

Wirtschafts- und Sozialwissenschaftliche **FAKULTÄT**

Chair of Econometrics, Statistics and Empirical Economics Prof. Dr. Thomas Dimpfl

Preparatory Course for Mathematical Methods in Economics and Business

4. Exercise Sheet

Exercise 1 (Quadratic Functions)

Determine the equation of the parabola $y = ax^2 + bx + c$ which runs through the three points (1,-3), (0,-6), and (3,15).

Exercise 2 (Composite Functions)

Given are the two functions f(x) = 2x + 4 and $g(x) = \ln(x)$. For the following compositions, provide the functional equation. Specify the natural domain of the composite function (give a short explanation).

(a)
$$(f \circ g)(x)$$

$$(f \circ g)(x)$$
 (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$

(c)
$$(f \circ f)(x)$$

(d)
$$(g \circ g)(x)$$

$$(g \circ g)(x)$$
 (e) $f(x) \cdot g(x)$

Exercise 3 (Polynomial Division)

By means of polynomial division, determine the terms q(x) and r(x) of the following equations: P(x) = q(x)Q(x) + r(x).

(a)
$$P(x) = x^4 + 1$$
 $Q(x) = x^2 + 1$

$$Q(x) = x^2 + 1$$

(b)
$$P(x) = x^5 + 3x^3 + 7x^2 - 3$$
 $Q(x) = x^2 + 2x + 1$

For P(x), Q(x), q(x) and r(x) provide the degree of the polynomial.

Exercise 4 (Logarithmic Laws)

You don't have a pocket calculator at your disposal but you know that $\log_{10} 5.2~=~0.716$ applies with sufficient accuracy. Provide the following expressions:

- (a) $\log_{10} 52$
- (b) $\log_{10} 520$
- (c) $\log_{10} 5.2^2$
- (d) $\log_{10} 5200^7$

Exercise 5 (Logarithmic Laws)

Determine the following logarithms:

- (a) $\log_{0.5\pi} 1$
- (b) $\log_{100} 5.2$
- (c) $\log_2(1/8)$
- (d) $\log_{1/2} 4$

Generalize the results from d), by showing that it generally applies: $\log_{1/a} x = -(\log_a x)$.

Exercise 6 (Exponential and Logarithmic Functions)

Exponential functions can be easily transformed to another base:

Convert a^x into e^{cx} . How does c have to be defined such that it holds $a^x = e^{cx}$? Use this result to transform 10^z and $2^{(0.5y)}$ to the base e.

Exercise 7 (Inverse Functions)

Check whether for y = f(x) an inverse function $x = f^{-1}(y)$ exists and provide it if possible. $(D_f = \mathbb{R}, \text{ in case not stated explicitly}).$

(a)
$$y = a + b \cdot x$$

(b)
$$y = x^2$$

(c)
$$y = (1-x)^2$$
 $D_f =]-1,1]$ (d) $y = \frac{1}{1+e^{-x}}$

(d)
$$y = \frac{1}{1 + e^{-a}}$$