
Advanced Financial Econometrics

Modules I - III
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Topics in financial econometrics include

- Predictability of asset returns
Campbell et al. (1997) Ch. 2

- Estimation and testing of asset pricing 
models Cochrane (2001) 
Campbell et al. 1997 Ch. 5 and 6

- Empirical Market Microstructure
Price formation processes in real markets
Campbell et al.  (1997) Ch. 3
Bauwens and Giot (2001)
Gourieroux and Jasiak (2001)

- Modelling dynamics of financial market 
processes using statistical models
Tsay (2002), Brooks (2002)

- Estimation of Value at Risk
Tsay (2002)

- Event Studies
Measure effect of an economic event on 
value of firm
Campbell et al.  (1997) Ch. 4- Estimation of Continuous Time Finance

Models
Tsay (2002), Campbell et al. (1997)  Ch. 11
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What is financial econometrics?
Financial Economics

Deals with: valuation of assets, portfolio choice

Time dimension
(payoff in future)

Risk (payoff uncertain)

Economic agents: time preferences & risk aversion

proposes:

- Economic models explaining behaviour of 
asset prices/returns

- models contain unknown parameters

- models imply time series and cross sectional
properties of asset prices/returns

Data

Prices/returns of financial assets
(stocks, bonds, options)

Time series Cross section

other micro- and macro-economic data

statistical features of data (stylized facts)

Financial Econometrics

- Estimate unknown model parameters

- Test hypotheses about parameters

- Develop statistical models that account
for stylized facts (more or less close link to
theory)
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Topics in financial econometrics include

- Predictability of asset returns
Campbell et al. (1997) Ch. 2

- Estimation and testing of asset pricing 
models Cochrane (2001) 
Campbell et al. 1997 Ch. 5 and 6

- Empirical Market Microstructure
Price formation processes in real markets
Campbell et al.  (1997) Ch. 3
Bauwens and Giot (2001)
Gourieroux and Jasiak (2001)

- Modelling dynamics of financial market 
processes using statistical models
Tsay (2002), Brooks (2002)

- Estimation of Value at Risk
Tsay (2002) - Event Studies

Measure effect of an economic event on 
value of firm
Campbell et al.  (1997) Ch. 4

- Estimation of Continuous Time Finance
Models
Tsay (2002), Campbell et al. (1997)  Ch. 11
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Textbooks on Financial Econometrics

• Gourieroux and Jasiak (2001) Financial Econometrics, Princeton University Press
Covers rather specialized topics

Tsay (2002) Analysis of Financial Time Series, Wiley  
Time series oriented, some specialities like VaR and continuous time finance and transaction data

Brooks (2002) Introductory Econometrics for finance, Cambridge University  Press 
Useful beginners econometrics book with many financial applications (of Brooks)

Bauwens and Giot (2001) Econometric Modelling of Stock Market Intraday Activity, Kluwer
Focusses on econometrics of high frequency data in finance. Specialized topics

Cochrane (2001) Asset Pricing, Princeton (revised edition 2005)
One of the best economics/finance textbooks and synopsis of the recent years. Theory and Econometrics

Campbell, Lo, MacKinlay (1997) The Econometrics of Financial Markets,  Princeton University Press 
The classic. Very broad topics, comprehensive chapter on event study methodology

Boehmer, Broussard, Kallunki (2002) Using SAS in Financial Research, SAS Institute.
Hands on financial econometrics, uses SAS with applications

Hasbrouck (2004) forthcoming textbook on Econometrics of Market Microstructure. Download preview: 
http://pages.stern.nyu.edu/~jhasbrou/Empirical%20Market%20Microstructure/Microst
ructure%20Notes%2002%20Full.pdf

Will close a gap in textbooks, reviews comprehensively accomplishments of past two decades
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I. Empirical Asset Pricing

Readings:
Cochrane (2001),  Ch. 1 (without 1.5), 3 (3.1 and 3.2), 4 (4.1 and 4.2), 7, 10, 11

Hamilton (1994), Ch. 14
Hayashi (2000), Ch. 3

Lettau and Ludvigson (2001)
Garcia, Renault and Semenov (2002)
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Empirical asset pricing - Introduction (1)
Asset pricing (Valuation of financial assets)

risk of 
payoff

delay of 
payoff

account for

⇒ risk correction

9% average return (real) p.a.50 years US stocks: 
1% real interest rate p.a. (treasury bills)

8% premium earned for holding risk
What is the risk that is priced?

Asset pricing

normative positive
how does the world work?
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how should the world work?
are the prices ”wrong”?
- trading opportunities?
- cost of capital
- non traded assets: ”fair” price



Empirical asset pricing - Introduction (2)

E
³
Ri
´
= Rf + βi

³
E(Rm)−Rf| {z }´

βi =
cov
¡
Ri,Rm

¢
var(Rm)

Basic : Prices equal discounted expected payoff

What probability measure?

Absolute Asset Pricing

exposure to ”fundamental” macroeconomic risk

Asset priced given other asset prices (e.g. option pricing)

Relative Asset Pricing

e.g. CAPM:

Market price of risk (factor)risk premium not explained
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Empirical asset pricing - Introduction (3)

use

Moment condition:

WLLN

Generalized Method of Moments (GMM) to estimate parameters

the model

Basic pricing equation pt = Et(mt+1xt+1)

asset price stochastic payoff
at t discount (r.v.)

factor
(r.v.)

mt+1 = f(data , parameters| {z })

Et(mt+1xt+1)− pt = 0

1
n

P → E()
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Empirical asset pricing - Introduction (4)
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From an utility maximising investor`s first order conditions we
obtain the basic asset pricing formula (1)

dividend

price of asset in t+1

subjective discount factorconsumption

consumption level without asset purchase (other income)

quantity of asset bought/sold

period utility function

expected utility

Basic objective: find pt, the present value of stream of uncertain payoff xt+1

xt+1 = pt+1 + dt+1

Utility function

U (ct, ct+1) = u (ct) + βEt [u (ct+1)]

ct = et− ptξ

ct+1 = et+1 + xt+1ξ

Random variables: pt+1, dt+1, xt+1, et+1, ct+1, u (ct+1) Et [·] , E [· | Ft]
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From an utility maximising investor`s first order conditions we
obtain the basic asset pricing formula (2) 

utility loss if investor buys
another unit of the asset

discounted expected utility increase
from extra payoff

Investor continues to buy
or sell the asset until marginal
loss equals marginal gain.

endogenous variablesNo complete solution:

max
(ξ)

[U (ct, ct+1)] s.t.

ct = et − ptξ; ct+1 = et+1 + xt+1ξ

max
(ξ)

{u (et − ptξ) + βEt [u (et+1 + xt+1ξ)]}

−pt · u0 (ct) + β · Et
£
u0 (ct+1) · xt+1

¤
= 0

ptu
0 (ct) = Et

£
βu0 (ct+1)xt+1

¤
pt = Et

∙
β
u0 (ct+1)
u0 (ct)

xt+1

¸
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Turning off uncertainty we are in the standard two-goods case (1)

opportunity cost to transfer
consumption from t to t+1 

marginal valuation
of consumption
in t+1 in terms of
consumption in t

max [u (ct) + βu (ct+1)] s.t. ct = et− pt · ξ, ct+1 = et+1 + xt+1 · ξ

∂U (ct, ct+1)

∂ξ
= −pt ·

∂u (ct)

∂ct
+ β · xt+1 ·

∂u (ct+1)

∂ct+1
= 0

pt · u0 (ct) = xt+1 · βu0 (ct+1)

pt = xt+1 ·
βu0 (ct+1)
u0 (ct)

dct
dct+1

=
β · u0 (ct+1)

u0 (ct)
=

pt
xt+1

ptu
0 (ct) = Et

£
βu0 (ct+1)xt+1

¤
pt = Et

∙
β
u0 (ct+1)
u0 (ct)

xt+1

¸
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u (ct) =
1

1− γ
c1−γt lim

γ→1

µ
1

1− γ
c1−γt

¶
= ln (ct)

u0 (ct) = c
−γ
t

dct
dct+1

=
βu0 (ct+1)
u0 (ct)

= β

µ
ct+1
ct

¶−γ

x 121086420
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We often use a convenient power utility function (1)

marginal
rate of
substitution

consumption (ct)

utility u(ct)

0.80.3 0.5

increasing concavity
of utility function

parameter γ:



Prices, payoffs, excess returns

Price pt Payoff xt+1
stock pt pt+1 + dt+1
return 1 Rt+1

excess return 0 Re
t+1 = Ra

t+1−Rb
t+1

one $ one period discount bond pt 1
risk-free rate 1 Rf

Payoff xt+1 divided by price pt ⇒ gross return Rt+1 =
xt+1
pt

Return: payoff with price one

1 = Et (mt+1 ·Rt+1)

Zero-cost portfolio:
Short selling one stock, investing proceeds in another stock
⇒excess return Re

Example: Borrow 1$ at Rf , invest it in risky asset with return R.
Pay no money out of the pocket today → get payoff Re = R−Rf .

Zero price does not imply zero payoff.
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The covariance of the payoff with the discount factor rather than its
variance determines the risk-adjustment

Marginal utility declines
as consumption rises.

Price is lowered if payoff
covaries positively with
consumption. (makes consumption
stream more volatile)

Price is increased if payoff
covaries negatively with
consumption. (smoothens
consumption) Insurance !

Investor does not care about volatility of an individual asset, if he can keep a steady consumption.

price in risk-neutral
world

risk adjustment

cov (mt+1, xt+1) = E (mt+1 · xt+1) − E (mt+1)E (xt+1)
pt = E (mt+1 · xt+1)
= E (mt+1)E (xt+1) + cov (mt+1, xt+1)

Rf =
1

E (mt+1)

pt =
E (xt+1)

Rf
+ cov (mt+1, xt+1)

pt =
E (xt+1)

Rf
+ cov

µ
β
u0 (ct+1)
u0 (ct)

, xt+1

¶
pt =

E (xt+1)
Rf

+ β
cov

¡
u0 (ct+1) , xt+1

¢
u0 (ct)
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All assets have an expected return equal to the risk-free rate, plus 
risk adjustment

excess return

Investors demand higher excess returns for assets that covary positively with consumption.
Investors may accept expected returns below the risk-free rate. Insurance !

1 = E
³
mt+1 · Ri

t+1

´
1 = E (mt+1) E

³
Ri
t+1

´
+ cov

³
mt+1, R

i
t+1

´
Rf =

1

E (mt+1)
; 1 − 1

Rf
E
³
Ri
t+1

´
= cov

³
mt+1, R

i
t+1

E
³
Ri
t+1

´
− Rf = −Rf · cov

³
mt+1, R

i
t+1

´
E
³
Ri
t+1

´
− Rf = − 1

E
³
β
u0(ct+1)
u0(ct)

´ · cov µβ u0 (ct+1)
u0 (ct)

, Ri
t+1

¶

E
³
Ri
t+1

´
− Rf = −

cov
¡
u0 (ct+1) , Ri

t+1

¢
E (u0 (ct+1))
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The basic pricing equation has an expected return-beta
representation

price of risk for all assetsasset specific quantity of risk

Beta-pricing model:

The more risk averse the investors
or the riskier the environment,
the larger the expected return
premium for risky (high-beta)
assets.

E
³
Ri
t+1

´
−Rf = −Rf · cov

³
Ri
t+1,mt+1

´
E
³
Ri
t+1

´
−Rf = −

cov
¡
Ri
t+1,mt+1

¢
V ar (mt+1)

V ar (mt+1)

E (mt+1)

E
³
Ri
t+1

´
= Rf −

Ã
cov

¡
Ri
t+1,mt+1

¢
V ar (mt+1)

!
·
µ
V ar (mt+1)

E (mt+1)

¶

E
³
Ri
´
= Rf + βRi,m · λm

With m = β
³
ct+1
ct

´−γ
and lognormal consumption growth

ct+1
ct

E
³
Ri
´
= Rf + βRi,∆c · λ∆c

λ∆c ≈ γ · V ar (∆ ln c)
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Marginal utility weighted prices follow martingales (1)

Basic first order condition:
xxt+1t+1

Market efficiency ⇔ Prices follow martingales (random walks)? NO!

Required:

Risk neutral investors u’( )=const. 
or no variation in consumption

⇐ OK short time horizon

no dividends

Then:

if = Random Walk

⇒ Returns are not predictable

ptu
0(ct) = Et

³
β
³
u0(ct+1)

´
(pt+1 + dt)

´

β = 1

pt = E(pt+1)
pt+1 = pt+ εt+1

σ2(εt+1) = σ2

E
³pt+1

pt

´
= 1



Marginal utility weighted prices follow martingales (2)

With risk aversion (but no dividends) and β=1

Scale prices by marginal utility, correct for dividends and apply risk neutral 
valuation formulas

Predictability in the short horizon?

consumption

risk aversion
does not change day by day

p̃t = E(p̃t+1)

p̃t = p̃t · u0(ct)

⇒ Random Walks successful ⇒ Predictability of asset returns (day by day)?

Technical analysis, media reports...
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Some popular linear factor models

Factor pricing models

CAPM :

return on wealth portfolio

Free parameters

Compatible with utility maximisation ?

ICAPM :

parameter factors
vector

factors (macro, term spread, price-
earnings ratio help forecast
conditional distribution of future
asset returns)

similar,     but factors determined by principal
component analysis of payoff covariance
matrix

Practice : just test               and don’t worry about derivations

APT :

mt+1 = a+ bRw
t+1

mt+1 = a+ b0ft+1

m= b0f
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pt = Et
³
mt+1xt+1

´
= E

³
mt+1xt+1 | It

´ {mt} and
{xt} non i.i.d.⇒
Et (·) 6= E (·)

pt = Et
³
mt+1xt+1

´
E (pt) = E

³
Et
³
mt+1xt+1

´´
l.i.e.

= E
³
mt+1xt+1

´

Information set (partially) not observed,
conditional density not known, conditional expectation cannot be computed

Conditioning down to coarser
information set

The basic pricing equation implies a set of CONDTIONAL moment
restrictions
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Models contain free parameters

pt = Et

⎛⎝β Ãct+1
ct

!−γ
xt+1

⎞⎠

• Estimation from data

• Testing hypotheses about parameters

• How good is the model?

Estimation and evaluation of asset pricing models (Basics)
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pt = Et(mt+1 xt+1) or 1 = Et(mt+1Rt+1)

↑ f(data, parameters)

e.g. CBM with u(c) = 1
1−γ c

1−γ ⇒ mt+1 = β(
ct+1
ct
)−γ

ct+1
ct

: data (random variables)

b = (β, γ)0 :free parameters

Assume model correct: ”Best” choice for β, γ?

Best ”fit”, smallest (average) pricing errors

Estimation and evaluation of asset pricing models (CBM)
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Estimates b̂ from data, distribution of b̂?

Average pricing errors:

sample mean (observed price - predicted price)| {z }= α

should be close to zero

pt = Et
³
mt+1(b) · xt+1

´
= E

³
mt+1(b) · xt+1|It

´
E(pt) = E[Et

³
mt+1(b) · xt+1

´
] = E[mt+1(b) · xt+1]

Unconditional expectation: E[mt+1(b)xt+1 − pt] = 0

Equivalently using returns:

1 = Et
³
mt+1(b)Rt+1

´
⇒ 0 = E

³
mt+1(b)Rt+1 − 1

´

Estimation and evaluation of asset pricing models. The basic idea.
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WLLN :
1

N

NX
i=1

yi
−→p E(Y )

sample average consistent estimate for population moment

1

T

TX
t=1

pt −
1

T

TX
i=1

mt+1(b)xt+1| {z } ≈ 0
α

GMM basic idea(first step):

choose b̂ to minimize α2 (squared average pricing error) among

set of test assets.

Generalized Methods of Moments estimation is based on the
WLLN
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E
³
mt+1 (β, γ)x

1
t+1 − p1t

´
= 0

E
³
mt+1 (β, γ)x

2
t+1 − p2t

´
= 0

E
³
mt+1 (β, γ)R

1
t+1 − 1

´
= 0

E
³
mt+1 (β, γ)R

2
t+1 − 1

´
= 0

1

T

TX
t=1

mt+1 (β, γ)R
1
t+1− 1 = 0

1

T

TX
t=1

mt+1 (β, γ)R
2
t+1− 1 = 0

solve equations for β, γ ⇒ bβ, bγ ⇒

The two asset, two parameter case



Problem: WLLN works for stationary data:

(Weakly) stationary process: {Yt}∞t=−∞
{. . . ,y0, y1, . . . , y5, . . .}
E(Yt) = u

var(Yt) = σ2

cov(Yt, Yt−j) = γj

Solution: ⇒ We use:

1 = E
³
mt+1(b) · Rt+1

´
instead of E(pt) = E

³
mt+1(b) · xt+1

´
0 = E

³
mt+1(b) · Rt+1 − 1

´

To apply GMM data have to be generated by stationary (and 
ergodic) processes (not necessarily i.i.d.)
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Define GMM residual: object whose mean should be zero

ut+1(b) = mt+1(b)Rt+1 − 1

E(ut+1(b)) = 0

ET [ut(b)] =
1

T

TX
t=1

ut(b) ≈ 0

Notational convenience (Hansen’s notation, sometimes causing

confusion)

ET(·) =
1

T

TX
t=1

(·)

We define the GMM residual or “pricing error“
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For GMM parameter estimation: Select N test assets

Rt
1, Rt

2, · · · , Rt
N t= 1, · · · , T

⎡⎢⎢⎢⎢⎢⎢⎣
ET [u1t (b)]
ET [u2t (b)]

...

...

ET [uNt (b)]

⎤⎥⎥⎥⎥⎥⎥⎦ = gT(b) N × 1 vector

If assets = parameters b can be chosen such that average

pricing errors are zero usually assets > parameters.

We have more assets than unknown model parameters
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b̂ = argmin
{b}

g0T(b) · IN · gT(b) first step GMM estimate

= argmin
{b}

h
ET [u1t+1(b)]

i2
+
h
ET [u2t+1(b)]

i2
+ . . .+

h
ET [uNt+1(b)]

i2
⇒ minimize sum of squared average (pricing)errors

equal weight for all test assets 1, . . . ,N

Alternatively other weight matrix

b̂ = argmin
{b}

g0T(b) W gT(b) e. g.W =

⎡⎢⎢⎢⎣
1 0
0 2

100 .. .

0

⎤⎥⎥⎥⎦

The GMM objective function
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GMM estimators have desirable properties

GMM estimators consistent:

Bias and variance of estimator go to zero asymptotically b̂ −→p b

GMM estimators asymptotically normal. Required for inference:

var(b̂) =

⎛⎜⎜⎜⎝
var(̂b1) · · ·

cov(̂b1, b̂2) var(b̂2)
... ...

cov(b̂1, b̂k) · · · var(b̂k)

⎞⎟⎟⎟⎠

To conduct t−test: b̂k
σ̂k

a∼ N(0,1)
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Optimal weighting matrix

(and GMM parameter standard errors): use consistent esti-

mate Ŝ of S in minimization:

b̂ = argmin
{b}

gT(b)
0 Ŝ−1 gT(b)

write ut(b) =

⎛⎜⎝u1t (b)
...

uNt (b)

⎞⎟⎠ ³
uit(b) = mt+1(b)x

i
t+1 − pit

´
i=assets

Recall: E(uit) = 0 ⇒ E(ut(b)) =

⎛⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎠

There exists an optimal weighting matrix
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S = E
h
ut(b) · u0t(b)

i
=

⎡⎢⎢⎢⎢⎢⎣
E
³
[u1t (b)]

2
´
· · ·
. . .

E
h
u1t (b)u

2
t (b)

i
... E

³
[uNt (b)]

2
´

⎤⎥⎥⎥⎥⎥⎦
S= variance covariance matrix of pricing errors

=

⎡⎢⎢⎢⎢⎢⎣
var

³
u1t (b)

´
· · ·

cov
³
u1t (b)u

2
t (b)

´
var

³
u2t (b)

´
. . .

...

var
³
uNt (b)

´

⎤⎥⎥⎥⎥⎥⎦

Estimate Ŝ: Replace E by 1
N

P
using b̂ obtained with weighting

matrix IN ⇒ Ŝ.

The optimal weighing matrix takes into account variances and 
covariances of pricing errors across assets
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1) b̂1 = argmin
{b}

gT(b)
0 IN gT(b)⇒

2) Ŝ ⇒

3) b̂2 = argmin
{b}

gT(b)
0Ŝ−1 gT(b)

...repeat... . . .

Steps of GMM estimation
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Another look at the optimal weighting matrix

S = E
h
ut(b) · u0t(b)

i
resp.

∞X
j=−∞

E
h
ut(b) · u0t−j(b)

i

Efficiency: Smallest asymptotic variance
among GMM esimators

Efficient estimator: employ S-1 instead of unity matrix

variance-covariance
matrix of moments
conditions!

when no serial correlation
in moment conditions with serial correlation

in moment conditions

x 420-2-4

0.4

0.3

0.2

0.1

0

0θ θ̂

( )θf

1̂θ

2̂θ

x 420-2-4

0.4

0.3

0.2

0.1

0
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Intuition behind GMM weighting matrix

Example

N = 2, cov(u1t (b), u
2
t (b)) = 0 [zero covariance of pricing errors]

S =

"
var[u1t (b)] 0

0 var[u2t (b)]

#

S−1 =

⎡⎢⎣ 1
var[u1t (b)]

0

0 1
var[u2t (b)]

⎤⎥⎦ = "
W1 0
0 W2

#

Example S =

Ã
10 0
0 0.1

!

Some intuition behind optimal weighting matrix (1)
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Some intuition behind optimal weighting matrix (2)

GMM objective gT(b)
0S−1 gT(b) becomes

argmin
{b}

ET
h
u1t (b)

i2 ·W1 + ET
h
u2(b)

i2 ·W2

Example

W1 : 0.1⇒ var
³
u1t (b)

´
= 10

W2 : 10⇒ var
³
u2t (b)

´
= 0.1

⇒ Asset (1) gets less weight in minimization

”Model imprecise” for asset 1, more precise for asset 2.
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Another example: Correlations between asset returns: Two ”sim-

ilar” assets (high correlation of pricing errors) are downweighted.

Count more like one asset.

Example S =

⎛⎜⎝ 1 0 0
0 1 0.999
0 0.999 1

⎞⎟⎠ cov(u2t , u
3
t ) = 0.999

corr(u2t , u
3
t ) ≈ 1 = 0.999√

1
√
1

argmin
{b}

"
ET(u1t (b)), ET(u2t (b)),ET(u3t (b))

#
×

⎡⎢⎣ 1 0 0
0 1 0.99
0 0.99 1

⎤⎥⎦
−1

×

⎡⎢⎣ ET(u1t (b))ET(u2t (b))
ET(u3t (b))

⎤⎥⎦

Some more intuition behind optimal weighting matrix: Correlations
across pricing errors (1)
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S−1 =

⎡⎢⎣ 1 0 0
0 500.25 −499.75
0 −499.75 500.25

⎤⎥⎦
argmin
{b}

gT(b)
0 S−1gT(b) =

"
ET

³
u1t (b)

´
,ET

³
u2t (b)

´
· 500.25 − ET

³
u3t (b)

´
· 499.75,

ET
³
u3t (b)

´
· 500.75− ET

³
u2t (b)

´
· 499.75

#
×

⎡⎢⎣ ET(u1t (b))ET(u2t (b))
ET(u3t (b))

⎤⎥⎦

Some more intuition behind optimal weighting matrix: Correlations
across pricing errors (2)
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argmin
{b}

gT(b)
0 S−1gT(b) =

ET
³
u1t (b)

´2
+ ET

³
u2t (b)

´2 · 500.25 + ET
³
u3t (b)

´2 · 500.25 −
2 · ET

³
u2t (b)

´
ET

³
u3t (b)

´
· 499.75

≈ ET
³
u1t (b)

´2
+ 0.5 ET

³
u2t (b)

´2
+ 0.5ET

³
u3t (b)

´2
since

ET

³
u2t (b)

´
≈ ET

³
u3t (b)

´

Some more intuition behind optimal weighting matrix: Correlations
of pricing errors (3)
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To test hypotheses about our models we need the distribution of 
the GMM estimates

Standard errors of GMM estimates

We want:

var(̂b) =

⎛⎜⎜⎜⎜⎜⎜⎝
var(̂b1) cov(̂b1, b̂2) · · · cov(b̂1, b̂k)
cov(̂b1, b̂2) var(̂b2)

.. .

cov(̂b1, b̂k) · · · var(̂bk)

⎞⎟⎟⎟⎟⎟⎟⎠ (K ×K)

b = (b0, b1, · · · , bk)

t =
b̂k−0√
var(̂bk)

a∼ N(0, 1) under H0 : bk = 0
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Application of Delta-Method

C.L.T. + delta method gives:

√
T · (b̂− b)

av N

Ã
0, (d0S−1d)−1

!

dvar(̂b)| {z }
asymptotic VC matrix

= 1
T (d

0S−1d)−1 d = ∂gT(b)
∂b

¯̄̄̄
¯b̂

(Note: asymptotic variances T →∞ )

The central limit theorem plus an application of the delta method
gives the asymptotic variance covariance matrix of estimated
parameters
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Some details of the asymptotic variance covariance matrix (1)

Some more details:

a) In application: replace S−1 by consistent estimate Ŝ−1

b) Recall

gT(b) =

⎡⎢⎢⎣
1
T

P
u1t (b)
...

1
T

P
uNt (b)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1
T

P
mt(b)R

1
t − 1

...
1
T

P
mt(b)R

N
t − 1

⎤⎥⎥⎦

∂gT (b)
∂b =

⎡⎢⎢⎢⎢⎣
1
T

P ∂u1t (b)
∂b1

1
T

P ∂u1t (b)
∂b2

· · · 1T
P ∂u1t (b)

∂bk...

1
T

P ∂uNt (b)
∂b1

1
T

P ∂uNt (b)
∂b2

· · · 1T
P ∂uNt (b)

∂bk

⎤⎥⎥⎥⎥⎦
[N × k]
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Some details of the asymptotic variance covariance matrix (2)

∂gT (b)
∂b =

⎡⎢⎢⎢⎢⎣
1
T

PT
t=1

∂mt(b)
∂b1

Rt,
···
∂b2

· · ·
↓ −→

Parameters
N

⎤⎥⎥⎥⎥⎦
For power utility

mt+1(b) = β
³ct+1

ct

´−γ
b = β, γ

Linear factor models mt+1 = b0ft+1 b 6= 0 ?

Risk factor?

∂mt+1(b)
∂b1

= ?
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var(̂b) used for testing hypotheses:

H0 : bk = 0

t-statistic: b̂k−0√
var(̂bk)

a∼ N(0,1) =̂ Standard t-test.

joint significance:

H0 : (bj1 = bj2 = = bjN| {z }= 0) or bJ
J×1

= 0

some subset of b

b̂0j

∙
var(b̂)J| {z }

¸−1
b̂j

a∼ χ2(J)

#
=̂ Standard F -test

appropriate subset of var(b̂)

We employ the estimated variance covariance matrix to test 
hypotheses about the model
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{Rt,∆ct, . . .} ⇒ bb ⇒

ut(b) ⇒ ET (ut(b)) = 1
N

P · · ·

T · JT = T ·
h
gT(b̂)

0 Ŝ−1 gT (̂b)
i
a∼ χ2

TJT = 7.9, χ295 (1) = 2.73⇒

One can test the validity of the model (the moment conditions) 
using the J-test

data is a random sample is a random variable 

is a random variable
is a random
variable

pricing errors too large to be explained by random sampling? 

⇔ Is the model in correct?

objective function at minimum

no. moment conditions
- no. of parameters.

is a random variable, too

⇒ Reject or accept model (resp. moment conditions) at given specificance level

Example: no. of moment conditions: 10, no. parameters: 2, 

is a random
vector

47



Some important remarks

Inference is different if other weighting matrix than optimal weighting matrix is used

- different formula for parameter standard errors

- different formula for J-statistic

When comparing alternative models (e.g. parameter restrictions) use the same
weighting matrix (weighting matrix depends on unknown parameters)

48



49

Performance comparison (1) 

Problems using J-statistic

Popular measure

Compare observed average return with E(R) predicted by model

From 1 = E(mR)

1 = E(m)E(R) + cov(m,R)

E(R) = 1
E(m) −

cov(m,R)
E(m)

Use as predictor

dE(R) = 1

1
T

TP
t=1

mt

−
1
T

TP
t=1

mtRt−1T
TP

t=1
mt

1
T

TP
t=1

Rt

1
T

TP
t=1

mt



Performance comparison (2) 
Plot dE(R) vs. 1

T

TP
t=1

Rt = R̄

Similarly using excess returns as test assets

From 0 = E(mRe)

0 = E(m)E(Re) + cov(m,Re)

E(Re) = −cov(m,Re)
E(m)

Again: replace E(·) by 1
T

P
(·) to obtain \E(Re)

Plot \E(Re) against R̄e

RMSE =

vuut NP
j=1

∙
\E(Rj)− R̄j

¸2
or =

vuut NP
j=1

∙
\E(Rej)− R̄ej

¸2
used to

rank and compare alternative models
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Performance comparison. Example: Consumption-Based Model
estimated on 25 Fama-French portfolios
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Performance comparison. Example: CAPM estimated on 25 Fama-
French portfolios
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Performance comparison. Example: Fama-French two factor
model estimated on 25 Fama-French portfolios
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GMM estimation using the Gauss library: Ingredients and recipe

1. Supply data

2. Provide GMM/optimization
settings (number of 
iterations, weighting matrix)

3. Supply initial parameter
values

4. Call GMM minimization
procedure

iteratively calls procedure to 
compute GMM residuals ut(b)

5. Check parameter estimates
and test statistics

Procedure returns
ut(b):GMM residuals

evaluated at b 

„Global“ control
variables like

model version

specification
details

Data: 

-Returns

-Factors

-Economic
Variables

Parameter values

b

Procedure to compute GMM 
residuals ut(b)

ut(b) : object with unconditional
expectation equal to zero



For consumption based model with power utility

ET(ut(b)) = 1
T

PT
t=1 β

³
ct+1
ct

´γ · Ri
t − 1 = 0

Exercise: 10 test assets (NYSR decile portfolios)

Perform GMM estimation of γ and β using EXCEL solver.

Input: Time series of returns and consumption growth.

⎡⎢⎢⎣R
1
1 · · · R101 Rf

1 dc1
... ... ...

R1T R101 R
f
1 dcT

⎤⎥⎥⎦

The canoncical example: Estimate the CBM by GMM
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Newer models consumption based model and habit formation
Garcia et al. (2003)

Period utility function

u(ct/Ht,Ht) =

³
ct
Ht

´1−γ
H1−ψ
t − 1

1− γ

Marginal utility

u0(ct) = c−γt Hγ−ψ
t

Stochastic discount factor

mt+1 = δ

Ã
ct+1
ct

!−γ ÃHt+1

Ht

!γ−ψ

Et

⎡⎣δÃct+1
ct

!−γ ÃHt+1

Ht

!γ−ψ
Ri
t+1

⎤⎦ = 1

habit level (external)



Modelling the habit level (1)

Ht+1 = E(ct+1|ct, ct−1, . . .)

∆Ht+1 = λ(ct−Ht) 0 ≤ λ ≤ 1

Ht+1 = a+λct+(1− λ)Ht

Ht+1 =
a

λ
+ λ

∞X
i=0

(1− λ)ict−i

using

ct+1 =
a

λ
+ λ

∞X
i=0

(1− λ)ict−i+ εt+1

ct+1 =
a

λ
+ λct+ λ(1− λ)ct−1 + λ(1− λ)2ct−2 + . . .+ εt+1

(1− λ)ct =
a

λ
(1− λ)+ λ(1− λ)ct−1 + . . .+(1− λ)εt
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Modelling the habit level (2)

Subtracting two previous equations

ct+1− (1− λ)ct = a+ λct+ . . .+ εt+1− (1− λ)εt

∆ct+1 = a− (1− λ)εt+ εt+1

ARIMA(0,1,1) model - Estimation by Maximum Likelihood

Use parameter estimates of a and λ to iterate on

Ht+1 = a+λct+(1− λ)Ht.

to estimate habit level

Plug in GMM objective function
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An alternative model for the habit process (1)

Log habit growth (unobservable)

∆ht+1 = ln(Ht+1)− ln(Ht)

∆ht+1 = a0 +
nX

i=1

ai ·∆ ln ct+1−i+ b · rmt+1

with

∆ht+1 = E(∆ ln ct+1|∆ ln ct,∆ ln ct−1, . . .)

∆ ln ct+1 = a0 +
nX

i=1

ai ·∆ ln ct+1−i+ b · rmt+1+ εt+1

a0, a1, . . . , b can be estimated by GMM additional moment

restrictions

log return market portfolio

orhogonal forecast error
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An alternative model for the habit process (2)

Estimation

Add to usual moment conditions additional moment restrictions

from habit equation:

use E(mt+1R
i
t+1 − 1) = 0

...

E(mt+1R
N
t+1 − 1) = 0

along with E(εt+1mt+1) = 0

E(εt+1∆ ln ct) = 0
...
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An alternative model for the habit process (3)

Habit growth is then

Ht+1

Ht
= A

nY
i=0

"
ct+1−i
ct−i

#ai ³
Rm
t+1

´b

Stochastic discount factor

mt+1 = δAγ−ψ
"
ct+1
ct

#−γ nY
i=0

"
ct+1−i
ct−i

#ai(γ−ψ) ³
Rm
t+1

´b(γ−ψ)
Used for estimation

mt+1 = δ∗
"
ct+1
ct

#−γ nY
i=0

"
ct+1−i
ct−i

#ai·κ
b ³

Rm
t+1

´κ
We estimate using

n= 0 ”Epstein-Zin SDF”

n= 1

exp(a0)
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Some more models (1)

- Linearized consumption based model

mt+1 = b0 + b∆c∆ ln ct+1

Taylor approximation of
u0(ct+1)
u0(ct)

- CAPM

mt+1 = b0 + bmRm
t+1

- Scaled CAPM by Lettau and Ludvigson (2001)

mt+1 = b0 + bcaycayt+ bmRm
t+1 + bcaymcaytRm

t+1
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Is a conditional asset pricing model testable at all?

Most asset pricing models imply conditionalmoment restrictions

1 = E
³
mt+1(bt) · Rt+1|It

´
e.g. CAPM mt+1 = at − btR

W
t+1.

Parameters of factor pricing model vary over time.

⇒unconditioning via l.i.e. no longer possible:

1 = E
³
mt+1(bt) · Rt+1|It

´
does NOT imply

1 = E
³
mt+1(b) ·Rt+1

´
this is not repaired by using scaled returns. GMM estimation no

possible.

Hansen and Richard critique: CAPM (or other factor model) is

not testable.
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Scaled factors are a partial solution to the problem

With linear factor model

mt+1 = b0t ft+1| {z }
K×1

use of ”scaled factors” a partial solution:

”Blow up” number of factors by scaling factors with (M × 1)

instruments vector zt observable at t

mt+1 = b0 (ft+1⊗ zt)| {z }
KM×1

Unconditioning via l.i.e. and GMM procedure as above.
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Time varying parameters lead to scaled factors (single factor case)

Motivation

Consider linear one factor model mt+1 = at+btft+1 (ft+1 scalar)
Assume Parameters vary with M × 1 instruments vector zt.

mt+1 = a(zt) + b(zt)ft+1

With linear functions

a(zt) = a0zt and b(zt) = b0zt

⇒ mt+1 = a0zt+ (b0zt)ft+1

Mathematically equivalent to

mt+1 = b̃0(f̃t+1 ⊗ zt)

where b̃ =

⎡⎣ a

b

⎤⎦, f̃t+1 =
⎡⎣ 1

ft+1

⎤⎦
Number of parameters to estimate 2 ·M
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Time varying parameters lead to scaled factors (multi factor case)

Multi-factor case:

mt+1 = b0t ft+1| {z }
K×1

Again: Time varying parameters linear functions of M ×1 vector
of observables zt.

mt+1 = b(zt)
0ft+1 with b(zt) = B|{z}

K×M
zt

Equivalent to mt+1 = b̃0 (ft+1 ⊗ zt)| {z }
K×N

where b̃ = vec(B)

In practical application some elements of B may be set to zero.
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Using scaled factors we can condition down and apply GMM

Conditioning down and GMM estimation possible

Et

⎛⎜⎜⎝³̃b0(ft+1 ⊗ zt)
´

| {z }
mt+1

Rt+1

⎞⎟⎟⎠= 1 l.i.e.⇒ E
³³
b̃0(ft+1 ⊗ zt)

´
Rt+1 − 1

´
= 0| {z }

unconditional moment restrictions

Scaled factors and managed portfolios can be combined.

(zt might be the same).

⇒ E(b̃0(ft+1 ⊗ zt)Rt+1 − 1 ]⊗zt) = 0

• Inclusion of conditioning information as managed portfolios
(scaled returns, increases number of test assets.

• Scaled factors increase number of unknown parameters
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Cochranes (1996) CAPM with scaled factors

f =

⎛⎝ 1

RW

⎞⎠ zt =

⎛⎜⎜⎜⎝
1
P
D

term

⎞⎟⎟⎟⎠B =

⎡⎣ b11 b12 b13

b21 b22 b23

⎤⎦

f ⊗ z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

RW

P
D

RW · PD
term

RW · term

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
b̃ =

³
b11, b21, b12, b22, b13, b23

¢0

m = b̃0(f⊗z) = b11+b12
P

D
+b13term+b21R

W+b22R
W ·P

D
+b23R

W ·term

In application Cochrane (1996) restricts b12 and b13 to zero
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Some more models (2)

- Scaled CBM by Lettau and Ludvigson (2001)

mt+1 = b0 + bcaycayt+ b∆c∆ ln ct+1 + bcay∆ccayt∆ ln ct+1

- Fama French model

mt+1 = b0 + bmRem
t+1 + bSMBSMBt+1 + bHMLHMLt+1
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Model comparison (practical exercise)

- 10 decile portfolios and t-bill rate (Cochrane 1996)

- 25 size/book-to-market portfolios and t-bill rate

- Excess returns or gross returns as test assests

- Estimation using GMM (alternatives ⇒ course 1)

- J-test

- RMSE comparisons (plots)

Models:

∗ Consumption Based Model (CBM), CAPM, Scaled (LL) CBM,

Scaled (LL) CAPM, various habit model variants
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II. Econometrics of Financial Market Microstructure (I)

References: 

• Boehmer (2004)
• Glosten and Harris (1988)
• Harris (2003)
• Hasbrouck (2004) 
• Henker and Wang (2005) 
• Huang and Stoll (1997)
• Madhavan, Richardson, Roomans (1997)
• SEC (2001)
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II.1  Important Empirical Concepts
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Basic concepts of (empirical) financial market microstructure (1)

(best) ask price (or offer price) depth at best ask price

(best) bid price depth at best bid price

best quotes

Inside spread or quoted spread: ask price – bid price

Spread: natural measure of liquidity and market quality and (implicit) transaction costs
(cost of “round trip“)

midprice or midquote or midpoint
(ask price + bid price)

relative (quoted) spread:
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Basic concepts of (empirical) financial market microstructure (2)

Trades occur at the ask or bid

transaction price = bid price or ask price

or inside the quoted spread

transaction price of buyer initiated trade < ask price

respectively

transaction price of seller initiated trade > bid price

or outside the quoted spread (if trading volume exceeds depth)
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A sequence of quote changes and trade events (transactions)

75



Basic concepts of (empirical) financial market microstructure (3)
Ask/ bid prices and depths provided by liquidity suppliers
• market makers (NYSE: specialist, NASDAQ: dealer)
• limit order traders (Xetra, Euronext, virt-x)

limit buy order: buy order with upper price limit and given buy volume
limit sell order: sell order with lower price limit and given sell volume

Non-executable limit orders (LO) constitute the limit order book

market order (MO): no price limit (but buy and sell volume)

MO: liquidity demand

non-executed LO: supply liquidity

marketable limit order: like MO
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Three components influence the spread
order processing costs

(also opportunity costs of 
market making)

costs incurred
by market
maker (liquidity
supplier)

spread has to 
compensate for
these costs

inventory holding costs

(of liquidity supply market
maker holds suboptimal 
portfolio, risk aversion)

spread

adverse selection costs or
asymmetric information
costs

(when some traders are
better informed about true
asset price than market
maker)

77

Competition among liquidity suppliers reduces gains of liquidity supply in excess of 
these costs



Measures of market quality (execution quality)

quoted spread ask price – bid price

effective spread 2 . (execution price – midquote) for buy order

2 . (midquote – execution price) for sell order

realized spread 2 . (execution price (-t) – midquote (t + x)) for buy order

2 . (midquote (t + x) – midquote (t)) for sell order

price impact = (effective spread – realized spread)/2

= midquote (t+x) – midquote (t)

SEC Rule 11AC1-5 (Nash-5): Nov. 2000: US market centers (NYSE, Nasdaq, AMEX et 
cetera) have to report effective, realized and quoted spreads

SEC Rule 11AC-5 x = 5 min 

Relative quoted, effective, realized spread and price impact: Relative to time t midquote

Average (relative) quoted, effective, realized spread: sample means over all transactions

measured
at time of 
execution of 
order
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A numerical example (1)
• a (t + 5 min) 107 €

• mq (t + 5 min) 105 €

• b (t) 101 €

buyer
initiated
transaction

• a (t) 105 €
• p (t) 104 €
• mq (t) 103 €

• b (t) 101 €

t t + 5 min
buyer initiated
transaction takes place
at time t

• a (t): ask price
• b (t): bid price
• mq (t): midquote time t
• p (t): execution price t
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A numerical example (2)

%  3.88100
€ 103

€ 4
=⋅

% 0.97100
€ 103

€ 2
=⋅

% .941100
€ 103
€ 2

−=⋅
−

% 0.97100
€ 103

€ 1
=⋅

quoted spread

effective spread

realized spread

price impact

relative quoted spread

relative effective spread

relative realized spread

relative price impact

€ 4€ 101€ 105 =−

€ 2€) 103€ (104 2 =−

€ 2€) 105€ (104 2 −=−

€ 1  € 104 - € 105 
2

€)) 2 (- - € (2
==

80



Another empirical example (1)

• a (t) 106 €

• mq (t) 103 €

• p (t) = b (t) 101 €

• a (t + 5 min) 105 €

• mq (t + 5 min)   103 €

• b (t) 101 €

seller initiated
transaction

t t + 5 minseller initiated
transaction takes place
at time t
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Another empirical example

quoted spread

effective spread

realized spread

price impact

€ 5€ 101€ 106 =−

€ 4 €) 101€ (103 2 =−

€ 4€) 101€ (103 2 =−

€ 0  € 103 - € 310
2

€) 4€ (4
==

−

% 4.85100
€ 103

€ 5
=⋅

% 3.88 100
€ 103

€ 4
=⋅

%88.3100
€ 103

€ 4
=⋅

% 0  100
€ 103

€ 0
=⋅

relative quoted spread

relative effective spread

relative realized spread

relative price impact
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Interpretation of market quality measures

Effective spread: incorporates costs of liquidity supply and adverse selection
costs

Realized spread: Transaction cost or liquidity measure “purged“ of adverse
selection costs

Price impact: Adverse selection cost part of the effective spread
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Empirical example quoted effective, realized spreads
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Mean percentage spread versus market capitalization
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Mean percentage effective spread versus market capitalization
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Mean percentage realized spread versus market capitalization
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II.2  Trade indicator models and estimation
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A transaction price series (from Glosten and Harris (1988))

transactions
at the ask

transactions at the bid
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Trade indicator models decompose components of the spread

Structural models

• Assumptions about how trades move fundamental asset values, midquotes and     
transaction prices

• liquidity suppliers account for order processing costs, inventory holding costs and    
adverse selection costs when posting bid- ask quotes

Important contributions

• Glosten and Harris (1988): seminal model

• Huang and Stoll (1997): disentangles inventory and adverse selection component

• Madhavan, Richards and Roomans (1997): correlation in order flow, explain time of 
day effects of spreads and volatility

Estimation by GMM or OLS
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Glosten and Harris (1988) model (basic version)

Data required: 

Sequence of transaction prices with associated volumes and trade side indicator

P t : transaction (or execution) price of trade at time t

V t : volume (number of shares) traded

Q t : trade side indicator Q t = +1 if trade buyer initiated

Q t = -1 if trade seller initiated
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Glosten and Harris (1988) model: the model structure

Evolution of efficient asset price

impact of time t trade event
on efficient price
(permanent)efficient price

new public information (i.i.d. 
normal) accumulated since last 
trade

parameter
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Glosten and Harris (1988) model: the model structure (2)
transitory component, order 
processing cost

adverse selection component of spread

half of the spreadefficient price
without time t trade
information

Note: liquidity supplier anticipates transistory and permanent component
transaction price of a buy Q t + 1

liquidity supplier take into account
public information when selling bid and 
ask prices

a buy transaction at time t

same goes for sell transaction…
t-1 t
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Glosten and Harris (1988) model:  the model structure (3)

Combining

• Estimation by OLS possible

• Account for conditional heteroskedasticity and serial correlation in et
by using robust standard errors. 

Eviews Application Glosten/Harris (1988) model
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Glosten and Harris (1988) model: the model structure (4)

“Implied“ spread

Share of implied spread attributable to adverse selection costs

Share of implied spread attributable to order processing costs

• Plot evolution of      and      and implied spread (time of day patterns)

• sample averages of       and       for comparison across stocks and trading
venues
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Immediately before t 
and      and prevail

Timing: Quote setting and price formation in Huang & Stoll (1997)

the fundamental 
value just prior
to the t - 1 trade

t – 1
a trade
event
occurs

t  
another trade
event occurs at 
time t

the update of the fundamental 
asset value caused by the t - 1 
trade

bid and ask prices (and miquotes) change
as public information occurs

the fundamental 
asset value prior
to the time t trade

public
information
accrued
since t - 1

inventory effect (Stoll, 1978)

prevailing
quotes prior to 
time t trade

trades occur at bid or ask

prevailing midquote prior to 
time t trade
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The Huang and Stoll (1997) base model

Accounts for inventory cost component

Dynamics of fundamental asset value (Huang/Stoll (1997) notation)
“traded“ spread (Huang and Stoll (1997))

public information

Impact 
coefficient

only trade indicator, not
volume as in Glosten/Harrisequiv. to mt in 

Glosten/Harris asymmetric information

Quote midpoint contains inventory control mechanism
midquote, do not confuse with
mt in Glosten/Harris (1988) When number of buy order exceed

sell orders market maker increases
ask and bid price to discourage
further buys and encourage sells.
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The Huang and Stoll (1997) base model

Midquote dynamics

Midquote change affected by
adverse selection and 
inventory effects, fundamental 
value only affected by adverse
selection component

Combining we get

α and β not separately identified

Inventory and adverse selection component lumped together unknown parameters:  
(traded spead); 
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GMM estimation base model Huang and Stoll (1997)

Moment conditions

2 moment conditions, 2 parameters

exact identification

• could be estimated by OLS 

• advantage of GMM: standard errors robust against conditional heteroskedasticity
and serial correlation in 

EVIEWS: use Newey-West standard errors

use Delta Method to obtain standard errors for and     from
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Estimation results Huang and Stoll base model
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Huang and Stoll‘s (1997) model with trade size categories (1)

Define if share volume at  t  ≤ 1000 shares
otherwise

1000 shares < if share volume at t < 10,000 shares
otherwise

if share volume at t ≥ 10,000 shares
otherwise

Evalution of  fundamental value subject to trade information
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Huang and Stoll‘s (1997) model with trade size categories (2)

Midquote (as above) affected by inventory effects

for

Combining we get
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Huang and Stoll‘s (1997) model with trade size categories (3)

As above: transaction price incorporates the half spread

Equation estimated by GMM

forwhere
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Estimation results Huang and Stoll model with trade size
categories
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Huang and Stoll (1997): Three way decomposition (extended model)

Allows to distinguish adverse selection and inventory component of traded
spread

Identified if Qt (positively) serially correlated

Why?

Splitting of large orders to cushion price impact

Identified through predictability of midquote changes

Why?

Liquidity suppliers raise midquote after buyer initiated transaction

lower midquote after seller initiated transaction

Inventory effect on expected midquote change

serial correlation of Qt predictability of midquote change
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Huang and Stoll (1997) extended model (1)

Define

no trades inside the quote considered!

order flow predictable!

(bid-ask-bounce due
to inventory effect)

allegedly: 

Evolution of fundamental value

Surprises in order flow matter

surprise
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Huang and Stoll (1997) extended model (2)

change in fundamental value unpredictable

Still:      timed prior to time t trade

using instead of

with would imply predictability of 

m.d.s.

Midquote evolves as above

inventory effect
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Huang and Stoll (1997) extended model (3)

Writing extensively

As (as above)

we have

GMM estimation possible when series of transaction prices and trade indicators available

could be used for estimation when midquotes available
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Huang and Stoll (1997) GMM estimation extended model (1)

GMM residuals

3 moment conditions

4 parameters

additional moment restriction required

another GMM residual
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Huang and Stoll (1997) extended model estimation results
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Huang and Stoll (1997) extended model estimation
results with bunching
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Huang and Stoll´s (1997) alternative using spread information

Huang and Stoll suggest to use

form orthogonality conditions and use GMM

Use

to identify structural parameters

Recent research: Henker and Wang (2005) doubt validity and consistency of procedure
using St sequence: Timing incorrect. 

Correct midquote dynamics with time varying spreads
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The model by Madhavan, Richardson and Roomans (1997) (1)

• Accounts for serial correlation in order flow (in Qt)

predictability of order flow

reasons: splitting of large orders to cushion price impact

• fundamental asset value affected by surprise in order flow

• three states of trade indicator

purchases at ask Qt = +1

sales at bid Qt = -1

„crosses“ inside the spread Qt = 0

Why not model trade volume?

• splitting of orders volume not informative

• parsimonity

• block trades (at NYSE upstairs market) have peculiar effect (non anonymous
market, uninformed trades)
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The model by Madhavan, Richardson and Roomans (1997) (2)

Ingredients

probability of crossing (may be zero like in Xetra system)

unconditional probability

Evolution of fundamental value (MRR: expected value of stock given public information)

114

post (!) trade
value

surprise in order 
flow

> 0 measures degree of 
information asymmetry

public information
(accrued since t-1)



MRR account for trades at midquote

(pre-negotiated trades in upstairs market)

Expression for transaction price (valid for Qt = +1, Qt = -1, Qt = 0)

The model by Madhavan, Richardson and Roomans (1997) (3)

account for effects of rounding (1/16 
ticks at NYSE 1 cent ticks in Xetra)

market maker
lowers bid price
depending on
surprise in order 
flow

cost for supplying liquidity

-transaction costs (order processing)

-inventory costs

-risk bearing

-monopolist gain

(assuming Qt = +1)

(assuming Qt = -1)

market makers anticipate price impact of trade and costs for supplying liquidity

115



The model by Madhavan, Richardson and Roomans (1997) (4)

Collecting

to derive an estimable
version use

Probability of two ask successions or two bid successions identical

First order autocorrelation

we have Note: 
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The model by Madhavan, Richardson and Roomans (1997) (5)

Combining we have

observedobserved residual
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Parameters to estimate

order processing
inventory
component (in 
cent per share)

adverse selection
component (in cent per 
share)

probability
of crossing

correlation in 
order flow



The model by Madhavan, Richardson and Roomans (1997) (6)

Estimation by GMM

Moment conditions

Define

from

from
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The model by Madhavan, Richardson and Roomans (1997) (7)

GMM residuals are

Built series from data and plug in GMM tool

Note: MRR introduce a drift parameter in 

but small
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The model by Madhavan, Richardson and Roomans (1997) (8)

• MRR estimate model for 4 day time intervals

• study time of day evolution of asymmetric information component and cost of    
liquidity supply

Explain stylized facts

”U-Shape” of bid-ask spread and return volatility

Results

”L-shaped” (asymmetric information declines over the day)

increases over the day inventory costs (overnight risk)

explain stylized facts well. 
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The model by Madhavan, Richardson and Roomans (1997) (9)
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III. Event study methodology

References:

• Boehmer et al. (2002),  Ch. 5 + 6
• Campbell et al.  (1997), Ch. 4     
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In asset pricing module we have used notation Ri
t to denote gross

return of asset i in period t.

Ri
t =

pit+ dit
pit−1

Following Campbell et al. (1997)

Rit =
pit+ dit
pit−1

− 1

denotes net returns of asset i in period t.

Notational conventions

dividend

price
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Studies of stock market responses (valuation of firms) to public

announcements of new value-relevant information:

• stock splits Fama (1969) pioneering work

• earnings announcements

• announcement of merger or acquisition

• macroeconomic announcements (interest rates, unemploy-

ment)

• liquidity stocks (Gomber et al. 2004)

Event study philosophy (1)
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Studies of stock market responses (valuation of firms) to public

announcements of new value-relevant information:

• regulatory environment

• issues of new debt or equity

• IPOs (a special case: no estimation period available)

One of the most widely used techniques in empirical finance.

Event study philosophy (2)
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Event study philosophy (3)

Idea:

Markets are efficient w.r.t public information. Asset prices should

reflect relevant information i.e. react quickly to value relevant

effect.

Measure price changes around events and compare ”normal” or

”expected” price changes.

Expected price change calculated based on conditioning infor-

mation (e.g. market-wide changes)
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t

Can deviations from normal (or expected) returns be attributed

to event or is it just a random fluctuation due to public informa-

tion?

ε∗it = Rit − E[Rit|Xt]

Needed:

Distribution of abnormal return under null hypothesis of no effect

of event

i

Event study methodology focusses on abnormal returns

measure impact of event
on deviation from
expected return

actual return period ,
asset

expected return
(normal return)

conditioning information
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Rt (N × 1) vector of asset returns for calendar time period t.

Rt independently multivariate normally distributed with mean µ

and covariance matrix Ω for all t.

cov(Rt) =

⎡⎢⎢⎢⎣
var(R1t) . . .

cov(R1t, R2t)
... . ..

cov(R1t, RNt) var(RNt)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

σ21 . . . σ1N
σ12
... .. .

σ1N σ2N

⎤⎥⎥⎥⎦

Classical event study methodology based on the multivariate
normal assumption of cross-sectional returns (1)
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Rt (N × 1) vector of asset returns for calendar time period t.

Rt independently multivariate normally distributed with mean µ

and covariance matrix Ω for all t.

µ =

⎡⎢⎢⎢⎣
E(R1t)
E(R2t)

...
E(RNt)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

µ1
µ2
...

µN

⎤⎥⎥⎥⎦

Classical event study methodology based on the multivariate
normal assumption of cross-sectional returns (2)
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The constant return model does not use conditioning information

Rit = µi+ ξit

E(ξit) = 0 var(ξit) = σ2ξi = σ2i

cov

⎛⎜⎝ ξit
...

ξNt

⎞⎟⎠ = cov(Rt) = Ω
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The market model is widely used

Rit = αi+ βiRmt+ εit

E(εit) = 0 var(εit) = σ2εi

Note:

This is not the CAPM!

Rmt is just one (yet powerful) conditioning variable

Other statistical models: factor models

Effect of conditioning: Variance of abnormal returns reduced

More precise detection of effect of event otherwise drowned in

noise
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Statistical background and motivation for the market model (1)

We assumed: Rt =N(µ,Ω)
Market portfolio return is a linear combination of jointly normally

distributed variables (the stock returns)

Ã
Rt
Rm
t

!
∼ N(µ∗,Ω∗) µ∗ =

Ã
µ
µm

!
Ω∗ =

Ã
Ω Σ0

Σ σ2m

!

Σ= [cov(R1t,Rmt), . . . , cov(RNt,Rmt)] = [σ1m, . . . , σNm]

Recall:

linear combinations of (multivariate) normally distributed ran-

dom variables yield (multivariate) normal random vectors!

bivariate normal distribution
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Statistical background and motivation for the market model (2)

Thus Ã
Rit
Rmt

!
∼ N

"Ã
µi
µm

!
,

Ã
σ2ξi

σim
σim σ2m

!#

A familiar result Rit|Rmt ∼ N[E(Rit|Rmt), var(Rit|Rmt)]

where

E(Rit|Rmt) = µi+
cov(Rmt,Rit)

var(Rmt)
[Rmt − µm] = αi+ βi Rmt

αi = µi − βiµm βi =
cov(Rmt,Rit)

var(Rmt)

var(Rit|Rmt) = σ2ξi
(1− ρ2im) ρim = corr(Rit, Rmt)
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Statistical background and motivation for the market model (3)

Define εit = Rit− E(Rit|Rmt)

We have

E(εit|Rmt) = 0

var(εit|Rmt) = var(Rit|Rmt) = σ2ξi(1− ρ2im) = σ2εi

and εit|Rmt ∼N(0, σ2εi) homoskedastic innovations
Hence

Rit = E(Rit|Rmt)+ εit = αi+ βiRmt+ εit

where αi = µi − βiµm βi =
cov(Rmt,Rit)
var(Rmt)

⇒ Market model follows from assumption of joint normality

(and not asset pricing theory)
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Why not using asset pricing model (like CAPM) to form normal or
expected returns? (1)

• You could (actually frequently done in earlier studies), but
currently out of fashion

• empirical failure of models

• other successful models in sight?

• time varying parameters
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Why not using asset pricing model (like CAPM) to form normal or
expected returns? (2)

• more complicated estimation, constant mean-return model

does basically same job!

• rather rely on statistical assumptions than on false economic
model

• using conditioning information allows more precise conclu-

sions

Campbell et al. (1997): ”There seems to be no good reason

to use an economic model rather than a statistical model in an

event study”
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Time line for an event study

τ

T0 T1 T2 T30

estimation
window

event
window

post-event
window

sometimes no data for
estimation available, e.g. IPO‘s
then use market adjusted return model

τ

Rit = βRm

the event date

So-called event time 
(time relative to event)

We measure abnormal 
returns in this period
Can we attribute them to
The occurrence of the event
Event window possibly
before event date
(information leakage)

Time line:

we use returns of this period
to estimate the parameters of 
the market model
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τ = 0 event date
τ = T1 + 1 to τ = T2 event window
L1 = T1 − T0 length of estimation window
L2 = T2 − T1 length of event window
L3 = T3 − T2 length of post event window

Time line and timing convention (1)

τ

T0 T1 T2 T30

estimation
window

event
window

post-event
window
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Time line and timing convention (2)

In order to get a ”clean” estimation period: Stop some time

before event window.

Usually: daily frequency

Analyze abnormal returns in sub-interval of event window [τ1, τ2]

τ1 ≥ T1 τ2 ≤ T2

Example: T0 = −250
T1 = −20
event period τ ∈ [−5,0]
days −19,−18, ...−6 not considered for estimation and not used
for analysis of abnormal returns.
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The recipe for an event study (1)

1. Define event of interest: Make sure you can allocate the

event date (or at least the event window)

2. Define criteria to select firms/events

Examples:

• membership in an industry

• small/large firms

• tech-stocks

3. Decide model for measuring normal performance

(e.g. market model)
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The recipe for an event study (2)

4. Estimate parameters (of market model or mean return) using

data in estimation window

5. Calculate abnormal returns in event period

Test significance of abnormal returns

6. Empirical results, interpretation and conclusions
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The recipe for an event study (3)

Basic question:

Is the unconditional distribution of the abnormal returns differ-

ent from the distribution of abnormal returns conditional on the

occurrence of the event

(i.e. the distribution of abnormal returns in the event period)

Null-hypothesis: conditional distribution of abnormal returns is

not affected by event!
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Estimation of market model (1)

Note:

Event assumed to be exogenous w.r.t. market value of security

Undisputed for macroeconomic announcements, regulatory envi-

ronment changes

Problematic for IPO, stock splits

Revision of value of firm caused by event and not the other

way round
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Estimation of market model (2)

Estimation of market model parameters using estimation period

data by OLS (or give GMM interpretation)

Riτ = αi+ βiRmτ + εiτ

OLS yields

α̂i =
1

L1

T1X
τ=T0+1

Riτ β̂i =
1

L1

T1X
τ=T0+1

Rmτ

β̂i =
L1

P
Riτ · Rmτ −

P
Riτ

P
Rmτ

L1
P
R2mτ − [

P
Rmτ ]2

Estimation window
Sample covariance

Estimation window
Sample variance



Properties of abnormal returns (1)

In matrix notation

Ri = Xiθi+ εi

Ri = [RiT0+1, . . . , RiT1]
0

Xi = [ι, Rm] Rm = [RmT0+1, . . . , RmT1]
0 ι= [1,1, . . . ,1]0

θi = (αi, βi)
0

min
X
(Riτ − αi − βiRmτ)

2

yields

θ̂i = (X0
iXi)

−1X0
iRi

standard OLS formula

sum over estimation period data
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an unbiased estimate of var(εiτ) = σ2εi:

σ̂2εi =
1

L1 − 2
ε̂0îεi

ε̂i = Ri −Xiθ̂i

var[θ̂i] = (X0
iXi)

−1σ2εi

Properties of abnormal returns

Standard OLS 
results under
conditional
homoskedasticity
and absence of 
serial correlation
of residuals and 
predetermined
regressors or strict
exogeneity
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Properties of estimators are as usual returns in event period

Assuming:

E(εiτ |Rm) = 0

(strict exogeneity) OLS unbiased

With

var(εiτ |Rm) = σ2εi cov(εiτ , εiτ 0) = 0 ∀τ 0 6= τ

assuming only E(εiτ ,Rmτ) = 0: OLS consistent
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With only one day event window

Estimated abnormal return at event day

ε̂∗i0 = Ri0 − α̂i − β̂iRm0 = Ri0−Xi0θ̂i

Xi0 = (1, Rm0) θ̂i =

"
α̂i
β̂i

#

Properties of abnormal returns in event period (under null-
hypothesis of no effect of event) (1)
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E(̂ε∗i0|Rm0) = E(Ri0− xi0θ̂|Rm0)

= E(Ri0− xi0θi − xi0(θ̂i− θi)|Rm0)

= E(Ri0− xi0θi|Rm0)− xi0E(θ̂i − θi|Rm0)

= 0− 0 = 0

Properties of abnormal returns in event period (under null-
hypothesis of no effect of event) (2)
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Same goes for multiple day event window

ε̂∗i = R∗i − α̂iι− β̂iR
∗ = R∗i −X∗i θ̂i

ε̂∗i = (̂εiT1+1, . . . , ε̂iT2)
0

R∗ = [RiT1+1, . . . , RiT2]
0 X∗i = [ι,R∗m] R∗m = [RmT1+1, . . . , RmT2]

0

E[̂ε∗i |X∗i ] = E[R∗i −X∗i θ̂i|X∗i ]
= E[(R∗i −X∗i θi)−X∗i (̂θi− θi)|X∗i ] = 0

(under H0)

Note:

We implicitly assume strict exogeneity, i.e.

E(εiτ |R∗m) = 0 ∀τ where εiτ = Riτ − αi − βiRmτ

Properties of abnormal returns in event period (under null-
hypothesis of no effect of event) (3)

event period data

vector of abnormal 
return



Properties of abnormal returns in event period (1)

Vi = E
ĥ
ε∗i ε̂

∗
i
0|X∗i

i
= E

h
[ε∗i −X∗i (θ̂i − θi)][ε

∗
i −X∗i (θ̂i − θi)]

0|X∗i
i

= E
h
ε∗i ε

∗
i
0 − ε∗i (θ̂i − θi)

0X∗i
0 −X∗i (̂θi − θi)ε

∗
i
0+X∗i (̂θi− θi)(̂θi − θi)

0X∗i
0|X∗i

i
= Iσ2εi+X∗i (X

0
iXi)

−1X∗i
0σ2εi
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Properties of abnormal returns in event period (2)

More precisely we would write E(̂ε∗i ε̂∗i 0|X∗i ,Xi,Ri)
0.

For a single day event window this becomes

var(̂εi0|Rm0) = E(̂εi0|Rm0) = σ2εi

µ
1+(1, Rm0)(X

0
iXi)

−1
"

1
Rm0

# ¶

ε̂∗i |X∗i ∼N(0, Vi) or more precisely ε̂∗i |X∗i , Xi, Ri ∼N(0, Vi)

‘‘parameter uncertainty‘‘
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Properties of abnormal returns in event period (some details)
Note that for

ε̂i0 = Ri0 −
"

1
Rm0

#
θ̂ = Ri0 −

"
1

Rm0

#
[X0

iXi]
−1X0Ri

conditioning on Rm0 and Xi and Ri:

ε̂i0 a normally distributed random variable.

Same goes for

ε̂∗i = [̂εiT1+1, . . . , ε̂iT2]
0

conditioning on R∗m, Ri and Xi

ε̂∗i results from linear combinations of normally distributed ran-

dom variables (RiT1+1, . . . , RiT2)
0

event period returns
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Campbell at al. (1997) convention

τ = 0 event date
τ = T1 + 1 to τ = T2 event window
L1 = T1 − T0 length of estimation window
L2 = T2 − T1 length of event window
L3 = T3 − T2 length of post event window

Abnormal returns of subinterval of event period are summed up to 
generate accumulative abnormal returns (1) 

τ

T0 T1 T2 T30

estimation
window

event
window

post-event
window
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γ

Pick subinterval from (T1, T2], [τ1, τ2] τ1 > T1 τ2 ≤ T2 and

cumulate abnormal returns ⇒ CAR(τ1, τ2)

Define γ a (L2 × 1) vector

τ

Abnormal returns of subinterval of event period are summed up to 
generate accumulative abnormal returns (2) 

event window

use abnormal returns from this period

0 1 1 1 1 1 1 10

0-5-6-7-8 -2-3-4 -1
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dCAR(τ1, τ2) ≡ γ 0̂ε∗i

⇒ E( dCAR(τ1, τ2)) = 0 as E(̂ε∗i ) = 0

var[ dCAR(τ1, τ2)] = σ2i (τ1, τ2) = γ0Viγ

Since linear combinations of normally distributed random vari-

ables are normally distributed

dCAR(τ1, τ2) ∼Nµ
0, σ2i (τ1, τ2)

¶

Abnormal returns of subinterval of event period are summed up to 
generate accumulative abnormal returns (3) 

univariate normal
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In Vi = σ2εi(I −X∗i (X
0
iXi)

−1X∗i
0) σ2εi not known,

consistently estimated by

σ̂2εi =
1

L1 − 2
X

ε̂2i =
1

L1 − 2
ε̂0iε̂i

V̂i = σ̂2εi(I −X∗i (X
0
iXi)

−1X∗i
0)

Abnormal returns of subinterval of event period are summed up to 
generate accumulative abnormal returns (4) 
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Abnormal returns of subinterval of event period are summed up to 
generate accumulative abnormal returns (5) 

V̂i = σ̂2εi(I −X∗i (X
0
iXi)

−1X∗i
0)

Hence dvar³CAR(τ1, τ2)´ = σ̂2i (τ1, τ2) = γ0V̂iγ

or σ̂2εiγ
0
³
I −X∗i (X

0
iXi)

−1X∗i
0
´
γ

Distribution of test statistic under H0

\SCAR(τ1, τ2) =
dCAR(τ1, τ2)
σ̂i(τ1, τ2)

∼ t(L1− 2)

Proof analogous to proof that OLS t-statistic is t-distributed

with degrees of freedom equal to a number of observations -

number of regressors.
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Properties of t-distribution

E(t(k)) = 0 var(t(k)) =
k

k− 2

Hence

E(\SCAR(τ1, τ2)) = 0 var(\SCAR(τ1, τ2)) =
L1 − 2
L1 − 4

For L1 (estimation window large) use standard normal approxi-

mation of t(L1− 2)
Single event: test significance of \SCAR(τ1, τ2) under H0.
Fix α (significance level).

Reject for large or small values of test statistic.

Abnormal returns of subinterval of event period are summed up to 
generate accumulative abnormal returns (6) 
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We analyse typically many events. Then we average abnormal 
returns (1)

For a sample of N events

Compute market model estimates and abnormal returns per event

Compute sample averages of abnormal returns

ε∗ =
1

N

NX
i=1

ε∗i =

⎡⎢⎢⎣
1
N

PN
i=1 ε

∗
iT1+1...

1
N

PN
i=1 ε

∗
iT2

⎤⎥⎥⎦

averages per event day averaged over events
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Assume independence of abnormal returns across events (no

overlap of event windows) and also ignore dependence induced

by estimating α̂i and β̂i that may exist.

E(̄ε∗) = 0

cov(ε∗) = V = 1
N2

PN
i=1 Vi for one event day var(ε

∗
0) =

1
N2

P
var(̂εi0)

We analyse typically many events. Then we average abnormal 
returns (2)

variance of average
event day abnormal returns
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CAR(τ1, τ2) ≡ γ0ε∗

var[CAR(τ1, τ2)] = σ2(τ1, τ2) = γ0V γ

Equivalently average the cumulative abnormal returns across

securities

CAR(τ1, τ2) =
1

N

NX
i=1

dCARi(τ1, τ2)

var[CAR(τ1, τ2)] = σ2(τ1, τ2) =
1

N2

NX
i=1

σ2i (τ1, τ2)

Using the averaged abnormal returns we proceed as in the single
event case (1)

approximately
normal for

largeN
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CAR(τ1, τ2) ∼N
µ
0, σ2(τ1, τ2)

¶
we can use

1

N2

NX
i=1

σ̂2i (τ1, τ2) ≡ σ̂2(τ1, τ2)

to consistently estimate σ2(τ1, τ2)

Using a central limit theorem

J1 =
CAR(τ1, τ2)

[σ̂2(τ1, τ2)]
1
2

a∼ N(0,1)

under H0 that event does not influence distribution of abnormal

returns

Using the averaged abnormal returns we proceed as in the single
event case (2)

γ0V̂iγ

variance of 
abnormal return

approximation works
well for large number
of events
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An alternative method averages standardized cumulative returns
(1)

distributed (see above)

t(L1 − 2) E(\SCAR(τ1, τ2)) = 0

Equal weighting of events using

SCAR(τ1, τ2) =
1

N

NX
i=1

\SCARi(τ1, τ2)

var(\SCAR(τ1, τ2)) = L1−2
L1−4

var(SCAR(τ1, τ2)) =
1
N2N

L1−2
L1−4 =

1
N

h
L1−2
L1−4

i
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An alternative method averages standardized cumulative returns
(2)

coverges in distribution
to a normal distribution
(for large sample of 
events)

By a central limit theorem

J2 =
SCAR(τ1, τ2)r

L1−2
NL1−4

a∼ N(0, 1)

Advantage:

Reduces effect of stocks with large return standard deviations

on test statistic
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Patell´s test statistic accounts for different estimation period
lenghts

CAR standardized by estimation
period standard deviation

˜N for longer
estimation periods

length of estimation period varies
across events

tPatell =

NP
i=1

\SCARi(τ1, τ2)s
NP
i=1

L1i−2
L1i−4

a∼ N(0, 1)

tPatell =

NP
i=1

\SCARi(τ1, τ2)

√
N

a∼ N(0, 1)
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Campbell et al.‘s (1997) application (1)

600 earnings announcements

Dow Jones firms Jan. 1989 - Dec. 1993

Data stream: data of announcement

Compustat: actual earnings (per quarter)

Institutional Brokers Estimate System (I|B|E|S): mean (over
analysts) quarterly earnings forecast

⇒ Deviation of actual earnings from forecast: good news

(189), no news (173), bad news (238)
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Campbell et al.‘s (1997) application (2)
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Campbell et al.‘s (1997)  application (3)

Focusing only on event day dCAR= ε∗ = 0.965%r
1
θ
2
(0, 0) = 0.104% J1 = 9.28

under H0: J1
a∼N(0,1)⇒ H0 rejected on conventional

significance levels
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Campbell et al.‘s (1997) application (4)
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Variance of abnormal return for market model

σ2εi = var[Rit − αi − βiRmt]

= var[Rit]− β2i var[Rmt]

= (1− β2i )var[Rmt]

= (1−R2i )var[Rit]

R2i = R2 of market-model regression for security i

σ2ξi = var[Rit− µi] = var[Rit]

σ2εi = (1−R2i )σ
2
ξi

Since R2i lies between 0 and 1 abnormal return variance of market model less
than or equal to abnormal return using constant-mean-return model

Why using the market model instead of the constant-mean-return
model?
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H0: given event has no impact on behavior (more precisely:

distribution) of security returns

we assume normality i.e.

Boehmer er al. (1991): Isolation of and testing for mean effect

cross sectional approach to estimate abnormal return variances

so far: estimation of variance of abnormal returns using

estimation period data!

Vi = Iσ̂2εi+X∗i (X
0
iXi)

−1X∗i
0σ̂2εi

Boehmer et. al (1991) propose a modified Null Hypothesis

distribution of 
abnormal 
returns

mean of 
abnormal returns

variance of abnormal 
returns
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dV ar
h
CAR(τ 1, τ 2)

i
=

1

N 2

NX
i=1

³
CARi(τ1, τ2) − CAR(τ1, τ2)

´2
dV ar

h
SCAR(τ 1, τ 2)

i
=

1

N 2

NX
i=1

³
SCARi(τ1, τ 2) − SCAR(τ 1, τ 2)

´2

Two ways to account for event induced abnormal return variances

„Standard cross sectional test“:
Standardize cross section average CAR by event period cross sectional standard deviation:

Standardize cross sectional average SCAR by cross sectional variance of the SCAR

Consistency of estimators requires abnormal returns to be cross sectionally
uncorrelated (covariances have to vanish). 

Avoid overlapping event periods (clustering)
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Boehmer (2002) considers two test statistics that account for event
induced abnormal variance changes

Standard cross sectional test

tcs =
CAR(τ1, τ2)q dV AR(CAR(τ1, τ2))

a∼N(0,1)

Problem: not a consistent estimate if event induced
variance different across stocks/events

Standardized cross sectional test (Boehmer et al. 1991)

tBMP =
SCAR(τ1, τ2)q dV AR(SCAR(τ1, τ2))

a∼ N(0,1)
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