all
predefined categories. Since we had

items x ={1,2,3,4,5,6,7,8,9,10,11, 12} (5)

(see Appendix A), we had one 12 items x n attribute
similarity matrix for each category and, therefore, three
attribute similarity matrices on the whole. Since Hampton
does not give any formula for calculating the attribute
similarities, we defined the attribute similarities sim¢(x;)
with the help of the Gaussian function. For this we had
to calculate the mean over all attribute-values of each
attribute ¢ that appeared in a certain category C'. These
means Pc, constituted the prototype P for each category
C. Formally a prototype P¢ is a vector of the means
Pe,. So for each prototype, there are as many averages
as attributes. As attributes we had

attribute i = {height, diameter, charge, handles}. (6)

Our definition of the attribute similarities using the Gaus-
sian function was as follows:
(Xi — PCq:)Q
2
2s¢,,

) (7)

sime(x;) = exp(—

1 This notation is equivalent to Hampton’s w(zx, 7).

with s¢, being the standard deviation of this sample. In
this way the values got normalised, so different units and
considerably varying sizes would not affect results. We
calculated s¢, for each category C and attribute i. So we
had as many standard deviations as averages Pc,. Each
category was constituted by four items (see Appendix A):

Mugs = {item 1, item 2, item 3, item 4}, (8)
Cups = {item 5, item 6, item 7, item 8}, (9)
Bowls = {item 9, item 10, item 11, item 12}, (10)

and N¢ being the number of instances of the category C:
(11)
(12)
(13)

Niugs = |Mugs|
Neyps = |Cups|
Npowis = |Bowls|.

Thus, for the category mug, for instance, we calculated the
standard deviations as follows:

Nimugs
(X — Pci 2
o= L ek (14)
=1 mugs

with x € mugs. We chose Ny,q4s as denominator, instead
of Nyugs — 1, since we did not want to estimate the
standard deviation of a population of unknown mugs, but
calculating s for our known population of mugs. Thus, we
did not have to estimate the mean P, since we just could
calculate it.

The advantages of using the Gaussian function are that
the attribute similarity values are non-dimensional, the
minimum attribute similarity is zero, and the maximum
value equals one. The latter is advantageous, since the
attribute similarities have to be summed up together
with all the other ones of an item in a category, so
attribute similarities do not diverge to much from each
other. The first reason might be even more important,
since attributes have different dimensions. So working with
values in centimetres and millilitres is not a problem.

Since Hampton’s approach, however, does not account
for discrete values at all, but we had discrete attribute
values, we had to find a way to handle with this situation.
Fortunately, if the standard deviation did not become zero,
we could treat the discrete values the same way we treated
the continuous ones. We had categories though, where all
instances had the same value in their discrete attribute
handle. Thus, the standard deviation of the distribution
of this attribute in these two categories became zero.
Since dividing by zero is never a good option, we set s to
0.25. In this way we simulated a distribution of attribute
similarities with a standard deviation of 0.25. This we
could do, since 95 % of this simulated distribution would lie
between the prototype for the attribute handle Pc, + 2s
and Pg, — 2s. For a Pg, of 1, almost all values of the
simulated distribution would lie between 0.5 and 1.5. If one
rounds values between these two, it would always result in
1, which is the prototype P, in turn.

Since Hampton does not provide a formula how attribute
similarities of the values are calculated exactly, it remains
speculative, if our formula represents a way that Hampton
would have totally agreed with.
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Concerning the decision rule, we only used it in order to
compare the results to the ground truth data.

2.8 Approach 2: Minda and Smith

Similarly to Hampton’s approach, in the one described by
Minda and Smith (2011) the classification decision is done
in two steps: 1) items are compared to the prototypes, and
2) it is decided, which category is the most probable one.

In this first phase of comparison, the so-called psycholog-
ical distance d;p between the item i and the prototype P
is calculated. For this the distances between the values x;i
of the items and the prototype P are calculated for each
attribute k:

N
dip =Y wilzi — Py,
k=1

(15)

where wy, is the weight of the attribute k£ of IV attributes.
P; is the prototype of a certain attribute [Smith and
Minda, 2000; Minda and Smith, 2011].

According to Minda and Smith (2011) the weights can
take values between 0 and 1.0, where 0 means no attention
has to be paid to this attribute and 1 meaning exclusive
attention has to be paid. The weights wy of a certain
category across all the attributes are constrained to sum
1.

The psychological distance d;p is then converted into a
measure of similarity n;p of an item i to a prototype P
(Smith and Minda (2000) followed Shepard (1987)):

nip = exp(—c- dip) (16)
where ¢ is a sensitivity parameter. It is freely estimated
and responsible for the steepness of the decay of similarity.
The higher its value, the steeper the decay and the stronger
the category attribution for typical instances. A low value
leads to a flat descent and the classification probability is
closer to chance. According to Minda and Smith (2011) it
can take values between 1 and +oo.

In the decision phase (2), it is decided which category is
the most probable one of an item. In order to do this, the
probability of a Category A-response R4 is calculated for
each stimulus S;:
MiPa
P(RalS;) = ———— 17
(RalSi) ——— (17)
where 7, p, is the similarity of an item ¢ to the category A,
which as the denominator has to be added to the similarity
of this item to a second category B (Smith and Minda,
2000).

As Hampton’s approach this one does not account for
different units of values, considerably diverging values, or
discrete values.

2.4 Our augmented version of the approach described by
Minda and Smith

In order to stick to Hampton’s notation (1993), we had to
adjust the one used by Minda and Smith (2011). A list of
variable notations is shown in Table (1).

Tab. 1. Variable notations

Minda and Smith here
item i instance x
dimension k attribute ¢
value z of an item i in dimension &: z;, X;

Tab. 2. Weights

category height diameter charge handle
mug 0.4 0.4 0.1 0.1
cup 0.25 0.15 0.1 0.5
bowl 0.15 0.25 0.1 0.5

Our focus, however, does not lie on category decisions
and hard boundaries between them; that is why we im-
plemented only the first step. Since we had to account
for different categories, we had to specify variables ac-
cordingly. Thus, we defined the normalised psychological
distance d;p. between an item x and a prototype P¢ of
a specific category C' as follows:

N,

§ a: |Xi — PCi
dch - we; s

i=1 Ci

- (18)

where wc, is the weight of the attribute i of N, attributes
in the category C. Pc, is the prototype of a certain
attribute in a specific category [Smith and Minda, 2000;
Minda and Smith, 2011]. We supplemented this formula by
a normalisation that is done with the help of the standard
deviation s¢,. We used the same formula (14) as in the first
augmented approach. So it is specific for each category and
attribute. Since the second approach, however, does not
account for discrete values neither, we treated the standard
deviation — in case it became zero — the same way as in
our augmented version of Hampton’s approach.

Since we did not measure any classificatory significance
of dimensions, we set the weights as much reasonable
as possible (Tab. 2). We chose exactly these weights for
the following reasons: in the category mug we set the
weights of the attributes height and diameter to the same
value, since we estimated them to be equally important.
In contrast, in the category cup we gave more importance
to the attribute height than to the attribute diameter,
because for us the height of cups seemed quite significant
to distinguish them from mugs. In the category of bowls
it seemed to us to be the other way around and we
changed weight values. In all categories we gave only little
weight to the feature charge. Since all predefined cups had
and all bowls did not have a handle, we put the weight
for this attribute quite high and low for the category of
mugs. In future work we will learn the weights from data
automatically.

We had to adjust the formula provided defining the simi-
larity 7, p. to our approach:

NePo = e:cp(fa ’ diEPc) (19)
where « is the sensitivity parameter. We set a to one,
because otherwise the decay would have been too steep.
(For a more detailed explanation see section 4.)

Figure (2) shows the exponential decay of similarity plot-
ted against the distance of all items to the prototype cup.
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Fig. 2. Exponential decay of similarities of items to the
prototype cup according to the second approach. Sim-
ilarity is plotted on the y-axis, while the normalised
psychological distance of objects to the prototype is
plotted on the x-axis. The points correspond to the
items shown in Fig.1.

3. VALIDATION

We evaluated the theoretical approaches with our collec-
tion of items.

3.1 Approach 1: Hampton

Figure 3 shows the similarities of all instances compared
to the three prototypes. The horizontal line shows the
thresholds with which the instances would fall into the
predefined categories. It is only shown in order to represent
the ground truth data. Since Hampton does not give any
further information about the thresholds, we specified
them accordingly to the predefined category (Tab. 3).

In the comparison to the prototype mug all predefined
mugs would be categorised as mugs with a threshold of
1.6 (Fig. 3(a)). Only item no.8 would then fall into this
category as well. Item no.3 is a mug without handles. All
other items are much less similar.

When items were compared to the prototype cup three of
four predefined cups were rated much more similar to the
prototype than all other items (Fig. 3(b)). If one wants to
set a threshold so that all predefined cups are categorised
as so, item no.1, 2, and 4 would fall into the class cups as
well. Also item no.3 is relatively similar to the prototype
as well.

In the case of the last category all predefined bowls are
much more similar to the prototype than all other items
(Fig. 3(c)). Thus all and only predefined bowls would fall
into the category, if a threshold is set. Only item no.3 is
quite similar to the prototype as well.

Discussion ~ Three of four predefined mugs are more
similar to their prototype than other items. Only item no.3

Tab. 3. Category thresholds

bowls
2.3

mugs
1.6

cups
1.7

Fig.

W

N

Similarity to the prototype mug

1 2 3 4 5 6 7 8 9 10 11 12
Instances

(a) Similarities to the prototype mug

N @

Similarity to the prototype cup

1 2 3 4 5 6 7 8 9 10 11 12
Instances

(b) Similarities to the prototype cup

&)

N

Similarity to the prototype bowl

1 2 3 4 5 6 7 8 9 10 11 12
Instances

(c) Similarities to the prototype bow!

3. Similarities to each of the three prototypes ac-
cording to Hampton’s approach. All instances were
compared to the prototypes mug, cup, and bowl. The
horizontal line shows the threshold with which an
item would fall into the predefined category. It is
only depicted in order to compare the results with
the ground truth data. The x-axis shows all instances,
while the y-axis depicts the similarity to the respective
prototype.



DOI: 10.17185/duepublico/40717

did not reach that much similarity compared to all other
instances of the category mug. That might be, because this
instance does not have a handle, while all other instances of
this category do have one. Cup no.8 is quite similar to the
prototype mug as well. The reason may be that its upper
diameter is quite small compared to the other diameters
of the normal cups. So no.8 resembles the prototype mug
most compared to all other cups.

In the comparison of the items to the prototype cup three
mugs are, however, more similar than item no.5 — the
espresso cup. This is probably the case, because the latter
one is much smaller than all other cups and mugs, and thus
not a usual cup. Results of this comparison are, however,
clearer than those of the comparison to the prototype
mug. At least three of four predefined cups are much more
similar than all other items, whereat mugs are still more
similar to the prototype than bowls. This is what we had
expected, since mugs and cups resemble each other in
appearance more than bowls and the rest.

On the whole, similarities of all predefined mugs to the
prototype cup (Fig. 3(b)) are much higher than the sim-
ilarities of most of the predefined cups to the prototype
mug (Fig. 3(a)). This phenomenon is quite intuitive, since
in the German culture area people would classify mugs as
cups anyway, but they would not categorise all cups as
being mugs as well.

In the case of the comparison to the prototype bowl, the
situation is even clearer: all predefined bowls are very
similar to their prototype. Additionally, item no.3 — a
mug — obtains a high similarity score, since it is the only
non-bowl item that does not have a handle.

According to our success criteria from Section 2 on page 2,
Hampton’s model fails to classify all objects according
to our assumptions. But the misclassifications can be
explained and might be acceptable to a user. It thus
models some realistic confusions of objects, but there is
no parameter to explicitly adjust the level of flexibility.
Options for learning are discussed in Section 4.

3.2 Approach 2: Minda and Smith

For the approach described by Minda and Smith Figure 4
shows the similarities.

When items were compared to the prototype mug the
first two items obtain a similarity to the prototype mug
larger than 0.6, while the other two predefined mugs are
still above 0.2 (Fig. 4(a)). Three cups follow, while all
other items only got similarity scores below 0.1. In the
comparison to the prototype cup all predefined cups are
much more similar to the prototype than all other items
(Fig. 4(b)). In the case of the category bowl again the
predefined bowls are much more similar to the prototype
bowl than most of all other items; except item no.3 (Fig.

4(c))-

Discussion  In the case of the comparison of the items to
the prototype mug item no.1 and 2 get higher similarity
scores, since they are quite prototypical, while item no.3
does not have a handle and item no.4 is relatively big. In
the comparison to the prototype cup similarities diverge
more between predefined categories: predefined cups are

o
@

Similarity to the prototype mug

1 2 3 4 5 6 7 8 9 10 11 12
Instances

(a) Similarities to the prototype mug

Similarity to the prototype cup

i1 2 3 4 5 6 7 8 9 10 11 12
Instances

(b) Similarities to the prototype cup

0.8

0.6

0.4

Similarity to the prototype bowl

Instances

(c) Similarities to the prototype bowl

Fig. 4. Similarities to the three prototypes according to
the second approach. Here we did not define any
thresholds, since this approach does not contain any.
For further explanation see Fig. 3.

much more similar to their prototype than all other items.
When items are compared to the prototype bowl results
look similarly clear. Only item no.3 obtained still a quite
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high score like it was the case in Hampton’s approach. The
same reason as in his approach might apply here.

The steepness of the exponential function (Fig. 2) depends
on the sensitivity parameter o. While Minda and Smith
(2011) stated it could only take values between 1 and
+oo we could not find any mathematical reason, why «
must not take values smaller than one. We even find it
advantageous if it can take values between zero and one
as well, since it provides a greater margin with respect to
the steepness of the exponential function. While in some
cases a greater category endorsement might be favourable,
in other situations a more gradual decay is advantageous.
Here we set a to one, which still led to a steep decline
of the exponential function. If a more gradual decay is
favoured, the sensitivity parameter must be set lower. On
the other hand, setting the sensitivity parameter « of the
second approach to 0.5 does not change the fact that its
results represent ground truth data better than those of
Hampton’s approach. So we still obtain good results, even
if we prefer a more gradual decay in the second approach.
We are going to give an example in the outlook (Sec. 5)
where a more gradual decline is advantageous.

With respect to the success criteria from Section 2 on
page 2, the model of Minda and Smith perfectly models
our intended classification. In addition, the parameter o
can adjust the level of vagueness and ambiguity (Nosofsky,
1987). Options for learning are discussed in the next
section.

4. SUMMARY AND GENERAL DISCUSSION

In this section we will compare the two approaches on the
whole. We will first focus on similarities of both approaches
and then discuss their differences and drawbacks.

With our extension of the formulae by Hampton both
approaches now use — in albeit slightly different ways —
the distance between an item and the prototype: |x; —
Pc,|. Additionally they calculate the negative exponential
function of it (equation (16) for the second approach and
(7) for the first one). Thus, larger distances between a
prototype and an item result in smaller similarity scores.
So in the end both approaches need the distance between
an item and the prototype and calculate the negative
exponential function of it. Both add up these distances
over all attributes of a given instance at some point
in time providing the similarity between the item and
the prototype compared. Consequently, both approaches
perform analogue calculations.

Both approaches, however, do not say anything about
discrete values, e.g., the number of handles; and the
given formulae do not work with discrete values properly.
That is why we had to set the standard deviation to
a certain value, if it otherwise would have been zero.
So the approaches can now account for discrete values
as well. And both approaches ignore the problem of
how to handle different units or attributes that vary
substantially, since different kinds of objects sometimes
have the same features, but very different sizes. That is
why we normalised all values with the help of the standard
deviation s, so different units and considerably varying
sizes do not affect results.

One considerable advantage of both approaches is that
items can easily be classified to more than one category,
albeit in the approach by Minda and Smith this can be
done better if the sensitivity parameter is set smaller than
one. This is not disadvantageous, since one could classify
mugs as cups as well. Depending on the purpose items can
be used in very different ways: think of a French bol, a cup
for white coffee that looks like a cereal bowl. You can use
it to drink white coffee and you can easily use it for eating
cereals.

Finally we will focus on the differences between the two
approaches and the drawbacks of Hampton’s approach.

Although we managed to bring about results that are
quite similar to those of the second approach, Hampton’s
approach leaves some details open. Since he does not
provide any formula on how attribute similarities of the
attribute-values are calculated, we can only speculate
whether our formula represents a way that Hampton would
have agreed with. Yet, the resemblance of the results lets
us assume that our choice is adequate.

While Hampton does not account for different categories
at all, the approach described by Minda and Smith at least
gives a formula in the decision phase for the calculation of
the probability of a certain category response compared
to others. However, it does not provide more detailed
information in the formulae about considering different
categories neither. They only say that the process of
item-to-prototype comparison has to be repeated for all
prototypes and thus for all categories.

The first approach (Hampton, 1993), however, can be
extended by a formula analogous to the one used in the
second approach: Guaus i Termens (2009) proposed to use
Luce’s Choice Rule (Luce, 1959) in order to decide, which
is the most probable category of an item. This is not a big
issue, however, since we focus on calculating similarities
and not on deciding which category is the most probable
one. Yet, someone who is interested in category decision
should consider these aspects.

Although Hampton mentions weights for the different at-
tributes, he does not give any formula where these weights
are implemented. That is why we did not implement them
in our version of his approach. It remains to be seen
how these weights could influence results and whether
they would become similar to the ones evoked by the
second approach. This is at the moment, however, a huge
drawback of Hampton’s approach, since without weights
for different attributes, these cannot be adjusted to specific
situations.

In both approaches discrete attributes are especially chal-
lenging: in the categories cup and bow! all instances have
the same value in the attribute handle. This implied that
the standard deviation s, which calculated value is zero, is
set to 0.25 and led to quite clear-cut results at least in the
second approach. If decreasing the sensitivity parameter
« is for some reason out of the question, these clear-
cut results might become a problem. For instance, in our
category bowl all instances do not have a handle. If now
an item looking altogether like a bowl, but having one
or two handles (since it is a soup bowl), the distance
to the prototype of the category bowl would be quite
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large. It could be used as a bowl though, but a function
programmed in order to find the next similar instance
(outside the category bowl) would never consider this item
as suitable for the same purposes as all instances of the
category bowl. A possible solution may be a more intricate
scoring method that not only averages over all attributes,
but can ignore attributes or weigh some attributes higher
than others, depending on the situation.

In sum, according to the first two success criteria of
Section 2, the method of Minda and Smith is preferable
to that of Hampton. So far we have ignored the aspect
of learning and adaptation. Basically, both approaches
support adaptation by the definition of prototypes. The
classification of previously unseen objects by the distance
to any existing category is a basic constituent of prototype
theory. But an open question is whether a new object
should be considered as a member of an existing category
(i.e. is close enough to an existing prototype) or whether
it constitutes a new prototype.

5. OUTLOOK

Our original motivation was to build a knowledge repre-
sentation that provides classification results for realistic
household situations similar to those that humans would
find or at least accept. In this paper we have shown how
cognitive models can classify objects realistically, but with
some vagueness that can even be parametrised in the
model by Minda and Smith. But a classification result as
such is not enough for a robot to make decisions about
where to put objects in a kitchen. In this last section we
sketch some aspects of further work that we hope will lead
to a flexible decision-making process based on prototype-
based representations.

For the classification as such, we need to find out which
object attributes are relevant in specific situations. For
this purpose we are currently building a larger database
of everyday objects and are preparing a similarity scaling
study. We also hope to get insights as to when humans
generate a new prototype and how prototypes are grouped
themselves into categories on a more abstract level.

The next step will be a flexible decision-making algorithm
that uses the distance measures of a prototype model to
make decisions in household chores, for example where
to put a newly acquired mug if the cupboard of mugs is
already full. We will use and extend a heuristic problem
solving method (Kirsch, 2011) that takes into account
different aspects of the situation such as space in cup-
boards, the objects that are already in a cupboard and
their distances, and reachability of places by specific users.

It may well be possible that humans use different classifi-
cation schemes when asked about an object class and when
using or storing the object. This is why we plan to compare
our prototype model and the decision-making algorithm
to human decisions, both for abstract classification tasks
where an object category has to be named and real-world
tasks such as storing objects.
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Appendix A. THE RAW DATA

item  height dia- charge handles
[cm]  meter [em]  [ml]]
mugs
1 10 8 260 1
2 9.5 8 250 1
3 8 8 200 0
4 11 10.5 270 1
cups
5 5.8 6 95 1
6 7 11 200 1
7 6.7 10.8 190 1
8 6.5 9.5 195 1
bowls
9 7.9 14 630 0
10 8.5 13 400 0
11 6.5 13 300 0
12 7.2 11 350 0






