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1 Introdu
tionThis manus
ript 
ontains a brief introdu
tion to the use of the software pa
k-age Gauss.1 Gauss is a statisti
al pa
kage used for statisti
al and e
ono-metri
 purposes and is best suited for data analysis, estimation, testing,fore
asting, simulation as well as professional quality data graphing. Thesenotes are intended to be supplementary to the oÆ
ial Gauss manuals andto show some of the basi
 prin
iples of programming using a matrix languagerather than being an exhaustive presentation of the possibilities o�ered byGauss. Only some of the most fundamental parts of Gauss are explainedherein. For a detailed presentation of the numerous possibilities o�ered byGauss we advise the student to read the 
orresponding se
tion of the Gaussmanuals. Volume 1 of the manual (System and Graphi
s manual) treats alltopi
s related to the Gauss system and the Graphi
s Interfa
e. Volume 2of the manual (Command Referen
e manual) provides a useful indexed 
om-mand referen
e guide. It is important to understand that the 
urrent notesare not suÆ
ient to work eÆ
iently in Gauss nor are they aimed to pro-vide an alternative to a 
areful use of the manual and the referen
e guide onwhi
h these notes are entirely based. Also, when using parti
ular appli
ationmodules (see below), it is important to study 
arefully the 
orrespondingreferen
e manual.Gauss is a programming language designed to operate with and on ma-tri
es. In 
omparison to other popular pa
kages used in statisti
s and e
ono-metri
s su
h as rats, mi
rotsp, sas, spss, p
give, mi
rofit, et
., Gaussis 
hara
terized by its extreme 
exibility enabling the user to handle bothnon-standard and standard problems in statisti
s and e
onometri
s. Cur-rent 
ompetitors to Gauss are essentially Matlab and Ox. The majoradvantage of Gauss, and his 
ompetitors, is that it allows you to do almosteverything you want with data. It has moreover almost be
ome one of thestandard in e
onometri
 resear
h so that numerous routines (pro
edures) be-
ome easily available. Sin
e it operates dire
tly on matri
es, it makes Gaussmore useful for e
onomists than standard programming languages where thebasi
 data units are all s
alars. Gauss programs and fun
tions are all avail-able to the user, and so the user is able to 
hange them 
ontrary to mostmenu driven pre-programmed pa
kages. Most statisti
al/e
onometri
 prob-lems 
an be handled in a 
onvenient and eÆ
ient way. You 
an spe
ify yourown model, new estimators, test statisti
s, estimate 
ompli
ated likelihoodfun
tion, et
.The pri
e to pay for this 
exibility is naturally that you have often to do1Gaussis a trademark of Apte
h Systems In
., Maple Valley, USA.3



the job by your own (write your own programs, pro
edures, estimators,. . . ).There is often unlikely to be a simple pro
edure to do a simple e
onomet-ri
 task readily at hand. Noti
e also that given Gauss' high 
exibility, onewill also rapidly observe that Gauss may be found to be too tolerant ofsloppy programming whi
h means it is diÆ
ult for the 
omputer to tell whenmistakes o

ur. Nevertheless, numerous 
ompiled pro
edures and intrinsi
fun
tions are already available. Also, some more advan
ed 
ommands, pro
e-dures and fun
tions are given in various appli
ations modules. Gauss is botha 
ompiled language and an interpreter. It is a 
ompiled language be
ause its
ans the entire program, translates it into (pseudo) binary 
odes and thenexe
utes the program. Sin
e this (pseudo) binary 
ode is not native of theCPU, Gauss must interpret ea
h instru
tion for the 
omputer. Gauss alsoallows you to 
ompile programs that are very frequently used to a �le that
an be run over and over with no 
ompile time.For Internet users, it may be interesting to know that there exists aGauss software ar
hive lo
ated at the Ameri
an University in WashingtonD.C.. The site also 
ontains links to various other sites of interest for Gaussusers. The Web address is:http://gurukul.u

.ameri
an.edu/e
on/gaussres/GAUSSIDX.HTMOther useful www addresses (these have been used as referen
es for thesenotes):� Online intera
tive Gauss tutorial (ni
e!):http://e
lab.e
on.pdx.edu/gpe/to
.htm� Ex
ellent beginner's guide to Gauss in Mi
rosoft Word format (relatesto an older version of Gauss but mu
h of the stu� is still valid):http://s
ottie.stir.a
.uk/~fri01/gauss/gauss.html#seminar� Mark Watson' on-line Gauss tutorial:http://www.wws.prin
eton.edu:80/~mwatson/e
518/gauss tutorial.html� Gauss homepage:http://www.apte
h.
om/
4



2 Basi
 
on
eptsLet us �rst introdu
e some 
on
epts that have to be 
learly understood:� Expression. An expression in Gauss 
an be a matrix, string, 
on-stant, fun
tion or a referen
e to a pro
edure (or any 
ombination) thatreturns a results with the assignment operator '='.� Statements. A statement is a 
omplete expression or 
ommand whi
hwill always end with a semi
olon ';' (ex
ept if we are in 
ommand modein whi
h 
ase the semi
olon 
an be omitted most of the time). If thereis no assignment operator ('=') the expression is then an impli
it PRINTstatement. For example:y = x * 3 ;is a statement. The following two statements are equivalent:print yy;Remark: a statement is not always exe
utable (example: the de
lara-tion of a matrix).� Programs. A program is a stru
tured set of statements that are runtogether.� Pro
edures. A pro
edure allows you to de�ne a new fun
tion thatyou 
reate and whi
h 
an then be used as if it was an intrinsi
 fun
tion.The pro
edures are isolated from the rest of the program (see below).� Library. Gauss allows you to 
reate libraries of frequently used fun
-tions that the system will automati
ally �nd and 
ompile whenever it�nds a referen
e to it in a given program. When Gauss en
ountersa symbol (or a pro
edure, or whatever,. . . ) that has not previouslybeen de�ned the AUTOLOADER of the system will automati
ally try tolo
ate and then 
ompile the �les 
ontaining the symbol de�nition.2 AGauss library serves as a di
tionary to the sour
e �les that 
ontain thede�nition of the symbol or of the pro
edure.2The sear
h path used by Gauss is �rst the 
urrent dire
tory, than those listed in theSRC PATH variable in the Gauss.
fg �le, that is the Gauss 
on�guration �le.5



� Edit/Command modes. The 
ommuni
ation between the user andGauss is most eÆ
iently handled through the editor and the 
ommandwindows. To 
he
k whether the editor is a
tive or not, just see the up-per left 
orner of the menu bar that should display Gauss-edit. Theother mode is the 
ommand mode whi
h is re
ognized by the presen
eof (gauss) at the beginning of a line. The 
ommand mode (window) isbest used to 
reate very short intera
tive (s
reen resident) programs,or simply for the exe
ution of simple 
ommand lines su
h as displayingresults of simple operations, displaying a matrix,. . . If you are withinthe Editor window and want to run the program you are working inand then jump to the 
ommand mode you just have to type F3. Con-versely, from the 
ommand mode window you may swit
h to the editwindow by typing F4 or by using the menu bar whi
h enables you toswit
h from one to the other.� Data types in Gauss. The two basi
 data types supported in Gaussare matri
es and strings. The latter 
an be used to store namesof �les, of variables, to spe
ify messages to be printed,. . . Note thata matrix 
an have numeri
 or 
hara
ter elements. It is in fa
t notne
essary to de
lare the type of a variable sin
e this 
an 
hange withina program (although it is better to respe
t the types of variables ifpossible). Matri
es obviously in
lude ve
tors (row and 
olumn) ands
alars as sub-types, but these are all treated the same by Gauss. Forexample:a = b + 
;is valid whether a, b, and 
 are s
alars, ve
tors, or matri
es, assumingthe variables are 
onformable. Note that the results of the operationmight be di�erent depending on the variable type. As noted above,matri
es may 
ontain numeri
al data or 
hara
ter data or both. Nu-meri
al data are stored in s
ienti�
 notation to around 12 pla
es ofpre
ision. Chara
ter data are sequen
es of up to eight 
hara
ters whi
h
ount as one element of the matrix. If you enter text of more thaneight 
hara
ters into the 
ells in a matrix, the text will be trun
ated.Strings are pie
es of text of unlimited length. These are used to giveinformation to the user. If you try to assign a string value to an elementof the matrix, all but the �rst eight 
hara
ters will be lost.Examples of data types 6



{ Numeri
al 3 � 3 matrix0B� 1 2:2 �36:2 9 � 10�6 57 9 99 1CA{ Chara
ter 2� 2 matrix Will WillHarry Steve !{ Strings"Maastri
ht!""Strings may be pie
es of text of long length""2.2"" "Remark the trun
ation of text in the 
hara
ter and mixed matri-
es. The null string " " is a valid pie
e of text for both strings andmatri
es. Sin
e all matrix data are treated the same way, the userhas sometimes to spe
ify that Gauss is dealing with 
hara
terdata. The $ sign identi�es text and is used in a number of pla
es.For example, to display the value of the variable var1 requiresprint var1;orprint $var1;depending on whether var1 is a numeri
al matrix, a 
hara
termatrix or a string.Note that all variables must be 
reated and given an initial value beforethey are referen
ed to.� Notation, syntax and 
ase sensitivity. Gauss 
ould be des
ribedas a free-form stru
tured language: stru
tured be
ause it is designedto be broken down into easily-read parts; free-form be
ause there isno parti
ular layout for programs. Noti
e that extra spa
es between7



words are ignored. Commands are separated by a semi-
olon. Programlayout is generally a matter of personal 
hoi
e and the user has freedomto lay out 
ode in a style he �nds a

eptable. A

eptable names forvariables are up to eight 
hara
ters long. These may 
ontain alphanu-meri
 data and the unders
ore but should never start with a number.For example, a

eptable names in
ludename Nam Nam1 nam_1 _name1 n_a_m_ebut1eri
 100 12_names ifare not a

epted sin
e the three �rst start by a number and the fourthname is a
tually a reserved name. Remark that Gauss does not dis-tinguish between upper
ase and lower
ase, ex
ept inside double quotes"...".� Comments 
an be easily introdu
ed in a program: between �...� or/* ...*/. Contrary to the former, the latter kind of 
omments 
an benested. Example:� This is a 
omment �/* This is another 
omment that 
an be nested */� Starting Gauss. To start Gauss under Win98 you simply have todouble-
li
k on the Gauss short 
ut i
on and you are automati
allyset in 
ommand mode.� Help. Under Win98, the user has a

ess to the on-line help by simplytyping F1 whi
h is very useful as it 
ontains most of what 
an be foundin the 
ommand referen
e guide.3 Editor/Command windowsSin
e the 
ommuni
ation between the user and Gauss will most of the timebe handled through the full-s
reen editor window or the 
ommand window,we will brie
y dis
uss the basi
 features of these. First, it is important to notethat when you 
li
k on the Gauss short
ut you will bring up the Commandwindow. 8



3.1 The Command WindowThe Command window is the window that �rst appears when you startGauss. Its main feature is a large s
rollable text edit pane. This is the pla
ewhere the Gauss prompt appears for you to enter and run intera
tive 
om-mands. It is also where all Gauss program input output takes pla
e. Whenyou start Gauss you will automati
ally be in the 
ommand mode/windowwhi
h is 
hara
terized by the presen
e of the following start 
hara
ter at thebeginning of the line:(gauss)A program in 
ommand mode is then de�ned as the 
ode from the end ofthe line on whi
h the 
ursor is lo
ated with the start 
hara
ter (gauss).Pressing the Enter key will make a program begin exe
uting. It thus allowsyou to work intera
tively in Gauss. As su
h, you 
an only exe
ute one lineof 
ommands but you may also run existing programs,. . .Menus of interestwithin the 
ommand window are: File, Edit, Sear
h, Font, Options,Window, and Help.� File j Edit. . . : This part of the menu opens a dialog for sele
ting a�le to edit. The dialog lets you navigate drives and dire
tories, spe
ifya �lename pattern, and see the �les in a dire
tory. The �le sele
tedis added to the top of the Edit list and loaded into the Edit window,whi
h is brought to the foreground.� File j Run. . . : Opens a dialog for sele
ting a �le to run. The �lesele
ted is added to the top of the Run list and the �le is exe
uted,bringing the Command window to the foreground.� File j Stop. . . : Stops the 
urrently exe
uting Gauss program. This
an be very valuable if you've written a never-ending do-loop and havedoubts on the 
orre
tness of your 
odes.� File j Exit Gauss. . . : Exits Gauss without veri�
ation.� Edit j Undo Cut Copy Paste: Standard windows 
ommands.� Sear
h j Goto Find Repla
e Find Again Repla
e Again: Stan-dard windows 
ommands.� Font j Sele
t. . . : Opens a font sele
tion dialog whi
h allows youto 
hange the font in the text edit panel of the Command and Editwindows. The font setting is saved between Gauss sessions.9



� Options j Edit. . . : In
ludes 
ontrols to: Set the tab length. Setinsert/overstrike mode. Turn text wrapping on/o�.� Options j Program. . . : In
ludes 
ontrols to: Turn default librarieson/o�. Set autoload/autodelete state. Turn de
lare warnings on/o�.Turn dataloop translation on/o�. Turn translator line tra
king on/o�.Turn normal linetra
king on/o�. Set Compile to File state. These aremore advan
ed options that will not be dis
ussed in details during the
ourse. You are advised to leave the default settings.The windows also simply lets you move between the Command and Editwindows. The Command window will a

umulate output unless you 
learthe s
reen. There is however no hot key for doing so. To 
lean the s
reenyou have to use CLS 
ommand near the beginning of the program. Withinthe Command window you have to type 
ls after the Gauss prompt andhitting enter. Noti
e that a few other keys are useful su
h as F4 to swit
h tothe Gauss-Edit windows and F3 to exe
ute (run) a program.3.2 The Edit Mode/WindowsThe Gauss edit window is by far the one that is the mostly used in Gauss.It allows you to 
reate small data �les, edit existing �les, write down yourprograms, exe
ute them and modify what appears to be eventually ne
essary,rerun, modify, without having to quit Gauss. To get in edit mode when youare in the default Gauss 
ommand window, just use the menu bar whi
his useful to load existing program �les for example or type F4 to swit
hto the Gauss-Edit windows. The Edit window is a text editor. The Editwindow and the Command window have many 
ontrols in 
ommon. Themost obvious di�eren
e is that the Command window has Stop (runningprogram) 
ontrols and the Edit window has Save (�le) 
ontrols. Most of thepossibilities o�ered by the menu under the Edit mode are self-
ontained andstandard.File j Save as. . . Opens a dialog for saving the 
urrent 
ontents of theEdit window under a new �lename. The text being edited is saved to thenew �le, and the new �lename is added to the top of the Edit list. You will�nd this useful for 
opying a program under a new name so you 
an use itas a template for 
reating a new program. If you want to 
reate a new �lethat you will 
all myfile, you may more simply within the 
ommand windowsimply typeEdit myfile <Enter> 10



and then the Gauss-edit window will automati
ally appear. You are thenin edit mode and already in myfile. You 
an enter your data set or 
reatenew program as in any usual text editor. If you have already a saved 
opyof your program, let say myfile.prg, on your disk, just typeEdit myfile.prg <Enter>and you are then in edit mode where you 
an modify your myfile.prg �le.More simply, you may use the menu bar. Noti
e that this implies that your�le is in the working dire
tory of Gauss. If you have your �le lo
ated on a
oppy (whi
h is the A: drive), you have to introdu
e a path name:Edit A:\myfile.prg <Enter>whi
h spe
i�es where to go to get myfile.prg. Edit thus allows for pathto get existing �le edited. The build-in editor in Gauss has a multitude ofmore or less standard Win98 editing keys or keystrokes that are useful whenbuilding or modifying a program.3.3 Graphi
 WindowsWhen you have run a program in whi
h 
reates graphs (whatever the typeof graph), Gauss will open a so-
alled PQG window, where PQG stands forPubli
ation Quality Graphi
s. We will dis
uss the 
reation of graphi
s, thiswindow and its options below brie
y. When Gauss 
reates a graph, it storesit in a �le with a .tkf extension. The tkf �les will be stored in your generalGauss working dire
tory. After you have 
reated a graph you 
an save itand prote
t it from overlay by moving it to a folder or separate dire
tory.4 Loading data and 
reating data setsThere are basi
ally two ways to get data into Gauss: you may enter ve
torsand matri
es dire
tly into your program, or you 
an read data in from an ex-isting �le. Both methods have their uses. In this se
tion we �rst 
on
entrateour attention to the simple questions:� How 
an you 
reate a small data set in Gauss?� How 
an you read external data �les in Gauss?Assume you are already in the Gauss 
ommand mode and you would liketo 
reate your own data set 
onsisting of 3 variables for whi
h you have 5observations on ea
h of these. The easiest way to pro
eed is to type11



Edit mydata <Enter>On
e you are under the Gauss-Edit window, after the message Editingmydata has appeared on lower left 
orner of your the s
reen you may type(for example) 10:01 22:225 2:3011:08 55:233 3:0212:59 65:158 4:0213:26 61:258 5:0319:02 64:267 6:12Remark: the di�erent 
olumns are the di�erent variables and the di�erentrows are the observations on these variables. Use then the menu bar to savethese data in an As
ii �le that is 
alled mydata. Alternatively you may justtype F2. Naturally su
h an As
ii �le 
an also be 
reated using an externaleditor or as the output of various software (Lotus, Ex
el, RATS,. . . ).The question is now how 
an we load this small data set so that we willbe able to use it in Gauss. Remember that Gauss work with matri
es sothat the data �le has to be loaded in a matrix. Let us assume that we 
allthis matrix x. We 
an simply type the following lines:load x[5,3℄ = mydata;� loads the data mydata into the matrix x �print x; � prints the matrix x �LOAD a

epts path names if your �le mydata is not in the Gauss dire
tory.Various forms of LOAD are available, they do depend on the spe
i�
 naturesof the �le you want to load (see Command Referen
e Guide or the on-linehelp for more information). The 
ommand LOAD 
an be used to read in datafrom an As
ii �le (*.as
, *.txt, *.prn, or*.
sv extension) or a Gaussdata �le (.fmt ). As
ii �les must be delimited with spa
es, 
ommas, tabsor newlines. If your data is in an Ex
el �le or 
an be put into an Ex
el�le, you 
an save it as a tab delimited �le (*.txt) or a spa
e delimited �le(*.prn) or a 
omma delimited �le (*.
sv) .3 If no dimensions are spe
i�ed,like inload x = mydata;then x is a 
olumn ve
tor 
ontaining all of the data in mydata in the order1st row, 2nd row, et
. (row major order). You 
an use the fun
tion rows(x)3In the latest version of the software, it is now possible to load Ex
el �les of the .xlstype dire
tly. 12



to �nd out if all the data have been loaded and the fun
tion reshape (x,n, k) to reshape the nk� 1 ve
tor y into the matrix you want to work with.On
e a data set is loaded into a matrix, you 
an go on and perform anykind of 
al
ulations you want on this x matrix or on some of its elements.It is now possible to 
reate from this x matrix a Gauss data set using theSAVED instru
tion
all saved(x,"mydata",0);The resulting data set is 
alled mydata.dat. These Gauss data sets 
onsistof two �les, one with a .dat extension and another with a .dht extension.The latter is mainly an information �le on the 
ontent of the 
orresponding.dat �le. The last argument of the saved 
ommand is a k � 1 string or
hara
ter ve
tor. If it is set equal to 0 like in this example, it simply meansthat the variables names will start with the 
hara
ter X and be followed bya number between 1 and k. In our example these will thus be X1; X2; X3:An alternative would be to 
reate this k � 1 ve
tor using LETlet names = var1 var2 var3;� 
reates a string ve
tor "names" with 3 elements �and then 
reate a Gauss data set using
all saved(x,"mydata",names);When a Gauss dataset exists on the disk (generated from a previousoperation) you 
an open it dire
tly using OPEN or LOADD. Another possibilityis to load it dire
tly into a matrix x with the linex = "mydata";5 Creating an output �leTo 
reate an output �le, you need to dire
t the output of PRINT statementsnot only to the s
reen (this is automati
) but also to disk �le. This is doneusing the 
ommand OUTPUT. It allows for path names. Example:output file = filename onwhere you 
an repla
e on byreset or off 13



Without on, the 
ommand OUTPUT will only sele
t the �le to be used for theoutput but will not open it. A subsequentoutput on; or output reset;would then be required. The di�eren
e between RESET and ON is simply thatin the latter 
ase the �le will be opened for appending, i.e. the results of theprint statements are appended to the sele
ted �le if it already exists. In theRESET 
ase a new �le is 
reated so that if the �le already exists it will bedestroyed. If you want to edit your output �le with the Gauss-edit window,you will �rst have to 
lose the �le usingoutput off;6 The Basi
 operations with matri
esGauss basi
ally works with matri
es, and it is therefore important to notethat almost all matrix expressions are entered following the usual way matrixexpressions are written. Matri
es are 2-dimensional arrays of double pre
isionnumbers whi
h are all impli
itly 
omplex in the Gaussi version (
onversionbetween 
omplex and real matri
es o

urs automati
ally in Gauss). Thematri
es are stored in row major order. For example a 3� 3 matrix will bestored in the following order:[1,1℄[1,2℄[1,3℄[2,1℄[2,2℄[2,3℄[3,1℄[3,2℄[3,3℄Any matrix is indexed with 2 indi
es, ve
tors 
an be indexed with one indexand s
alars are 
onsidered as 1� 1 matri
es. The majority of fun
tions andoperators in Gauss take matri
es as arguments. Here are some useful oneswhen de�ning, saving and loading matri
es:= assignement statementj verti
al 
on
atenation� horizontal 
on
atenationLET matrix de�nition statementDECLARE is similar to the LET statementbut for 
ompile time matri
esThe 
ommand LET thus 
reates matri
es. The format for 
reating a matrix
alled matrix 
an take the following form:14



Table 1: Examples of LETShape of xlet x = 1 2 3 4 5 6; Column ve
tor 6x1let x = 1,2,3,4,5,6; Column ve
tor 6x1let x = f1 2 3 4 5 6g; Row ve
tor 1x6let x = f1 2,3 4,5 6g; Matrix 3x2let x[3,2℄ = 1 2 3 4 5 6; Matrix 3x2let x[3,2℄ = 1, 2, 3, 4, 5, 6; Matrix 3x2let x[3, 2℄ = 5; Matrix 3x2let matrix = f
onstant-listg;orlet matrix[r,
℄ = f
onstant-listg;In the �rst 
ase, the type of matrix depends on how the 
onstants werespe
i�ed. A list of 
onstants separated by spa
e will 
reate a 
olumn ve
tor.If, however, the list of 
onstants is en
losed in bra
es fg, then a row ve
tor willbe produ
ed. When bra
es are used, inserting 
ommas in the list of 
onstantsinstru
ts Gauss to form a matrix, breaking the rows at the 
ommas. If 
urlybra
es are not used, then adding 
ommas has no e�e
t. In the �rst 
ase, thea
tual word LET is optional. If the se
ond form is used, then an r� 
 matrixwill be 
reated; the 
onstants will be allo
ated to the matrix on a row-by-row basis. If only one 
onstant is entered, then the whole matrix will be�lled with that number. Note the square bra
kets. This is the standard wayto spe
ify either the dimensions of a matrix or the 
oordinates of a blo
k,depending on 
ontext. The �rst number always refers to the row, the se
ondto the 
olumn.Note that an assignment statement followed by data en
losed in bra
esis an impli
it LET statement. Consequently, the following are equivalent:let x = { 1 2 3, 4 5 6 };x = {1 2 3, 4 5 6};let x[2,3℄ = 1 2 3 4 5 6;and 
reate a 2� 3 matrix x x = 1 2 34 5 6 !When bra
es are used in LET statements, the 
ommas de�ne the row separa-tion. A 2� 3 matrix of ones is 
reated with15



let x[2,3℄ = 1;or by using the 
ommand ONES whi
h 
reates automati
ally matri
es of ones:x = ones(2,3);whilelet[2,3℄;will 
reate a 2�3 matrix of elements equal to 0. Note that the LET 
ommand
annot be used to de�ne matri
es in terms of expressions. The elements ofthe matri
es, of rows or 
olumns are easily isolated. For example, if we
onsider the x matrix given abovez = x[2,2℄;will de�ne z as a s
alar and assign the value 5 to z, i.e. the value of theelement of the se
ond row, se
ond 
olumn of the matrix x. To 
reate arow-ve
tor x1 
onsisting of the 1st row of x, just usex1 = x[1,.℄;where the "." indi
ates "all 
olumns". The resulting x1 is a 1� 3 ve
torx1 = ( 1 2 3 )On
e a matrix is 
reated (or loaded), simple operations for matrix de-s
ription and manipulations are easily performed like returning the numberof 
olumns, taking the max, sorting,. . . Here are a few of these standardmanipulations often used when writing more 
ompli
ated programs or pro-
edures (for more details or details on the other manipulations see the manualor the on-line help):COLS(x) returns number of 
olumns in the matrix xROWS(x) returns number of rows in the matrix xMAXC(x) returns largest element in ea
h 
olumn of the matrix xMAXINDC(x) returns row number of largest element in ea
h 
olumn of the matrix xMINC(x) returns smallest element in ea
h 
olumn of the matrix xMININDC(x) returns row number of smallest element in ea
h 
olumn of the matrix xSUMC(x) 
omputes the sum of ea
h 
olumn of the matrix xCUMSUMC(x) 
omputes 
umulative sums of ea
h 
olumn of the matrix xPRODC(x) 
omputes the produ
t of ea
h 
olumn of the matrix xMEANC(x) 
omputes mean value of every 
olumn of the matrix xSTDC (x) 
omputes standard deviation of every 
olumn of the matrix x16



It is also often useful when you have for example a large matrix x, ofdimension let say 150 � 35, to be able to 
onsider sub-matri
es of lowerdimension 
onsisting for example of a subset of the 
olumns and the rowssatisfying some 
riteria. This type of extra
tion is easily performed inGauss.There are various possibilities. Some of the most useful ones are:� PACKR(x) that deletes the rows of a matrix that 
ontain any missingvalues, "."., (Noti
e that the Gauss 
ode for a missing value is "." sothat you have to repla
e whatever other 
ode is used in your data beforeyou import your data, although GAUSS has an internal pro
edure for
onversion.� DIAG(x) 
reates a 
olumn ve
tor of dimension min(n; k) � 1 ve
torfrom the diagonal of a n� k matrix. The matrix x need not be square.� LOWMAT(x) returns the lower portion of a matrix, i.e. the main diagonaland every element below.� UPMAT(x) returns the main diagonal and every element above.� Elements of a matrix and submatri
es 
an also be extra
ted using therow and 
olumn indi
es. For example x[r1:r2,
1:
2℄ extra
ts thesubmatrix 
onsisting of rows r1 to r2 and 
olumns 
1 to 
2. Usinga dot, ".", in pla
e of an index, extra
ts all the row or the 
olumnelements.6.1 Pre
eden
e order of operatorsExpression will be 
omposed of operations on matri
es. These are 
reatedusing operators and the order in whi
h the expression is evaluated is de-termined by the pre
eden
e order of the operators and the order in whi
hthey are used in the expression. As usual the multipli
ation and divisionoperators (respe
tively * and /) have an higher order of pre
eden
e than thesummation and substra
tion operators (+ and -).6.2 Some matrix operatorsThe following mathemati
al operators work basi
ally on matri
es. Most ofthese assume numeri
 data. We list some of the frequently used operatorswith a few examples where we assume that we have already loaded twodi�erent matri
es x and z, both of dimension n� n.17



Operators Code ExamplesAddition + y = x + z;Substra
tion � y = x - z;Matrix Multipli
ation � y = x * z ;Division or linear equation solution = z = b/A;where A and b are s
alarsElement by element multipli
ation :� y = x .* z;Element by element exponentiation :^ y = x .^z;Krone
ker Produ
t : � : y = x .*. z;Horizontal dire
t produ
t �~ y = x *~y;Transpose operator 0 y = x';Verti
al 
on
atenation j y = x | z;Horizontal 
on
atenation ~ y = x ~y;Other operators/
ommands are given and detailed in the Command Ref-eren
e manual. An often used operation in statisti
s and e
onometri
s isthe inversion of a given (invertible) matrix. This is most easily done usingthe 
ommand INV (or INVPD is the matrix is symmetri
 positive de�nite).y = inv(x);
omputes y = x�1. The input of INV is thus simply the matrix you wantto invert and the output is the inverted matrix. The determinant of x isobtained using DET(x).6.3 Comparing matri
es, ve
tors and s
alarsIt is often very useful to 
ompare matri
es, s
alars or ve
tors. These tasksare performed with relational operators and as usually with these type ofoperators, they return a s
alar whi
h we denote here by z whi
h is either 0or 1.� Less than: z = x < y; or z = x lt y;� Not equal: z = x /= y or z = x ne y;� Greater than: z = x > y; z = x gt y;� Greater than or equal to: z = x >= y; or z = x ge y;� Equal to: z = x == y; or z = x eq y;� Less than or equal to: z = x <= y; or z = x le y;18



The result of all these operators is a s
alar 1 (TRUE) or 0 (FALSE), basedupon a 
omparison of all elements of x and y. Note that all 
omparisonsmust be true for a result of 1. It makes no di�eren
e whether you use thealphabeti
 or the symboli
 form of the operator; however, in the alphabeti
form the operator must be pre
eded and followed by a spa
e. If you work with
onformable matri
es and want an element by element 
omparison whi
h willreturn a matrix of zeros and ones, pre
ede the operator a dot ".", e.g., .==or .eq.7 ExamplesAt this point of the 
ourse, it is useful to take a look at some pra
ti
al exam-ples. First we fo
us on the linear regression and present di�erent methodsfor dealing with the estimation of a linear regression problem. In a se
ondstep, we detail how to implement Monte Carlo simulations in GAUSS.7.1 Linear regression7.1.1 Linear regression: a brief reviewNotation:- Dependent variable: Y- Number of observations: T- k independent variables: XThus, Y has T rows and 1 
olumn, X has T rows and k 
olumns.In matrix form, the OLS equation 
an be written as:Y = X� + � (1)where � (error term) is N(0; �2). The OLS estimator is:b = b� = (X 0X)�1X 0Y (2)The residuals are: e = Y � bY (3)The unbiased estimator of the varian
e �2 is:19



s2 = e0eT � k (4)The varian
e-
ovarian
e matrix of the estimated 
oeÆ
ients is:V (b) = s2(X 0X)�1 (5)Student tests are performed using:ti = bi � �i0SEi � t(T � k) (6)where SEi is the standard error of 
oeÆ
ient i.7.1.2 OLS pro
edureA �rst possibility is to use the OLS pro
edure provided in GAUSS. Thedataset is in
luded in the program./* LINEAR REGRESSIONWe regress the 
onsumption on in
ome (US data, years 40-50) */Z={244 229.9,277.9 243.6,317.5 241.1,332.1 248.2,343.6 255.2,338.1 270.9,332.7 301,318.8 305.8,335.8 312.2,336.8 319.3,362.8 337.3};print "Number of observations " rows(Z);print "Mean of Z " mean
(Z);in
ome=Z[.,1℄;
onsum=Z[.,2℄;{ vnam,m,b,stb,v
,stderr,sigma,
x,rsq,resid,dwstat } = ols(0,
onsum,in
ome);20



See ols1.prg.7.1.3 Matrix 
omputationA se
ond possibility is to program the given formulae using the matrix op-erations in GAUSS.in
ome=Z[.,1℄;
onsum=Z[.,2℄;x=ones(rows(in
ome),1)~in
ome;y=
onsum;xxi=invpd(x'x);b=xxi*(x'y);e=y-x*b;s2=e'*e/(rows(x)-
ols(x));sd=sqrt(diag(s2*xxi));t=b./sd;print "Estimated 
oeffi
ients " b;print "Standard errors " sd;print "t-stats " t;See ols2.prg.7.1.4 Loading a data �leIn the pre
eding programs, the data were in
luded in the program. Usually,the data are given in an external �le. In the following program, the data areloaded from an external text �le.n_obs=11;load Z[n_obs,2℄=
:\maas\qmif\progs\
onsin
.txt;in
ome=Z[.,1℄;
onsum=Z[.,2℄;x=ones(rows(in
ome),1)~in
ome;y=
onsum;xxi=invpd(x'x);b=xxi*(x'y); 21



e=y-x*b;s2=e'*e/(rows(x)-
ols(x));sd=sqrt(diag(s2*xxi));t=b./sd;print "Estimated 
oeffi
ients " b;print "Standard errors " sd;print "t-stats " t;See ols6.prg.7.1.5 Loading a �le and managing datasetsFinally, we illustrate the use of datasets. In the following program, the text�le with the data is loaded and then written as a GAUSS dataset. Thisdataset is then used in the OLS pro
edure.n_obs=11;load Z[n_obs,2℄=
:\maas\qmif\progs\
onsin
.txt;in
ome=Z[.,1℄;
onsum=Z[.,2℄;/* Dataset Z is written on disk */dataset="
:\\maas\\qmif\\progs\\CONSINC";let vnames=INCOME CONSUM;if not saved(Z,dataset,vnames);errorlog "Write error";endif;dataset="
:\\maas\\qmif\\progs\\CONSINC";let depvar=CONSUM;let indvars=INCOME;{ vnam,m,b,stb,v
,stderr,sigma,
x,rsq,resid,dwstat }= ols(dataset,depvar,indvars);See ols5.prg.7.2 Monte Carlo simulationsMonte Carlo simulations is a powerful te
hnique used in applied e
onometri
analysis. The Gauss programming language is well suited for this task asit is fast and matrix operations are readily available. We 
onsider a familiarappli
ation in quantitative �nan
e, the di�usion pro
ess.22



7.2.1 Di�usion pro
essThe basi
 di�usion equation (with drift � and volatility �) 
an be writtenas: dXt = �Xtdt+ �XtdWt (7)with dWt being a Wiener pro
ess, i.e. dWt = �tp�t and �t is IID N(0,1);X(t0) = X0. Note: dXt should be understood as the 
hange in Xt overthe small time interval �t. For this reason, we often write �t = h andXt+h �Xt = dXt = �Xth+ �Xt�tph./* Start date */t0=0;/* End date */tt=2;/* Number of points */N=200;/* Number of simulations */Ns=10;/* Mu (year) */mu=0.07;/* Sigma (year) */sigma=0.2;/* Start pri
e */X0=50;/* Step */h = (TT-t0)/N;/* Sequen
e of time in
rements */t = seqa(t0,h,N+1);xt = zeros(N+1,Ns);xt[1,.℄ = x0*ones(1,Ns);u = rndn(N,Ns)*sqrt(h);i = 1;do until i > N;xi = xt[i,.℄;xt[i+1,.℄ = xi + xi*mu*h + xi.*(sigma*u[i,.℄);i = i + 1; 23



endo;See m
dp1.prg.8 Graphi
s in GaussOne attra
tive feature of Gauss is its ability to draw high quality graphi
sin two of three dimensions of a large variety of di�erent types. Gauss alsoprovides a 
omplete windowing system for plotting multiple graphs on onepage. The way Gauss works is to provide fun
tions whi
h draw the graphsand only draw the graphs. All other attributes are set using (global) vari-ables. Hen
e, the 
reation of a graph involves setting one variable to the title,another to the type of lines wanted, another to the 
olor s
heme,. . .Whenthe graph fun
tion is then 
alled, Gauss uses all the information previouslyset to draw the graph with the right 
hara
teristi
s. Any program drawinggraphs should have the linelibrary pgraph;ideally at the start of the program. This enables Gauss to know where allthe spe
ialized graph-drawing routines are to be found. Remark that graphs
annot be drawn if this line is omitted. The LIBRARY line should appear onlyon
e at the top of your program and 
ould be followed by GRAPHSET whi
hreset all the variables ba
k to their default values.There are an enormous amount of options that may be spe
i�ed, all theseare detailed and spe
i�ed in the System and Graphi
s Manual, and someinformation on these 
an be obtained from the on-line help. They all beginwith p to make them easily to identify. These are set/modi�ed like anyother variables in Gauss. For example,_p
olor = zeros(2,1);_p
olor[1℄ = 2;_p
olor[2℄ = 5;_pbartyp = {2 1, 2 2, 2 3};The p
olor instru
tion sets 
olors for the XY and XYZ graphs. It is a 2x1ve
tor implying, in this 
ase, that there are two series to be plotted. The �rst24



series will be plotted in the 
olor de�ned by 2 (whi
h is grey), the se
ond inred.The pbartype instru
tion sets the shading type and 
olor for a bar graph.It is a 3x2 matrix, implying three series. The most useful variable is_plegstr = "legend A\000legend B\000Legend C";This de�nes legends for ea
h line when a graph is displaying multiple series -three in this 
ase. The legends for ea
h series must be separated by the 
ode\000whi
h is a null 
hara
ter spe
ifying that one name has ended and anotheris beginning. The relevant variables to be set are detailed with ea
h graphtype. In addition there are a number of general fun
tions whi
h 
ontrol othersettings, of whi
h the most important aretitle(title);xti
s(min, max, in
rement, subDivs);xlabel(title);The �rst of these sets the title for the graph. XTICS (and the asso
iatedfun
tions YTICS and ZTICS) allow for s
aling of the X-axis. If this fun
tionis not 
alled, Gauss will work out its own s
aling. min and max are theminimum and maximum values on the s
ale, with the s
ale in
reasing byin
rement; negative values for the in
rement are a

eptable. subDivs is thenumber of minor ti
ks between ea
h in
rement. Finally, XLABEL (and YLABELand ZLABEL) provides a title for the X, y or Z axis.All these options should be set before printing a graph. However, mostof the defaults are good 
hoi
es, and many options will not need 
hanging.Gauss provides a number of graph types, most importantly bar graphs, X-Y,log X-Y and histograms. All data for graphs 
ome in the form of matri
es.When a graph instru
tion is en
ountered, Gauss plots the graph immediatelyusing the 
urrent set of options or defaults. This is why all the options areset �rst. By the time Gauss rea
hes a graph instru
tion, all it needs toprodu
e the graph is the data given in the fun
tion 
all. The graph dataare in N �K matri
es, where N is the number of data points and K is thenumber of series to be plotted. Whether multiple series are permitted or notdepends on the graph: for example, multiple series are allowed in an X-Ygraph. For example 25



xy(var1, var2~var3);will plot an X-Y graph, using a Cartesian 
oordinate system, 
onsisting threeseries where var1 will spe
ify the x-axis. LOGX (resp. LOGY) will plot an X-Ygraph using logarithmi
 X (resp. Y) axis while LOGLOG will plot an X-Ygraph using logarithmi
 X and Y axes.In pra
ti
al data analyses, it is often useful to have di�erent graphi
s onthe same page. This is easily done by using the 
omplete windowing systemfor plotting multiple graphs on one page provided in Gauss. We will justmention here the most important steps that one has to follow. In all 
ases,one has to initialize the window pro
edure with begwind that must be 
alledbefore any other window fun
tions are 
alled. Similarly endwind ends thewindow manipulation and it is only thereafter that the graphs are displayed.An important pro
edure is window whi
h 
reates and partitions the s
reeninto windows of equal size. The general format is window(#row,#
ol,typ);where #row is the number of rows of windows and #
ol the number of
olumns of windows while typ spe
i�es the window attribute type: if thisvalue is 1, the windows will be transparent, if 0, the windows will be non-transparent. Noti
e that the windows will be numbered from 1 to (#row �#
ol) beginning from the left topmost window and moving to the right. The
urrent window is set to 1 immediately after 
alling this fun
tion, setwindis used to spe
ify the window number. One may alternatively use nextwindwhi
h sets the 
urrent window to the next available window number.Graphs (or pages with several graphs) are automati
ally displayed in spe-
i�
 windows and 
an be printed, saved or 
onverted into various formats thatmay later be used in other pa
kages (su
h as word pro
essors like Winword,WP, S
ienti�
 Word,. . . ). You 
an print the graphs that Gauss generatesdire
tly, but if you want to put them into a wordpro
essor Gauss supports
onversion to four formats: ps (posts
ript), pi
 (Lotus), hpgl (plotter) andp
x (bitmap).8.1 ExampleThe following lines illustrate this idea of putting various graphi
s on the samepage. We �rst generate some random numbers, a

umulate these to generatea random walk. Lagged and �rst di�eren
es are generated. Finally a pagewith four graphs is 
reated.library pgraph; graphset;n = 400; e = rndn(n,1); /* generating pseudo (normal) random data */26



obser = seqa(1,1,n); /* generate a deterministi
 series 1,2,...,n */y = CUMSUMC(e); /* 
umulate the y series to get a random walk */yl = lagn(y,1); /* generate lagged variable */yd = y-yl; /* generate first differen
ed series */begwind; window(2,2,1);setwind(1); title("Figure 1");xlabel("Observations"); ylabel("Variable y - level");xy(obser,y);setwind(2); title("Figure 2");xlabel("Observations"); ylabel("Variable y - lag");xy(obser[1:rows(yl),.℄,yl);setwind(3); title("Figure 3");xlabel("Observations"); ylabel("Variable y - 1st diff.");xy(obser[1:rows(yd),.℄,yd);setwind(4); title("Figure 4");xlabel("Random numbers"); ylabel("Frequen
ies.");{b1,m1,freq1} = HISTP(y[.,1℄,50);endwind;See graphs1.prg.9 Loops, 
onditional bran
hing. . .9.1 Conditional bran
hingThe syntax of the full IF statement is:if 
ondition1;dothis1;elseif 
ondition2;dothis2;elseif 
ondition3;else;dothis4;endif;but all the ELSEIF and ELSE statements are optional. Thus the simplest IFstatement is 27



if 
ondition1;dothis1;endif;Ea
h 
ondition has an asso
iated set of a
tions (the dothis ). Ea
h 
onditionis tested in the order in whi
h they appear in the program; if the 
onditionis "true", the set of a
tions will be 
arried out. On
e the a
tions asso
iatedwith that 
ondition have been 
arried out, and no others, Gauss will jumpto the end of the 
onditional bran
h 
ode and 
ontinue exe
ution from there.Thus Gauss will only exe
ute one set of a
tions at most. If several 
onditionsare "true", then Gauss will a
t on the �rst true 
ondition found and ignorethe rest. If none of the 
onditions is met, then no a
tion is taken, unlessthere is an ELSE part to the statement. The ELSE se
tion has no asso
iated
ondition; when the ELSE statement is rea
hed, Gauss will always exe
utethe ELSE se
tion. To rea
h the ELSE, Gauss must have found all other
onditions "false".49.2 Loop statements: WHILE and UNTIL, FORThe format for the loop statements aredo while 
ondition; do until 
ondition;dothis; dothis;endo; endo;These two are identi
al ex
ept that the �rst loops until 
ondition is"false", while the se
ond loops until 
ondition is "true". This means thatdo while 
ondition; do until (NOT 
ondition);are identi
al. The operation of the WHILE loop is as follows: (i) test the
ondition; (ii) if "true", 
arry out the a
tions in the loop; then return to stage(i) and repeat; (iii) if "false", skip the loop a
tions and 
ontinue exe
utionfrom the �rst instru
tion after the loop. Note that the 
ondition is testedbefore the loop is entered. Also, there is nothing in the de�nition of theloop to say how the loop 
ondition is set or altered. It is the programmer'sresponsibility to ensure that the 
ondition is set properly at ea
h stage. Sin
eversion 3.2.35, Gauss now also o�ers a FOR loop 
onstru
t. The format isfor i (start, stop, step);dothis;endfor;4Un
onditional bran
hing is done with the GOTO. The target of a GOTO is 
alled a label.Labels must begin with ' ' or an alphabeti
 
hara
ter and are always followed by a 
olon.28



where i stands for the 
ounter variable, start (may be a s
alar expression)is the initial value of the 
ounter, stop is the �nal value of the 
ounter andstep the in
rement value. Note that the 
ounter is stri
tly lo
al to the loop.The 
ommands BREAK and CONTINUE are supported. The CONTINUE 
ommandsteps the 
ounter and jumps to the top of the loop. The BREAK 
ommandterminates the 
urrent loop by jumping past the ENDFOR statement. Whenthe loop terminates, the value of the 
ounter is stop if the loop terminatednaturally. If break is used to terminate the loop and you want the �nal valueof the 
ounter you need to assign it to a variable before the break statement.9.2.1 Examplesx = zeros(10, 5);for i (1, rows(x), 1);for j (1, 
ols(x), 1);x[i,j℄ = i*j;endfor;endfor;Example using BREAK:li = 0;x = rndn(100,1);y = rndn(100,1);for i (1, rows(x), 1);if x[i℄ /= y[i℄;li = i;break;endif;endfor;if li;print "Compare failed on row " li;endif;10 De�ning and using pro
eduresAs already mentioned above you should as mu
h as possible make use ofpro
edures whi
h allow you to de�ne a new fun
tion that you 
reate andwhi
h 
an then be used later as if is was an intrinsi
 fun
tion. Pro
eduresare extremely useful on
e you are 
onfronted with an ex
essively large and
ompli
ated program that may be diÆ
ult to read, understand, and alter.29



If the program is broken into separate se
tions with meaningful pro
edurenames, it be
omes mu
h more manageable. Alternatively, there may be apie
e of 
ode whi
h 
arries out some minor fun
tion. Pla
ing this 
ode in apro
edure allows the programmer to 
on
entrate on the main points of theprogram. The se
ond most important reason to motivate the use and the
onstru
tion of pro
edures is the repetitive 
hara
ter of numerous operations.The 
hoi
e is then simply between expli
itly programming the same operationseveral times, or writing a pro
edure and 
alling it several times; usually thelatter wins hands down. Finally, pro
edures are often easier to test and lesssus
eptible to unexpe
ted in
uen
es.Hen
e pro
edures are extremely useful when the same estimation method,test statisti
, expression or model evaluation is to be used often in quitedi�erent situations. A pro
edure is thus a user de�ned fun
tion that is laterused as if it was an intrinsi
 part of the Gauss language. Noti
e that anyintrinsi
 
ommand of fun
tion, and any user de�ned fun
tion of pro
edure
an be used within a pro
edure.A pro
edure de�nition 
onsists of 5 di�erent parts:1. Pro
edure de
laration (PROC Statement): the format of the PROC state-ment is as follows:PROC ({number of returns}) = name(arguments);The arguments 
an be numerous and are then separated by 
ommas.These are the names that are used inside the pro
edure for the argu-ments that are passed to the pro
edure when the latter is 
alled.2. Lo
al variable de
laration (LOCAL statement): lo
al variables are onlyknown within the pro
edure de�ned. Remark that there is no informa-tion about the size or type of the lo
al variable here. All this statementsays is that there are variables whi
h will be a

essed during this pro-
edure, and that Gauss should add their names to the list of validnames while this pro
edure is running.3. Body of the pro
edure: the body 
ontains Gauss statements that areused to perform the task, they may use intrinsi
 fun
tions, used de�nedfun
tions,4. Returns from the pro
edure (RETP statement): returns a number ofitems. Their number must 
orrespond with the number of returns inthe PROC statement. These returns 
an however be of any type. It isimportant to know that Gauss will not 
he
k these returns and it will30



not warn the user if the number of returns is not equal to the number ofreturns spe
i�ed in the pro
edure de
laration. Gauss will only reportan error when the pro
edure is a
tually 
alled during a program run.5. End of pro
edure (ENDP statement): the statement ENDP tells Gaussthat the de�nition of the pro
edure is �nished. Gauss then adds thepro
edure to its list of symbols. It does not do anything with the 
ode,be
ause a pro
edure does not, in itself, generate any exe
utable 
ode. Apro
edure only exists when it is 
alled; otherwise it is just a de�nition.There are di�erent ways of 
alling a pro
edure. Assume that the pro-
edure's name is given by pro
name and the arguments are i, j and k.Pro
edures are 
alled as follows
all pro
name(i,j,k); /* will ignore all returns */y = pro
name(i,j,k); /* is suited for one return pro
edures */{ x, y, z \} = pro
name(i,j,k); /* is suited for multiples returns*/pro
name(i,j,k); /* no returns */10.1 ExampleLet us here give the example of a pro
edure that estimates a linear regressionmodel and returns the OLS estimates, their standard errors and t-values (seethe formulae given above).in
ome=Z[.,1℄;
onsum=Z[.,2℄;x=ones(rows(in
ome),1)~in
ome;y=
onsum;{b,sd,t}=regress(x,y);print "Estimated 
oeffi
ients " b;print "Standard errors " sd;print "t-stats " t;pro
 (3)=regress(x,y);lo
al xxi,b,e,s2,sd,t;xxi=invpd(x'x);b=xxi*(x'y);e=y-x*b; 31



s2=e'*e/(rows(x)-
ols(x));sd=sqrt(diag(s2*xxi));t=b./sd;retp(b,sd,t);endp;See ols3.prg.The di�erent lines have the following interpretation:� First the pro
edure de
laration de�nes that the pro
edure will be 
alledregress and will return 3 matri
es.� The names x and y will be used inside the pro
edure. These are the(arguments) names that are used inside the regols pro
edure for thearguments that are passed to the pro
edure when regols is 
alled.� We then de�ne the lo
al variables.� The next six lines form the body of the pro
edure: we �rst 
al
ulate(x0x)�1 (denoted by xxi) use it to 
ompute b and to 
al
ulate the olsresiduals e. An estimate of the error varian
e is 
omputed (s2) andused to obtain the standard error of b (sd). Finally the t-values are
al
ulated. This ends the body of the pro
edure.� RETP then returns the three ve
tors b, sd, t: the OLS estimates,their standard deviations and the 
orresponding t-values. ENDP 
losesthe pro
edure.11 Gauss modulesThe basi
 Gauss program is the �rst building blo
k of the Gauss softwarepa
kage. Other program pa
kages (modules) are available from Apte
h Sys-tems and fo
us on more spe
i�
 appli
ations su
h as maximum likelihoodestimation, time series methods or �nan
ial appli
ations. In this introdu
-tory text, we brie
y review an appli
ation of the maximum likelihood moduleand the time series module (ARIMA modelling).11.1 Maximum likelihood11.1.1 A brief review of maximum likelihood estimation- Model parameters: �. The true values of the parameters are �0, whi
h areunknown. 32



- Number of observations: T- Observations: yt, t = 1 : : : T , and possibly explanatory variables xt (y andx ve
tors in matrix form).- Density fun
tion for the model: f(y; �)- Likelihood fun
tion based on the density fun
tion: L(�; y) = f(y; �). For agiven set of observations y, L(�0; y) gives the likelihood that the sam-ple y has been generated by the density law f(y; �0). If we have thatL(�0; y) > L(�00; y), then it is more likely that the sample y is a realiza-tion of f(y; �0) than f(y; �00). In other words, �0 is a better 
andidatefor �0 than �00.- The maximum likelihood estimation pro
edure is the following optimiza-tion problem: max�L(�; y) =) b� (8)- Based on b�, the maximized likelihood is L(b�; y).- In general, one maximizes the log-Likelihood, or ln(L(�; y)) = l(�; y).- S
ore or gradient of the log-Likelihood: s(�; y) = �l(�; y)=��. By de�nitionof the maximization problem, b� is su
h that s(b�; y) = 0, whi
h allowsthe 
omputation of b�.- Hessian matrix: H(�; y) = �2l(�; y)=����0- Information matrix: I(�) = �E(H(�; y)) = E(s(�; y)s0(�; y))- Asymptoti
 information matrix: IA(�) = limT!1I(�)=T11.1.2 Two important properties of the maximum likelihood es-timator- The ML estimator is asymptoti
ally unbiased and fully eÆ
ient.- T 1=2(b� � �0)! Nk(0; IA�1(�0)) (9)In pra
ti
e, �0 is unknown and 
an be repla
ed by b�. Be
ause IA(b�)
an be diÆ
ult to 
ompute, one 
an repla
e it by �H(b�; y)=T . Thisleads to b� � �0 ! Nk(0; (�H(b�; y))�1) (10)33



The varian
e-
ovarian
e matrix 
an be 
omputed using several methods(see below).11.1.3 Numeri
al pro
edures- Iterative numeri
al pro
edure for �: �1, �2, . . . , �N su
h that l(�; y) ismaximized when � = �N .- Stepsize: �i- Dire
tion: di- Iterative pro
edure for �: �i+1 = �i + �idi- Be
ause l(�i + �idi) = l(�i) + �is0(�i)di using a �rst order approximation,an immediate 
hoi
e for di is di = s(�i) (and �i > 0). More generally,one has di = Qis(�i), where Qi is a symmetri
 positive de�nite matrix.- Numeri
al pro
edures thus involve a 
hoi
e for �i and most importantly thespe
i�
ation of di and Qi. Some examples for Qi: (1) Qi = I, steepestdes
ent; (2) Qi = �H�1i , Newton method; (3) Qi = (s(�i)s0(�i))�1,BHHH pro
edure.- Stop rule: the numeri
al pro
edure usually stops when a 
onvergen
ethreshold has been rea
hed, i.e. jl(�N ) � l(�N+1)j < �, where � isthe given threshold.- Varian
e-
ovarian
e matrix of �: as indi
ated above, one 
an use V (�) =(�H(�N ))�1 or V (�) = (s(�N)s0(�N))�1 = (PTt=1 st(�N )st(�N )0)�1, wherest(�N) = �l(� = �N ; yt)=�� (BHHH method). Another possibility is to
ompute the QML varian
e-
ovarian
e matrix.11.1.4 Gauss exampleThe following program provides an example of maximum likelihood estima-tion for the ordinary least squares problem studied earlier. The likelihoodis based on the normal distribution. As the maximum likelihood modulefeatures a whole range of estimation options, we also provide a brief des
rip-tion of the most important global variables whi
h determine the out
omeof the estimation pro
ess. Further information 
an be found in the maxi-mum likelihood Referen
e manual and in the 
omments of the maxlik.sr
pro
edure.Remark: QML estimation is dire
tly available by sele
ting max CovPar=3.34



/* Maximum likelihood estimation */library maxlik;maxset;/* Simulation of the data */nobs=1000;beta=1 | -1 | 0.5 | -0.25;s=2;x=ones(nobs,1)~3*rndn(nobs,3);y=x*beta+s*rndn(nobs,1);/* Maximum likelihood estimation *//* Ve
tor of starting values */start_val=ones(5,1);/* Names of parameters** _max_ParNames - Kx1 
hara
ter ve
tor, parameter labels.*/_max_ParNames="BETA1" | "BETA2" | "BETA3" | "BETA4" | "S";/* Optimization algorithm** _max_Algorithm - s
alar, indi
ator for optimization method:** = 1, SD (steepest des
ent)** = 2, BFGS (Broyden, Flet
her, Goldfarb, Shanno)** = 3, DFP (Davidon, Flet
her, Powell)** = 4, NEWTON (Newton-Raphson)** = 5, BHHH** = 6, Polak-Ribiere Conjugate Gradient*/_max_Algorithm =5;/* Step length** _max_LineSear
h - s
alar, indi
ator determining the line sear
h method.**** = 1, steplength = 1** = 2, STEPBT (default)** = 3, HALF** = 4, BRENT** = 5, BHHHSTEP**** Usually _max_Step = 2 will be best. If the optimization35



** bogs down try setting _max_Step = 1 or 3. _max_Step = 3** will generate slow iterations but faster 
onvergen
e and** _max_Step = 1 will generate fast iterations but slower** 
onvergen
e.*/_max_LineSear
h =2;/* Method for 
omputing the varian
e-
ovarian
e matrix at the end of the optimization** _max_CovPar - s
alar, type of 
ovarian
e matrix of parameters,** = 0, the inverse of the final information matrix from** the optimization is returned in 
ov (default).** = 1, the inverse of the se
ond derivatives is returned.**** = 2, the inverse of the 
ross-produ
t of the first** derivatives is returned.**** = 3, the hetereskedasti
-
onsistent 
ovarian
e matrix** is returned.*/_max_CovPar=0;/* Convergen
e 
riteria** _max_GradTol - s
alar, 
onvergen
e toleran
e for gradient of estimated** 
oeffi
ients. Default = 1e-5. When this 
riterion has been** satisifed OPTMUM will exit the iterations.*/_max_GradTol =1e-5;{x,f,g,
ov,ret
ode}=maxlik(x~y,0,&loglik,start_val);
all maxprt(x,f,g,
ov,ret
ode);pro
 loglik(theta,z);lo
al y,x,b,s;x=z[.,1:
ols(z)-1℄;y=z[.,
ols(z)℄;b=theta[1:
ols(x)℄;s=theta[
ols(x)+1℄;retp(-0.5*ln(s^2)-0.5*(y-x*b)^2/s^2);endp;See ml1.prg. 36



11.2 Time series and ARIMA modelsAutoregressive Integrated Moving Average models are quite popular and of-ten used in univariate time series analysis, espe
ially for the purpose of fore-
asting. The general form of an ARIMA (p,1,q) ispXi=0 �i�xt�i = 
+ qXi=1 �i"t�iwhere � is the �rst di�eren
e operator and " is a white noise. Assume wewant to analyze su
h a model for a time series x whi
h we have already loadedin a T � 1 ve
tor x. The general library 
ontaining all pro
edures useful forunivariate time series analysis is arima.l
g The top of the program shouldtherefore start withLibrary arima; /* a
tivates the library ARIMA */arimaset; /* reset the global variables to their default values */Assume now that you �rst want to 
ompute the sample auto
orrelationfun
tion of the �rst di�eren
ed times series (i.e. 
onsider d = 1). For thispurpose you 
an simply use the ACF pro
edure whi
h is a one return pro
edureand 
an therefore be 
alled witha = ACF(x,lagmax,d);where x is the series, lagmax the maximum lag you want to 
onsider andd the degree of the di�eren
e operator. This single return pro
edure willgenerate a (lagmax�1) ve
tor 
ontaining the sample auto
orrelation for lag1 to lagmax and 
all this ve
tor a.Consider now the estimation of the ARIMA(p,1,q) model and assumethat you �x p = q = 1. Maximum likelihood estimates are obtained using thearima pro
edure whi
h is a multiple return pro
edure that you 
an therefore
all by{
oefs,e,ll,v
b,ai
} = arima(startv,y,p,d,q,
onst);Between bra
es you �nd the returned matri
es: 
oefs are the MLE of theparameters (�i;�i;�i;
): e is the ve
tor 
ontaining the �tted residuals, ll thevalue of the log-likelihood fun
tion, v
b the estimated varian
e 
ovarian
ematrix and ai
 is the value of Akaike's information 
riterion.The arguments of the pro
edure are given on the r.h.s. between parenthe-ses: startv is a ve
tor of starting values. If set to 0, the pro
edure 
al
ulatethese automati
ally. y is the series analyzed, p,d,q are the order of the AR37



part, the order of di�eren
ing and the order of the MA polynomial and 
onstspe
i�es if the model 
ontains a 
onstant or not. As it is often the 
ase withestimation pro
edures, you 
an 
hange the default values of some options bymodifying global variables. For example you 
an type_iterol = 250;whi
h will in
rease the maximum number of iteration up to 250 (the defaultvalue of iterol is 100).12 LibrariesA Gauss library will serves as a sort of di
tionary to the sour
e �les that
ontain the de�nition of the symbol, or the pro
edure, et
. The Gausslibrary is thus a text �le, the extension must be .l
g.A library �le will 
ontains several left 
ushed �lenames with an exten-sion .sr
 (for sour
e), .de
 (for de
laration) or .ext (external) and lo-
ated in the SRC subdire
tory (and/or the other subdire
tory spe
i�ed inthe Gauss.
fg under sr
 path). These are the �les where the symbols, pro-
edures are de�ned, global variables de
lared for 
ompilation purposes andexternal de
larations. After this left 
ushed �lename you must in
lude thesymbols in
luded and de�ned in these �les as well as their type (pro
edures,matri
es). The library �les are lo
ated in the subdire
tory LIB (spe
i�ed inthe Gauss.
fg under lib path). Let us here look at parts (mu
h has beendeleted) of the Linear Regression library �le 
alled lr.l
g:/* lr.l
g - Linear Regression Library(C) Copyright 1992-1994 by Apte
h Systems, In
.All Rights Reserved. */lr.de
lregh
 : matrixlregres : matrix... (lines omitted)l2sls.sr
l2sls : pro
 38



lreg.sr
... (
ontinues)Files with the .de
 extension are �les where you de
lare global variablesusing the DECLARE statement whi
h initializes global matri
es and string usedby pro
edures in a library system.5 It generates no exe
utable 
ode and isonly for 
ompile time initialization. In this part two global matri
es arede
lared. lregh
 is in fa
t a s
alar whose default value is 0. If, you set itto 1 by in
luding in your program the line_lreg
 = 1then a heteros
edasti
-
onsistent 
ovarian
e matrix estimator will be 
al-
ulated. Similarly lregres is a string, a �le name to request so-
alled in
u-en
e diagnosti
s. The statisti
s generated from the diagnosti
s will then besaved under the given �le name. Global variables are thus useful for optionsde�nition. Their defaults values are usually de�ned in a . . . set �le. In this
ase, the default values of the global variables used in lr.l
g are de�ned inlrset.sr
 (in the SRC subdire
tory).Two lines below you �nd the left 
ushed �lename l2sls.sr
 whi
h is thesour
e �le 
ontaining a pro
edure for Two Stages least Squares regressions.For Gauss to be able to look for the symbol within a given library,the latter must however be a
tivated. The a
tivation of given libraries issimply realized by in
luding a LIBRARY statement at the top of the program.Example: by in
luding the linelibrary lr; /* the .l
g extension is not required */at the top of your program you will be able to use all the fun
tions, pro
e-dures,. . . that are de�ned in the �les that are part of the Linear RegressionLibrary.
5In 
ontrast to LOCAL variables, matri
es,. . . global variables are known with theirnames both within and outside the pro
edure. These are also the variables you mightwant to 
hange if you want 
hange the default options of the pro
edures (when theseoptions do exist). 39


