
Advanced Financial Econometrics

Joachim Grammig, University of Tuebingen

Module IV 
Time Series Applications in Finance

Readings: 
Brooks (2002), Ch. 6, Hamilton (1994), Ch. 10,11,

Hasbrouck (1991a,b) Hasbrouck (1995), Grammig/Melvin/Schlag (2005)
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=

⎡⎣kTkS
kK

⎤⎦ B0
(3×3)

=

⎡⎢⎣ 1 −β(0)12 −β(0)13
−β(0)21 1 −β(0)23
−β(0)31 −β(0)32 1

⎤⎥⎦ ut
(3×1)

=

⎡⎣uTtuSt
uKt

⎤⎦

B0yt = k+B1yt−1 + ut

To analyze the interdependence of three East Asian stock markets,
(Tokyo, Singapore and South Korea) we set up a Structural VAR (SVAR)

© Prof. Joachim Grammig, Unversity of Tuebingen 2



B0yt = k+B1yt−1 +B2yt−2 + . . .+Bpyt−p+ ut

E(ut) = 0

E(utu0τ) =

(
D for t= τ
0 otherwise.

D diagonal matrix

The innovations of a VAR in primitive form are assumed to be both
serially and cross-sectionally uncorrelated
(orthogonal/pure/idiosyncratic innovations/shocks)
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yt = c+Φ1yt−1 +Φ2yt−2 + . . .+Φpyt−p+ εt

c= B−10 k (n× 1) vector of constants
Φs = B−10 Bs (n× n) matrix of AR coefficients for s= 1, ..., p

εt = B−10 ut (n× 1) vector generalization of white noise.

Writing the VAR in standard form „solves“ the system
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yt = c+Φ1yt−1 +Φ2yt−2 + . . .+Φpyt−p+ εt

E(εt) = E(B−10 ut) =B−10 E(ut) = 0

E(εtε0t) = E(B−10 utu
0
t[B

−1
0 ]0) ≡ Ω

E(εtε0τ) =

(
Ω for t= τ

0 otherwise.

The innovations of a VAR in standard form are, by construction, 
contemporaneusly correlated (composite innovations/shocks)
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Lag operator:

L(yt) = yt−1, L2(yt) = yt−2, ...

VAR(p) written with lag operator

[In −Φ1L−Φ2L
2 − . . .−ΦpL

p]yt = c+ εt

or

Φ(L)yt = c+ εt

The lag operator provides notational convenience
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Assuming stationarity: E(yt) = µ

E(yt) = c+Φ1E(yt−1)+ . . .+ΦpE(yt−p)+ E(εt)

µ = c+Φ1µ+Φ2µ+ . . .+Φpµ

µ = c+ [Φ1 +Φ2 + . . .+Φp]µ

[In −Φ1−Φ2 − . . .−Φp]µ = c

[In −Φ1L− . . .−ΦpL
p]µ = c

Φ(L)µ = c

We take expectations of the endogenous variables
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yt = c+Φ1yt−1 +Φ2yt−2 + . . .+Φpyt−p+ εt

Φ(L)µ = c

(yt −µ) = Φ1(yt−1 −µ)+Φ2(yt−2 −µ)+ . . .+Φp(yt−p −µ)+ εt

It is convenient to express a VAR in terms of deviations from the 
means
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(yt −µ) = Φ1(yt−1 −µ)+Φ2(yt−2 −µ)+ . . .+Φp(yt−p −µ)+ εt

Define:

ξt
(np×1)

≡

⎡⎢⎢⎢⎣
yt−µ
yt−1 −µ

...
yt−p+1 −µ

⎤⎥⎥⎥⎦ F
(np×np)

≡

⎡⎢⎢⎢⎢⎢⎢⎣
Φ1 Φ2 Φ3 . . . Φp−1 Φp

In 0 0 . . . 0 0
0 In 0 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . In 0

⎤⎥⎥⎥⎥⎥⎥⎦ vt
(np×1)

≡

⎡⎢⎢⎢⎣
εt
0
...
0

⎤⎥⎥⎥⎦

ξt = Fξt−1 + vt

With some additional notation a VAR(p) can be rewritten as a 
VAR(1)
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ξt = Fξt−1 + vt
ξt+1 = Fξt+ vt+1
ξt+2 = Fξt+1 + vt+2
ξt+3 = Fξt+2 + vt+3 = vt+3 +F(Fξt+1 + vt+2)
... = vt+3 +Fvt+2+F2ξt+1

= vt+3 +Fvt+2+F2(Fξt+ vt+1)
= vt+3 +Fvt+2+F2vt+1 +F3ξt

iterating s times yields:

ξt+s = vt+s+Fvt+s−1 +F2vt+s−2 + . . .+Fs−1vt+1+Fsξt

Consider a forward iteration of the VAR(1) system
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the first n rows of the system

ξt+s = vt+s+Fvt+s−1 +F2vt+s−2 + . . .+Fs−1vt+1+Fsξt

are:

yt+s = µ+ εt+s+Ψ1εt+s−1 +Ψ2εt+s−2 + . . .+Ψs−1εt+1

+F
(s)
11 (yt −µ)+F

(s)
12 (yt−1−µ)+ . . .+F

(s)
1p (yt−p+1 −µ)

F(j): F raised to the jth power

F
(j)
11 =Ψj: first n rows and columns 1 through n

F
(j)
1p : first n rows and columns (n(p− 1) +1) through np

To obtain the Vector Moving Average (VMA) representation
we focus on the first rows of the system
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Forecast of yt+s on the basis of yt,yt−1, ...

ŷt+s|t = µ+F
(s)
11 (yt−µ)+F

(s)
12 (yt−1 −µ)+ . . .+F

(s)
1p (yt−p+1−µ)

Forecast error:

yt+s− ŷt+s|t = εt+s+Ψ1εt+s−1 +Ψ2εt+s−2 + . . .+Ψs−1εt+1
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Vector MA(∞) Representation

Eigenvalues of F inside the unit circle → stationarity of {yt}

→ Vector MA(∞) Representation

ξt =
∞X
i=0

Fivt−i

First n rows:

yt = µ+ εt+Ψ1εt−1 +Ψ2εt−2 +Ψ3εt−3 + . . .

yt = µ+
h
In+Ψ1L+Ψ2L

2 . . .
i
εt

yt = µ+Ψ(L)εt
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summarize results:

Φ(L)yt = c+ εt Φ(L)µ= c yt = µ+Ψ(L)εt

Φ(L)[µ+Ψ(L)εt] = c+ εt

Φ(L)µ+Φ(L)Ψ(L)εt = c+ εt

c+Φ(L)Ψ(L)εt = c+ εt

[Φ(L)Ψ(L)] εt = εt

In

Combining results shows how VAR and MA coefficients are related
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In = Ψ(L)Φ(L)

In = (In+Ψ1L+Ψ2L
2 + . . .)(In −Φ1L−Φ2L

2 − . . .−ΦpL
p)

In = In+(Ψ1−Φ1)L+(Ψ2−Φ1Ψ1 −Φ2)L
2 + . . .

⇒ Ψ1 = Φ1

Ψ2 = Φ1Ψ1+Φ2

general for Ls s= 1, 2, . . . : Ψs= Φ1Ψs−1+Φ2Ψs−2+ . . .+ΦpΨs−p

The VMA coefficients can be recursively computed from the
VAR coefficients
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yt+s = µ+ εt+s+Ψ1εt+s−1 +Ψ2εt+s−2 + . . .+Ψsεt+ . . .+ . . .

∂yt+s

∂ε0t
= Ψs

Sequence of Ψ1, Ψ2,...: Impulse-Response Function

e.g. response of yi,t+s to a one-time impulse in εj,t with all other

variables dated t or earlier held constant:
∂yi,t+s
∂εjt

= ψs[i, j]

The Impulse-Response Function gives the response of the
system to one unit shocks in the ε
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s Φs Ψs

1
-0.029 0.034 0.035 -0.029 0.034 0.035
0.007 0.195 0.044 0.007 0.195 0.044
0.027 0.090 0.060 0.027 0.090 0.060

2
-0.071 -0.024 0.020 -0.069 -0.015 0.022
-0.050 -0.062 0.016 -0.047 -0.020 0.028
0.005 -0.016 0.004 0.006 0.008 0.013

3
0.003 -0.005 -0.002
-0.008 -0.016 0.003
-0.006 -0.004 0.004

...
...

...

10
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

This numerical example shows how  to obtain the VMA 
coefficients from VAR(2) parameters
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Ψ1 = Φ1

=

⎡⎢⎣−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060

⎤⎥⎦
Ψ2 = Φ1Ψ1+Φ2

=

⎡⎢⎣−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060

⎤⎥⎦ ·
⎡⎢⎣−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060

⎤⎥⎦
+

⎡⎢⎣−0.071 −0.024 0.020
−0.050 −0.062 0.016
0.005 −0.016 0.004

⎤⎥⎦
=

⎡⎢⎣−0.069 −0.015 0.022
−0.047 −0.020 0.028
0.006 0.008 0.013

⎤⎥⎦

This numerical example shows how to obtain the VMA coefficients 
from the VAR(2) parameters
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Ψ3 = Φ1Ψ2+Φ2Ψ1

=

⎡⎢⎣−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060

⎤⎥⎦ ·
⎡⎢⎣−0.069 −0.015 0.022
−0.047 −0.020 0.028
0.006 0.008 0.013

⎤⎥⎦
+

⎡⎢⎣−0.071 −0.024 0.020
−0.050 −0.062 0.016
0.005 −0.016 0.004

⎤⎥⎦ ·
⎡⎢⎣−0.029 0.034 0.035
0.007 0.195 0.044
0.027 0.090 0.060

⎤⎥⎦
=

⎡⎢⎣ 0.003 −0.005 −0.002
−0.008 −0.016 0.003
−0.006 −0.004 0.004

⎤⎥⎦

This numerical example shows how to obtain the VMA 
coefficients from the VAR(2) parameters
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The plots show a graphical representation of the VMA coefficients

Tokyo

Singapore

Korea
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covariance matrix of εt:

E(εtε0t) = Ω

relation between shocks in VAR and SVAR: εt =B−10 ut

E(εtε0t) = B−10 E(utu0t)
h
B−10

i0
= B−10 D

h
B−10

i0

To  obtain the idiosyncratic shocks from the composite shocks
we need the structural parameters, the matrix B0
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Ω = ADA0

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0
a21 1 0 . . . 0
a31 a32 1 . . . 0
... ... ... . . . ...

an1 an2 an3 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣
d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
... ... ... . . . ...
0 0 0 . . . dn

⎤⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣
1 a21 a31 . . . an1
0 1 a32 . . . an2
0 0 1 . . . an3
... ... ... . . . ...
0 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦

Ω: real symmetric positive definite matrix

A: lower triangular matrix with ones along the principal diagonal

D: diagonal matrix with positive elements

To identify the structural parameters B0, we decompose the variance
covariance matrix of composite innovations (Choleski-Dekomposition)
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Define A= B−10

E(εtε0t) = Ω= ADA0

Construct from Aut = εt: ut ≡ A−1εt with variance

E(utu0t) = [A−1]E(εtε0t)[A−1]0

= [A−1]Ω[A0]−1

= [A−1]ADA0[A0]−1

= D

This implies: E(uitu0jt) = 0 i 6= j

The idiosyncratic innovations can then be backed out from
the composite innovations
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Example:

Ω = ADA0⎡⎣1.79 0.62 0.16
0.62 1.99 0.28
0.16 0.28 2.67

⎤⎦=
⎡⎣1.00 0.00 0.00
0.34 1.00 0.00
0.09 0.13 1.00

⎤⎦ ⎡⎣1.79 0.00 0.00
0.00 1.78 0.00
0.00 0.00 2.63

⎤⎦ ⎡⎣1.00 0.34 0.09
0.00 1.00 0.13
0.00 0.00 1.00

⎤⎦
Ω and D multiplied by 10000.

The numerical example shows the decomposition of the
variance covariance matrix in the present application
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A · ut = εt⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0
a21 1 0 . . . 0
a31 a32 1 . . . 0
... ... ... . . . ...

an1 an2 an3 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u1t
u2t
u3t
...
unt

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
ε1t
ε2t
ε3t
...
εnt

⎤⎥⎥⎥⎥⎥⎥⎦

Thus, u1t = ε1t and ujt = εjt− aj1u1t− aj2u2t− . . .− aj,j−1uj−1,t

⇒ variable ORDERING matters!

The composite shocks are generated as linear combinations
of the pure innovations
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∂Ê(yt+s|yjt, yj−1,t, ..., y1t, xt−1)
∂ujt

= Ψsaj

with aj as the jth column of A

⇒ orthogonalized impulse response function

In most applications in economics and finance you want to 
trace a shock in the pure innovation
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Orthogonalized impulse response function of Tokyo to one standard deviation 
shock in the SVAR(2) with Cholesky Ordering: Tokyo Singapore Korea

Tokyo

Singapore

Korea
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Orthogonalized impulse response function of Singapore to one standard 
deviation shock in the SVAR(2) with Cholesky Ordering: Tokyo Singapore Korea

Tokyo

Singapore

Korea
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Orthogonalized impulse response function of Korea to one standard deviation 
shock in the SVAR(2) with Cholesky Ordering: Tokyo Singapore Korea

Tokyo

Singapore

Korea
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yt+s− ŷt+s|t = εt+s+Ψ1εt+s−1 +Ψ2εt+s−2 + . . .+Ψs−1εt+1

MSE(ŷt+s|t) = E[(yt+s − ŷt+s|t)(yt+s− ŷt+s|t)
0]

= Ω+Ψ1ΩΨ
0
1 +Ψ2ΩΨ

0
2 + . . .+Ψs−1ΩΨ

0
s−1

To attribute information shares to the markets we consider a 
decomposition of the Mean Squared Forecast Error
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εt = Aut = a1u1t+ a2u2t+ . . .+ anunt

Ω = E(εtε0t) = A · E(utu0t) ·A0 =ADA0

= a1a
0
1 · Var(u1t)+ a2a

0
2 ·Var(u2t)+ . . .+ ana

0
n ·Var(unt)

The Choleski ordering allows a decomposition of the variance of the
composite innovations into the contributions of the pure innovations
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MSE(ŷt+s|t) = E[(yt+s − ŷt+s|t)(yt+s− ŷt+s|t)
0]

= Ω+Ψ1ΩΨ
0
1 +Ψ2ΩΨ

0
2 + . . .+Ψs−1ΩΨ

0
s−1

MSE(ŷt+s|t)
(n×n)

=
nX

j=1

{Var(ujt) · [aja0j +Ψ1aja
0
jΨ

0
1

+Ψ2aja
0
jΨ

0
2 + . . .+Ψs−1aja

0
jΨ

0
s−1]}

contribution of the jth orthogonalized innovation to the MSE of

the s-period-ahead forecast:

Var(ujt) · [aja0j +Ψ1aja
0
jΨ

0
1 +Ψ2aja

0
jΨ

0
2 + . . .+Ψs−1aja

0
jΨ

0
s−1]

We can also decompose the MSE of the s-step ahead forecast
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MSE(ŷt+1|t)
(n×n)

= Var(uTt ) · [a1a01] + Var(uSt ) · [a2a02] + Var(uKt ) · [a3a03]

MSE(ŷt+1|t)
(n×n)

= 1.79 ·

⎡⎣1.000 0.344 0.087
0.344 0.119 0.030
0.087 0.030 0.008

⎤⎦+ 1.78 ·

⎡⎣0.000 0.000 0.000
0.000 1.000 0.127
0.000 0.127 0.016

⎤⎦
+ 2.63 ·

⎡⎣0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 1.000

⎤⎦
=

⎡⎣1.793 0.618 0.157
0.618 1.994 0.281
0.157 0.281 2.674

⎤⎦
Var(uTt ),Var(u

S
t ),Var(u

K
t ) and MSE(ŷt+1|t) taken times 10000

The numerical example illustrates the decomposition of the variance
covariance matrix of the composite shocks (MSE 1 step forecast)
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MSE(ŷt+2|t)
(n×n)

= Var(uTt )[a1a
0
1 +Ψ1a1a

0
1Ψ

0
1] + Var(uSt )[a2a

0
2 +Ψ1a2a

0
2Ψ

0
1]

+ Var(uKt )[a3a
0
3 +Ψ1a3a

0
3Ψ

0
1]

MSE(ŷt+2|t)
(n×n)

= 1.79 ·

⎡⎣1.000 0.343 0.086
0.343 0.125 0.035
0.086 0.035 0.012

⎤⎦+ 1.78 ·

⎡⎣0.001 0.008 0.004
0.008 1.040 0.147
0.004 0.147 0.026

⎤⎦
+ 2.63 ·

⎡⎣0.001 0.002 0.002
0.002 0.002 0.003
0.002 0.003 1.004

⎤⎦
=

⎡⎣1.799 0.633 0.167
0.633 2.082 0.332
0.167 0.332 2.707

⎤⎦
Var(uTt ),Var(u

S
t ),Var(u

K
t ) and MSE(ŷt+2|t) taken times 10000

The numerical example illustrates the decomposition of the MSE 
of the two step forecast
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Variance Decomposition of Tokyo
Cholesky Ordering: Tokyo Singapore Korea
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Singapore

Korea
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Variance Decomposition of Singapore
Cholesky Ordering: Tokyo Singapore Korea
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Singapore

Korea
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Variance Decomposition of Korea 
Cholesky Ordering: Tokyo Singapore Korea

Tokyo

Singapore

Korea
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Variance Decomposition of Tokyo
Cholesky Ordering: Singapore Tokyo Korea
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Korea
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Variance Decomposition of Singapore
Cholesky Ordering: Singapore Tokyo Korea

Tokyo

Singapore

Korea
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Variance Decomposition of Korea 
Cholesky Ordering: Singapore Tokyo Korea

Tokyo

Singapore

Korea
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Application of Cointegration Methods in Finance

Internationally cross-listed stock prices during overlapping
trading hours: price discovery and exchange rate effects

Journal of Empirical Finance 12 (2005), 139-164

Joachim Grammig , Michael Melvin , Christian Schlag
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Overview

- Motivation

- Theoretical background and econometric modeling

- Data and empirical results

- Conclusion

42



Hypothesis regarding price discovery in international equity trading and 
empirical tests based on high frequency data

Simultaneous trading of same asset at different trading venues Simultaneous trading of same asset at different trading venues 

Worldwide competition for liquidity. Viability of securities marWorldwide competition for liquidity. Viability of securities markets depends on kets depends on 
performance of trading mechanisms.performance of trading mechanisms.
Efficient capital market: ValueEfficient capital market: Value--relevant information flows quickly into prices.relevant information flows quickly into prices.

Q1: Price discovery in home market or at the world‘s leading traQ1: Price discovery in home market or at the world‘s leading trading venue?ding venue?

Bacidore/SofianosBacidore/Sofianos (2000): “(2000): “Price discovery takes place at home and NYSE Price discovery takes place at home and NYSE 
market participants take those prices as givenmarket participants take those prices as given””

“Winner market takes all”“Winner market takes all”--hypothesis (hypothesis (ChowdryChowdry and and NandaNanda, RFS 1991): In , RFS 1991): In 
case of international parallel trading one market will dominate case of international parallel trading one market will dominate price discovery. price discovery. 

Kim/Kim/Szakmary/MathurSzakmary/Mathur (JBF 2000): Home market dominates price discovery. (JBF 2000): Home market dominates price discovery. 
Problem: Aggregation of price dynamics in daily data. NonProblem: Aggregation of price dynamics in daily data. Non--simultaneous trading simultaneous trading 
(time zones). (time zones). 

Q2: Symmetric reaction of stock prices to exchange rate movementQ2: Symmetric reaction of stock prices to exchange rate movements?s?
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Starting point: 100 % Price discovery in home market

.

Ph
t : Stock price home market at time t in (log)

Pu
t : Stock price US market in $ (log)

Et : $/ exchange rate (log)

Et and Ph
t follow random walks

Et = Et−1 + εet

Ph
t = Ph

t−1 + εht

The US price tracks the home market price:

Pu
t = Ph

t−1 +Et−1 + εut
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Cointegration between home market price, US price and exchange rate

Arbitrage prevents long run deviations from equilibrium 
log-exchange rate, log-€-Kurs und log-$-Kurs are cointegrated

.

- Only own innovations     exert permanent impact on € price. (100% information share)

- Only own innovations     exert permanent impact on exchange rate. (100% information  

share)

- $-Preis: Merely transitory influence of own market innovations     .

Only home market and  exchange rate innovations permanently impounded in US price. 

εut

Ph
t − Pu

t +Et =h
Ph
t−1 + εht − Ph

t−1 −Et−1 − εut +Et−1 + εet
i
=

εht − εut + εet

εht

εet

with cointegrating vector (1 -1 1).
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In a general model the innovations of all three price series contribute to 
the long run dynamics of the system

OneOne cointegratingcointegrating relation between €relation between €--price, $price, $--price and exchange rate but...price and exchange rate but...

-- .. innovations                    may exert permanent effects on.. innovations                    may exert permanent effects on all three price seriesall three price series

-- .. their importance (the information share)  is determined empir.. their importance (the information share)  is determined empirically.ically.

NonNon--stationary VAR using  €stationary VAR using  €--price, $price, $--price and exchange rate.price and exchange rate.

CointegrationCointegration between  €between  €--price, $price, $--price and exchange rate.price and exchange rate.

Granger representation theorem                          VECMGranger representation theorem                          VECM

Write VECM in VMA representation and simulate VMA parametersWrite VECM in VMA representation and simulate VMA parameters

Decompose variance of long run effect of each price series into Decompose variance of long run effect of each price series into the effects caused by the effects caused by 

the innovations of each series. the innovations of each series. 

Variance Share = Information ShareVariance Share = Information Share

εht , ε
e
t and εut
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In a general model the innovations of all three price series contribute to 
the long run dynamics of the system

εht , ε
e
t and εut

Assumptions for a general model:

One cointegrating relation between €-price, $-price and exchange rate but...

-.. Innovations                       may exert permanent effects on all three price series.

..  their importance (the information share)  is determined empirically.    
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Estimation of the information shares is based on a VECM

Non-stationary VAR using  €-price, $-price and exchange rate.

Cointegration between  €-price, $-price and exchange rate.

Granger representation theorem                          VECM

∆Et = β1(α1P
h
t−1 − α2P

u
t−1 − α3Et)+ δ11∆Ph

t−1 + δ12∆Pu
t−1 + δ13∆Et−1 + εet

∆Ph
t = β2(α1P

h
t−1− α2P

u
t−1 − α3Et)+ δ21∆Ph

t−1 + δ22∆Pu
t−1 + δ23∆Et−1 + εht

∆Pu
t = β3(α1P

h
t−1 − α2P

u
t−1 − α3Et)+ δ31∆Ph

t−1 + δ32∆Pu
t−1 + δ33∆Et−1 + εut
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By simulating the VECM we obtain the weight matrix from which the 
information shares can be computed⎡⎢⎣∆Et

∆Ph
t

∆Pu
t

⎤⎥⎦ =

⎡⎢⎣ε
e
t
εht
εut

⎤⎥⎦+Ψ1

⎡⎢⎢⎣
εet−1
εht−1
εut−1

⎤⎥⎥⎦+Ψ2

⎡⎢⎢⎣
εet−2
εht−2
εut−2

⎤⎥⎥⎦+ . . .

Ψ=

⎡⎢⎣ψ11 ψ12 ψ13
ψ21 ψ22 ψ23
ψ31 ψ32 ψ33

⎤⎥⎦= I+Ψ1 +Ψ2 + . . .

⎛⎜⎝permanent impact on exchange ratepermanent impact on -Price
permanent impact on $-Price

⎞⎟⎠ =

⎡⎢⎣ψ11 ψ12 ψ13
ψ21 ψ22 ψ23
ψ31 ψ32 ψ33

⎤⎥⎦×
⎡⎢⎣ε

e
t
εht
εut

⎤⎥⎦

ψ12 = 0, ψ13 = 0

Write VECM in VMA representation:

(follows from Stock/Watson’s common trends representation of cointegrated systems)

Economoic common sense:                       : Stock prices do not affect exchange 
rate.

Cointegration implies ψ22 = ψ32 and ψ23 = ψ33.
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Hasbrouck (1995): Defines the information share of a market as its 
contribution to the  variance of the permanent component of a given price 
series

ψ12 = 0, ψ13 = 0Hypothesized 

100% of relevant information is generated in exchange rate series itself  (Empirically 

testable)

Information shares for home market and US market? 

“Winner market takes all”-hypothesis: One market dominates! 

Sofianos’ “home market hypothesis”.

= ψ211Var(ε
e
t) + ψ212Var(ε

h
t ) + ψ213Var(ε

u
t )

ψ211Var(ε
e
t)

ψ211Var(ε
e
t)+ ψ212Var(ε

h
t )+ ψ213Var(ε

u
t )

≡ Information Share

Var(perm. impact on exchange rate)

(neglecting contemporaneous correlations)
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The empirical analysis is based on high frequency data for three NYSE 
traded German stocks and US/€ exchange rate data

XETRA (electronic trading system of German Stock Exchange) and NYSE 
(TAQ) bid-ask prices for SAP, Deutsche Telekom (DT) and DaimlerChrysler 
(DCX). 

US/€ indicative quotes: Olsen & Associates, Zürich

August-Oktober 1999

Mid-quotes from overlapping trading period NYSE-XETRA [GMT 14:30-16(:30)]

Equally spaced 10 seconds data generated from transactions data.
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A look at the data
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Comparing Deutsche Telekom and SAP one finds significant differences in 
intra day quoting intensity patterns
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The empirical results

- Johansen’s method confirms the existence of ONE cointegrating relation between 

stock prices and exchange rate. 

- Implies two stochastic trends (efficient stock price and exchange rate).

- As expected, no permanent impact of stock prices on exchange rates.

- Only the US price incorporates exchange rate shocks. The home market does 

not react. Unexpected (?) asymmetric effect.

- Support for “winner market takes all”-hypothesis.

- Support for home market hypothesis, but qualitative differences are obvious:

Deutsche Telekom as “national”  stock: Price discovery exclusively in Germany

DaimlerChrysler: The larger information share is generated in the German market 

SAP (“New Economy”,  significant US-sales): Largest US information share 
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Information of share XETRA innovations w.r.t NYSE price
(Kernel density estimates based on 1000 Bootstrap replications  (Li/Maddala, 
1997))

estimator and s.e.

DCX  0.838 (0.024)   

DT     0.942 (0.008)

SAP  0.752 (0.036)
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Information share of NYSE innovations w.r.t. NYSE price

estimator and s.e.

DCX  0.089 (0.027)   

DT     0.009 (0.007)

SAP  0.189 (0.039)
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Information share of exchange rate innovations w.r.t NYSE price

estimator and s.e.

DCX  0.073 (0.007)   

DT     0.049 (0.005)

SAP  0.059 (0.006)
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Information share of XETRA innovations w.r.t XETRA price

estimator and s.e.

DCX  0.906 (0.029)   

DT     0.991 (0.007)

SAP  0.798 (0.041)
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Information share of NYSE innovations w.r.t XETRA price

estimator and s.e.

DCX  0.087 (0.027)   

DT     0.009 (0.007)

SAP  0.189 (0.039)
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Information share of exchange rate innovations w.r.t XETRA price

estimator and s.e.

DCX  0.007 (0.003)   

DT     0.000 (0.001)

SAP  0.006 (0.002)
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Summary

One cointegrating relation between exchange rate and $ and  €  prices found 

in high frequency data.

Asymmetric price reactions in response to exchange rate shocks.

Support for “winner market takes all”-hypothesis: One market  dominates 

price discovery.

Support for home market hypothesis.

Qualitative differences between stocks. Truly national stocks vs. stocks with  

larger international focus. 

DaimlerChrysler: Takeover or merger among equals?
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The following quote from ”A Blueprint for Success”, TSE, 
October 1998, illustrates the competitive threat from U.S. 
exchanges perceived by the non-U.S. exchanges.

”The TSE cannot afford to have the U.S. markets become the 
price discovery mechanism for Canadian interlisted stocks.”
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⎛⎜⎝permanent impact on exchange ratepermanent impact on -Price
permanent impact on $-Price

⎞⎟⎠ =

⎡⎢⎣ψ11 ψ12 ψ13
ψ21 ψ22 ψ23
ψ31 ψ32 ψ33

⎤⎥⎦×
⎡⎢⎣ε

e
t
εht
εut

⎤⎥⎦

DCX

⎡⎢⎣ 0.567 (0.010) 0.005 (0.011) 0.011 (0.012)
−0.132 (0.025) 0.822 (0.031) 0.250 (0.033)
0.435 (0.027) 0.818 (0.032) 0.261 (0.034)

⎤⎥⎦
DT

⎡⎢⎣ 0.594 (0.006) 0.004 (0.007) 0.004 (0.008)
−0.046 (0.026) 0.879 (0.030) 0.081 (0.031)
0.539 (0.027) 0.875 (0.030) 0.085 (0.031)

⎤⎥⎦
SAP

⎡⎢⎣ 0.596 (0.007) 0.005 (0.008) 0.001 (0.008)
−0.149 (0.021) 0.689 (0.024) 0.287 (0.026)
0.444 (0.023) 0.685 (0.025) 0.288 (0.026)

⎤⎥⎦
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