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1.1 First-Order Difference Equations

Linear first-order difference equation:

Ve = O¥r—1+ wy

> y; is value at date t
» linear equation that relates y; to y;_1
» first-order since only first lag is included

> w;: a variable coefficient



1.1 First-Order Difference Equations

homogeneous first order difference equation:

Ay: +ay:-1=0

» with solution y; = (1 — a)t!C*

inhomogeneous first order difference equation:

Ay;+ay;1=>b

» with solution y; = C*(1 — a)t + g



1.1 First-Order Difference Equations

Phase diagram
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1.2 Dynamic First Order Difference Equation
Yt = Oyr—1+ wy

» inhomogenous case with b = w;
but: w;¢ is dynamic
» Question: What are the effects on y; of changes in w;?

The dynamics described by the equation above govern the
behaviour of y for all dates t

Date Equation

0 Yo = ¢y—1+ wo
1 y1 = ¢yo + wi
2 y1 = ¢y1 + w2
t Vi = Qyr—1+ wy



1.2 Dynamic First Order Difference Equation

The following procedure is known as solving the difference equation
above by recursive substitution:

Ye=0¢"ly 1+ 0o+ o twa + " Pwa -+ w1 + Wy



1.3 Dynamic Multipliers

If wy were to change with y_; and wq, ws, ...,

unaffected, the effect on y; would be given by

Oyt
aW()

¢t

The effect of w; on y;y; is given by

Yty _
8Wt

w; taken as
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1.3 Dynamic Multipliers

Dynamic Multiplier for the first-order difference equation for

different values of ¢ (plot of %y—;;:j = ¢/ as a function of the lag j)
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1.3 Dynamic Multipliers

Dynamic Multiplier for the first-order difference equation for

8}’t+J

different values of ¢ (plot of = ¢/ as a function of the lag j)
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1.3 Dynamic Multipliers
Consider a permanent change in w, i.e. all w;; increase by one
unit. Then the effect on y;,; of a permanent change in w
beginning in period t is given by

OYt+j n OYt+j 4 OVt R Oyt
aWt aWt+1 8Wt+2 aWt_H'

=@+ TP 24 p+1

When |¢| < 1, the limit of this expression as j goes to infinity is
sometimes described the long-run effect of w on y

lim <8)’t+j n Oyt+j n OYt+j T 8)/t+j>
j—oo \ Owy Owrr1  Owpyo OWtyj
=1+¢+¢°+...

_ 1

- (1-9)
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1.4 pth-Order Difference Equations

Generalize the dynamic system (1) by allowing the value of y at
date t to depend on p of its own lags

Linear pth order difference equation:

Vi = O1yi—1+ QYo+ -+ PpYi—p + Wt

Rewrite as first-order vector difference equation:
collect y: and its lags in a (p x 1) vector

Yt
Yi—1
&= | Y2

Yt—p+1
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1.4 pth-Order Difference Equations

Define the (p x p) matrix F

1 0 0 0 0
F=|0 1 o 0 0
0 0 0 1 0

and obtain the following first-order vector difference equation

&= F&1+wve

with v¢ = (wt,0,0,...,0)
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1.4 pth-Order Difference Equations

recursive substitution of the first-order vector difference equation
yields

Er=F ¢ 1+ Flvg+ Frlvy + F 2+ -+ Fyp 1+ v

Yt y—1 wo wi
Yi—1 y_2 0 0
Ye2o | =FF | y3 |4 F [ O | £ F1[ 0 [ 4 ..
Yt—p+1 Y-p 0 0
Wi—1 Wt
0 0
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1.4 pth-Order Difference Equations

Let fl(lt) denote the (1,1) element of Ft, fl(zt) the (1,2) element of

Ft and so on.
Thus, for a pth-order difference equation, the dynamic multiplier is

given by

Oeri _ 4)
8Wt 11
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1.4 pth-Order Difference Equations

This is the (1,1) element of F/ which can easily be obtained in
terms of the eigenvalues of the matrix F via

|F—AXlp| =0
The eigenvalues of the matrix F are the values of A that satisfy

NP — NPT o AP2 e A — =0
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