Contents

GAUSS TUTORIAL

Pierre Giot and Jean-Pierre Urbain
Department of Quantitative Economics
Maastricht University

First draft: November 199
This version: November 2000

1 Introduction

2

3

Basic concepts

Editor/Command windows

3.1 The Command Window
3.2 The Edit Mode/Windows
3.3 Graphic Windows

Loading data and creating data sets

Creating an output file

The Basic operations with matrices
6.1 Precedence order of operators

6.2 Some

matrix operators

6.3 Comparing matrices, vectors and scalars

Examples

7.1 Linear regression

7.1.1
7.1.2
7.1.3
714
7.1.5

Linear regression: a brief review
OLS procedure
Matrix computation
Loading a data file
Loading a file and managing datasets

11

13

14
17
17
18

7.2 Monte Carlo simulations
7.2.1 Diffusion process

8 Graphics in Gauss
81 Example

9 Loops, conditional branching. ..
9.1 Conditional branching

9.2 Loop statements: WHILE and UNTIL, FOR

9.2.1 Examples

10 Defining and using procedures
10.1 Example

11 GAUSS modules
11.1 Maximum likelihood

11.1.1 A brief review of maximum likelihood estimation
11.1.2 Two important properties of the maximum likelihood

estimator

11.1.3 Numerical procedures . .
11.1.4 GAuss example

11.2 Time series and ARIMA models

12 Libraries

24
26

27
27
28
29

29
31

32
32
32

33
34
34
37

38

1 Introduction

This manuscript contains a brief introduction to the use of the software pack-
age GAUss.! GAUSS is a statistical package used for statistical and econo-
metric purposes and is best suited for data analysis, estimation, testing,
forecasting, simulation as well as professional quality data graphing. These
notes are intended to be supplementary to the official GAUSS manuals and
to show some of the basic principles of programming using a matrix language
rather than being an exhaustive presentation of the possibilities offered by
GAUss. Only some of the most fundamental parts of GAUSS are explained
herein. For a detailed presentation of the numerous possibilities offered by
GAUss we advise the student to read the corresponding section of the GAUSS
manuals. Volume 1 of the manual (System and Graphics manual) treats all
topics related to the GAUSS system and the Graphics Interface. Volume 2
of the manual (Command Reference manual) provides a useful indexed com-
mand reference guide. It is important to understand that the current notes
are not sufficient to work efficiently in GAUSS nor are they aimed to pro-
vide an alternative to a careful use of the manual and the reference guide on
which these notes are entirely based. Also, when using particular application
modules (see below), it is important to study carefully the corresponding
reference manual.

GAUSS is a programming language designed to operate with and on ma-
trices. In comparison to other popular packages used in statistics and econo-
metrics such as RATS, MICROTSP, SAS, SPSS, PCGIVE, MICROFIT, etc., (GAUSS
is characterized by its extreme flexibility enabling the user to handle both
non-standard and standard problems in statistics and econometrics. Cur-
rent competitors to GAUSS are essentially MATLAB and OX. The major
advantage of GAUSS, and his competitors, is that it allows you to do almost
everything you want with data. It has moreover almost become one of the
standard in econometric research so that numerous routines (procedures) be-
come easily available. Since it operates directly on matrices, it makes GAUSS
more useful for economists than standard programming languages where the
basic data units are all scalars. GAUSS programs and functions are all avail-
able to the user, and so the user is able to change them contrary to most
menu driven pre-programmed packages. Most statistical/econometric prob-
lems can be handled in a convenient and efficient way. You can specify your
own model, new estimators, test statistics, estimate complicated likelihood
function, etc.

The price to pay for this flexibility is naturally that you have often to do

1GAussis a trademark of Aptech Systems Inc., Maple Valley, USA.

the job by your own (write your own programs, procedures, estimators,...).
There is often unlikely to be a simple procedure to do a simple economet-
ric task readily at hand. Notice also that given GAuUSS’ high flexibility, one
will also rapidly observe that GAUSS may be found to be too tolerant of
sloppy programming which means it is difficult for the computer to tell when
mistakes occur. Nevertheless, numerous compiled procedures and intrinsic
functions are already available. Also, some more advanced commands, proce-
dures and functions are given in various applications modules. GAUSS is both
a compiled language and an interpreter. It is a compiled language because it
scans the entire program, translates it into (pseudo) binary codes and then
executes the program. Since this (pseudo) binary code is not native of the
CPU, GAuss must interpret each instruction for the computer. GAUSS also
allows you to compile programs that are very frequently used to a file that
can be run over and over with no compile time.

For Internet users, it may be interesting to know that there exists a
GAuss software archive located at the American University in Washington
D.C.. The site also contains links to various other sites of interest for GAUSS
users. The Web address is:

http://gurukul .ucc.american.edu/econ/gaussres/GAUSSIDX.HTM

Other useful www addresses (these have been used as references for these
notes):
e Online interactive GAUSS tutorial (nice!):

http://eclab.econ.pdx.edu/gpe/toc.htm

e Excellent beginner’s guide to GAUSS in Microsoft Word format (relates
to an older version of GAUSS but much of the stuff is still valid):

http://scottie.stir.ac.uk/"fri0l/gauss/gauss.html#seminar

e MARK WATSON’ on-line Gauss tutorial:

http://www.wws.princeton.edu:80/ " mwatson/ec518/gauss_tutorial.html

e (GAUSS homepage:

http://www.aptech.com/

2 Basic concepts
Let us first introduce some concepts that have to be clearly understood:

¢ Expression. An expression in (GAUSS can be a matrix, string, con-
stant, function or a reference to a procedure (or any combination) that
returns a results with the assignment operator ’=".

e Statements. A statement is a complete expression or command which
will always end with a semicolon * ;> (except if we are in command mode
in which case the semicolon can be omitted most of the time). If there
is no assignment operator ('=") the expression is then an implicit PRINT
statement. For example:

y =x %3 ;
is a statement. The following two statements are equivalent:

print y
y;

Remark: a statement is not always executable (example: the declara-
tion of a matrix).

e Programs. A program is a structured set of statements that are run
together.

e Procedures. A procedure allows you to define a new function that
you create and which can then be used as if it was an intrinsic function.
The procedures are isolated from the rest of the program (see below).

e Library. GAuss allows you to create libraries of frequently used func-
tions that the system will automatically find and compile whenever it
finds a reference to it in a given program. When GAUSS encounters
a symbol (or a procedure, or whatever,...) that has not previously
been defined the AUTOLOADER of the system will automatically try to
locate and then compile the files containing the symbol definition.? A
G Auss library serves as a dictionary to the source files that contain the
definition of the symbol or of the procedure.

2The search path used by GAUSS is first the current directory, than those listed in the
SRC_PATH variable in the Gauss.cfg file, that is the GAUSS configuration file.

e Edit/Command modes. The communication between the user and
GAUss is most efficiently handled through the editor and the command
windows. To check whether the editor is active or not, just see the up-
per left corner of the menu bar that should display GAuss-edit. The
other mode is the command mode which is recognized by the presence
of (gauss) at the beginning of a line. The command mode (window) is
best used to create very short interactive (screen resident) programs,
or simply for the execution of simple command lines such as displaying
results of simple operations, displaying a matrix,...If you are within
the Editor window and want to run the program you are working in
and then jump to the command mode you just have to type F3. Con-
versely, from the command mode window you may switch to the edit
window by typing F4 or by using the menu bar which enables you to
switch from one to the other.

e Data types in GAUsSS. The two basic data types supported in GAUSS
are matrices and strings. The latter can be used to store names
of files, of variables, to specify messages to be printed,... Note that
a matrix can have numeric or character elements. It is in fact not
necessary to declare the type of a variable since this can change within
a program (although it is better to respect the types of variables if
possible). Matrices obviously include vectors (row and column) and
scalars as sub-types, but these are all treated the same by GAUSs. For
example:

is valid whether a, b, and c are scalars, vectors, or matrices, assuming
the variables are conformable. Note that the results of the operation
might be different depending on the variable type. As noted above,
matrices may contain numerical data or character data or both. Nu-
merical data are stored in scientific notation to around 12 places of
precision. Character data are sequences of up to eight characters which
count as one element of the matrix. If you enter text of more than
eight characters into the cells in a matrix, the text will be truncated.

Strings are pieces of text of unlimited length. These are used to give
information to the user. If you try to assign a string value to an element
of the matrix, all but the first eight characters will be lost.

Examples of data types

— Numerical 3 x 3 matrix

1 2.2 -3
6.2 9%x107% 5
7 9 99

— Character 2x 2 matrix
Will Will
Harry Steve
— Strings

"Maastricht!"
"Strings may be pieces of text of long length"

ll2.2ll

Remark the truncation of text in the character and mixed matri-
ces. The null string ” 7 is a valid piece of text for both strings and
matrices. Since all matrix data are treated the same way, the user
has sometimes to specify that GAUSs is dealing with character
data. The § sign identifies text and is used in a number of places.
For example, to display the value of the variable var1 requires

print varil;
or
print $varil;

depending on whether varil is a numerical matrix, a character
matrix or a string.

Note that all variables must be created and given an initial value before
they are referenced to.

e Notation, syntax and case sensitivity. GAUSS could be described
as a free-form structured language: structured because it is designed
to be broken down into easily-read parts; free-form because there is
no particular layout for programs. Notice that extra spaces between

7

3

words are ignored. Commands are separated by a semi-colon. Program
layout is generally a matter of personal choice and the user has freedom
to lay out code in a style he finds acceptable. Acceptable names for
variables are up to eight characters long. These may contain alphanu-
meric data and the underscore _ but should never start with a number.
For example, acceptable names include

name Nam Naml nam_1 _namel n_a_m_e
but
leric 100 12_names if

are not accepted since the three first start by a number and the fourth
name is actually a reserved name. Remark that GAUSS does not dis-
tinguish between uppercase and lowercase, except inside double quotes

2 2

Comments can be easily introduced in a program: between @...Q or
/* ...x/. Contrary to the former, the latter kind of comments can be
nested. Example:

@ This is a comment @
/* This is another comment that can be nested */

Starting GAuss. To start GAUSS under Win98 you simply have to
double-click on the GAUSS short cut icon and you are automatically
set in command mode.

Help. Under Win98, the user has access to the on-line help by simply
typing F1 which is very useful as it contains most of what can be found
in the command reference guide.

Editor/Command windows

Since the communication between the user and GAUSS will most of the time
be handled through the full-screen editor window or the command window,
we will briefly discuss the basic features of these. First, it is important to note
that when you click on the GAUSS shortcut you will bring up the Command
window.

3.1 The Command Window

The Command window is the window that first appears when you start
GAvuss. Its main feature is a large scrollable text edit pane. This is the place
where the (GAUSS prompt appears for you to enter and run interactive com-
mands. It is also where all GAUSS program input output takes place. When
you start GAUSs you will automatically be in the command mode/window
which is characterized by the presence of the following start character at the
beginning of the line:

(gauss)

A program in command mode is then defined as the code from the end of
the line on which the cursor is located with the start character (gauss).
Pressing the Enter key will make a program begin executing. It thus allows
you to work interactively in GAUSS. As such, you can only execute one line
of commands but you may also run existing programs,... Menus of interest
within the command window are: File, Edit, Search, Font, Options,
Window, and Help.

e File | Edit...: This part of the menu opens a dialog for selecting a
file to edit. The dialog lets you navigate drives and directories, specify
a filename pattern, and see the files in a directory. The file selected
is added to the top of the Edit list and loaded into the Edit window,
which is brought to the foreground.

e File | Run...: Opens a dialog for selecting a file to run. The file
selected is added to the top of the Run list and the file is executed,
bringing the Command window to the foreground.

e File | Stop...: Stops the currently executing GAUSS program. This
can be very valuable if you’ve written a never-ending do-loop and have
doubts on the correctness of your codes.

¢ File | Exit Gauss...: Exits GAuUsS without verification.
e Edit | Undo Cut Copy Paste: Standard windows commands.

e Search | Goto Find Replace Find Again Replace Again: Stan-
dard windows commands.

e Font | Select...: Opens a font selection dialog which allows you
to change the font in the text edit panel of the Command and Edit
windows. The font setting is saved between (GAUSS sessions.

e Options | Edit...: Includes controls to: Set the tab length. Set
insert /overstrike mode. Turn text wrapping on/off.

e Options | Program...: Includes controls to: Turn default libraries
on/off. Set autoload/autodelete state. Turn declare warnings on/off.
Turn dataloop translation on/off. Turn translator line tracking on/off.
Turn normal linetracking on/off. Set Compile to File state. These are
more advanced options that will not be discussed in details during the
course. You are advised to leave the default settings.

The windows also simply lets you move between the Command and Edit
windows. The Command window will accumulate output unless you clear
the screen. There is however no hot key for doing so. To clean the screen
you have to use CLS command near the beginning of the program. Within
the Command window you have to type cls after the GAUSS prompt and
hitting enter. Notice that a few other keys are useful such as F4 to switch to
the GAuss-Edit windows and F3 to execute (run) a program.

3.2 The Edit Mode/Windows

The GAUSS edit window is by far the one that is the mostly used in GAUSS.
It allows you to create small data files, edit existing files, write down your
programs, execute them and modify what appears to be eventually necessary,
rerun, modify, without having to quit GAUSS. To get in edit mode when you
are in the default GAUSS command window, just use the menu bar which
is useful to load existing program files for example or type F4 to switch
to the GAUss-Edit windows. The Edit window is a text editor. The Edit
window and the Command window have many controls in common. The
most obvious difference is that the Command window has Stop (running
program) controls and the Edit window has Save (file) controls. Most of the
possibilities offered by the menu under the Edit mode are self-contained and
standard.

File | Save as... Opens a dialog for saving the current contents of the
Edit window under a new filename. The text being edited is saved to the
new file, and the new filename is added to the top of the Edit list. You will
find this useful for copying a program under a new name so you can use it
as a template for creating a new program. If you want to create a new file
that you will call myfile, you may more simply within the command window

simply type

Edit myfile <Enter>

10

and then the GAUss-edit window will automatically appear. You are then
in edit mode and already in myfile. You can enter your data set or create
new program as in any usual text editor. If you have already a saved copy
of your program, let say myfile.prg, on your disk, just type

Edit myfile.prg <Enter>

and you are then in edit mode where you can modify your myfile.prg file.
More simply, you may use the menu bar. Notice that this implies that your
file is in the working directory of GAUss. If you have your file located on a
floppy (which is the A: drive), you have to introduce a path name:

Edit A:\myfile.prg <Enter>

which specifies where to go to get myfile.prg. Edit thus allows for path
to get existing file edited. The build-in editor in GAUSS has a multitude of
more or less standard Win98 editing keys or keystrokes that are useful when
building or modifying a program.

3.3 Graphic Windows

When you have run a program in which creates graphs (whatever the type
of graph), GAuss will open a so-called PQG window, where PQG stands for
Publication Quality Graphics. We will discuss the creation of graphics, this
window and its options below briefly. When (GAUSS creates a graph, it stores
it in a file with a .tkf extension. The tkf files will be stored in your general
GAuss working directory. After you have created a graph you can save it
and protect it from overlay by moving it to a folder or separate directory.

4 Loading data and creating data sets

There are basically two ways to get data into GAUSS: you may enter vectors
and matrices directly into your program, or you can read data in from an ex-
isting file. Both methods have their uses. In this section we first concentrate
our attention to the simple questions:

e How can you create a small data set in (GAUSS?

e How can you read external data files in GAUSS?

Assume you are already in the GAUSS command mode and you would like
to create your own data set consisting of 3 variables for which you have 5
observations on each of these. The easiest way to proceed is to type

11

Edit mydata <Enter>

Once you are under the GAUss-Edit window, after the message Editing
mydata has appeared on lower left corner of your the screen you may type
(for example)

10.01 22.225 2.30
11.08 55.233 3.02
12.59 65.158 4.02
13.26 61.268 5.03
19.02 64.267 6.12

Remark: the different columns are the different variables and the different
rows are the observations on these variables. Use then the menu bar to save
these data in an Ascil file that is called mydata. Alternatively you may just
type F2. Naturally such an Ascii file can also be created using an external
editor or as the output of various software (Lotus, Excel, RATS,...).

The question is now how can we load this small data set so that we will
be able to use it in GAUSS. Remember that GAUSS work with matrices so
that the data file has to be loaded in a matrix. Let us assume that we call
this matrix x. We can simply type the following lines:

load x[5,3] = mydata;
@ loads the data mydata into the matrix x @
print x; @ prints the matrix x @

LOAD accepts path names if your file mydata is not in the GAUSs directory.
Various forms of LOAD are available, they do depend on the specific natures
of the file you want to load (see Command Reference Guide or the on-line
help for more information). The command LOAD can be used to read in data
from an Ascii file (x.asc, *.txt, *.prn, or*.csv extension) or a GAUSS
data file (.fmt). Ascirl files must be delimited with spaces, commas, tabs
or newlines. If your data is in an EXCEL file or can be put into an EXCEL
file, you can save it as a tab delimited file (*.txt) or a space delimited file
(*.prn) or a comma delimited file (*.csv) .3 If no dimensions are specified,
like in

load x = mydata;

then x is a column vector containing all of the data in mydata in the order
1st row, 2nd row, etc. (row major order). You can use the function rows (x)

3In the latest version of the software, it is now possible to load EXCEL files of the .x1s
type directly.

12

to find out if all the data have been loaded and the function reshape (x,
n, k) toreshape the nk x 1 vector y into the matrix you want to work with.

Once a data set is loaded into a matrix, you can go on and perform any
kind of calculations you want on this x matrix or on some of its elements.
It is now possible to create from this x matrix a GAUSS data set using the
SAVED instruction

call saved(x,'"mydata",0);

The resulting data set is called mydata.dat. These GAUSS data sets consist
of two files, one with a .dat extension and another with a .dht extension.
The latter is mainly an information file on the content of the corresponding
.dat file. The last argument of the saved command is a k£ x 1 string or
character vector. If it is set equal to 0 like in this example, it simply means
that the variables names will start with the character X and be followed by
a number between 1 and k. In our example these will thus be X1, X2, X3.
An alternative would be to create this & x 1 vector using LET

let names = varl var2 var3;
@ creates a string vector '"names" with 3 elements @

and then create a GAUSS data set using
call saved(x,'"mydata",names);

When a GAUss dataset exists on the disk (generated from a previous
operation) you can open it directly using OPEN or LOADD. Another possibility
is to load it directly into a matrix x with the line

x = "mydata";

5 Creating an output file

To create an output file, you need to direct the output of PRINT statements
not only to the screen (this is automatic) but also to disk file. This is done
using the command OUTPUT. It allows for path names. Example:

output file = filename on
where you can replace on by

reset or off

13

Without on, the command OUTPUT will only select the file to be used for the
output but will not open it. A subsequent

output on; or output reset;

would then be required. The difference between RESET and ON is simply that
in the latter case the file will be opened for appending, i.e. the results of the
print statements are appended to the selected file if it already exists. In the
RESET case a new file is created so that if the file already exists it will be
destroyed. If you want to edit your output file with the GAuUss-edit window,
you will first have to close the file using

output off;

6 The Basic operations with matrices

G AUSS basically works with matrices, and it is therefore important to note
that almost all matrix expressions are entered following the usual way matrix
expressions are written. Matrices are 2-dimensional arrays of double precision
numbers which are all implicitly complex in the GAUSSI version (conversion
between complex and real matrices occurs automatically in GAuss). The
matrices are stored in row major order. For example a 3 x 3 matrix will be
stored in the following order:

[1,1]1,2][1,3][2,1][2,2][2,3][3,1][3,2][3,3]

Any matrix is indexed with 2 indices, vectors can be indexed with one index
and scalars are considered as 1 x 1 matrices. The majority of functions and
operators in (GAUSS take matrices as arguments. Here are some useful ones
when defining, saving and loading matrices:

assignement statement

vertical concatenation
horizontal concatenation

LET matrix definition statement
DECLARE is similar to the LET statement
but for compile time matrices

e i

The command LET thus creates matrices. The format for creating a matrix
called matrix can take the following form:

14

Table 1: Examples of LET

Shape of x
let x =12 345 6; Column vector 6x1
let x = 1,2,3,4,5,6; Column vector 6x1
let x = {1 2 3 45 6}; Row vector 1x6
let x = {1 2,3 4,5 6}; Matrix 3x2
let x[3,2] =12 34 5 6; Matrix 3x2
let x[3,2] =1, 2, 3, 4, 5, 6; | Matrix 3x2
let x[3, 2] = 5; Matrix 3x2
let matrix = {constant-list};

or

let matrix[r,c] = {constant-list};
In the first case, the type of matrix depends on how the constants were
specified. A list of constants separated by space will create a column vector.
If, however, the list of constants is enclosed in braces {}, then a row vector will
be produced. When braces are used, inserting commas in the list of constants
instructs GAUSS to form a matrix, breaking the rows at the commas. If curly
braces are not used, then adding commas has no effect. In the first case, the
actual word LET is optional. If the second form is used, then an r x ¢ matrix
will be created; the constants will be allocated to the matrix on a row-by-
row basis. If only one constant is entered, then the whole matrix will be
filled with that number. Note the square brackets. This is the standard way
to specify either the dimensions of a matrix or the coordinates of a block,
depending on context. The first number always refers to the row, the second
to the column.

Note that an assignment statement followed by data enclosed in braces
is an implicit LET statement. Consequently, the following are equivalent:

let x ={123, 456 };
x={123, 45 6};
let x[2,3] =12 3 4 5 6;

(123
=145 6

When braces are used in LET statements, the commas define the row separa-
tion. A 2 x 3 matrix of ones is created with

and create a 2 X 3 matrix x

15

let x[2,3] = 1;

or by using the command ONES which creates automatically matrices of ones:
x = ones(2,3);

while

let[2,3];

will create a 2 x 3 matrix of elements equal to 0. Note that the LET command
cannot be used to define matrices in terms of expressions. The elements of
the matrices, of rows or columns are easily isolated. For example, if we
consider the x matrix given above

z =x[2,2];

will define z as a scalar and assign the value 5 to z, i.e. the value of the
element of the second row, second column of the matrix x. To create a
row-vector x1 consisting of the 1st row of x, just use

x1 = x[1,.];

where the ”.” indicates "all columns”. The resulting x1 is a 1 x 3 vector

21=(1 2 3)

Once a matrix is created (or loaded), simple operations for matrix de-
scription and manipulations are easily performed like returning the number
of columns, taking the max, sorting,...Here are a few of these standard
manipulations often used when writing more complicated programs or pro-
cedures (for more details or details on the other manipulations see the manual
or the on-line help):

COLS (%) returns number of columns in the matrix x

ROWS (x) returns number of rows in the matrix x

MAXC(x) returns largest element in each column of the matrix x

MAXINDC(x) returns row number of largest element in each column of the matrix x
MINC (x) returns smallest element in each column of the matrix x

MININDC(x) returns row number of smallest element in each column of the matrix x
SUMC (x) computes the sum of each column of the matrix x

CUMSUMC(x) computes cumulative sums of each column of the matrix x

PRODC (x) computes the product of each column of the matrix x

MEANC (x) computes mean value of every column of the matrix x

STDC (x) computes standard deviation of every column of the matrix x

16

It is also often useful when you have for example a large matrix x, of
dimension let say 150 x 35, to be able to consider sub-matrices of lower
dimension consisting for example of a subset of the columns and the rows
satisfying some criteria. This type of extraction is easily performed in GAUSS.
There are various possibilities. Some of the most useful ones are:

e PACKR(x) that deletes the rows of a matrix that contain any missing
values, ”7.”., (Notice that the GAUSS code for a missing value is ”.” so
that you have to replace whatever other code is used in your data before
you import your data, although GAUSS has an internal procedure for

conversion.

e DIAG(x) creates a column vector of dimension min(n,k) x 1 vector
from the diagonal of a n x k£ matrix. The matrix x need not be square.

e LOWMAT (%) returns the lower portion of a matrix, i.e. the main diagonal
and every element below.

e UPMAT (x) returns the main diagonal and every element above.

e Elements of a matrix and submatrices can also be extracted using the
row and column indices. For example x[r1:r2,c1:c2] extracts the
submatrix consisting of rows r1 to 72 and columns ¢l to ¢2. Using
a dot, 7.”, in place of an index, extracts all the row or the column
elements.

6.1 Precedence order of operators

Expression will be composed of operations on matrices. These are created
using operators and the order in which the expression is evaluated is de-
termined by the precedence order of the operators and the order in which
they are used in the expression. As usual the multiplication and division
operators (respectively * and /) have an higher order of precedence than the
summation and substraction operators (+ and -).

6.2 Some matrix operators

The following mathematical operators work basically on matrices. Most of
these assume numeric data. We list some of the frequently used operators
with a few examples where we assume that we have already loaded two
different matrices x and z, both of dimension n x n.

17

Operators Code | Examples

Addition + y =X+ z;
Substraction — y =x - z;
Matrix Multiplication * y =X %z ;
Division or linear equation solution | / 2 = b/A;
where A and b are scalars
Element by element multiplication | .x y =X .x Z;
Element by element exponentiation | ." y =x .72
Kronecker Product kL |y = x k. zZ;
Horizontal direct product *” y = x *7y;
Transpose operator ! y = x°;
Vertical concatenation | y=x | z;
Horizontal concatenation - y =x 7y;

Other operators/commands are given and detailed in the Command Ref-
erence manual. An often used operation in statistics and econometrics is
the inversion of a given (invertible) matrix. This is most easily done using
the command INV (or INVPD is the matrix is symmetric positive definite).

y = inv(x);
computes y = . The input of INV is thus simply the matrix you want
to invert and the output is the inverted matrix. The determinant of x is
obtained using DET (x).

6.3 Comparing matrices, vectors and scalars

It is often very useful to compare matrices, scalars or vectors. These tasks
are performed with relational operators and as usually with these type of
operators, they return a scalar which we denote here by z which is either 0
or 1.

e Less than: z

x <y,orz = x 1t y;

e Not equal: z = x /= yorz = x ne y;

e Greater than: z = x > y; z = x gt y;

e Greater than or equal to: z = x >= y; orz = x ge y;
e Equal to: z = x == y; orz = x eq y;

e Less than or equal to: z = x <= y; orz = x le y;

18

The result of all these operators is a scalar 1 (TRUE) or 0 (FALSE), based
upon a comparison of all elements of x and y. Note that all comparisons
must be true for a result of 1. It makes no difference whether you use the
alphabetic or the symbolic form of the operator; however, in the alphabetic
form the operator must be preceded and followed by a space. If you work with
conformable matrices and want an element by element comparison which will
return a matrix of zeros and ones, precede the operator a dot ”.”, e.g., .==
or .eq.

7 Examples

At this point of the course, it is useful to take a look at some practical exam-
ples. First we focus on the linear regression and present different methods
for dealing with the estimation of a linear regression problem. In a second
step, we detail how to implement Monte Carlo simulations in GAUSS.

7.1 Linear regression

7.1.1 Linear regression: a brief review
Notation:

- Dependent variable: Y

- Number of observations: T’

- k independent variables: X

Thus, Y has T rows and 1 column, X has T rows and k columns.
In matrix form, the OLS equation can be written as:

Y=X5+e¢ (1)

where ¢ (error term) is N(0,0?). The OLS estimator is:

b=p=(X'X)'X'Y (2)

The residuals are:

e=Y -V (3)

The unbiased estimator of the variance o2 is:

19

/
9 e'e

i (4)

S

The variance-covariance matrix of the estimated coefficients is:

V(b) =s*(X'X) ! (5)
Student tests are performed using:
bi — Bio

where SE; is the standard error of coefficient 7.

7.1.2 OLS procedure

A first possibility is to use the OLS procedure provided in GAUSS. The
dataset is included in the program.

/* LINEAR REGRESSION
We regress the consumption on income (US data, years 40-50) */

Z={

244 229.9,
277.9 243.6,
317.5 241.1,
332.1 248.2,
343.6 255.2,
338.1 270.9,
332.7 301,
318.8 305.8,
335.8 312.2,
336.8 319.3,
362.8 337.3
};

print "Number of observations " rows(Z);
print "Mean of Z " meanc(Z);

income=Z[.,1];
consum=Z[.,2];

{ vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat } = 0ls(0,consum,income);

20

See olsl.prg.

7.1.3 Matrix computation

A second possibility is to program the given formulae using the matrix op-
erations in GAUSS.

income=Z[.,1];
consum=Z2[.,2];

x=ones (rows (income) ,1) “income;
y=consum;

xxi=invpd (x’x) ;
b=xxi*(x’y);

e=y-x*b;
s2=e’*e/(rows(x)-cols(x));
sd=sqrt(diag(s2*xxi));
t=b./sd;

print "Estimated coefficients " b;
print "Standard errors " sd;
print "t-stats " t;

See ols2.prg.

7.1.4 Loading a data file

In the preceding programs, the data were included in the program. Usually,
the data are given in an external file. In the following program, the data are
loaded from an external text file.

n_obs=11;

load Z[n_obs,2]=c:\maas\gmif\progs\consinc.txt;
income=Z[.,1];

consum=Z[.,2];

x=ones (rows (income), 1) “income;
y=consum;

xxi=invpd (x’x) ;
b=xxi*(x’y);

21

e=y-x*b;

s2=e’*e/(rows (x)-cols(x));
sd=sqrt(diag(s2+*xxi));
t=b./sd;

print "Estimated coefficients " b;
print "Standard errors " sd;
print "t-stats " t;

See ols6.prg.

7.1.5 Loading a file and managing datasets

Finally, we illustrate the use of datasets. In the following program, the text
file with the data is loaded and then written as a GAUSS dataset. This
dataset is then used in the OLS procedure.

n_obs=11;

load Z[n_obs,2]=c:\maas\gmif\progs\consinc.txt;
income=Z[.,1];

consum=Z[.,2];

/* Dataset Z is written on disk */
dataset="c:\\maas\\gmif\\progs\\CONSINC";
let vnames=INCOME CONSUM;
if not saved(Z,dataset,vnames);

errorlog "Write error";
endif;

dataset="c:\\maas\\gmif\\progs\\CONSINC";

let depvar=CONSUM;

let indvars=INCOME;

{ vnam,m,b,stb,vc,stderr,sigma,cx,rsq,resid,dwstat 2
= ols(dataset,depvar,indvars) ;

See olsh.prg.

7.2 Monte Carlo simulations

Monte Carlo simulations is a powerful technique used in applied econometric
analysis. The GAUSs programming language is well suited for this task as
it is fast and matrix operations are readily available. We consider a familiar
application in quantitative finance, the diffusion process.

22

7.2.1 Diffusion process

The basic diffusion equation (with drift x4 and volatility o) can be written
as:

dXt = /LXtdt + O'Xtth (7)

with dWW, being a Wiener process, i.e. diW, = ¢,v/At and ¢, is IID N(0,1);
X(ty) = Xp. Note: dX; should be understood as the change in X; over
the small time interval A¢. For this reason, we often write At = h and
Xon — Xy = dX, = pX;h + 0 X,e,V/h.

/* Start date */

t0=0;

/* End date */

tt=2;

/* Number of points */
N=200;

/* Number of simulations */
Ns=10;

/¥ Mu (year) */

mu=0.07;

/* Sigma (year) */
sigma=0.2;

/* Start price */
X0=50;

/* Step */

h = (TT-t0)/N;
/* Sequence of time increments */
t = seqa(t0,h,N+1);

xt = zeros(N+1,Ns);
xt[1,.] = xO*ones(1,Ns);
u = rndn(N,Ns)*sqrt(h);

i=1;

do until i > N;
xi = xt[i,.];
xt[i+1,.] = xi + xi*muxh + xi.*(sigmaxuli,.]);
i=1+1;

23

endo;
See mcdpl.prg.

8 Graphics in Gauss

One attractive feature of GAUSS is its ability to draw high quality graphics
in two of three dimensions of a large variety of different types. GAUSS also
provides a complete windowing system for plotting multiple graphs on one
page. The way GAUSS works is to provide functions which draw the graphs
and only draw the graphs. All other attributes are set using (global) vari-
ables. Hence, the creation of a graph involves setting one variable to the title,
another to the type of lines wanted, another to the color scheme,... When
the graph function is then called, GAUSS uses all the information previously
set to draw the graph with the right characteristics. Any program drawing
graphs should have the line

library pgraph;

ideally at the start of the program. This enables GAUSS to know where all
the specialized graph-drawing routines are to be found. Remark that graphs
cannot be drawn if this line is omitted. The LIBRARY line should appear only
once at the top of your program and could be followed by GRAPHSET which
reset all the variables back to their default values.

There are an enormous amount of options that may be specified, all these
are detailed and specified in the System and Graphics Manual, and some
information on these can be obtained from the on-line help. They all begin
with p to make them easily to identify. These are set/modified like any
other variables in GAUSS. For example,

_pcolor = zeros(2,1);

_pcolor([1] 2;

_pcolor[2] = 5;
_pbartyp = {2 1, 2 2, 2 3};

The _pcolor instruction sets colors for the XY and XYZ graphs. It is a 2x1
vector implying, in this case, that there are two series to be plotted. The first

24

series will be plotted in the color defined by 2 (which is grey), the second in
red.

The _pbartype instruction sets the shading type and color for a bar graph.
It is a 3x2 matrix, implying three series. The most useful variable is

_plegstr = "legend A\00Olegend B\0OOLegend C";

This defines legends for each line when a graph is displaying multiple series -
three in this case. The legends for each series must be separated by the code

\000

which is a null character specifying that one name has ended and another
is beginning. The relevant variables to be set are detailed with each graph
type. In addition there are a number of general functions which control other
settings, of which the most important are

title(title);
xtics(min, max, increment, subDivs);

xlabel (title);

The first of these sets the title for the graph. XTICS (and the associated
functions YTICS and ZTICS) allow for scaling of the X-axis. If this function
is not called, GAuss will work out its own scaling. min and max are the
minimum and maximum values on the scale, with the scale increasing by
increment; negative values for the increment are acceptable. subDivs is the
number of minor ticks between each increment. Finally, XLABEL (and YLABEL
and ZLABEL) provides a title for the X, y or Z axis.

All these options should be set before printing a graph. However, most
of the defaults are good choices, and many options will not need changing.
GAUsSs provides a number of graph types, most importantly bar graphs, X-Y,
log X-Y and histograms. All data for graphs come in the form of matrices.
When a graph instruction is encountered, GAUSS plots the graph immediately
using the current set of options or defaults. This is why all the options are
set first. By the time GAUSS reaches a graph instruction, all it needs to
produce the graph is the data given in the function call. The graph data
are in N x K matrices, where N is the number of data points and K is the
number of series to be plotted. Whether multiple series are permitted or not
depends on the graph: for example, multiple series are allowed in an X-Y
graph. For example

25

xy(varl, var2~var3);

will plot an X-Y graph, using a Cartesian coordinate system, consisting three
series where var1 will specify the x-axis. LOGX (resp. LOGY) will plot an X-Y
graph using logarithmic X (resp. Y) axis while LOGLOG will plot an X-Y
graph using logarithmic X and Y axes.

In practical data analyses, it is often useful to have different graphics on
the same page. This is easily done by using the complete windowing system
for plotting multiple graphs on one page provided in GAuUss. We will just
mention here the most important steps that one has to follow. In all cases,
one has to initialize the window procedure with begwind that must be called
before any other window functions are called. Similarly endwind ends the
window manipulation and it is only thereafter that the graphs are displayed.
An important procedure is window which creates and partitions the screen
into windows of equal size. The general format is window (#row,#col,typ);
where #row is the number of rows of windows and #col the number of
columns of windows while typ specifies the window attribute type: if this
value is 1, the windows will be transparent, if 0, the windows will be non-
transparent. Notice that the windows will be numbered from 1 to (#row X
#col) beginning from the left topmost window and moving to the right. The
current window is set to 1 immediately after calling this function, setwind
is used to specify the window number. One may alternatively use nextwind
which sets the current window to the next available window number.

Graphs (or pages with several graphs) are automatically displayed in spe-
cific windows and can be printed, saved or converted into various formats that
may later be used in other packages (such as word processors like Winword,
WP, Scientific Word,...). You can print the graphs that GAUSS generates
directly, but if you want to put them into a wordprocessor GAUSS supports
conversion to four formats: ps (postscript), pic (Lotus), hpgl (plotter) and
pcx (bitmap).

8.1 Example

The following lines illustrate this idea of putting various graphics on the same
page. We first generate some random numbers, accumulate these to generate
a random walk. Lagged and first differences are generated. Finally a page
with four graphs is created.

library pgraph; graphset;

n = 400; e = rndn(n,1); /* generating pseudo (normal) random data */

26

obser = seqa(l,1,n); /* generate a deterministic series 1,2,...,n */

y = CUMSUMC(e); /* cumulate the y series to get a random walk */
yl = lagn(y,1); /* generate lagged variable */
yd = y-yl; /* generate first differenced series */

begwind; window(2,2,1);

setwind(1); title("Figure 1");
xlabel("Observations"); ylabel("Variable y - level");
xy (obser,y) ;

setwind(2); title("Figure 2");
xlabel("Observations"); ylabel("Variable y - lag");
xy(obser[1:rows(yl),.]1,yl);

setwind(3); title("Figure 3");
xlabel("Observations"); ylabel("Variable y - 1st diff.");
xy(obser[1:rows(yd),.],yd);

setwind(4); title("Figure 4");

xlabel ("Random numbers"); ylabel("Frequencies.");
{b1,ml,freql} = HISTP(y[.,1],50);

endwind;

See graphsl.prg.

9 Loops, conditional branching...

9.1 Conditional branching
The syntax of the full IF statement is:

if conditionli;
dothisi;
elseif condition2;
dothis?2;
elseif condition3;
else;
dothis4;
endif;

but all the ELSEIF and ELSE statements are optional. Thus the simplest IF
statement is

27

if conditionli;
dothisi;
endif;

Each condition has an associated set of actions (the dothis). Each condition
is tested in the order in which they appear in the program; if the condition
is "true”, the set of actions will be carried out. Once the actions associated
with that condition have been carried out, and no others, GAUSS will jump
to the end of the conditional branch code and continue execution from there.
Thus GAUss will only execute one set of actions at most. If several conditions
are "true”, then GAuUss will act on the first true condition found and ignore
the rest. If none of the conditions is met, then no action is taken, unless
there is an ELSE part to the statement. The ELSE section has no associated
condition; when the ELSE statement is reached, GAuUss will always execute
the ELSE section. To reach the ELSE, (GAuUss must have found all other
conditions " false” .*

9.2 Loop statements: WHILE and UNTIL, FOR

The format for the loop statements are

do while condition; do until condition;
dothis; dothis;
endo; endo;

These two are identical except that the first loops until condition is
"false”, while the second loops until condition is ”true”. This means that

do while condition; do until (NOT condition);

are identical. The operation of the WHILE loop is as follows: (i) test the
condition; (ii) if ”true”, carry out the actions in the loop; then return to stage
(i) and repeat; (iii) if "false”, skip the loop actions and continue execution
from the first instruction after the loop. Note that the condition is tested
before the loop is entered. Also, there is nothing in the definition of the
loop to say how the loop condition is set or altered. It is the programmer’s
responsibility to ensure that the condition is set properly at each stage. Since
version 3.2.35, GAUSS now also offers a FOR loop construct. The format is

for i (start, stop, step);
dothis;
endfor;

4Unconditional branching is done with the GOTO. The target of a GOTO is called a label.
Labels must begin with ’_’ or an alphabetic character and are always followed by a colon.

28

where i stands for the counter variable, start (may be a scalar expression)
is the initial value of the counter, stop is the final value of the counter and
step the increment value. Note that the counter is strictly local to the loop.
The commands BREAK and CONTINUE are supported. The CONTINUE command
steps the counter and jumps to the top of the loop. The BREAK command
terminates the current loop by jumping past the ENDFOR statement. When
the loop terminates, the value of the counter is stop if the loop terminated
naturally. If break is used to terminate the loop and you want the final value
of the counter you need to assign it to a variable before the break statement.

9.2.1 Examples

x = zeros(10, 5);
for i (1, rows(x), 1);
for j (1, cols(x), 1);
x[i,j] = ixj;
endfor;
endfor;

Example using BREAK:

x = rndn(100,1);
y = rndn(100,1);
for i (1, rows(x), 1);
if x[i]l /= yl[il;
1i = i;
break;
endif;
endfor;
if 1i;
print "Compare failed on row " 1i;
endif;

10 Defining and using procedures

As already mentioned above you should as much as possible make use of
procedures which allow you to define a new function that you create and
which can then be used later as if is was an intrinsic function. Procedures
are extremely useful once you are confronted with an excessively large and
complicated program that may be difficult to read, understand, and alter.

29

If the program is broken into separate sections with meaningful procedure
names, it becomes much more manageable. Alternatively, there may be a
piece of code which carries out some minor function. Placing this code in a
procedure allows the programmer to concentrate on the main points of the
program. The second most important reason to motivate the use and the
construction of procedures is the repetitive character of numerous operations.
The choice is then simply between explicitly programming the same operation
several times, or writing a procedure and calling it several times; usually the
latter wins hands down. Finally, procedures are often easier to test and less
susceptible to unexpected influences.

Hence procedures are extremely useful when the same estimation method,
test statistic, expression or model evaluation is to be used often in quite
different situations. A procedure is thus a user defined function that is later
used as if it was an intrinsic part of the GAUSS language. Notice that any
intrinsic command of function, and any user defined function of procedure
can be used within a procedure.

A procedure definition consists of 5 different parts:

1. Procedure declaration (PROC Statement): the format of the PROC state-
ment is as follows:

PROC ({number of returns}) = name(arguments);

The arguments can be numerous and are then separated by commas.
These are the names that are used inside the procedure for the argu-
ments that are passed to the procedure when the latter is called.

2. Local variable declaration (LOCAL statement): local variables are only
known within the procedure defined. Remark that there is no informa-
tion about the size or type of the local variable here. All this statement
says is that there are variables which will be accessed during this pro-
cedure, and that GAUSS should add their names to the list of valid
names while this procedure is running.

3. Body of the procedure: the body contains GAUSS statements that are
used to perform the task, they may use intrinsic functions, used defined
functions,

4. Returns from the procedure (RETP statement): returns a number of
items. Their number must correspond with the number of returns in
the PROC statement. These returns can however be of any type. It is
important to know that GAUSS will not check these returns and it will

30

not warn the user if the number of returns is not equal to the number of
returns specified in the procedure declaration. GAuUss will only report
an error when the procedure is actually called during a program run.

5. End of procedure (ENDP statement): the statement ENDP tells GAUSS
that the definition of the procedure is finished. GAUSS then adds the
procedure to its list of symbols. It does not do anything with the code,
because a procedure does not, in itself, generate any executable code. A
procedure only exists when it is called; otherwise it is just a definition.

There are different ways of calling a procedure. Assume that the pro-
cedure’s name is given by procname and the arguments are i, j and k.
Procedures are called as follows

call procname(i,j,k); /* will ignore all returns */

y = procname(i,j,k); /* is suited for one return procedures */

{ x, y, z \} = procname(i,j,k); /* is suited for multiples returns*/
procname(i,j,k); /* no returns */

10.1 Example

Let us here give the example of a procedure that estimates a linear regression
model and returns the OLS estimates, their standard errors and t-values (see
the formulae given above).

income=Z[.,1];
consum=Z[.,2];

x=ones (rows (income), 1) “income;
y=consum;

{b,sd,t}=regress(x,y);

print "Estimated coefficients " b;
print "Standard errors " sd;
print "t-stats " t;

proc (3)=regress(x,y);
local xxi,b,e,s2,sd,t;
xxi=invpd (x’x) ;
b=xxi*(x’y);

e=y-X*Db;

31

s2=e’*e/(rows(x)-cols(x));
sd=sqrt(diag(s2*xxi));
t=b./sd;

retp(b,sd,t);

endp;

See ols3.prg.

The different lines have the following interpretation:

e First the procedure declaration defines that the procedure will be called
regress and will return 3 matrices.

e The names x and y will be used inside the procedure. These are the
(arguments) names that are used inside the regols procedure for the
arguments that are passed to the procedure when regols is called.

e We then define the local variables.

e The next six lines form the body of the procedure: we first calculate
(2'z)~" (denoted by xxi) use it to compute b and to calculate the ols
residuals e. An estimate of the error variance is computed (s2) and
used to obtain the standard error of b (sd). Finally the t-values are
calculated. This ends the body of the procedure.

e RETP then returns the three vectors b, sd, t: the OLS estimates,
their standard deviations and the corresponding t-values. ENDP closes
the procedure.

11 GAUSS modules

The basic GAUSS program is the first building block of the GAUSS software
package. Other program packages (modules) are available from Aptech Sys-
tems and focus on more specific applications such as maximum likelihood
estimation, time series methods or financial applications. In this introduc-
tory text, we briefly review an application of the maximum likelihood module
and the time series module (ARIMA modelling).

11.1 Maximum likelihood
11.1.1 A brief review of maximum likelihood estimation

- Model parameters: . The true values of the parameters are ,, which are
unknown.

32

Number of observations: T

Observations: y;, t = 1...T, and possibly explanatory variables z; (y and
x vectors in matrix form).

Density function for the model: f(y, 6)

Likelihood function based on the density function: L(6,y) = f(y,f). For a
given set of observations y, L(6',y) gives the likelihood that the sam-
ple y has been generated by the density law f(y,#'). If we have that
L(0',y) > L(0",y), then it is more likely that the sample y is a realiza-
tion of f(y,0") than f(y,0"). In other words, ' is a better candidate
for 6y than 0”.

The maximum likelihood estimation procedure is the following optimiza-
tion problem: ~
mazgL(0,y) = 0 (8)

Based on 0, the maximized likelihood is L(é, Y).

In general, one maximizes the log-Likelihood, or In(L(0,y)) = 1(0,y).

Score or gradient of the log-Likelihood: s(0,y) = 0l(,y)/06. By definition
of the maximization problem, § is such that s(f,y) = 0, which allows
the computation of 6.

Hessian matrix: H(6,y) = 0%1(6,y)/0006'
Information matrix: 1(0) = —E(H(0,y)) = E(s(0,y)s'(0,y))

Asymptotic information matrix: TA(0) = limp_I(0)/T

11.1.2 Two important properties of the maximum likelihood es-

timator

The ML estimator is asymptotically unbiased and fully efficient.

TV2(0 — 6,) — Ny (0, 1A (6,)) (9)

In practice, 6 is unknown and can be replaced by 6. Because IA(@)
can be difficult to compute, one can replace it by —H(6,y)/T. This
leads to

0 — 6y — Nu(0,(—H(0,y))") (10)

33

The variance-covariance matrix can be computed using several methods
(see below).

11.1.3 Numerical procedures

[terative numerical procedure for 6: 6;, 0y, ..., Oy such that [(6,y) is
maximized when 0 = 0.

Stepsize: A;
Direction: d;
Iterative procedure for 0: 6;,1 = 0, + \;d;

Because [(6; + \id;) = 1(6;) + \is'(6;)d; using a first order approximation,
an immediate choice for d; is d; = s(6;) (and A; > 0). More generally,
one has d; = Q;s(0;), where @; is a symmetric positive definite matrix.

Numerical procedures thus involve a choice for \; and most importantly the
specification of d; and ;. Some examples for Q;: (1) Q; = I, steepest
descent; (2) Q; = —H; ', Newton method; (3) Q; = (s(6:)s'(6;))~",
BHHH procedure.

Stop rule: the numerical procedure usually stops when a convergence
threshold has been reached, i.e. [I(Oy) — [(On11)] < n, where 7 is
the given threshold.

Variance-covariance matrix of #: as indicated above, one can use V() =
(—H(Oy)) Lor V(0) = (s(On)s'(On)) ! = (X, s:(On)s:(On)') !, where
s¢(0n) = 0l(0 = On,y,)/00 (BHHH method). Another possibility is to
compute the QML variance-covariance matrix.

11.1.4 GAUss example

The following program provides an example of maximum likelihood estima-
tion for the ordinary least squares problem studied earlier. The likelihood
is based on the normal distribution. As the maximum likelihood module
features a whole range of estimation options, we also provide a brief descrip-
tion of the most important global variables which determine the outcome
of the estimation process. Further information can be found in the maxi-
mum likelihood Reference manual and in the comments of the maxlik.src
procedure.

Remark: QML estimation is directly available by selecting _max_CovPar=3.

34

/* Maximum likelihood estimation */
library maxlik;
maxset;

/* Simulation of the data */
nobs=1000;

beta=1 | -1 | 0.5 | -0.25;
s=2;

x=ones (nobs, 1) “3*rndn(nobs,3) ;
y=x*beta+s*rndn(nobs,1);

/* Maximum likelihood estimation */
/* Vector of starting values */
start_val=ones(5,1);

/* Names of parameters

**x _max_ParNames - Kxl1 character vector, parameter labels.
*/

_max_ParNames="BETA1" | "BETA2" | "BETA3" | "BETA4" | "S";

/* Optimization algorithm
*x _max_Algorithm - scalar, indicator for optimization method:

* ok = 1, SD (steepest descent)

* % =2, BFGS (Broyden, Fletcher, Goldfarb, Shanno)
* % = 3, DFP (Davidon, Fletcher, Powell)

* = 4, NEWTON (Newton-Raphson)

%k =5, BHHH

Kk =6, Polak-Ribiere Conjugate Gradient

*/

_max_Algorithm =5;

/* Step length
**x _max_LineSearch - scalar, indicator determining the line search method.
Xk

*k = 1, steplength =1

* % = 2, STEPBT (default)

* % = 3, HALF

*k = 4, BRENT

* ok = 5, BHHHSTEP

* ok

*% Usually _max_Step = 2 will be best. If the optimization

35

* ok bogs down try setting _max_Step = 1 or 3. _max_Step = 3

*k will generate slow iterations but faster convergence and
ok _max_Step = 1 will generate fast iterations but slower
*ok convergence.

*/

_max_LineSearch =2;

/* Method for computing the variance-covariance matrix at the end of the optimiz

**x _max_CovPar - scalar, type of covariance matrix of parameters,
*x = 0, the inverse of the final information matrix from
* ok the optimization is returned in cov (default).
*x = 1, the inverse of the second derivatives is returned.
k%

*x = 2, the inverse of the cross-product of the first

* % derivatives is returned.

k%

* X = 3, the hetereskedastic-consistent covariance matrix
*% is returned.

*/

_max_CovPar=0;

/* Convergence criteria

*x _max_GradTol - scalar, convergence tolerance for gradient of estimated
*x coefficients. Default = 1e-5. When this criterion has been
*x satisifed OPTMUM will exit the iterations.

*/

_max_GradTol =1e-5;

{x,f,g,cov,retcode}=maxlik(x"y,0,&loglik,start_val);
call maxprt(x,f,g,cov,retcode);

proc loglik(theta,z);

local y,x,b,s;

x=z[.,1:cols(z)-1];

y=z[.,cols(z)];

b=thetall:cols(x)];
s=thetalcols(x)+1];
retp(-0.5%1n(s"2)-0.5%(y-x*b) "2/s72);
endp;

See mll.prg.

36

11.2 Time series and ARIMA models

Autoregressive Integrated Moving Average models are quite popular and of-
ten used in univariate time series analysis, especially for the purpose of fore-
casting. The general form of an ARIMA (p,1,q) is

p q
Z PiAry_; = c+ Z Oici—i
i=0 i=1

where A is the first difference operator and ¢ is a white noise. Assume we
want to analyze such a model for a time series x which we have already loaded
in a T x 1 vector x. The general library containing all procedures useful for
univariate time series analysis is arima.lcg The top of the program should
therefore start with

Library arima; /* activates the library ARIMA */
arimaset; /* reset the global variables to their default values

Assume now that you first want to compute the sample autocorrelation
function of the first differenced times series (i.e. consider d = 1). For this
purpose you can simply use the ACF procedure which is a one return procedure
and can therefore be called with

a = ACF(x,lagmax,d);

where x is the series, lagmax the maximum lag you want to consider and
d the degree of the difference operator. This single return procedure will
generate a (lagmax x 1) vector containing the sample autocorrelation for lag
1 to lagmax and call this vector a.

Consider now the estimation of the ARIMA(p,1,q) model and assume
that you fix p = ¢ = 1. Maximum likelihood estimates are obtained using the
arima procedure which is a multiple return procedure that you can therefore
call by

{coefs,e,11,vcb,aic} = arima(startv,y,p,d,q,const);

Between braces you find the returned matrices: coefs are the MLE of the
parameters (¢; ¢; 0;.c). e is the vector containing the fitted residuals, 11 the
value of the log-likelihood function, vcb the estimated variance covariance
matrix and aic is the value of Akaike’s information criterion.

The arguments of the procedure are given on the r.h.s. between parenthe-
ses: startv is a vector of starting values. If set to 0, the procedure calculate
these automatically. y is the series analyzed, p,d,q are the order of the AR

37

part, the order of differencing and the order of the MA polynomial and const
specifies if the model contains a constant or not. As it is often the case with
estimation procedures, you can change the default values of some options by
modifying global variables. For example you can type

_iterol = 250;

which will increase the maximum number of iteration up to 250 (the default
value of _iterol is 100).

12 Libraries

A GAuss library will serves as a sort of dictionary to the source files that
contain the definition of the symbol, or the procedure, etc. The GAuss
library is thus a text file, the extension must be .1lcg.

A library file will contains several left flushed filenames with an exten-
sion .src (for source), .dec (for declaration) or .ext (external) and lo-
cated in the SRC subdirectory (and/or the other subdirectory specified in
the Gauss.cfg under src_path). These are the files where the symbols, pro-
cedures are defined, global variables declared for compilation purposes and
external declarations. After this left flushed filename you must include the
symbols included and defined in these files as well as their type (procedures,
matrices). The library files are located in the subdirectory LIB (specified in
the Gauss.cfg under lib_path). Let us here look at parts (much has been
deleted) of the Linear Regression library file called 1r.1cg:

/* 1lr.lcg - Linear Regression Library
(C) Copyright 1992-1994 by Aptech Systems, Inc.
A1l Rights Reserved. */

1r.dec

lreghc : matrix
lregres : matrix

(lines omitted)
12sls.src

12s1s ! proc

38

lreg.src
(continues)

Files with the .dec extension are files where you declare global variables
using the DECLARE statement which initializes global matrices and string used
by procedures in a library system.® It generates no executable code and is
only for compile time initialization. In this part two global matrices are
declared. _lreghc is in fact a scalar whose default value is 0. If, you set it
to 1 by including in your program the line

_lregc =1

then a heteroscedastic-consistent covariance matrix estimator will be cal-
culated. Similarly _lregres is a string, a file name to request so-called influ-
ence diagnostics. The statistics generated from the diagnostics will then be
saved under the given file name. Global variables are thus useful for options
definition. Their defaults values are usually defined in a ...set file. In this
case, the default values of the global variables used in 1r.1lcg are defined in
lrset.src (in the SRC subdirectory).

Two lines below you find the left flushed filename 12s1s.src which is the
source file containing a procedure for Two Stages least Squares regressions.

For GAuss to be able to look for the symbol within a given library,
the latter must however be activated. The activation of given libraries is
simply realized by including a LIBRARY statement at the top of the program.
Example: by including the line

library 1lr; /* the .lcg extension is not required */

at the top of your program you will be able to use all the functions, proce-
dures,. .. that are defined in the files that are part of the Linear Regression
Library.

°In contrast to LOCAL variables, matrices,...global variables are known with their
names both within and outside the procedure. These are also the variables you might
want to change if you want change the default options of the procedures (when these
options do exist).

39

