4 Vertiefungsfächer (VF)

Struktur:

Vertiefungsfächer umfassen bestimmte Teilbereiche der Physik. Im Bachelorstudium wird ein Vertiefungsfach durch Belegen von Modulen im Umfang von 21 Leistungspunkten studiert. Eventuell geforderte Voraussetzungen und Einschränkungen bezüglich der Auswahl der Module sind für jedes Vertiefungsfach separat in diesem Modulhandbuch beschrieben.

Prüfungsmodalitäten:

Im Gegensatz zu den unter Kap. 1 beschriebenen Modulen werden die Module des Vertiefungsfachs nicht studienbegleitend geprüft; stattdessen ist eine 1-stündige mündliche Prüfung zum Vertiefungsfach im Rahmen der Bachelor-Prüfung abzulegen. Voraussetzung für das Ablegen der mündlichen Vertiefungsfachprüfung ist das erfolgreiche Absolvieren der studienbegleitenden Prüfungsleistungen zur Bachelor-Prüfung (mit Ausnahme der Bachelor-Arbeit; siehe hierzu §37 (2) der Prüfungsund Studienordnung).

Es stehen acht Vertiefungsfächer zur Auswahl (siehe folgende Übersicht).

Übersicht: Vertiefungsfächer und Koordinatoren

	Vertiefungsfach	Koordinator	e-mail
1	Astronomie und Astrophysik	K. Werner	werner@astro.uni-tuebingen.de
2	Astroteilchenphysik	J. Jochum	josef.jochum@uni-tuebingen.de
3	Biologische und Medizinische	F. Schreiber	frank.schreiber@uni-tuebingen.de
	Physik		
4	Kern- und Teilchenphysik	H. Clement	clement@pit.physik.uni-tuebingen.de
5	Quantenmaterie: Supraleitung,	C. Zimmermann	clz@pit.physik.uni-tuebingen.de
	kalte Atome, Quantenoptik		
6	Kondensierte Materie	O. Eibl	oliver.eibl@uni-tuebingen.de
7	Nanostrukturen und Grenzflächen	D. Wharam	david.wharam@uni-tuebingen.de
8	Wissenschaftliches Rechnen	W. Kley	Wilhelm.kley@uni-tuebingen.de

4.1 Astronomie und Astrophysik (VF1)

Übersicht:

Seminar zu Astro- und Teilchenphysik	Seminar zu aktuellen Problemen der Astronomie und
	Astrophysik
Seminar (2 SWS) 3 LP	Seminar (2 SWS) 3 LP
im WS – auch VF2,4,8	im SS – auch VF2
Astrophysikalisches Fortgeschrittenen-	Astronomisches Praktikum
Praktikum	
Praktikum (5 SWS) 6LP	Seminar/Praktikum (2 SWS) 3LP
im WS und SS	im WS und SS
Theoretische Astrophysik I	Theoretische Astrophysik II
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
optional mit Übungen (2 SWS) 6 LP	
im WS – auch EM	im SS – auch EM
Einführung in die Relativitätstheorie	Relativistische Astrophysik
Vorlesung (2 SWS)	Vorlesung (2 SWS) 3 LP
mit Übungen (2 SWS) 6 LP	optional mit Übungen (2 SWS) 6 LP
im WS – auch EM	im WS – auch VF2, EM
Hochenergie Astrophysik	
Vorlesung (2 SWS) 3 LP	
optional mit Übungen (2 SWS) 6 LP	
im WS – auch EM	
High-Energy Sources in our Galaxy	Astrophysik mit Teilchen
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
ca. alle 2 Jahre – auch EM	ca. alle 2 Jahre – auch VF2, EM
Numerische Methoden in Physik und Astrophysik	Computational Astrophysics
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
optional mit Übungen (2 SWS) 6 LP	optional mit Übungen (2 SWS) 6 LP
im WS - auch VF8, EM	im SS – auch VF8, ĔM
Kosmologie	Extragalakt. Astronomie und Astrophysik
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
optional mit Übungen (2 SWS) 6 LP	optional mit Übungen (2 SWS) 6 LP
im SS – auch VF2, EM	im SS – auch EM
Veränderliche Sterne	Kataklysmische Variable
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
ca. alle 2 Jahre – auch EM	ca. alle 2 Jahre – auch EM
Physik der Gasnebel	Bau und Entwicklung der Sterne
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
optional mit Übungen (2 SWS) 6 LP	optional mit Übungen (2 SWS) 6 LP
ca. alle 2 Jahre – auch EM	ca. alle 2 Jahre – auch EM
Physik der Sternatmosphären I	Physik der Sternatmosphären II
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
optional mit Übungen (2 SWS) 6 LP	11.07.1
ca. alle 2 Jahre – auch EM	ca. alle 2 Jahre – auch EM
Akkretionsscheibenphysik	Planetenentstehung
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
ca. alle 2 Jahre – auch EM	ca. alle 2 Jahre – auch EM

Inhalte und Ziele:

Astronomie und Astrophysik befinden sich in einem "goldenen Zeitalter". Neuartige Beobachtungsmöglichkeiten mit bodengebundenen und weltraumgestützten Teleskopen sowie die Modellierung komplexer astrophysikalischer Systeme lassen ganz neue Erkenntnisse über unser Universum, dessen Bestandteile und grundlegender physikalischer Phänomene gewinnen. Das Vertiefungsfach "Astronomie und Astrophysik" gibt einen Einblick in die Arbeitsmethoden der modernen Astrophysik und führt an die neuesten Forschungsergebnisse heran.

Struktur:

Die erfolgreiche Teilnahme am Basismodul "Astronomie und Astrophysik" ist Voraussetzung für alle Veranstaltungen im Vertiefungsfach Astronomie und Astrophysik. Die Teilnahme an einem Seminar, am Astrophysikalischen Fortgeschrittenenpraktikum sowie an der Vorlesung "Theoretische Astrophysik I" ist obligatorisch.

Prüfungsmodalitäten und Benotung: Alle Veranstaltungen sind unbenotet; der Besuch der Veranstaltungen wird durch Testat bestätigt. Das Vertiefungsfach wird als Teil der Bachelorprüfung mündlich von zwei Dozenten geprüft.

Koordinator: K. Werner (werner@astro.uni-tuebingen.de)

4.2 Astroteilchenphysik (VF2)

Übersicht:

Seminar zu Astro- und Teilchenphysik		
Seminar (2 SWS) 3 LP		
im WS – auch VF1,4,8		
Kosmologie Vorlesung (2 SWS) 3 LP		
optional mit Seminar/Übungen (2 SWS) 6 LP im SS – auch VF1, EM		
Neutrinophysik	Astrophysik mit Teilchen	
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP	
optional mit Übungen (2 SWS) 6 LP	vollesung (2 5005) 5 El	
ca. alle 2 Jahre – auch VF4, EM	ca. alle 2 Jahre – auch VF1, EM	
Experimentelle Astroteilchenphysik	Relativistische Astrophysik	
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP	
optional mit Übungen (2 SWS) 6 LP	optional mit Übungen (2 SWS) 6 LP	
ca. alle 2 Jahre – auch VF4, EM	im WS – auch VF1, EM	
Bausteine der Materie, ihre Wechselwirkungen und zu-	Fortgeschrittene Quantentheorie	
sammengesetzte Systeme		
Vorlesung (2 SWS) 3 LP	Vorlesung (4 SWS)	
	mit Übungen (2 SWS) 9 LP	
im SS – auch VF4, EM	im WS – auch VF4–7, EM	
Quantenfeldtheorie und Teilchenphysik Vorlesung (4 SWS) 6 LP	Moderne Feldtheorie und Teilchenphysik Vorlesung (2 SWS) 3 LP	
optional mit Übungen (2 SWS) 9 LP	optional mit Übungen (2 SWS) 6 LP	
ca. alle 2 Jahre – auch VF4, EM	ca. alle 2 Jahre – auch VF4, EM	
Seminar zu aktuellen Problemen der Astronomie und	Messmethoden in Kern- und Teilchenphysik	
Astrophysik		
Seminar (2 SWS) 3 LP	Block-Praktikum (4 SWS) 3 LP	
im SS – auch VF1	im WS – auch VF4	

Inhalte und Ziele:

Zusammenhang zwischen der elementaren Struktur der Materie und der Struktur des Universums. Das Vertiefungsfach wird von den Dozenten des Kepler Centers for Astro and Particle Physics betreut und stellt eine Verbindung dar zwischen den Vertiefungsfächern Astrophysik, Astronomie und Kern- und Teilchenphysik.

Struktur:

Insgesamt sind Module im Umfang von 21 Leistungspunkten zu belegen. Das "Seminar zu Astround Teilchenphysik", die Vorlesung "Kosmologie" und eine der Vorlesungen "Neutrinophysik" oder "Astrophysik mit Teilchen" sind obligatorisch (zusammen 9 LP). Die restlichen 12 LP können frei aus den verbleibenden Veranstaltungen gewählt werden.

Prüfungsmodalitäten und Benotung:

Alle Veranstaltungen sind unbenotet; der Besuch der Veranstaltungen wird durch Testat bestätigt. Das Vertiefungsfach wird als Teil der Bachelorprüfung mündlich von zwei Dozenten aus verschiedenen Teilbereichen (Astrophysik, theoretische Astrophysik, experimentelle Teilchenphysik, theoretische Teilchenphysik) geprüft. Die mündliche Prüfung dauert eine Stunde.

Koordinator: J. Jochum (josef.jochum@uni-tuebingen.de)

4.3 Biologische und Medizinische Physik (VF3)

Übersicht:

Biologische Physik	Medizinische Physik	
Physik der molekularen und biologischen Materie		
Vorlesung	Vorlesung (2 SWS) 3 ĽP	
im WS – auch VF6, EM		
Biologische und Medizinische Physik Seminar (2 SWS) 3 LP		
Seminar (2 SWS) 3 LP		
im WS		
Physik der molekularen und biologischen Nanostrukturen		
Vorlesung (2 SWS) 3 LP		
im SS – auch VF7, EM		
Physikalische und Theoretische Chemie I	Medizinische Physik Teil I	
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWŠ) 3 LP	
im WS	im WS	
Physikalische und Theoretische Chemie II	Medizinische Physik Teil II	
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWŚ) 3 LP	
im SS	im SS	
Methoden der biologischen Physik	Methoden der medizinischen Physik	
Praktikum/Seminar (2 SWS) 3 LP	Praktikum/Seminar (2 SWS) 3 LP	
im WS	im SS	

Inhalte und Ziele:

Vermittlung der Grundlagen der Molekülphysik und wichtiger molekularer Wechselwirkungen sowie der in diesem Bereich verwendeten Untersuchungsmethoden. Grundlagen biologischer Materialien sowie der Biologie, Anatomie und Physiologie. Methoden der medizinischen Diagnostik und Therapie mit physikalischen Methoden.

Struktur:

Die Vorlesung "Physik der molekularen und biologischen Materie" sowie das Seminar "Biologische und Medizinische Physik" und wahlweise eines der beiden Praktika sind obligatorisch (zusammen 9 LP). Daneben werden 4 weitere Vorlesungen besucht wobei aus jedem Teilbereich (Biologische bzw. Medizinische Physik) mindestens eine Vorlesung besucht werden muss.

Prüfungsmodalitäten und Benotung:

Alle Veranstaltungen sind unbenotet; der Besuch der Veranstaltungen wird durch Testat bestätigt. Das Vertiefungsfach wird als Teil der Bachelorprüfung mündlich von zwei Dozenten geprüft, jeder aus einem der beiden Teilbereiche. Die mündliche Prüfung dauert eine Stunde.

Koordinator: F. Schreiber (frank.schreiber@uni-tuebingen.de)

4.4 Kern- und Teilchenphysik (VF4)

Übersicht:

Experimentelle Kern- & Teilchenphysik	Theoretische Kern- & Teilchenphysik
	und Teilchenphysik
Seminar (2 SWS) 3 LP	
im WS – auch VF1,2,8	
	yse von Experimenten
	kum (2 SWŠ) 3 LP
	SS
Experimentelle Astroteilchenphysik	Fortgeschrittene Quantentheorie
Vorlesung (2 SWS) 3 LP	Vorlesung (4 SWS)
	mit Übungen (2 SWS) 9 LP
optional mit Übungen (2 SWS) 6 LP	
ca. alle 2 Jahre – auch VF2, EM	im WS – auch VF2,5,6,7, EM
Bausteine der Materie, ihre Wechselwirkungen und zu-	Theoretische Kernphysik
sammengesetzte Systeme	
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
0 (optional mit Übungen (2 SWS) 6 LP
im SS – auch VF2, EM	ca. alle 2 Jahre – auch EM
Neutrinophysik	Quantenfeldtheorie und Teilchenphysik
Vorlesung (2 SWS) 3 LP	Vorlesung (4 SWS) 6 LP
optional mit Übungen (2 SWS) 6 LP	optional mit Übungen (2 SWS) 9 LP
ca. alle 2 Jahre – auch VF2, EM	ca. alle 2 Jahre – auch VF2, EM
Plasmaphysik und Fusionsforschung I	Moderne Feldtheorie und Teilchenphysik
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
- '	optional mit Übungen (2 SWS) 6 LP
im WS – auch EM	ca. alle 2 Jahre – auch VF2, EM
Plasmaphysik und Fusionsforschung II	Yang-Mills-Theorie
Vorlesung (2 SWS) 3 LP	Vorlesung (4 SWS) 6 LP
-	optional mit Übungen (2 SWS) 9 LP
im SS – auch EM	ca. alle 2 Jahre – auch EM
Messmethoden in Kern- und Teilchenphysik	
Block-Praktikum (4 SWS) 3 LP	
im WS – auch VF2	

Inhalte und Ziele:

Das Wahlfach Teilchen- und Kernphysik beschäftigt sich mit den Grundbausteinen der Materie und ihren fundamentalen Wechselwirkungen. Darüber hinaus befasst es sich mit dem Atomkern als idealem Labor, um mit wohldefiniertem Anwachsen der Nukleonenzahl die zunehmende Komplexität des Vielteilchensystems bei gleichzeitigem Auftreten neuer Freiheitsgrade (kollektive Moden etc.) zu studieren. Dieses Wahlfach ist eng verknüpft mit den Veranstaltungen des Kepler Centers über aktuelle Themen der Kosmologie, Astronomie, Astrophysik und Astroteilchenphysik.

Struktur:

Das Seminar "Astro- und Teilchenphysik" und das Seminar/Praktikum "Simulation und Analyse von Experimenten" sowie wahlweise das Praktikum "Messmethoden in Kern- und Teilchenphysik" oder die Übungen in einer der Theorievorlesungen sind obligatorisch (zusammen 9 LP). Daneben werden weitere Veranstaltungen besucht, so dass mindestens 21 LPs erreicht werden, wobei aus jedem Teilbereich (Experimentelle oder Theoretische Kern- und Teilchenphysik) mindestens eine Vorlesung besucht werden muss. Anstelle der Vorlesung "Experimentelle Astroteilchenphysik" kann auch ein anderes Vorlesungsmodul aus dem Vertiefungsfach "Astroteilchenphysik" gewählt werden.

Prüfungsmodalitäten und Benotung:

Alle Veranstaltungen sind unbenotet; der Besuch der Veranstaltungen wird durch Testat bestätigt. Das Vertiefungsfach wird als Teil der Bachelorprüfung mündlich von zwei Dozenten geprüft, jeder aus einem der beiden Teilbereiche. Die mündliche Prüfung dauert eine Stunde.

Koordinator: H. Clement (clement@pit.physik.uni-tuebingen.de)

4.5 Quantenmaterie: Supraleitung, kalte Atome, Quantenoptik (VF5)

Übersicht:

Supraleitung	Quantenoptik
Quantenmaterie in Atom- und Festkörperphysik (Vorlesung)	
Vorlesung (2 SWS) 3 LP
im SS – a	
	d Festkörperphysik (Seminar)
Seminar (2	
im	
	Quantentheorie
Vorlesung (4 SWS) mit	Übungen (2 SWS) 9 LP
im WS – auch	
Grundlagen der Supraleitung	Optisches Kühlen und atomare Quantengase
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP im WS – auch EM
im WS – auch VF7, EM Anwendungen der Supraleitung: Dünnfilm Bauelemente	
Vorlesung (2 SWS) 3 LP	Laserphysik und Angewandte Optik Vorlesung (2 SWS) 3 LP
im SS – auch VF7, EM	im WS – auch EM
Makroskopische Quantenphänomene in Josephsonkon-	Ouantenoptik
takten u. verwandten Systemen	~ 1
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP
im SS – auch VF7, EM	im SS – auch EM
Theorie korrelierter Vielteilchensysteme	Computational Quantumphysics
Vorlesung (2 SWS) 3 LP	Vorlesung mit Übungen (2 SWS) 3 LP
im WS – auch VF6,7, EM	im WS – auch VF8, EM
	Computational Quantumphysics II
	Vorlesung mit Übungen (2 SWS) 3 LP
	im SS – auch VF8, EM
Festkörperphysik	Quantenoptik und Atomoptik
Seminar (2 SWS) 3 LP	Seminar (2 SWS) 3 LP
im SS	im SS
Projektpraktikum Supraleiter Dünnfilme	Projektpraktikum Laserstrahlen
Praktikum (2 SWS) 3 LP	Praktikum (2 SWS) 3 LP
im SS und WS – auch VF6,7	im SS und WS

Inhalte und Ziele:

Das Vertiefungsfach "Quantenmaterie" behandelt die Gebiete der Supraleitung und der Quantenund Atomoptik. Ziel ist das Erlangen von theoretischen und experimentellen Kenntnissen aus den Bereichen der modernen Atom- und Festkörperphysik. Die Auswahl der Themen soll auf Forschungs- und Entwicklungsarbeiten auf diesen hoch- aktiven und sich rasch entwickelnden Gebieten der Physik und Technologie vorbereiten.

Struktur:

Insgesamt sind Module im Umfang von 21 Leistungspunkten zu belegen. Die Vorlesung "Quantenmaterie in Atom- und Festkörperphysik" sowie eines der Seminare und eines der beiden Praktika sind obligatorisch (zusammen 9 LP). Daneben wird jeweils eine weitere Vorlesung aus jedem Teilbereich (Supraleitung oder Quantenoptik) besucht (zusammen 6 LP), oder die "Fortgeschrittene Quantentheorie" (9 LP). Die verbleibenden 6 bzw. 3 Leistungspunkte sind aus weiteren frei wählbaren Vorlesungs- oder Praktikums-Modulen des Vertiefungsfachs zu erbringen.

Prüfungsmodalitäten und Benotung:

Alle Veranstaltungen sind unbenotet; der Besuch der Veranstaltungen wird durch Testat bestätigt. Das Vertiefungsfach wird als Teil der Bachelorprüfung mündlich von zwei Dozenten geprüft, jeder aus einem der beiden Teilbereiche Supraleitung und Quantenoptik, oder je ein Prüfer aus Theorie und Experiment. Die mündliche Prüfung dauert eine Stunde.

Koordinator: C. Zimmermann (clz@pit.physik.uni-tuebingen.de)

4.6 Kondensierte Materie (VF6)

Übersicht:

Physik der kondensierten Materie Seminar (2 SWS) 3 LP im SS und WS		
Experiment		
Physik kristalliner Materialien I Physik kristalliner Materialien II		
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP	
optional mit Übungen (2 SWS) 6 LP	(2 0 11 0) 1 2 I	
im WS – auch EM	im SS – auch EM	
Elektronenmikroskopie und Spektroskopie	Elektronenmikroskopisches Praktikum	
Block-Vorlesung (2 SWS) 3 LP	Block-Praktikum (3 SWS) 3 LP	
im WS – auch EM	im WS – auch EM	
Kompaktkurs über Röntgen- und Neutronenstreuung an	Physik der molekularen und biologischen Materie	
Kristallen und Grenzflächen		
Block-Vorlesung mit Übungen (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP	
Block-Vorlesung mit Übungen (2 SWS) 3 LP im WS – auch VF7, EM	im WS – auch VF3, EM	
Technologie der Halbleiter	Halbleiterpraktikum	
Vorlesung (2 SWS) 3 LP	Block-Praktikum (2 SWS) 3 LP	
im WS – auch VF7, EM	im WS – auch VF7, EM	
Supraleitung: Materialien und Anwendungen	Projektpraktikum Supraleiter Dünnfilme	
Vorlesung (2 SWS) 3 LP	Praktikum (2 SWS) 3 LP	
im SS – auch EM	im SS und WS – auch VF5,7	
Theorie		
Theorie der kondensierten Materie	Theorie korrelierter Vielteilchensysteme	
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP	
im SS –auch VF7, EM	im WS – auch VF5,7, EM	
Einführung in die Theorie der Supraleitung	Statistische Feldtheorie von Vielteilchensystemen bei tie-	
	fen Temperaturen	
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP	
ca. alle 2 Jahre – auch VF7, EM	ca. alle 2 Jahre – auch VF7, EM	
Fortgeschrittene Quantentheorie	Granulare Materie	
Vorlesung (4 SWS) mit Übungen(2 SWS) 9 LP	Vorlesung (4 SWS) 6 LP	
im WS – auch VF2,4,5,7, EM	ca. alle 2 Jahre – auch EM	

Inhalte und Ziele:

Das Vertiefungsfach "kondensierte Materie" bietet einen Einblick in eine moderne Disziplin der Physik, die sich durch eine enge Verknüpfung von grundlagenphysikalischen Aspekten und Anwendungen auszeichnet. Es beinhaltet sowohl die Vermittlung von experimentellen und theoretischen Methoden und Techniken als auch die Vertiefung in die Physik und Anwendungen von Halbleitern, Supraleitern und molekularer und biologischer Materie.

Struktur:

Das Seminar "Physik der kondensierten Materie" und je ein Modul aus den Bereichen "Theorie" und "Experiment" sind obligatorisch.

Prüfungsmodalitäten und Benotung:

Alle Veranstaltungen sind unbenotet; der Besuch der Veranstaltungen wird durch Testat bestätigt. Das Vertiefungsfach wird als Teil der Bachelorprüfung mündlich von zwei Dozenten geprüft, jeder aus einem der beiden Teilbereiche. Die mündliche Prüfung dauert eine Stunde.

Koordinator: O. Eibl (oliver.eibl@uni-tuebingen.de)

4.7 Nanostrukturen und Grenzflächen (VF7)

Übersicht:

Physik day Nanochrukturan und Crangflichen			
Physik der Nanostrukturen und Grenzflächen Seminar (2 SWS) 3 LP			
im SS und WS			
Experiment			
	Nanotechnologie-Praktikum		
	4 SWS) 6 LP		
im			
Kompaktkurs über Röntgen- und Neutronenstreuung			
an Kristallen und Grenzflächen			
Block-Vorlesung mit U	Jbungen (2 SWS) 3 LP		
im WS – auch VF6. EM			
Technologie der Halbleiter	Halbleiterpraktikum		
Vorlesung (2 SWS) 3 LP	Block-Praktikum (2 SWS) 3 LP		
im WS – auch VF6, EM	im WS – auch VF6, EM		
Halbleiter Nanostrukturen und Bauelemente	Physik der molekularen und biologischen Nanostruktu-		
	ren		
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP		
im SS – auch EM	im SS – auch VF3, EM		
Grundlagen der Supraleitung	Anwendungen der Supraleitung: Dünnfilm-Bauelemente		
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP		
im WS – auch VF5, EM	im SS – auch VF5, EM		
Makroskopische Quantenphänomene in Josephsonkon- Projektpraktikum Supraleiter Dünnfilme			
takten und verwandten Systemen	D 1.41 (2.07)(0.27)		
Vorlesung (2 SWS) 3 LP	Praktikum (2 SWS) 3 LP		
im SS – auch VF5, EM	im SS und WS – auch VF5,6		
	orie .		
	Quantentheorie		
Vorlesung (4 SWS) mit Übungen(2 SWS) 9 LP			
im WS – auch VF2,4,5,6, EM			
Theorie der kondensierten Materie	Theorie korrelierter Vielteilchensysteme		
Vorlesung (2 SWS) 3 LP im SS –auch VF6, EM	Vorlesung (2 SWS) 3 LP		
	im WS – auch VF5,6, EM		
Einführung in die Theorie der Supraleitung	Statistische Feldtheorie von Vielteilchensystemen bei tie-		
Variation (2 CMC) 2 I D	fen Temperaturen		
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) 3 LP		
ca. alle 2 Jahre – auch VF6, EM	ca. alle 2 Jahre – auch VF6, EM		

Inhalte und Ziele:

Das Vertiefungsfach "Nanostrukturen und Grenzflächen" bietet eine aktuelle Übersicht der Physik und Anwendungen von Nanostrukturen und Grenzflächen. Im Vordergrund steht zum Einen das Verständnis der physikalischen Modelle zur Beschreibung von Nanostrukturen und Grenzflächen. Zum Anderen werden die Anwendungsgebiete von Nanostrukturen und Grenzflächen, insbesondere zur Klärung grundlegender physikalischer Fragestellungen, behandelt.

Struktur:

Das Seminar "Physik der Nanostrukturen und Grenzflächen" und das "Nanotechnologie-Praktikum" sind obligatorisch (zusammen 9 LP). Daneben werden weitere Vorlesungen und maximal ein weiteres Praktikum besucht.

Prüfungsmodalitäten und Benotung:

Alle Veranstaltungen sind unbenotet; der Besuch der Veranstaltungen wird durch Testat bestätigt. Das Vertiefungsfach wird als Teil der Bachelorprüfung mündlich von zwei Dozenten geprüft. Die mündliche Prüfung dauert eine Stunde.

Koordinator: D. Wharam (david.wharam@uni-tuebingen.de)

4.8 Wissenschaftliches Rechnen (VF8)

Übersicht:

Physik	Mathematik	
Praktikum: Computational Physics		
Praktikum (5 SWS) mit Vorlesung (2 SWS) 9 LP		
im WS – auch EM		
Seminar zu Astro- und Teilchenphysik		
Seminar (2 SWS) 3 LP		
im WS - auch VF1,2,4		
Einführung in das Programmieren für wissenschaftliche		
Anwendungen		
Blockveranstaltung vor Beginn der Vorlesungszeit		
Vorlesung (2 SWS) mit Übungen (2 SWS) 3 LP		
III TO GGET EIT	Normania de Mathamatila (iim Dhanillan)	
Numerische Methoden in Physik und Astrophysik	Numerische Mathematik für Physiker	
Vorlesung (2 SWS) 3 LP	Vorlesung (2 SWS) mit Übungen (2 SWS) und Program-	
	miervorkurs (12 Std.) 8 LP	
optional mit Übungen (2 SWS) 6 LP		
im WS - auch VF1, EM	im SS – auch EM	
Computational Astrophysics	Numerik partieller Differential-Gleichungen I	
Vorlesung (2 SWS) 3 LP	Vorlesung (4 SWS) mit Übungen (2SWS) 9 LP	
optional mit Übungen (2 SWS) 6 LP im SS – auch VF1, EM		
	im WS – auch EM	
Numerische Hydrodynamik	Numerik partieller Differential-Gleichungen II	
Vorlesung (2 SWS) 3 LP	Vorlesung (4 SWS) mit Übungen (2SWS) 9 LP	
optional mit Übungen (2 SWS) 6 LP		
im SS – auch EM	im SS – auch EM	
Computational Quantumphysics		
Vorlesung mit Übungen (2 SWS) 3 LP		
im WS – auch VF5, EM		

Inhalte und Ziele:

Die numerische Berechnung physikalisch-technischer Vorgänge hat sich neben Theorie und Experiment mittlerweile zum dritten Standbein der naturwissenschaftlichen Forschung entwickelt. Das Vertiefungsfach Wissenschaftliches Rechnen ist eine gemeinschaftliche Veranstaltung der Physik und Mathematik mit dem Ziel, die Studenten an das Gebiet der numerischen Simulation physikalisch, mathematischer Problemstellungen heranzuführen.

Struktur:

Die Teilnahme am "Praktikum: Computational Physics" und am Seminar ist obligatorisch.

Prüfungsmodalitäten und Benotung:

Alle Veranstaltungen sind unbenotet; der Besuch der Veranstaltungen wird durch Testat bestätigt. Das Vertiefungsfach wird als Teil der Bachelorprüfung mündlich geprüft. Falls Module aus beiden Teilbereichen belegt wurden, erfolgt die Prüfung durch zwei Dozenten, jeder aus einem der beiden Teilbereiche. Die mündliche Prüfung dauert eine Stunde.

Koordinator: W. Kley (wilhelm.kley@uni-tuebingen.de)