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Abstract 

Categorization is a central concept for spatial representations in human cognition and 

artificial intelligence. With the present research, we aimed at building a bridge between those 

two research fields by asking whether motion categorizations designed in artificial 

intelligence can inform the psychological understanding of human perception and memory of 

motion scenes. We report the results of four experiments investigating the influence of 

Motion-RCC and Motion-OPRA1 categorizations on human perception and memory. 

Participants viewed simple motion scenes and judged the similarity of transformed scenes 

with this reference scene. Those transformed scenes differed in none, one or both Motion-

RCC and Motion-OPRA1 categories. Importantly, we applied an equal absolute metric 

change to those transformed scenes. When the reference stimulus and transformed stimuli 

were visible at the same time (Experiments 1a and 1b: perception), both Motion-OPRA1 and 

Motion-RCC influenced the similarity judgements, with a stronger influence of Motion-OPRA1 

than Motion-RCC. When the participants first memorized the reference stimulus and viewed 

the transformed stimuli after a short blank (Experiments 2a and 2b: memory), only Motion-

OPRA1 had marked influences on the similarity judgements. We conclude that human 

perception and short-term memory utilize some of the properties underlying those 

categorizations and given this link between human cognition and qualitative reasoning, we 

argue for a continued and close multidisciplinary approach to investigating the spatial 

representation of motion scenes. 
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1. Introduction 

Categorization lies at the heart of how humans perceive the world (Lakoff, 1987; 

Murphy, 2002), and it is “the most basic phenomenon in cognition” (Cohen & Lefebvre, 2005, 

p. 2). Categorization research has traditionally focused on objects (Medin & Heit, 1999), but it 

also concerns actions and events (e.g., Zacks & Tversky, 2001). In the present paper, we 

focus on categorizing situations that involve the movement of two entities, which is similar to 

situations that might occur in walking behavior (Basili et al., 2013) or traffic. 

Spatial cognition is one of the few fields with extensive interdisciplinary interaction 

between the descriptive approach of psychology and neuroscience, and the prescriptive 

approach of engineering disciplines such as robotics and artificial intelligence. However, the 

specific subfield of qualitative spatial representations lacks psychological studies testing 

cognitive plausibility (Renz et al., 2000; Yang et al., 2015). With the present work, we 

contribute to reducing this research deficit. We studied whether categorical representations 

originally designed in the context of qualitative reasoning methods in artificial intelligence 

might help inform the representation of dynamic scenes in human perception and memory. 

In the following, we first give an overview of the role of categories and inter-object 

relations on spatial representation in human perception and memory. After that, we introduce 

the concept of the qualitative representation of motion scenes from the perspective of 

artificial intelligence. Finally, we report four experiments that we performed to study the 

influence of those qualitative representations on human perception and memory. 

1.1. Spatial Structure in Human Perception and Memory 

A group of objects is not perceived and represented as multiple individual objects in 

isolation, but those objects are organized into meaningful structures – this is a core principle 

underlying both human perception and memory. The following will give a short overview of 

multiple research areas from psychology that highlight the role of spatial inter-object relations 

in perception and memory. Because our primary interest considers motion stimuli, this 

overview focuses on spatiotemporal properties. 
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The Gestalt principle of common fate (Wertheimer, 1923) is one of the first formal 

descriptions of the perceptual grouping of objects based on spatiotemporal properties. 

According to this principle, objects undergoing a common change (e.g., moving together) are 

perceptually grouped. This common motion does not necessarily require objects to move in 

the same direction, but grouping can also occur with objects undergoing other forms of 

coordinated movement, such as objects moving along a circular path. Thus, human 

observers can use motion cues to group or categorize objects within dynamic scenes. 

Further evidence that human observers process multiple moving objects in relation to 

one another comes from research using the Multiple Object Tracking paradigm (MOT; 

Meyerhoff et al., 2017; Pylyshyn & Storm, 1988). Within this paradigm, observers try to track 

a subset of moving target objects among identically looking moving distractor objects with 

visual attention. Yantis (1992) found that observers’ tracking performance was higher for 

conditions constraining target objects’ motion to remain convex compared to conditions 

allowing for target motion that resulted in a collapse of the virtual polygon formed by the 

targets. Further, studies recording eye movements during MOT found that participants direct 

their gaze not only toward the individual target objects but also toward the centroid of the 

virtual polygon formed by the target objects (Fehd & Seiffert, 2008, 2010; Huff et al., 2010; 

Zelinsky & Neider, 2008). Thus, observers track objects not in isolation but in relation to one 

another. 

Short-term memory underlies tight capacity limitations (Cowan, 2001), and the 

organization of information in short-term memory is a core question tackled by prior research 

(e.g., Jiang et al., 2000; Wood, 2011). Regarding the representation of spatial information, 

previous research found that objects are represented based on the spatial configuration 

formed by the memorized objects (Hollingworth, 2007; Jiang et al., 2000; Papenmeier & Huff, 

2014; Timm & Papenmeier, 2019). For example, Jiang et al. (2000) asked participants to 

memorize the locations of multiple concurrently presented objects individually. Despite this 

instruction, and although participants were required to detect the location change of one 

individual object highlighted during retrieval, observers still memorized the spatial relation of 
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the objects. That is, observers’ ability to detect location changes was much higher when the 

probed object was presented together with the spatial configuration of all encoded objects 

rather than when it was presented either alone or within a distorted spatial configuration 

during retrieval. Within the domain of action control, studies reported similar findings. That is, 

reaching actions toward the location of a memorized target object were biased by shifts of 

the spatial configuration of other potential reaching targets (Klinghammer et al., 2015, 2016, 

2017). Thus, spatial configurations underly both short-term memory and action control. 

Beyond spatial information, also spatiotemporal information is represented based on 

STM configurations (Papenmeier et al., 2012; Sun et al., 2015). Whereas Papenmeier et al. 

(2012) provided first evidence that the representation of objects in dynamic scenes is based 

on the global spatial configuration formed by the moving objects, Sun et al. (2015) provided a 

more fine-grained analysis: they studied the maintenance of dynamic spatial configurations in 

memory. In their experiments, participants watched four moving dots and they manipulated 

the geometric properties of the polygon resulting from the dots. Whereas dots moving such 

that the polygon converted from a convex polygon into a concave polygon broke the dynamic 

spatial configuration, other geometrical transformations that retained the polygon as convex 

did not. This suggests that there are geometric categories that determine dynamic spatial 

configurations to some extent. However, in this previous research, metric changes were not 

controlled for. 

1.1.1. Categorical and Metric Representations 

Spatial relations between objects can be described both in categorical terms, such as 

above/below or near/far, as well as metric terms, such as distance or angle. The brain 

subsystem associated with categorical coding is located in the left hemisphere and the 

subsystem associated with metric coding is located in the right hemisphere (Kosslyn, 1987). 

However, this relationship is also mediated by task demands and practice (Banich & 

Federmeier, 1999). 

It is typically assumed that humans represent both categorical and metric spatial 

information concurrently and that categorical information can be used, for example, to adjust 
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inexactly represented metric information (Huttenlocher et al., 1991, 2000). That is, the 

separate representations of categorical and metric information are combined when trying to 

relocate the spatial location of objects (Sampaio & Wang, 2017). When participants tried to 

relocate a dot that was presented within a disc, for example, they reported a dot location that 

was biased toward the diagonal of the respective quadrant of the disc the dot was located 

within (Huttenlocher et al., 1991; Sampaio & Wang, 2010, 2017). In a similar vein, 

participants judging multiple stimuli along simple dimensions, such as the length of a lines or 

the fatness of fishes, they spontaneously construct categories reflecting the range of 

presented stimuli with individual judgements being biased toward the mean of those 

categories (Huttenlocher et al., 2000). 

To summarize, researchers found evidence that categorical representations bias 

metric responses for individual objects (Huttenlocher et al., 1991, 2000; Sampaio & Wang, 

2017) and that inter-object relations are used to represent both spatial and spatiotemporal 

information in perception and memory (Jiang et al., 2000; Papenmeier et al., 2012; Sun et 

al., 2015; Wertheimer, 1923; Yantis, 1992). However, we lack research on what categorical 

information observers might use to represent dynamic scenes in perception and memory. In 

the present research, we intend to close this gap by combining findings from psychology with 

ideas on spatial representations from robotics and artificial intelligence reported below. More 

specifically, by using simple motion scenes depicting two moving objects, we investigated the 

role of categorical properties derived from qualitative representations of motion on human 

perception and memory. 

1.2. Qualitative Representations in Artificial Intelligence  

Spatial relationships in static situations have been modeled for a long time in the field 

of qualitative representation and reasoning (Dylla et al., 2017). Qualitative representations 

describe spatial situations in meaningful categories rather than metric sensor data, such as 

coordinates; and, at the same time, simplify the profusion of numeric data into a few 

categorical values. Two main classes of qualitative spatial representations of static scenes 

have been proposed and extensively researched in artificial intelligence (e.g., Gantner et al., 
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2008; Lücke et al., 2011): (1) Directional representations such as one object being “to the left 

of” another object or one object being “in front of” another object and (2) regional 

representations such as one object overlapping another object or one object being enclosed 

by another object. 

OPRAm (Oriented Point Relation Algebra; Mossakowski & Moratz, 2012) is a class of 

directional representations, where m represents the granularity of the division. In the present 

work, we have used OPRA1, which divides the space into four regions through a single line. 

These regions are left of the line, right of the line, forward, and backward, and they are 

named as '0', '1', '2', '3' (see Figure 1A). Within this representation, all objects are assumed 

to be points in space, that is, the size of the objects is disregarded. In  OPRAm, the spatial 

relation between two entities is expressed as  ∠௕
௔, where a and b are values of the regions 

(0,1, 2, ...) of each entity with respect to the other entity, that is ∠௟ ௪௜௧௛ ௥௘௦௣௘௖௧ ௧௢ ௞
௞ ௪௜௧௛ ௥௘௦௣௘௖௧ ௧௢ ௟ (see Figure 

1B for an example). 

 

 
(A) (B) 

Figure 1. (A) Example of OPRA1 dividing the surrounding space into the regions 0, 1, 2, and 
3. (B) Spatial relation ∠ଷ

଴  between two objects k and l as represented in OPRA1. 
 

Regarding the regional representation of two objects, the relations of RCC (Region 

Connection Calculus; Randell et al., 1992) are a typical representative. Figure 2 shows the 

RCC spatial relations. In our experiment, one entity was always smaller than the other entity; 

therefore, only spatial relations DC, EC, PO, TPP, and NTPP were possible (see Figure 2). 
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Figure 2. RCC spatial qualitative representation for rigid regions with the following relations: 
DC: disconnected, EC: externally connected, EQ: equal, PO: partially overlapping, TPP: 
tangential proper part, TPPi: tangential proper part inverse, NTPP: non-tangential proper 
part, NTPPi: non-tangential proper part inverse. Note that the relations EQ, TPP, NTPP, 
TPPi, and NTPPi depend on the relative size of the entities. 
 

1.2.1. Story-based Representations of Motion Scenes 

Recently, Purcalla Arrufi and Kirsch (2018) introduced the concept of stories that 

allow for categorizing spatial relations in motion scenes. Stories are temporal sequences of 

spatial relations. For example, if one watches two objects moving toward another, then 

touching another, and moving away from another, this could be represented as the story 

disconnected (DC), then externally connected (EC), then disconnected (DC) based on RCC. 

In a story, the order of the spatial relations implicitly represents the temporal dimension of the 

motion scene. Purcalla Arrufi and Kirsch (2018) applied the concept of stories to two classes 

of qualitative spatial representations, namely OPRA1 and RCC. Based on these spatial 

relations, they derived the story-based categorizations of Motion-OPRA1 and Motion-RCC, 

respectively. Figure 3 shows an example of how Motion-OPRA1 and Motion-RCC can 

represent the same motion scene. Importantly, similar to OPRA1 and RCC providing a 

parsimonious spatial representation of static scenes, the resulting number of possible stories 

for Motion-OPRA1 and Motion-RCC is finite and relatively small, such that those stories can 

be used as categorizations and parsimonious representations of motion scenes.  
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Motion Scene:

 
 
Motion-OPRA1 categorization: 

 
 
Motion-RCC categorization: 

 

Figure 3. Illustration of how Motion-OPRA1 and Motion-RCC categorize the same motion 
scene  

● The snapshots at the top row represent the complete motion scene (from t=0.0 to 
t=3.0 s) as snapshots that are equally spaced in time. 

● The snapshots in the middle row – not equally spaced in time – show all the 
∠ଵ

ଷ ∠଴
ଷ ∠ଷ

ଷ ∠ଷ
ଶ ∠ଷ

ଵ successive different OPRA1 spatial relations, which we interpret 
below:  

○ ∠ଵ
ଷ the small blue disc is on the right (3) of the large orange disc, the large 

orange disc is on the left (1) of the small blue disc 
○ ∠଴

ଷ the large orange disc is directly in front of the small blue disc (0), while 
the small blue disc remains on the right (3) of the large orange disc 

○ ∠ଷ
ଷ the center point of the large orange disc is on the right (3) of the center 

of the small blue disc, the small blue disc is still on the right (3) of the large 
orange disc 

○ ∠ଷ
ଶ the small blue disc is directly behind (2) the large orange disc, the large 

orange disc is on the right (3) of the small blue disc 
○ ∠ଷ

ଵ the small blue disc is on the left (1) of the large orange disc, the large 
orange disc is on the right of the small blue disc (3). 

We abbreviated this Motion-OPRA1 story as mo-on. 
● The snapshots at the bottom show all the successive different RCC: the entities 

approach (DC), touch (EC), partially overlap (PO), touch again (EC) and move 
apart (DC). We abbreviated this Motion-RCC story as mr-po. 

 

1.3. Present Research 

So, is there a relation between the story-based representations of motion scenes 

developed in artificial intelligence and the way humans represent motion scenes during 
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perception or memory? With our present research, we aimed to tackle this question by 

asking whether the categorizations defined in Motion-OPRA1 or Motion-RCC might reflect 

aspects that humans use to represent motion scenes during perception or memory. Thus, we 

ran four experiments asking participants to view or memorize simple motion scenes 

(reference scene) and to determine the similarity of transformed scenes with this reference 

scene. Critically, all transformed scenes consisted of metric changes of the same absolute 

amount as compared to the reference scene, but they differed in whether they were of the 

same or a different Motion-OPRA1 or Motion-RCC category. If the Motion-OPRA1 or Motion-

RCC categories are meaningful to human perception or memory, a change in a respective 

category should result in reduced similarity judgements. Otherwise, the similarity ratings 

should be unaffected by changes in the respective Motion-OPRA1 or Motion-RCC categories. 

2. Experimental Set 1: Perception 

We performed two experiments (Experiment 1a and Experiment 1b) in order to 

determine the influence of Motion-RCC and Motion-OPRA1 story-based categorizations on 

the human perception of motion scenes. Both experiments used the same apparatus, stimuli, 

and method of paired comparisons that we introduce in the following. The materials and data 

for all experiments presented in this manuscript are available at 

https://osf.io/37je6/?view_only=425ecd2c3d3a4edaab89c0d97c7ff2d5 

2.1. Method 

2.1.1. Participants 

We recruited 26 participants (23 female; age: 18-29 years; mean age: 23.19 years) 

for Experiment 1a and another 26 participants (21 female; age: 19-35 years; mean age: 

24.04 years) for Experiment 1b. All participants were students from the University of 

Tübingen and participated in exchange for monetary compensation. We ensured that none of 

the participants participated in multiple of the reported experiments. Participants were treated 

in accordance with APA standards of ethical treatment and participants provided informed 

consent prior to the participation. 
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2.1.2. Apparatus 

We ran all experiments on Microsoft Surface Pro tablets with a type cover in order to 

record participants’ responses. Participants sat at an unrestricted viewing distance of about 

57 cm to the screen. We tested up to four participants at the same time. Participants were 

separated by visual shields and could not see each other nor the screen or keyboard of one 

another. 

2.1.3. Stimuli 

We presented motion scenes that depicted two differently sized and colored discs 

moving at uniform linear paths for 3 s and passing the moment of minimum distance at the 

middle of the video clip, thus at 1.5 s. Thus, all motion scenes evolved symmetrically around 

the point of minimum distance. In all our stimuli, one disc was presented in a blueish color 

(RGB: 3, 123, 252; 20% transparency; edge: same RGB; 6% transparency) and the other 

disc was presented in an orangish color (RGB: 255, 119, 0; 50% transparency; edge: same 

RGB; 25% transparency), see Figure 4. We consider these colors as neutral to interpretation, 

and they are color-blind distinguishable. Further, the two discs had different sizes: the radius 

of the orangish disc (ro) was four times longer than that of the blueish disc (rb), i.e., 𝑟௢ = 4𝑟௕. 

Each disc had a black dot in the center to ensure that observers could discern the discs 

trajectories, und, thus, the observers could unambiguously determine the Motion-OPRA1 

categorization. Each video clip was generated and presented at 60 fps for maximum fluidity. 

All motion scenes began and ended with non-overlapping entities with a minimal separation 

between disc borders of at least twice the radius of the smaller disc. All throughout this 

manuscript, we denote the small blue disc by b and the large orange disc by o.  
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(A) A full stimulus. The 3s film is 
presented here as seven equally spaced 
snapshots with temporal fading – the fader 
the earlier. 

 
(B) A frame of the stimulus film in Figure 4A. 

Figure 4. Appearance of a single stimulus: two moving entities as discs. Entity 
b is the smaller blue disc; entity o is the larger orange disc. The radii ratio is 𝑟௕: 𝑟௢ = 1: 4 

 

For those motion scenes, the story-based categorization is determined by three 

variables: dmin, 𝛼v, and sgn(𝛼DxDv) – we call them featural variables (See Figure 5). The 

Motion-RCC category of a motion scene is fully determined by the variable dmin, which is the 

distance of the disc centers at their closest approach; the Motion-OPRA1 category of a 

motion scene is fully determined by 𝛼v and sgn(𝛼DxDv). 𝛼v is the angle between the two 

trajectories (from vb to vo) and sgn(𝛼DxDv) determines how o moves with respect to b. We 

chose the featural variables by two criteria: first, they must be diagnostic, that is, their values 

must unequivocally determine each category; second, their value must remain constant for 

each category (i.e., each story). For that reason, we took the sign and not the angle 𝛼DxDv: 

this angle varies throughout a story, but the sign remains constant. Note that the first two 

variables dmin and 𝛼v are continuous, while the sgn(𝛼DxDv) is discrete.  
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Scene A 

  
Motion-RCC: mr-co 
Motion-OPRA1: mo-bp 

Scene B 

Motion-RCC: mr-dc 
Motion-OPRA1: mo-on 

Figure 5. Illustration of variables determining the stories of a motion scene: 
● dmin: the trajectory’s minimal distance of the two discs centers, i.e., the distance at 

the point of maximum approach. If dmin is less than |𝑟௢ − 𝑟௕| the entity b overlaps 
completely, i.e., the motion scene corresponds to a story mr-co. if dmin is greater 
than |𝑟௢ − 𝑟௕|, but less than 𝑟௢ + 𝑟௕ the entity b overlaps partially, i.e., we have a 
story mr-po. And, if dmin greater than 𝑟௢ + 𝑟௕ the entities do not overlap, i.e., story 
mr-dc. dmin fully determines the Motion-RCC story. 

● 𝛼v: the angle between the velocity vectors of the discs, 𝛼௩ = ∠(𝑣௕ሬሬሬሬ⃗ , 𝑣௢ሬሬሬሬ⃗ ) . This angle 
can be expressed in common language as “o comes from the left” or, equivalently, 
“b comes from the right” for values in interval (-180°, 0°), and “o comes from the 
right” or, equivalently, as “b comes from the left” for values in interval (0°, 180°). 
We avoided values very close to the 0° or 180° boundaries. 

● sgn(𝛼DxDv): it is the sign of the angle between the vector of positions difference 
𝑥⃗௢ − 𝑥⃗௕  and the vector of velocities difference 𝑣⃗௢ − 𝑣⃗௕. The interpretation of this 
variable is not as straightforward as 𝛼v. To visually obtain sgn(𝛼DxDv), we must set 
our reference frame on entity b, and, from that reference frame, we observe the 
motion of entity o. If, from that viewpoint, o moves counterclockwise around us, 
then sgn(𝛼DxDv) = +1 (see Scene A). If, otherwise, o moves clockwise around us, 
then sgn(𝛼DxDv) = -1 (see Scene B). Together with 𝛼v, it determines the Motion-
OPRA1 story. 

 

For the present experiments, we chose motion stories that were easily discriminable. 

We changed, however, the original name of the motion stories, as given in Purcalla Arrufi 

and Kirsch (2018), into more graspable ones (See Appendix A for a name equivalence 

table). That is, we named the stories such that all Motion-RCC stories start with the prefix 

‘mr-‘ (e.g., mr-po) and all Motion-OPRA1 stories start with the prefix ‘mo-‘ (e.g., mo-bp). 

Figure 6 depicts examples of the three Motion-RCC stories used in our experiment: mr-no 

(no overlap), mr-po (partial overlap), and mr-co (complete overlap). Figure 7 depicts 

examples of the four Motion-OPRA1 stories used in our experiment: mr-bp, mr-bn, mr-op, 
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and mr-on. The name of the suffix reflects the values of the featural variables 𝛼v and 

sgn(𝛼DxDv). In the first suffix letter, we denote the entity (‘o’: large orange disc, ‘b’: small blue 

disc) that approaches the other from the left – as seen by an external observer. In the 

second suffix letter, we denote the relative motion of ‘o’ with respect to ‘b’: ‘p’ means that ‘b’ 

observes ‘o’ turning counterclockwise, ‘n’ means that ‘b’ observes ‘o’ turning clockwise.  

 

 

(a) Story mr-no, ‘no overlap’ (DC): the entities do not touch, only qualitative relation DC 
occurs. 

 

(b) Story mr-po, ‘partial overlap’ (DC, EC, PO, EC, DC): the entities overlap, relation PO 
occurs (3rd frame), but there is no complete overlap, i.e., no relation NTPP. 

 

(c) Story mr-co, ‘complete overlap’ (DC, EC, PO, TPP, NTPP, TPP, PO, EC, DC): the 
qualitative relation NTPP occurs (3rd frame). 

Figure 6. Examples of the Motion-RCC stories used in our experiment. The figure 
depicts five equally spaced frames from each story. 
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(a) Story mo-bp: b coming from the left of o, o seen turning counterclockwise from b 

 
(b) Story mo-bn: b coming from the left of o, o seen turning clockwise from b 

 
(c) Story mo-op: o coming from the left of b, o seen turning counterclockwise from b 

 
(d) Story mo-on: o coming from the left of b, o seen turning clockwise from b 

Figure 7. Examples of the Motion-OPRA1 stories used in our experiment. The figure 
depicts five equally spaced frames from each story. The trajectories are presented for 
illustrative purposes only and were not visible in the experiments. 

 

2.1.4. Stimulus Sets 

We generated 16 sets of those motion scenes for our experiment (see Appendix B). 

Each set consisted of one reference stimulus and four transformed stimuli. The reference 

stimulus was chosen in a way such that applying the same absolute metric change in the two 

features variables dmin and 𝛼v (e.g., dmin increased/decreased by 1.25 and 𝛼v 

increased/decreased by 20°) resulted in four transformed stimuli with one transformed 

stimulus retaining the Motion-RCC and Motion-OPRA1 categories of the reference stimulus, 

one transformed stimulus having a different Motion-RCC and Motion-OPRA1 category 

compared to the reference stimulus, and two transformed stimuli retaining one category and 
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differing in the other category as compared to the reference stimulus (see Figure 8). 

Whereas dmin determined whether the Motion-RCC category changed or not, 𝛼v determined 

whether the Motion-OPRA1 category changed or not. Note that the third featural variable, 

sgn(𝛼DxDv), was left unchanged for all stimuli. 

 

Figure 8. Process of generating a set of motion stimuli: We started by a reference stimulus 
E and generated the other stimuli from it. We modify the 2 continuous featural variables 
represented by the axes (𝛼v is abscissa and dmin is ordinate). The variable sgn(𝛼DxDv) is the 
same for all stimuli in the set. 

● stimulus A: the Motion-RCC and Motion-OPRA1 stories are the same as in the 
reference stimulus E, though, in this stimulus, we modified dmin and 𝛼v by the same 
amount we modified them in the other stimuli. 
   

● stimulus B: Motion-RCC story is the same as in stimuli A and E, we modified dmin by 
the same amount as in stimulus A. Motion-OPRA1 story is different, we modified 𝛼v 
by the same amount that led from stimulus E to A, but in the other direction. 
   

● stimulus C: Motion-OPRA1 is the same story as in stimulus E, because 𝛼v has the 
same value as in stimulus A. The Motion-RCC story is different from stimulus E, 
because dmin is increased, but symmetrically with respect to stimulus A. That is, the 
amount dmin is increased between stimulus E and C is the same amount decreased 
between stimulus E and A. 
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● stimulus D: It has both different Motion-RCC and Motion-OPRA1 stories from 

stimulus E. We changed dmin as in stimulus C; we changed 𝛼v as in B. 

 

In our experiment, we considered four category border‑crossings in Motion-RCC 

(mr‑no ➔ mr‑po, mr-po ➔ mr‑no, mr‑po ➔ mr‑co, mr‑co ➔ mr‑po) and four category 

border‑crossings in Motion-OPRA1 (mo‑op ➔ mo‑bp, mo‑bp ➔ mo‑op, mo‑on ➔ mo‑bn, 

mo‑bn ➔ mo‑on) – please note that we varied the category border-crossing in a symmetric 

manner (e.g., mr‑no ➔ mr‑po and mr-po ➔ mr‑no) to ensure that each category could apply 

to both the reference stimulus and transformed stimulus to avoid potential biases. Each 

stimuli set was generated from two category border-crossings, one for Motion-RCC and one 

for Motion-OPRA1. The combination of border-crossings leads to a total of (4x4) 16 stimulus 

sets. 

To increase the variety in the visual appearance of our stimuli, we applied a random 

global rotation to each stimuli set (same rotation angle for reference stimulus and four 

transformed stimuli) for each participant. Thus, each participant saw the stimulus set with a 

different rotation. Further, we ensured that the disc size was equal across all video clips of 

the same stimuli set, so that disc size could not be a source of dissimilarity. 

2.1.5. Procedure 

Participants first provided informed consent and demographic details. Participants 

then read the instructions about their task, namely, to select which of two motion patterns 

was more similar to a reference pattern across a large number of trials. In each trial, three 

empty rectangles with a black outline and a size of 7.6 x 7.6 degree of visual angle appeared 

after a blank of 1 s. The rectangles were placeholders for the presentation of the motion 

scenes. The reference pattern was presented in the upper centered rectangle and the 

comparison patterns in the lower left and right rectangles (see Figure 9). Each video clip 

lasted for 3 seconds, they were presented synchronously and up to three times successively. 
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Participants were instructed to press the key “f” if the lower left motion pattern was more 

similar to the reference or to press the key “j” if the lower right motion pattern was more 

similar to the reference. They were also instructed that they would see the motion patterns 

up to three times such that they would have enough time to reach a decision, but that they 

should answer as soon as they decided and that they need not wait until the patterns played 

for three times. Following each trial, we presented a fixation cross and participants could take 

a self-paced break and continue to the next trial by pressing the spacebar. After every 10 

percent progress of trials, we also informed participants about their total progress above the 

fixation cross within this display. Following all trials, we thanked the participants for their 

participation and they received monetary compensation for their participation. 

 

Figure 9. Arrangement of stimuli on the tablet screen in the perception experiments. The 
key is that the reference (above) and comparison (below) stimuli were presented 
simultaneously. 

 

Experiments 1a and 1b differed regarding which motion scenes were presented for 

comparison with the reference stimulus in the lower two panels. In Experiment 1a, the set of 

comparison stimuli for each reference stimulus comprised the four transformed stimuli. That 

is, all comparison stimuli had the same absolute metric changes applied but differed with 

respect to whether the Motion-RCC and/or Motion-OPRA1 category was retained or changed. 

Thus, participants performed 6 different pairwise comparisons, all possible pairs of 4 
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transformed stimuli 
ସ

ଶ
 for each stimuli set. In Experiment 1b, we added a copy of the 

reference stimulus to the set of comparison stimuli. Thus, participants performed 10 different 

pairwise comparisons, all possible pairs of 4 transformed stimuli + 1 reference stimulus, 
ହ

ଶ
 for 

each stimuli set. In each of the two experiments, participants started with a full set of pairwise 

comparisons with a practice reference stimulus, that is there were 6 practice trials in 

Experiment 1a and 10 practice trials in Experiment 1b. Thereafter, participants performed the 

experimental trials. In Experiment 1a, we presented the 16 stimuli sets twice (with a new 

random global rotation angle applied) leading to 16 (stimuli sets) x 6 (pairwise comparisons 

per stimuli set) x 2 (repetitions) = 192 experimental trials. In Experiment 1b, we presented 

each stimuli set once resulting in 16 (stimuli sets) x 10 (pairwise comparisons per stimuli set) 

= 160 experimental trials. In both experiments, the experimental trials were presented 

randomly intermixed with the restriction that there was at least one intervening trial before the 

repetition of the same stimulus set. For each trial, we randomly determined which of the two 

comparison stimuli was presented in the lower left or lower right panel. 

2.1.6. Determining Similarity: Paired Comparisons 

With the present experiments, we aimed at investigating whether the properties 

underlying the categorizations according to Motion-RCC and Motion-OPRA1 might also 

influence the human representation of motion scenes for either perception or memorization. 

Therefore, we measured how similar participants perceived the transformed stimuli to the 

respective reference stimulus. If the categorization according to Motion-RCC and Motion-

OPRA1 is irrelevant to human cognition, all transformed stimuli should be perceived as 

equally similar to the reference stimulus, because we applied the same absolute metric 

changes to all of them. If such categorizations do influence human cognition, however, we 

should see reduced similarity scores for those transformed stimuli where the Motion-RCC 

and/or Motion-OPRA1 category was changed. 

We took care not to bias our participants towards specific aspects of similarity; for 

that reason, we applied the method of paired comparisons. For each trial, participants saw 
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one reference stimulus and two comparison stimuli; then, they had to choose which of the 

two comparison stimuli they perceived as being more similar to the reference stimulus. From 

those choices, we obtained the ratio scale “similarity to reference stimulus” by fitting the 

Bradley-Terry-Luce (BTL) model with the R package eba (Wickelmaier, 2020; Wickelmaier & 

Schmid, 2004). That is, using the fitted ratio scale, we could both measure whether our 

comparison stimuli were judged as differing in their perceived similarity to the reference 

stimulus, and, if so, to what extent.  

2.2. Experiment 1a: Results and Discussion 

From the responses of the pair comparisons, we obtained the ratio scale “similarity to 

reference stimulus” by fitting the Bradley-Terry-Luce (BTL) model with the R package eba 

(Wickelmaier, 2020). To increase the comparability of the results across the presented 

experiments, we normalized the resulting ratio scale such that the stimulus with retained 

Motion-OPRA1 and Motion-RCC categories took the value 1 (see Figure 10) in all 

experiments. The BTL model provided an acceptable fit to the observed data as indicated by 

a non-significant goodness of fit test, 𝜒2(3) = 7.68, p = .053. There was a significant effect of 

motion category, 𝜒2(3) = 111.69, p < .001, indicating that motion category affected 

participants’ similarity judgements. The similarity scale values including the 95% confidence 

intervals are depicted in Figure 10. 

There were two main findings. First, the categories defined in Motion-OPRA1 and 

Motion-RCC had an additive effect in participants’ similarity judgements: Even though the 

amount of the metric manipulation of the underlying motion properties was comparable for all 

comparison stimuli, a change to either the Motion-OPRA1 or Motion-RCC category resulted 

in decreased similarity judgments. When both categories changed together, we observed an 

additive effect resulting in the strongest decrease in perceived similarity to the reference 

stimulus. Second, as evident from Figure 10, a change in the Motion-OPRA1 category had a 

stronger influence on the similarity judgments than a change in the Motion-RCC category.  

One potential limitation of Experiment 1a was that the set of comparison stimuli 

comprised only transformed stimuli, i.e., stimuli with metric changes, potentially leading to an 
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overestimation of the role of motion stories on visual perception as compared to situations 

that also contain stimuli that are more like the reference stimulus. Therefore, we performed 

Experiment 1b, where we added a copy of the reference stimulus to the set of comparison 

stimuli. 

 
Figure 10. BTL similarity scale values and their 95% confidence intervals derived from the 
paired comparisons of Experiment 1a. 
 

2.3. Experiment 1b: Results and Discussion 

We again derived the ratio scale “similarity to reference stimulus” using the BTL 

model which provided a good fit to the observed data as indicated by a non-significant 

goodness of fit test, 𝜒2(6) = 5.44, p = .489. There was again a significant effect of motion 

category, 𝜒2(4) = 1664.58, p < .001, indicating that motion category affected participants’ 

similarity judgements. The similarity scale values including the 95% confidence intervals are 

depicted in Figure 11. 

Replicating Experiment 1a, we observed that participants used the categories 

provided by the Motion-OPRA1 and Motion-RCC categorizations for their similarity 

judgments, even though the set of comparison stimuli now also included a copy of the 

reference stimulus. Motion-OPRA1 again had a larger impact on the similarity judgments than 

Motion-RCC with both categories affecting the similarity judgements in an additive manner. 

The present experiment also demonstrated that participants judged the stimulus that 

was identical to the reference stimulus to be more than eight times more similar to the 

reference stimulus than the transformed stimulus that had the same Motion-OPRA1 and 
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Motion-RCC categories as the reference stimulus. This shows that participants relied not 

only on the categories defined by Motion-OPRA1 and Motion-RCC for their similarity 

judgements, but that they also used additional stimulus features that are not covered by the 

two categorizations.  

 
Figure 11. BTL similarity scale values and their 95% confidence intervals derived from the 
paired comparisons of Experiment 1b. 

3. Experimental Set 2: Memory 

Experimental set 1 demonstrated that the properties underlying the Motion-RCC and 

Motion-OPRA1 categories influence human perception. Therefore, in a next step, we 

investigated whether this accounts also for human short-term memory. We considered this 

question particularly interesting because human short-term memory operates under strict 

capacity limitation for static scenes (e.g., Cowan, 2001; Luck & Vogel, 1997). Thus, we 

deemed it interesting to determine whether the properties underlying Moton-RCC and/or 

Motion-OPRA1 are also represented within the limited short-term memory, or whether those 

properties might be partially or totally dropped from perception to memory, rendering some or 

all of those categories irrelevant for human short-term memory. Therefore, we performed two 

additional experiments that were similar to experimental series 1, but they slightly differed in 

procedure, in order to investigate short-term memory rather than perception. 
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3.1. Method 

3.1.1. Participants 

We recruited 26 participants (19 female; age: 18-30 years; mean age: 24.08 years; 

one participant did not provide descriptive details) for Experiment 2a and another 26 

participants (21 female; age: 19-31 years; mean age: 24.12 years) for Experiment 2b. All 

participants were students from the University of Tübingen and participated in exchange for 

monetary compensation. We ensured that none of the participants participated in multiple of 

the reported experiments. Participants were treated in accordance with APA standards of 

ethical treatment and participants provided informed consent prior to the participation. 

3.1.2. Apparatus and Stimuli 

We used the same apparatus and stimuli as in experimental set 1. 

3.1.3. Procedure 

We used the same procedure as in experimental series 1 except for the following 

modifications. Within each trial, there was a blank of 1 s, followed by the reference stimulus 

being presented for 3 s in the center of the screen. Thereafter, there was another blank of 1 s 

ensuring that participants had to respond based on their memory rather than perception. 

Following this maintenance phase, the comparison stimuli appeared simultaneously on the 

left and right side of the screen (see Figure 12). They were presented twice for 3 s each, thus 

for a maximum of 6 s. Participants responded with the keys “f” and “j” as in experimental 

series 1. They were instructed that they would see the comparison patterns up to two times 

such that they would have enough time to reach a decision, but that they should answer as 

soon as they decided and that they need not to wait until the patterns played for two times. 

The motion scenes were again presented within empty placeholder rectangles subtending 

7.6 x 7.6 degree of visual angle. 

Just as in experimental set 1, Experiments 2a and 2b differed regarding the motion 

scenes that were presented for comparison with the reference stimulus. In Experiment 2a, it 

comprised the four transformed stimuli and in Experiment 2b it comprised the four 

transformed stimuli and a copy of the reference stimulus. The number of practice trials and 
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experimental trials in Experiments 2a and 2b was identical to Experiments 1a and 1b, 

respectively. 

 
 
 

Figure 12. Arrangement of stimuli on the tablet screen in the memory experiments. The key is 
that the reference and compared stimuli were presented sequentially in time with a blank 
pause in between. 

 

3.2. Experiment 2a: Results and Discussion 

As in Experiment 1a, we derived the ratio scale “similarity to reference stimulus” using 

the BTL model which provided a good fit to the observed data as indicated by a non-

significant goodness of fit test, 𝜒2(3) = 5.43, p = .143. There was again a significant effect of 

motion category, 𝜒2(3) = 780.17, p < .001, indicating that motion category affected 

participants’ similarity judgements. The similarity scale values including the 95% confidence 

intervals are depicted in Figure 13. 

Similar to our experiment on perception (Experiment 1a), participants were sensitive 

to changes in Motion-OPRA1 within the present short-term memory experiment. That is, a 

change in the Motion-OPRA1 category led to a reduced similarity judgement. In contrast to 

perception, however, the effect of Motion-RCC on participants’ judgements was largely 

reduced. For stimuli differing in their Motion-OPRA1 category from the reference stimulus, 

Motion-RCC had no additional effect on the similarity judgements. Only for those stimuli with 

retained Motion-OPRA1 category, changing the Motion-RCC category caused a small but 

significant decrease in similarity judgments. 

Time 
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Figure 13. BTL similarity scale values and their 95% confidence intervals derived from the 
paired comparisons of Experiment 2a. 
 

3.3. Experiment 2b: Results and Discussion 

We again derived the ratio scale “similarity to reference stimulus” using the BTL 

model which provided a good fit to the observed data as indicated by a non-significant 

goodness of fit test, 𝜒2(6) = 6.79, p = .341. There was again a significant effect of motion 

category, 𝜒2(4) = 1515.97, p < .001, indicating that motion category affected participants’ 

similarity judgements. The similarity scale values including the 95% confidence intervals are 

depicted in Figure 14. 

We observed an influence of Motion-OPRA1 on participants’ similarity judgements. In 

contrast to Experiment 2a, however, we observed no effect of Motion-RCC on the similarity 

judgements. That is, whereas Experiment 2a demonstrated a small influence of Motion-RCC, 

at least when the Motion-OPRA1 category was retained, this influence disappeared 

completely once we added the reference stimulus to the set of comparison stimuli in 

Experiment 2b. Thus, the influence of Motion-RCC on human short-term memory might 

either be only observed under very specific conditions, or it might not be reliable after all.  

Just like in perception (Experiment 1b), the similarity judgment for the stimulus that 

was identical to the reference stimulus showed the highest similarity judgements. Thus, also 

when using their short-term memory, the participants relied on additional stimulus features 

that are not covered by the Motion-OPRA1 categorization for their similarity judgements.  
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Figure 14. BTL similarity scale values and their 95% confidence intervals derived from the 
paired comparisons of Experiment 2b. 

4. General Discussion 

We asked whether motion categorizations designed in artificial intelligence can inform 

the psychological understanding of human perception and memory of motion scenes. Thus, 

we constructed simple motion scenes based on the two story-based categorizations Motion-

RCC and Motion-OPRA1. These reference scenes depicted two objects moving on linear 

trajectories with a constant speed. We then transformed each reference scene into four 

transformed scenes reflecting changes of no, a single, or both Motion-RCC/Motion-OPRA1 

categories. Notably, those transformations consisted of metric changes of the same absolute 

amount. In four experiments, we asked human participants to judge the subjective similarity 

of those transformed scenes to the reference scenes by using paired comparisons. Suppose 

changes in the Motion-RCC or Motion-OPRA1 categories are irrelevant to human cognition. 

In that case, all transformed scenes should result in the same subjective similarity judgments 

due to the same absolute metric change being applied. If the Motion-RCC or Motion-OPRA1 

categorizations are relevant to human cognition, however, changes in those categories 

should influence similarity judgments. 

We found that both story-based categorizations (Motion-RCC and Motion-OPRA1) 

affected the similarity judgments when both the reference stimulus and the transformed 

stimulus were visible simultaneously, thus during human perception (Experiments 1a and 

1b). Changes in both Motion-RCC and Motion-OPRA1 categories resulted in reduced 
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similarity judgments. Thus, the regional relations (i.e., extent of overlap; Motion-RCC) and 

the directional relations (Motion-OPRA1) between the moving objects seem to influence 

participants’ perception. 

Interestingly, we observed a different pattern of results when participants based their 

similarity judgments on short-term memory (Experiments 2a and 2b). When participants 

memorized the reference stimulus first and then compared the transformed stimulus to their 

memory representation, there was a marked influence of Motion-OPRA1 only. Thus, 

participants based their similarity judgments on the directional relations between the moving 

objects (Motion-OPRA1). Regarding regional relations (Motion-RCC), we observed only a 

little impact on similarity judgments in Experiment 2a when the Motion-OPRA1 category was 

unchanged, and thus Motion-RCC was the only distinguishing feature. However, we did not 

replicate this effect of Motion-RCC in Experiment 2b, and Motion-RCC had no additional 

influence when Motion-OPRA1 changed, indicating that Motion-RCC was rather irrelevant for 

memory-based similarity judgments. 

For the first time, we show that the Motion-RCC and Motion-OPRA1 categorizations 

developed in the context of artificial intelligence and qualitative reasoning (Dylla et al., 2017; 

Gantner et al., 2008; Lücke et al., 2011; Purcalla Arrufi & Kirsch, 2018) are cognitively 

plausible. That is, the properties underlying those qualitative representations did impact 

human cognition. At the same time, our study shows that one needs to be cautious when 

using terms such as cognitively plausible. Imagine we had performed the perceptual 

experiments (Experiments 1a and 1b) only. Based on the finding that Motion-RCC 

categorizations influenced the similarity judgments, one could conclude that the human 

representation of motion scenes includes regional representation similar to the overlaps 

defined in Motion-RCC. Because we also performed a short-term memory task (Experiments 

2a and 2b), we know this does not seem to be the case. Whereas regional relations (Motion-

RCC) might be represented within a short-lived high-capacity sensory iconic representation 

(Dick, 1974; Phillips, 1974), this might not be the case for short-term memory, which is prone 

to much tighter capacity limitations (Phillips, 1974). Our results indicate that participants 



28 

dropped the regional relations defined by Motion-RCC when storing the motion scenes within 

short-term memory. Therefore, our results suggest that calling specific categorizations 

cognitively plausible might be misleading. It might be better to relate to the respective 

cognitive process directly, such as calling Motion-RCC perceptually plausible and Motion-

OPRA1 plausible concerning human perception and short-term memory. 

Our results also have direct implications for psychology. First, our findings support the 

idea that human perception and memory represent visual scenes based not only on absolute 

metric values but also on spatial relations and categorizations (Huttenlocher et al., 1991, 

2000; Jiang et al., 2000; Papenmeier & Huff, 2014; Sampaio & Wang, 2010, 2017). Second, 

our results indicate that whereas spatial relations might be relevant for both human 

perception and human short-term memory, the actual spatial representations underlying both 

systems might differ. Regarding this difference, there are at least two plausible alternatives. 

Some information (such as the regional representations similar to Motion-RCC) might be 

dropped when transferring the content from perception to short-term memory, or both 

systems might be based on entirely different spatial representations. Based on our study, we 

cannot decide between the two alternatives. However, we speculate that the former might be 

true because some perceptual spatial relations can directly influence spatial representations 

in short-term memory even if they are task-irrelevant. For example, Jiang et al. (2004) 

demonstrated that a task-irrelevant perceptual grouping of objects as rows or columns can 

directly affect the spatial representation of objects in short-term memory. 

The present study investigated whether the story-based categorizations Motion-RCC 

and Motion-OPRA1 are relevant to human perception or human short-term memory. As we 

have shown, this is the case for human perception and short-term memory in the case of 

Motion-OPRA1 and for human perception in the case of Motion-RCC. Our findings thus open 

up two important new research questions for future research. First, do the regional and 

directional relations described by Motion-RCC and Motion-OPRA1 directly affect human 

spatial representations? As an alternative, other spatial features, such as which object 

crosses first, might guide human spatial representations of motion scenes and might only 
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correlate with the Motion-RCC or Motion-OPRA1 categorizations studied in our present 

experiments. Second, do participants represent the motion scenes as stories or static 

snapshots? We studied the influence of the story-based categorizations Motion-RCC and 

Motion-OPRA1 on the perception and memory of motion scenes. Those story-based 

categorizations define stories as transitions across multiple states of regional or directional 

relations. We found evidence for the influence of those story-based categorizations on 

human perception and short-term memory. However, our experiments were not designed to 

distinguish between participants representing the motion scenes as complete stories or 

single static snapshots. We speculate that participants might form story-based 

representations of the motion scenes based on previous research. First, humans can 

represent dynamic properties of motion scenes, such as dynamic spatial configurations  

(Papenmeier et al., 2012; Sun et al., 2015), in short-term memory. Second, theories on event 

cognition propose that humans represent their dynamic environment in the form of events 

(e.g., Loschky et al., 2019; Radvansky & Zacks, 2014; Zacks, 2020; Zacks et al., 2007), 

which might have properties similar to the proposed story-based spatial representations. 

Future research needs to investigate whether participants indeed form story-based spatial 

representations and to what extent the transitions between different RCC or OPRA1 states 

are reflected within such representations.  

Collision avoidance is an essential daily skill for humans (e.g., Huber et al., 2014); 

and as such, it is also a coveted skill for human-robot interaction (e.g., Shiomi et al., 2014), 

specifically for driving assistant systems and, ultimately, for autonomous driving. Given that 

Motion-RCC categorizes the degree of overlap between entities, that is, the degree of 

collision of both entities, it might be unexpected that Motion-RCC had a lower effect than 

Motion-OPRA1 on human motion categorization. Since our results provide the first evidence 

for the lower importance of Motion-RCC than Motion-OPRA1, it is up to future work to 

determine whether our categorization findings generalize to other motion stimuli. 

While our research showed that some spatial representations from artificial 

intelligence seem to have some connection to the mental mechanisms of humans, it is 
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important to note that they are far from representing the whole range of human 

understanding of motion. We also observed that participants judged the identical stimulus as 

more similar to the reference stimulus than the stimulus with retained Motion-RCC and 

Motion-OPRA1 properties. Thus, our participants used information beyond the properties 

underlying Motion-RCC and Motion-OPRA1 to represent the motion scenes. Besides 

additional categorical information, it seems plausible that some metric information also plays 

a role in representing motion scenes. Further knowledge about that information would 

provide an exciting challenge for AI knowledge representation mechanisms that are usually 

only symbolic or only numeric. A tight integration of metric and categorical information could 

open many new possibilities for representing and reasoning about real-world situations. We 

encourage further interdisciplinary research to investigate these mechanisms to develop 

well-defined models of spatial representations. Such progress would also be important for 

use cases such as human-aware robot navigation. We can hardly expect a robot to behave 

socially if it has a totally different representation of what is going on than the humans around 

it. 

Given that many artificial intelligence applications should eventually be applied in real 

life, it would be interesting to see whether our findings generalize to scenarios with a higher 

ecological validity or even real-world environments. Our present stimuli (two colored discs) 

differ from real-world entities such as pedestrians and cars not only in appearance, but also 

in the variability of motion and trajectory properties and the top-view presentation of flat 2D 

objects compared to the first-person view of voluminous 3D objects. In our present research, 

we choose to study categorizations with entities free from semantic influence and from a 

perspective that provides clear indications of spatial overlap and directional relations. When 

considering Motion-RCC, increasing ecological validity poses some challenges that need to 

be solved. For example, overlapping objects cannot occur with rigid objects because these 

would imply collisions of the moving entities. One solution could be to study Motion-RCC with 

respect to the two-dimensional depiction of the three-dimensional environment, such as if 
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viewed through a camera. One could argue that overlaps could occur within such a depiction, 

such as when watching a car moving behind a truck. 

To summarize, we studied the influence of motion categorizations as derived from 

qualitative representation in artificial intelligence on human perception and memory. We 

controlled for absolute metric changes and found marked influences of those categorizations 

on similarity judgments of motion scenes. Thus, human perception and short-term memory 

utilize some of the properties underlying those qualitative representations. Given this link 

between human cognition and qualitative reasoning, we argue for a continued and close 

multidisciplinary approach to investigating the spatial representation of motion scenes. We 

are confident that this will help inform both psychological theories of human cognition and 

artificial intelligence models, providing new grounds that help move both fields forward. 
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Appendix A 

Table of Equivalences for Category Names 

In order to ease readability and understanding, we changed the names of the motion 

stories appearing in the original paper of Purcalla Arrufi & Kirsch (2018), which we deemed 

opaque, into more graspable ones. Below we give the equivalence between original names 

and names used in this manuscript. 

 

 Story Name 

Motion Categorization Present Manuscript Purcalla Arrufi & Kirsch (2018) 

Motion-RCC mr-no S11 

mr-po S13 

mr-co S15 

Motion-OPRA1 mo-bp SC21 

mo-bn SC2-1 

mo-on SC11 

mo-op SC1-1 
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Appendix B 

Kinematic Data of the Generated Stimuli 

Here we show the complete set of stimuli that we use in our experiments. Each 

picture depicts five traces of the motion scene, the more faded the discs, the earlier in time 

the trace is. In the pictures, the bigger entity, o, moves at angle 0°, i.e., towards the positive 

x-axis – The smaller entity is b. In the experiment, however, we randomly rotated these 

stimuli for each participant. 

The caption at every picture shows the following: the Motion-RCC and Motion-OPRA1 

categories (e.g., mr-co mo-bp); and the featural variables dmin, 𝛼v, sgn(𝛼DxDv). In the featural 

variables, we can observe how the values of stimulus E are modified symmetrically in the 

transformed stimuli. For instance, in group Nr. 001, we apply a modification of 1.25 to the 

reference value dmin(E) = 2.75, and we obtain dmin(A) = 2.75 – 1.25 = 1.50, dmin(C) = 2.75 + 

1.25 = 4.00; we apply a modification of 32.08 (rounded value) to 𝛼v(E) = 16.04°, and we 

obtain 𝛼v(A) = 16.04 + 32.08 ≃ 48.13° (discrepancy due to rounding), 𝛼v(A) = 16.04 – 32.08 = 

-16.04° 
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