
Testing conditional predictions of asset pricing models:
Scaled returns (managed portfolios) and scaled factors

Readings: Cochrane (2002), Ch. 8, 10
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We use instruments to test the conditional predictions of asset pricing
models

pt = E
³
mt+1(b) · xt+1|It

´
or 1 = E

³
mt+1(b) · Rt+1|It

´
or 0 = E

³
mt+1(b) · Re

t+1|It
´

l.i.e ”integrates out” conditional implications, lets us focus on

unconditional implications of asset pricing model (model for S.D.F.):

E
³
mt+1(b) ·Rt+1 − 1) = 0

To test conditional implications write

E
³
Yt+1|It

´
= 0 where Yt+1 = (mt+1(b) · Rt+1 − 1) or ...

{Yt+1} a martingale difference sequence.

Properties of m.d.s include:

cov
³
yt+1, zt

´
= 0 ∀ zt ∈ It

E
³
yt+1zt

´
= 0 since 1 ∈ It

Testable restrictions therefore: E
h
(mt+1(b) · Rt+1 − 1)zt] = 0 ∀ zt ∈ It
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x̃t+1 = xit+1zt conceived as (payoff of) managed portfolios,

i.e. artificial assets.

Example: zt =
dt
pt
invest if zt ↑

x̃t+1 conceived as another payoff wtih price ztpt
If model correct, it prices any asset, also mgt. portfolios.

ztpt|{z}
p(x̃t+1)

= Et(mt+1(b) · xt+1zt| {z }
x̃t+1

) or zt = Et
³
mt+1(b) ·Rt+1zt

´

i.e.

E(zt) = E(mt+1Rt+1zt) or E[(mt+1Rt+1 − 1)zt] = 0

The use of instruments has an economic interpretation: Can the model
price “managed portfolios“?
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4

To test the conditional implications you simply “blow up“ the number
of assets by including meaningful managed portfolios and proceed as 
before.

Practice: N assets, M instruments
M moment restrictions

E
³h
mt+1 (b)Rt+1 − 1

i
⊗ zt

´
= 0

With two assets and two instruments zt = (1, z1t )
0

E

⎡⎢⎢⎢⎢⎢⎣
mt+1(b)R

a
t+1 − 1

mt+1(b)R
b
t+1 − 1

(mt+1(b)R
a
t+1 − 1)z

1
t

(mt+1(b)R
b
t+1 − 1)z

1
t

⎤⎥⎥⎥⎥⎥⎦ = 0

or, emphasizing the managed portfolio interpretation

E(mt+1 (b)Rt+1 ⊗ zt| {z }
payoff

−1 ⊗ zt| {z }
price

) = 0

E(mt+1 (b)xt+1 ⊗ zt| {z }
payoff

− pt ⊗ zt| {z }
price

) = 0



You should include economically meaningful instruments (managed
portfolios)

• p = E(mx) should price any asset, also managed portfolios

• if model prices all managed portfolios, conditional asset pric-
ing model true.

• select few selected instruments (we also select few assets

from millions available). New managed funds example

• Select meaningful instruments: Those affecting conditional
distribution of returns

• Any zt ∈ It qualifies as an instruments, but if corr((mt+1Rt+1), zt) =

0 but corr(Rt+1, zt) small: weak instrument

• danger of using weak instruments (Hamilton, 1994, p. 426
for references)
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Some more details and intuition on the choice of instruments

ptzt = Et(mt+1xt+1zt) resp. zt = Et(mt+1Rt+1zt)

holds true trivially if corr((mt+1Rt+1 − 1), zt) = 0

but an interesting instrument implies corr(Rt+1, zt) 6= 0 and/or

corr(mt+1, zt) 6= 0

if Et(Rt+1) ↑ when zt ↑

then in

1zt = ztEt(Rt+1)| {z }
↑

Et(mt+1)| {z }
↓ or

+zt covt(mt+1Rt+1)| {z }
↓

6



Is a conditional asset pricing model testable at all?

Most asset pricing models imply conditionalmoment restrictions

1 = E
³
mt+1(bt) · Rt+1|It

´
e.g. CAPM mt+1 = at − btR

W
t+1.

Parameters of factor pricing model vary over time.

⇒unconditioning via l.i.e. no longer possible:

1 = E
³
mt+1(bt) · Rt+1|It

´
does NOT imply

1 = E
³
mt+1(b) ·Rt+1

´
this is not repaired by using scaled returns. GMM estimation no

possible.

Hansen and Richard critique: CAPM (or other factor model) is

not testable.
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Scaled factors are a partial solution to the problem

With linear factor model

mt+1 = b0t ft+1| {z }
K×1

use of ”scaled factors” a partial solution:

”Blow up” number of factors by scaling factors with (M × 1)

instruments vector zt observable at t

mt+1 = b0 (ft+1⊗ zt)| {z }
KM×1

Unconditioning via l.i.e. and GMM procedure as above.
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Time varying parameters lead to scaled factors (single factor case)

Motivation

Consider linear one factor model mt+1 = at+btft+1 (ft+1 scalar)
Assume Parameters vary with M × 1 instruments vector zt.

mt+1 = a(zt) + b(zt)ft+1

With linear functions

a(zt) = a0zt and b(zt) = b0zt

⇒ mt+1 = a0zt+ (b0zt)ft+1

Mathematically equivalent to

mt+1 = b̃0(f̃t+1 ⊗ zt)

where b̃ =

⎡⎣ a

b

⎤⎦, f̃t+1 =
⎡⎣ 1

ft+1

⎤⎦
Number of parameters to estimate 2 ·M
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Time varying parameters lead to scaled factors (multi factor case)

Multi-factor case:

mt+1 = b0t ft+1| {z }
K×1

Again: Time varying parameters linear functions of M ×1 vector
of observables zt.

mt+1 = b(zt)
0ft+1 with b(zt) = B|{z}

K×M
zt

Equivalent to mt+1 = b̃0 (ft+1 ⊗ zt)| {z }
K×N

where b̃ = vec(B)

In practical application some elements of B may be set to zero.
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Using scaled factors we can condition down and apply GMM

Conditioning down and GMM estimation possible

Et

⎛⎜⎜⎝³̃b0(ft+1 ⊗ zt)
´

| {z }
mt+1

Rt+1

⎞⎟⎟⎠= 1 l.i.e.⇒ E
³³
b̃0(ft+1 ⊗ zt)

´
Rt+1 − 1

´
= 0| {z }

unconditional moment restrictions

Scaled factors and managed portfolios can be combined.

(zt might be the same).

⇒ E(b̃0(ft+1 ⊗ zt)Rt+1 − 1 ]⊗zt) = 0

• Inclusion of conditioning information as managed portfolios
(scaled returns, increases number of test assets.

• Scaled factors increase number of unknown parameters
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Cochranes (1996) CAPM with scaled factors

f =

⎛⎝ 1

RW

⎞⎠ zt =

⎛⎜⎜⎜⎝
1
P
D

term

⎞⎟⎟⎟⎠B =

⎡⎣ b11 b12 b13

b21 b22 b23

⎤⎦

f ⊗ z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

RW

P
D

RW · PD
term

RW · term

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
b̃ =

³
b11, b21, b12, b22, b13, b23

¢0

m = b̃0(f⊗z) = b11+b12
P

D
+b13term+b21R

W+b22R
W ·P

D
+b23R

W ·term

In application Cochrane (1996) restricts b12 and b13 to zero
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