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Point of departure

Systems of explicit mathematics introduced by S. Feferman in 1975. Since
then they play an important role in foundational discussions:

@ Original aim: formal framework for constructive mathematics, in
particular Bishop-style constructive mathematics.

@ First vesions of explicit mathematics based on intuitionistic logic;
later formulated in a classical framework.

@ Close relationship to systems of second order arithmetic and set
theory; instrumental for reductive proof theory.

@ Logical foundations of functional and object oriented programming
languages.
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Feferman's three classsic papers:

@ A language and axioms for explicit mathematics, in: J. N. Crossley
(ed.), Algebra and Logic, Lecture Notes in Mathematics 450,
Springer, 1975;

@ Recursion theory and set theory: a marriage of convenience, in: J. E.
Fenstad, R. O. Gandy, G. E. Sacks (eds.), Generalized Recursion
Theory Il, Studies in Logic and the Foundations of Mathematics 94,
Elsevier, 1978;

@ Constructive theories of functions and classes, in: M. Boffa, D. van
Dalen,K. McAloon (eds.). Logic Colloquium '78, Studies in Logic and
the Foundations of Mathematics 97, Elsevier, 1979.
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Basic ontology (modern approach)

Formulated in a language IL with first and second order variables and con-
stants.

The general universe (first order objects)

e Unspecified general objects, (constructive) operations, bitstrings,
programs, . ...

@ These objects form a partial combinatory algebra.

Classes (second order objects)
o Classes are simply collections of objects.
@ These classes help to “structure” the universe.

o As we will see, more versatile than “traditional” type theories.

v
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The element relation € and the naming relation R
t €S :: object tis an element of class S

(Strong form of polymorphism: an object may belong to many classes.)

Equality of classes defined by

S=T =¥(xe$ < xeT).

Classes can be addressed via there names:

R(t,S) :: object tis a name of class S.

G. Jager (Bern University) Foundational Crisis, Explicit Mathematics July 2019 5/28



Part 3 — Turning to explicit mathematics

Explicit representation and equality
(E1) 3IxR(x,S),

(E2) R(r,S) AR(r, T) = S=T,
(E3) R(r,S)ANS=T — R(r, T).

Some abbreviations:
set = IAXR(t,X) A s e X),
s=t = IXR(s, X) A R(t, X)),
SCT = (WxeS)(xeT),
sCt o= 3X,Y(R(s, X) A R(t,Y) A X C V),
seR = IXR(s, X) (although R is in general not a class).
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Basic characteristics of this operational framework

@ Reconcile the intensional with the extensional point of view:
Intensionality on the level of objects (names) and extensionality on
the level of classes.

@ The general universe of discourse simply is a patial combinatory
algebra; typical examples: Kleene's first and second model, the graph
model, the (total) term model, ....

o Self-application of objects — we often call them operations — to each
other is possible; however, it does not necessarily produce a value.
The exact nature of these operations is purposely left open.

@ The universe is open-ended but has some simple closure properties.

@ No specific ideology.
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The language L

Basic vocabulary:

Variables for individuals: a,b,c,f, g, h,x,y,z,....
Variables for classes A,B,C,R, S, T, X,Y,Z,....
Many individual constants and a class constant N.
Function symbol o for (partial) term application.
Relation symbols |, €, =, and R.

Indiividual terms (r,s,t,...):

ind. variables | ind. constants | (s o t)

As usual:

st := (sot)

si(s2...8p) == s152...85p = (...(s51%2)...5n).
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Logic of partial terms (Beeson)

tl ::: term t has a value;

s~t = (sl Vitl = s=t).

Some characteristic properties
o xJ.
@ c| if cis a constant.

stl — (s A tl).

Alt] — t] for atomic A[t].

Alt] At} — 3xA[x].
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Moses Schonfinkel (1889 — 1942)

The inventor of Combinatory Logic:
Equivalent to predicate logic.

Haskell Brooks Curry (1900 — 1982)

Further development of combinatroy logic.
Mathematical analysis of substitution (and
conversion) of terms.

Curry's paradox.
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Partial combinatory algebra

Combinatory axioms, pairing and projections

(PCAL) k #s.

(PCA2) kab = a.

(PCA3) sab] A sabc ~ (ac)(bc).

(PCA4) po(a,b) =a A pi(a,b) = b, where (a,b) := pab.

Immediate consequences

A-abstraction, fixed point theorem. J

A “computational engine”, acting on our universe.
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A-Abstraction

For each term t and each variable x we can find a term — written (Ax.t) —
such that its variables are those of t minus x and

o (Ax.t)} and (Ax.t)x ~t.

o sl — (Ax.t)s ~ t[s/x].

Proof.

Induction on t.

(1) If t is the variable x, then (Ax.t) := skk.

(2) If tis a variable different from x or a constant, then (Ax.t) := kt.
(3) If tis the term tito, then (Ax.t) :=s(Ax.t1)(Ax.t2).

Ol

V.
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Fixed point theorem
There exists a closed term fix such that

fix(F)} A g="fix(f) — Vx(gx ~ fgx).
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A formula A is called
@ stratified iff the relationsymbol : does not occur in A;

@ elementary iff it is stratified and does quantify over classes.

Finite axiomatization of uniform elementary comprehension such that:

Theorem

For every elementary formula [u, V, W] with at most the indicated free
variables there exists a closed term t, such that:

Q@ ZecR — t,(y,2) e R,

@ R(Z,2) = Vx(x € ,(7,2) « ¢lx.¥,2]).

Hence, t,(7,Z) is a name of {x : ¢[x, ¥, Z])}.

Comprehension for non-stratified formulas may lead to inconsisteny.
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The natural numbers (N, 0, sy, pn, dn, )

Some abbreviations:

fe(NF=N) = (Vxi,...,xc € N)(F(x1,...x) € N)),

t' = syt.

Basic N-axioms

(NI) 0eN A aeN — & eN.
(N2) & #0 A pnO=0 A pn(2) = a.

(N3) xeNAyeNAx=y — dn(a, b, x,y) = a.
(N4d) xeNAyeNAx#y — dn(

a,b,x,y)=b.
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Number-valued primitive recursion
(N5) ae N A fe(N2—=N) — ry(af)e(N—N).

a,beN A fE(N2—>N)
(N6) } — g0=a A g(b) = (b, (gb)).
A g =rn(a, f)

The elementary theoy of classes EC is formulated in the classical logic of
partial individual terms with equality.

Elementary theory of classes
EC = (E) + (PCA) + (N) + (el.comp.) J
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What are sets of natural numbers?

Sety = {f:fe(N—=N)}
bea = ae€ Sety N beN A ab=0.

So — provisionally — we assume that sets of natural numbers are repre-
sented by total operations from N to N.
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Forms of induction on N

Set induction (S-Iy)

OcaA(VxeN)(xea— x'ea) = (Vx € N)(xe a). J

Class induction (C-ly)

0eSA(xeEN)(xeS = X €S) = (Vxe N)(xeS).

Formula induction (L-Iy)

[0] A (Vx € N)(elx] = @lx]) = (Vx € N)olx].
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Theorem (First observation)

@ EC+(S-Iy) = PRA.

@ EC+ (C-ly) = ACAy = PA.
Q@ EC+ (L-Iy) = ACA.

Remark

@ With set induction we can prove that sets have specific prioperties.
In general, this form of induction cannnot be used in order to show
that specific terms represent sets.

@ If only set induction is available, axioms (PR1) and (PR2) are needed
for having closure under primitive recursion.

@ If class induction is available, the usual fixed point theorem of a PCA
proves the existence of a closed term with the properties of ry.

G. Jager (Bern University) Foundational Crisis, Explicit Mathematics July 2019 19 /28



Part 3 — Turning to explicit mathematics

Lemma (Set-valued recursion)

There exists a closed term rec such that EC + (C-ly) proves:

acSety N beN A fe(Nx Sety — Sety) A g =rec(a,f) —

g € (N— Sety) A g(0)=a A g(b) = f(b,g(b)).

But thus far, Sety has very weak closure properties. For example, it is not
closed under arithmetical comprehension.

The unbounded minimum (or search) operator p
(1) fe(N—=N) < uf €N,
(12) fe(N—N) A (3BxeN)(f=0) - fuf)=0.
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Remark

Least standard model of the applicative part of EC(x) by means of ﬂ%
recursion theory: The objects are the natural numbers and

(xoy) interpreted as {x}E(y),
where E is the well-known type-2 equality functional

50 = {7 coroie,

Theorem

@ EC(p)+ (S-In) = PA.

@ EC(u)+ (C-ly) = N -CA_., = Tl-AC.
@ EC()+ (L) = Mo-CA-..,.
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Remark

e EC(u) + (S-In) may be considered as a reformulation of Feferman's
system W and is proof-theoretically equivalent to his K(<).

o EC(u) + (C-ly) is proof-theoretically equivalent to K().
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Adding join (J)
If a names a class and f maps all elements of this class to classes,

(Vx € a)(fx € R),

we write b= X(a,f) for the assertion

Vx(x € b < x = (pox,p1x) A pox € a A pix € f(pox)),

stating that b names the disjoint union of the classes named fy for y
ranging over a. The join axiom (J) claims the existence of such disjoint
unions.

Join (J)
aeR A (Vx€a)(xeR) — j(af)eR Aja,f)=2(a,fr).
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Theorem

Q@ ECH (J)+ (S-In) = PRA.

@ EC+ (J)+ (C-ly) = ACAq = PA.

Q@ EC+ (J) + (L-y) = N9-CA.,, = T1-AC

Theorem

Q@ EC(1) + (J) + (S-In) = ACAg = PA.

@ EC(p) + (J) + (C-ly) = NM-CA_., = ZI-AC.
© EC(p) + (J) + (L-In) = M-CA<p. 0.
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Some ontological observations

Two forms of power classes

e Strong power class (SP). For every class X there exists a class Y
such that Y consists exactly of the names of all subclasses of X,

VX3AYVz(z € Y & IZ(R(z,Z) A Z C X)).

o Weak power class (WP). It only claims that for each class X there
exists a class Y such that each element of Y names a subclass of X
and for any subclass of X at least one of its names belongs to Y,

VX3Y((Vz € Y)(3EZ € X)(R(z, 2)) A (VZ € X)(3z € Y)R(z, Z))

v

Remark

Even the uniform version of (WP) is consistent with EC.

v
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Theorem

@ The names of a class never form a class, i.e.
EC F VX-3Y(Y ={z: R(z,X)}).

@ Hence, (SP) is inconsistent with EC.

© It is consistent with EC (though not provable there) to assume that
there exists the class of all names.

© The theory EC + (J) proves that not all objects are names.

@ The theory EC + (J) proves the negation of (WP).
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Operational extensionality (Op-Ext)

Vi, g(Vx(fx ~gx) — f=g).

Full definition by cases (Dy)

(a=b — dy(u,v,a,b)=u) AN (a# b — dy(u,v,a,b) =v).

Remark
If we set (Tot) := Vx, y(xyl), then we have:

@ EC + (Op-Ext) + (Dy) is inconsistent.

@ EC+ (Op-Ext) + (Tot) is consistent.

© EC+ (Op-Ext) + Vx(x € N) is inconsistent.
Q EC + (Tot) + Vx(x € N) is inconsistent.
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Proof of (1). We set
s = fix(A\yx.dy(1,0,y,(Az.0)))
and thus have

sx ~ (Ayx.dy(1,0,y,(Az.0)))sx ~ dy(1,0,s,(Az.0)).

Hence, if s = (Az.0), then sx = 1 for all x, which is impossible. There-
fore, s # (Az.0). Hence, sx = 0 for all x. By (Op-Ext) we thus have
s = (Az.0). But this is a contradiction.
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