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Abstract:

The scheduling of hyperparameters is an important part of deep learning meth-
ods. One very crucial hyperparameter is the learning rate. There are dierent
approaches on how to construct these learning rate schedules. It is common prac-
tice to use schedules with a warm-up phase followed by a decay phase forming a
schedule that we will call one cycle. In this thesis, we will dierentiate between
sequential schedules with full reinitialization of all parameters after each cycle
where the cycles are independent of each other as opposed to cyclical learning
schedules where the model and optimizer parameters are kept after every cycle.
We will propose the soft reset method making the reset after each cycle depen-
dent on the performance of the preceding one with the intention to combine the
sequential and the cyclical approach and maintain the advantages of both whilst
mitigating the disadvantages. In addition we propose early switching criteria for
cycles to further improve the training time eciency of this approach.
All the experiments and research were carried out using the network architectures,
codebase and means of evaluation provided by the AlgoPerf benchmark [Dahl
et al., 2023] in order to construct and evaluate our proposed method.
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1 Introduction

In the current state of machine learning, articial neural networks, and deep learn-

ing algorithms are the most promising and performant for most complex tasks like

image recognition, speech generation, etc. Although the outcome of these methods

is in some cases surprisingly accurate, it is also well-known that they are very com-

putationally heavy. It takes a great amount of training data and many iterations on

costly hardware to make these methods work eciently. That leads to high costs in

time and energy and thus high CO2 emissions [Dhar, 2020] as well as other expenses.

Naturally, it is a question of high interest which algorithms are most ecient for

each problem and model, especially when training models on a scale such as GPT

[OpenAI et al., 2024] or Gemini [Team et al., 2024]. Even an improvement of a few

percent can make a great dierence in total time and energy consumption as well

as having more accurate models that generalize well.

So, nding out the state-of-the-art algorithms in deep learning and how new algo-

rithms may or may not improve learning is an important question to be answered.

Although a huge majority of training learning algorithms for deep learning are based

around the idea of some form of Gradient Descent, the way most algorithms tackle

this problem can dier very much. It goes from a family of very well-known op-

timizers like SGD [Robbins and Monro, 1951], Adam [Kingma and Ba, 2014], and

Nadam [Dozat] to a variety of newer optimizers [Gupta et al., 2018, Chen et al.,

2023, Liu et al., 2024], each claiming to boost performance. The choice of optimizer

is then just one factor and has to be tuned to nd the optimal set of hyperparame-

ters. There are still other factors, like choosing the right regularization approach like
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L2-regularization, weight decay, or others. Furthermore, the choice of well-suiting

learning rate schedules or data selection is mostly considered to be a part of the

term "deep learning algorithms". Therefore even an optimizer is not one algorithm

but rather a family of algorithms regarding its tuning. So there are many choices for

combining all the factors into an ecient deep-learning algorithm that might then

just be problem or model-specic.

Unlike in other branches of research, there are currently no reliable and stan-

dardized scientic methods for reliably comparing the performance of deep learning

algorithms with one another. This is due to a set of problems. First, there is no

written methodological set of guidelines or a certain scientic standard regarding

machine learning that everyone agreed on using and which is easy to look up, like

for example the APA (American Psychological Association) guidelines for psychol-

ogy. Second, to measure the performance of a nondeterministic algorithm, you need

an evaluation program or method. This implies the obvious questions of "how to

measure" an algorithm and what metric to use. This again creates a subset of prob-

lems. When it comes to the question of "how to measure", there is no standardized

evaluation code or method. Thus, it is common practice for the authors that propose

an algorithm to measure its performance with their own choice of many evaluation

metrics and methods. This can of course lead to strong biases in the evaluation

of new algorithms and therefore does not suciently fulll scientic methodological

requirements. Furthermore, this makes replicating evaluations of deep learning algo-

rithms problematic because the initial authors can always claim that the algorithm

was used in an unfavorable model or used for an unfavorable task and tuned with

a non-optimal set of hyperparameters, as well as the author of the replication could

claim the opposite. The absence of a standardized objective basis of tools and meth-

ods of evaluation of deep learning can end in confusion and complicate the scientic

2



discourse regarding deep learning algorithms. The same applies to the question of

"what to measure" because there is not just one metric. You can either measure the

maximum performance of inference, measured with accuracy, for example, that can

be achieved by ignoring training time. You could also measure how many iterations

an algorithm needs to hit a certain accuracy that is deemed to be a "satisfying accu-

racy". The claimed performance of an algorithm can highly depend on the proposed

metric, as an algorithm can have great maximal accuracy but suboptimal learning

speed or vice versa. Further, this relationship between measures of the performance

of an algorithm is also highly dependent on the set of chosen hyperparameters and

it can be highly task and model-specic.

The named problems have the consequence that although there is a long list of

deep learning algorithms, there is no basis for ranking these algorithms regarding

their general performance or the performance on specic problems. As there is

no reliable way to compare deep learning algorithms, on the one side developers

prefer to stick to well-known algorithms that are considered reliable, such as Adam

[Kingma and Ba, 2014] or SGD [Robbins and Monro, 1951], and new algorithms nd

it dicult to establish themselves. On the other hand, it can seem like there is news

about a groundbreaking new algorithm every other day. The AlgoPerf Benchmark

Dahl et al. [2023] attempts to make ground for an objective comparison by creating

evaluation code and methods that everyone can use to benchmark their proposed

algorithms and create a more scientic basis for the discourse in the deep learning

community.

This thesis will focus on the factor of learning rate schedules and model reset

strategies. We will develop a method to improve the Adam baseline provided in the

AlgoPerf Benchmark that utilizes the idea of sequentially using dierent learning

schedules with each training cycle in one training run. The focus of this thesis is
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to research how dierent learning rate schedules perform and behave over all the

proposed models, called workloads, of the Benchmark. After this, I will propose a

refactoring method for the reset after every schedule cycle that aims to keep the

advantages of both sequential and cyclic learning rate schedules.
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2 Backgrounds

As mentioned in the introduction our proposed methods will be implemented and

tested in the software environment code base provided by the Algoperf benchmark.

The following description is a quick summary of the methods of the AlgoPerf bench-

mark that are discussed in the ocial paper of the project [Dahl et al., 2023].

2.1 The AlgoPerf Competition

The general structure of the AlgoPerf [Dahl et al., 2023] benchmark is in the form

of a benchmark competition. This approach has proven to be a good design for

comparing machine learning methods in the past, as can be seen with the ImageNet

[Deng et al., 2009] competition, for example. The benchmark only compares learn-

ing algorithms whilst the models stay xed. The denition of learning algorithms

extends beyond just the set of optimizers that are currently in use. Even an op-

timizer itself is not just an algorithm, but rather a family of algorithms because

their performance is highly dependent on the set of hyperparameters used. To our

knowledge, there is yet no ecient algorithm that is not reliant on hyperparameters

dened by user but instead is able to tune all parameters of the learning algorithm

itself. Thus, things like handling the dropout and regularization are included in the

denition of learning algorithms to be compared, as well as strategies that include

things like gradient clipping, batch normalization, or even certain strategies to read

in or otherwise alter the input data of the input data queue that gets handed over
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to the submission code by the source code. The following part is to be thought of as

a summary of the description in the original Paper [Dahl et al., 2023]. All following

information is drawn from their Paper. The motivation behind this benchmark is

discussed in the Chapter 1.

2.1.1 Measuring the Algorithms

The measurement of the AlgoPerf benchmark is a so-called "time-to-result" measure-

ment. Thus the measurement is a wall-clock timer that stops when the validation

target score of a workload is reached. Therefore the score of the algorithm is the

time it took to reach the workload-specic target score. An algorithm is evaluated

over all workloads and the nal score is an aggregate over all workloads. Not every

computation in a training run is within the timed operations. Evaluation steps in

which the model gets evaluated on an evaluation set during a training run are not

part of the timed operations and thus do not aect the time score, which also means

that changing the frequency of evaluation steps in a submission is not permitted.

The target of every workload was evaluated by trying out dierent hyperparameter

settings of four popular training algorithms each for 200 training runs per workload.

The hyperparameter settings of the training run with the best validation score at

the end of the predetermined runtime budget of each workload were then taken.

The algorithm was trained again 20 times with these hyperparameter settings but

dierent random seeds and the median of the validation score was set as the target

score of each workload. The target-setting runtime of each workload is set as 0.75×

the maximum allowed runtime for a submission. The evaluation metric diers from

workload to workload and can be seen in Table 2.1.
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2.1.2 Workloads

A workload is dened as a set of each a model, data set, loss function, and a tar-

get dened in terms of its evaluation metric Table 2.1. An algorithm is run over 6

dierent kinds of tasks with a total of 8 xed workloads because image and speech

recognition tasks have two dierent models each. The other tasks are translation,

molecular property prediction, clickthrough prediction, and MRI reconstruction. In

addition to the 8 xed workloads, there are six randomized workloads for which

the submission must be evaluated. The randomized workloads are drawn from a

pool of xed workloads to which minor modications have been made. They were

introduced to keep submitters from overtting to the xed workloads and thus favor

algorithms that generalize well when it comes to modications and changes that one

may introduce to a workload.

2.1.3 Competition Hardware and Environment

To be able to compare wall-clock training time the hardware has to of course be

standardized, as well as the execution environment and the software environment.

The source code by the MLCommons is written in PyTorch [Paszke et al., 2019] and

Jax [Bradbury et al., 2018]. For the software versions and execution environment see

the MLCommons/algorithmic-eciency repository. The tuning of hyperparameters

can take on any consistent hardware the submitter has access to, but the nal

evaluation of the submission takes place on 8 × NVIDIA V100 GPUs with 16GB of

VRAM, because it is believed to be a widely used Hardware in most cloud computing

systems.
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Task Dataset Model Loss Metric
Validation
Target

Test
Target

Maximum
Runtime

clickthrough
rate

prediction Criteo1TB DLRMsmall CE CE 0.123649 0.126060 7703

MRI
reconstruction fastMRI U-Net L1 SSIM 0.7344 0.741652 8859

Image
classication ImageNet

ResNet-50
VIT

CE
CE

ER
ER

0.22569
0.22691

0.3440
0.3481

63,008
77,520

Speech
recognition LibriSpeech

Conformer
DeepSpeech

CTC
CTC

WER
WER

0.078477
0.1162

0.046973
0.068093

101,780
92,509

Molecular
property
prediction OGBG GNN CE mAP 0.28098 0.268729 18,477

Translation WMT Transformer CE BLEU 30.8491 30.7219 48,151

Table 2.1: Table of xed workload sets. Data from Dahl et al. [2023] used with permis-
sion from the authors. The abbreviations in the table stand for the following
terms: CE (cross-entropy loss), L1 (mean absolute error), SSIM (structural
similarity index measure), ER (error rate), CTC (connectionist temporal clas-
sication loss), WER (word error rate), mAP (mean average precision) and
BLEU (bilingual evaluation understudy score).

2.1.4 Tuning

There are two rulesets for tuning in the benchmark, external tuning and self-tuning.

The external tuning allows a limited search over a search space of hyperparameters

by having multiple training runs in parallel with dierent hyperparameter settings

and stopping when one of the training runs reaches the target. The self-tuning on

the other side has no tuning outside the timed operations and it is just one training

run to be scored.

In the external tuning condition, the hyperparameters get tuned throughout 5 train-

ing runs called trials per workload. The parameters are either drawn from a quasir-

andom search [Bousquet et al., 2017] over the workload-agnostic search space given

by the submission code or the submitter can supply a list of 20 xed sets of hyper-

parameter settings. For the submission to reduce the variance of the tuning, there
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are 5 independent training sessions called studies for each workload. Every study

consists of a set of 20 trials as mentioned above. In each study the best, meaning

the one with the lowest time score, of the 20 trials will be selected and the median

over all ve studies will then be the benchmark score of the corresponding workload.

As stated above the self-tuning ruleset allows no such tuning over a predened search

space of hyperparameters outside of the timed operations of the submission. That

means that every kind of hyperparameter tuning takes place within the submitted

learning algorithm. That means that the learning algorithm has a xed set of hy-

perparameters within the submission/learning algorithm or is automating part of

or all of the hyperparameter tuning within the timed operations. Thus a study

consists of just one scoring training run. Again the score of each workload will be

the median score of 5 studies. To compensate for having to tune within the training

loop and within the timed operations the self-tuning training runs are granted 3 ×

the maximum runtime.

2.2 Optimizers

As the AlgoPerf benchmark revolves around the learning algorithm it is important

to talk about some crucial main parts of the learning algorithm. The largest part

of the learning algorithm, as dened by the AlgoPerf, is arguably the choice of the

optimizer. There is currently a big selection of common optimizers, some of the pop-

ular ones were already mentioned in the Introduction [Robbins and Monro, 1951,

Kingma and Ba, 2014, Dozat, Chen et al., 2023, Gupta et al., 2018, Liu et al., 2024].

An optimizer in the context of deep learning can be thought of as an algorithm that

aims to minimize a task-specic loss function by adjusting the parameters of an ar-

ticial neural network in cases where no analytic solution seems tractable. For most

cases that treat deep learning as a non-convex optimization problem, the stochasti-
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cal optimizers are an extension of the idea of gradient descent [Okewu et al., 2019].

The best way to compare these algorithms is to look at the dening part of the

algorithm which is the formulation of the update rule of network parameters. In the

following, we will discuss the core ideas of our choice of the most popular optimizers

[Robbins and Monro, 1951, Kingma and Ba, 2014, Dozat] and how they relate to

each other by looking at their update rules respectively.

2.2.1 Stochastic Gradient Descent (SGD)

One of the simplest optimizers to be discussed here is Stochastic Gradient Descent

[Robbins and Monro, 1951]. The underlying idea is the concept of nding a local

minimum by going the opposite direction of the gradient written as ∇ of the loss

function L parameterized by the model parameters θ. The parameter η is called the

learning rate and is there to stop gradients from enforcing too large updates on the

parameters, which could lead to divergence and oscillations instead of convergence

to a local minimum. Usually η lies between 0.1 to 0.0001. The loss function L is

task-specic and the parameters θ are dened by the dened model. This leads to

the following formulation of SGD following adaptions by Choi et al. [2020].

SGD (η)

θt+1 = θt − η∇L(θt)

2.2.2 Common Adaptations

There are common adaptations to the update of parameters trying to achieve faster

convergence or convergence closer to a true local minimum. One approach to achieve
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this is to introduce heavy ball or Polyiak momentum [Polyak, 1964] to the parameter

update by accounting for the previous update vt by adding this with factor γ to the

current update. This leads to a smoother trajectory of updates of the optimizer to

counteract oscillations and overshooting by smoothing out rapid changes of gradient

direction and jumps in the size gradients between the last and the current parameter

update. The factor γ is usually between 0 and 1.

HEAVY BALL MOMENTUM(η, γ)

v0 = 0

vt+1 = γvt +∇L(θt)

θt+1 = θt − ηvt+1

The Nesterov Momentum [Nesterov, 1983] is an improvement of the heavy ball

momentum. It evaluates the momentum terms’ contribution ahead of the current

position by adding up the current gradient to the momentum. It can intuitively

be thought about as also including the predicted next step of the optimizer in the

momentum by this quality of "looking ahead". This leads to improved convergence

in most cases than just using the momentum, especially in high curvature settings.

The Nesterov momentum is formulated as:
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NESTEROV(η, γ)

v0 = 0

vt+1 = γvt +∇L(θt)

θt+1 = θt − η(vt+1 +∇L(θt))

Another popular adaptation of SGD is RMSprop (Root Mean Square Propaga-

tion) [Tieleman, 2012], which is designed to address some of the limitations of tradi-

tional SGD by adapting the learning rate for each parameter based on the average

of recent squared gradients.

The RMSprop algorithm maintains an exponentially weighted moving average of

the squared gradients. This moving average helps to normalize the updates by di-

viding the gradient by the root mean square (RMS) of these moving averages. This

adaptation helps to scale down the learning rate for parameters with large gradients

to avoid exploding updates and scale up the learning rate for parameters with small

gradients to speed up convergence. The ε is introduced to the formula for numerical

stability.

RMSPROP (η, γ, p, ε)

v0 = 1, m0 = 0

vt+1 = ρvt + (1− ρ)∇L(θ)2

mt+1 = γmt +
ηt√

vt+1+ε
∇L(θ)

θt+1 = θ1 −mt+1
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2.2.3 The ADAM Optimizer

One of the most commonly used optimizers is the Adam optimizer [Kingma and Ba,

2014]. It is an optimizer combining all the above ideas in one update rule. The

Nadam optimizer [Dozat] is an extension of the Adam optimizer with the only dif-

ference of applying the Nesterov momentum twice. For our submission, we will limit

our experiments to the use of the Adam optimizer due to its popularity, common

use, and rather simple construction. The optimizer used for the experiments will

follow the denition found in Choi et al. [2020].

ADAM (αt, β1, β2, ε)

m0 = 0, v0 = 0

mt+1 = β1mt + (1− β1)∇L(θt)

vt+1 = β2vt + (1− β2) (∇L(θt))2

bt+1 =

√
1−βt+1

2

1−βt+1
1

θt+1 = θt − αt
mt+1√
vt+1+ε

bt+1

2.3 Learning Rate Schedules in Deep Learning

One of the arguably most crucial hyperparameters is the learning rate ηt. It is used

in almost every deep learning optimizer to enforce smaller parameter updates, thus

keeping the gradients from exploding or diverging and ensuring that the optimizer

converges to a local minimum. A frequently taught simplied heuristic is that the

larger the learning rate, the faster the training, but also the higher the risk of

divergence, causing training instability. Therefore, the challenge of choosing the

right learning rate is to balance training speed and training stability. The simplest
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implementation of the learning rate is a constant learning rate ηt not dependent

on the training time, current epoch, or update time t. Although this is still used

in some cases, it is not state-of-the-art. Many studies have shown that having a

learning rate schedule instead of a static learning rate leads to better convergence

[Coleman et al., 2019, Smith, 2017, Loshchilov and Hutter, 2017]. The current

knowledge of learning rate schedules often divides it into two phases: the warm-up

phase and the decay or annealing phase. A depiction of this is shown below in

Figure 2.1. We will call a schedule like that shown in Figure 2.1 one schedule cycle.

The warm-up phase, colored in orange in Figure 2.1, is the phase at the beginning

of each schedule where the learning rate typically starts at zero and goes up to the

maximum learning rate set as a hyperparameter. The warm-up phase is usually

around the rst 1− 5% of the length of the whole training cycle. The increase of ηt

in the beginning can be modeled by linear, cosine, exponential, or other monotonic

functions. The claim is that warm-up phases allow for a greater maximum learning

rate by avoiding unstable large changes at the beginning of the training [Gotmare

et al., 2018]. The work of Gotmare et al. [2018] even suggests that this is especially

true for the last fully connected layers of a neural network. Since the claim of the

advantages of warm-up, that it improves training stability, seems to hold throughout

the literature, it is common practice. It is also used in the baselines provided in the

code from [Dahl et al., 2023] and adopted for our implementation.

The second phase of a schedule cycle colored in blue in Figure 2.1 is the decay

or annealing phase. After reaching the maximum learning rate after the warm-up

the learning rate is set to the maximum value for a short period before it starts to

decay up to the initial or preset minimal value of the learning rate. The decay can

be, similar to the warm-up, modeled by linear, cosine, exponential, or step functions

as long as they decrease monotonically. The reason here is again to achieve better
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Figure 2.1: Depiction of an example for a learning rate schedule consisting of a warm-
up phase, indicated by the orange area, in combination with a decay phase,
indicated by the blue area. The dimensions of the depiction are oriented
to the dimensions of the experiments below. The warm-up phase is greatly
exaggerated for visualization purposes to 0.22. The warm-up factor usually
lies between 0.01− 0.05.
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convergence of the optimizer. The general intuition here is that the decay prevents

overshooting a local minimum by making too-large updates while already being

in the near region of a local minimum in the solution space. Analogous to the

warm-up, having a decaying learning rate allows for a larger maximum learning rate

compared to a constant learning rate without causing too much training instability.

Thus resulting in faster convergence in the midst section of the cycle without having

a severe tradeo in training stability in the end phase of the cycle by overshooting

or diverging out of possible solutions.

As mentioned before, we distinguish between sequential and cyclical learning rates.

In the former, there is a full reinitialization of parameters and a full reset of the

optimizer momentum at the end of each cycle, making the cycles independent of

each other. In the latter, we keep the model parameters and momentum unchanged

at each new cycle. The reason to distinguish between a cycle and a schedule is that

some authors claim that a training schedule should consist of multiple sequential

learning rate cycles, each consisting of a warm-up and a decay phase. This cyclic

schedule shall lead to better results in some cases [Smith, 2017, Loshchilov and

Hutter, 2017]. There is little known about the reason these cyclical schedules perform

so well in some cases. One possible explanation is that the cyclical learning rates

deal eciently with multi-modal functions. Having a cyclical schedule can then help

to escape local minima that do not provide as optimal solutions as others [Huang

et al., 2017]. Thus, the cyclical schedule provides a better ratio of exploration

and exploitation. Further research from Gotmare et al. [2018] suggests, however,

that this might be an oversimplication. They base their objection on measuring

connectivity between dierent modes found by dierent runs of the optimizer and

canonical correlation analysis, which does not fully support the hypothesis of Huang

et al. [2017]. In addition, they found in their research that the cyclical schedule,
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while having higher training loss, has a better validation loss, leading to improved

generalization. Other work suggests that cyclical learning rates can help in cases

where the training duration is unknown and hard to predict. It is therefore hard

to determine an ecient schedule beforehand [Zhai et al., 2022]. However, this is

not as important in our case where we have limited global steps to reach a preset

validation goal.

In the following, we will work with sequential learning rate schedules also consist-

ing of a warm-up and decay phase. The distinction between sequential and cyclical

learning rates comes from the fact that we will look at cases where we will not just

restart the learning rate but also reset model parameters and/or the momentum of

the optimizer. Sequential learning rate then means that there is a complete reset

after every cycle, making the cycles independent of each other. Cyclic schedules

keep parameters of the preceding run to at least some degree, making the cycles

dependent on the preceding one. The distinction between cyclical and sequential

learning rates and the topic of resetting will be the main focus of this thesis and our

proposed method later on in Chapter 3.

2.4 Training Environment

Our approach to the benchmark is to construct an implementation of our approach

following the self-tuning ruleset, which means there are no outer loop modications

of hyperparameters like in the external ruleset but we are granted 3× the full runtime

budget. The implemented optimizer is the AdamW algorithm. We adopted the

hyperparameters given by the Nadam baseline because it was the only self-tuning

baseline and the hyperparameters that are optimal for Nadam are supposedly close

to the Adam ones. Most importantly it keeps us from an expensive search for optimal

hyperparameters.
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2.4.1 Hardware

The computations and training of the benchmark were performed on the hardware

of the computing cluster of the University of Tübingen. The Training runs discussed

in part 3 were performed on Nvidia A100 GPUs. The number of GPUs varies but

the resources for each plot shown in section 3 are mentioned below every graphic.

The rst runs of the baselines and experiment with the code were conducted on

Nvidia 2080ti GPUs. The hardware of the preceding baseline runs that resulted in

helpful insights is mentioned in the Appendix with the corresponding plots. The

hardware dictated by the benchmark ruleset consists of 8 Nvidia V100 GPUs. We

used Nvidia A100 GPUs but were mostly not able to get more than two at a time.

2.4.2 Software

For the software environment, we use the singularity container on the server system

instead of the Docker setup. Using a virtual environment instead of Docker or a

singularity container would lead to reduced performance. The Python libraries and

software environments used for the benchmark are given by the singularity container

setup suggested. All the software and libraries with corresponding versions can be

looked up at the MLCommons/algorithmic-eciency repository. Errors appeared

whilst trying to run the PyTorch [Paszke et al., 2019] baselines within our envi-

ronment. It seems like the torch.compile module could not communicate with our

Cuda les and therefore our GPU resources. Since later versions of PyTorch did not

have the same issue it led us to assume that the problem was due to the version of

PyTorch used in the benchmark in combination with the singularity container setup.

Due to complications with PyTorch and indications from previous experiments that

JAX [Bradbury et al., 2018] has a small speed advantage over PyTorch, we used

JAX for all our experiments.
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3 Our Approach

We explore in this chapter how sequential and cyclical schedules can be applied to the

benchmark. We will then vary the strategy of resetting to see the dierences between

distinct learning rate schedules with either a hard reset of model and optimizer

parameters or just reinitializing model parameters but keeping the momentum of

the optimizer. From there on we will propose a strategy to make the hardness of the

reset for the model parameters as well as the optimizer after each cycle dependent

on how successful the preceding cycle was. We will also propose early switching

criteria to stop a cycle and reset immediately when the training metrics do not seem

promising for the current cycle. By combining these ideas to eciently utilize the

granted runtime budget we hope to propose a learning algorithm to improve by

adjusting the learning rate schedule and the reset strategy with an Adam optimizer.

In the following results of the training runs will be discussed. Please note that

the experiments presented here are individual training runs and mostly apply to the

OGBG dataset. This limits the generalization of the ndings. The results discussed

here should be a proof of concept and can not be seen as strong evidence for the

eciency of the proposed soft reset method for general usage in deep learning.

The x-axis of all the following graphs is the domain of global steps rather than

the time score of the benchmark to have more means of comparison between dier-

ent runs. The advantage here is that the reset will always take place at the same

global step for the same workload which is not true for the time domain. In ad-
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dition, the global step dimension is better at plotting dierent training runs that

use dierent hardware because this heavily inuences the training time. It is more

complicated in our case to be as consistent with the hardware like the AlgoPerf

benchmark suggests, because we depend on a shared cloud computing system for

our computation. Even when keeping the same resources for a training run this

also leads to asynchrony between training runs with the same datasets and even the

same hyperparameter setting due to uctuation of computing performance. This is

easy to see in Figure 3.1, where there is a strong shift of the location of the last

reset in the soft reset graph. The fact that the shift in the x-axis direction after

the rst cycle is almost not noticeable but the shift of the reset after the second

cycle is much greater suggests some inconsistencies in the hardware performance or

software performance of the computing cluster. This is just a presumptive and the

true cause of these dierences in the time domain is still to be identied, but will

not be the main focus of this thesis. The meaning of the legend of Figure 3.1 will

be discussed later on in Chapter 3.

To further justify plotting on the global step dimension we used the Python timeit

library to show that our approach does not signicantly increase runtime compared

to the baseline. The operations added for our proposed algorithm are just storing

variables and computing a gradient on a scale that is not signicant compared to

the rest of the training algorithm. The timeit results are as follows on OGBG on

an A100 GPU. For a training step the model_reinit_schdedule() function takes

on average 5 µs and storing the metrics for early switching takes on average 3 µs.

This results in a total 1.28 s on OGBG. After evaluation steps, there are more

metrics to store and the early stopping criteria are checked. After an evaluation step

the model_reinit_schedule() function takes on average 1000 µs and the storing of

metrics takes on average 30 µs there are on average 130 evaluation steps, resulting in
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Figure 3.1: A run with full and soft reset (explained in Figure 3.8a) with time score
measured as described in [Dahl et al., 2023] on the x-axis. Training on OGBG
dataset with one Nvidia A100 GPU.

a total of approximately 0.14 s. At last, our modied reinitialization of the optimizer

that gets called at the time of reset takes about 1 s. There are currently 3 resets

scheduled on every training run. This results in a total additional runtime of <5 s

compared to a total submission time of an average of 30 000 s training time on

OGBG.

This shows that our proposed soft reset and early switching algorithm does not

contribute signicantly to the total training time.

It is also worth noting that we used 2× of suggested global steps instead of 3.

In the experiments of Chapter 3 it has always been 3 schedule cycles because, in

the preceding experiments, it was observed that it takes less than one target setting

budget to reach the target in some cases. The max global steps were set to 2×

instead of 3× the global steps as intended by the self-tuning. This is due to limited

resources and also to have some kind of a reset between cycles to see if this can have

positive eects on the next cycle. The assumption of positive eects stems from the
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observation that cyclical schedules seem to boost the performance of multimodal

models in some cases [Gotmare et al., 2018]. Therefore every schedule cycle could

in theory reach the target when performing very well, but in most cases, it is a very

soft reset.

3.1 Implementation

Our implementation is based on the NadamW Baseline of the AlgoPerf Github.

We changed NadamW into AdamW. NadamW seemed to outperform Adam in our

preceding experiments MNIST and OGBG. However, we decided to use Adam for

its very common use. The dierence between Adam and AdamW is that in the

case of AdamW, the weight penalty is introduced after the parameter update rather

than before the update like in Adam with regularization where the regularization

term is part of the update rule. We used AdamW because it has been the baseline

conguration and shown to be more performant than Adam with the classic L2-

regularization in our preceding experiments where AdamW had a submission score

of 7428 and Adam with L2-regularization had a submission score of 7752. A lower

score means it took less time to complete the run.

The other adaptations of the code concern the scheduling of learning rate cycles.

We implemented a dictionary containing all the schedule parameters needed to en-

code a cyclic learning rate schedule with a validation score-dependent reset of model

parameters and optimizer momentum as well. Each learning rate cycle consists of

a warm-up and a decay phase. Changes were made to the init_optimizer_state()

given by the AlgoPerf repository to allow for changes in decay strategies and possi-

bilities to alter the learning rate for each cycle as well as rescheduling the learning

rate in the case of early switching a cycle. The function model_reinit_schedule()

mainly implements the scheduling, early switching, and validation score-dependent
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reset of model parameters. For a detailed description of the Code see the UML dia-

gram in Figure 3.2. The code for the soft and full reset as well as the code for time

measurements are on our Github. For the formulation of early switching criteria

and validation score dependent reset see the following Section 3.3.

3.2 Exploratory Experiments and Results

Before introducing our proposed algorithm we will show some exploratory experi-

ments that are important to see the behavior of the training runs on OGBG with

the AlgoPerf setup. We also show the results for sequential schedules with a full

reset and a reset that keeps the momentum of the optimizer which motivated the

soft reset strategy.

3.2.1 Behaviour of Dierent Schedules

The rst thing to look at before focusing more on the reset of momentum and

reinitialization of model parameters after each cycle is the behavior of dierent

decays and warm-up schedules. Even though it is not the main focus of the thesis

it is important to see how dierent schedules generally behave. These training runs

should give an overview of the OGBG dataset’s behavior regarding smaller schedule

dierences. These rst experiments were conducted on the OGBG dataset due to

its manageable size and computing time.

We see in Figure 3.3 that choosing dierent warm-up factors in Figure 3.3f as

well as choosing dierent decays (cosine, exponential and linear decay) in 3.3d do

not lead to much of a dierence between the cycles when it comes to the validation

target metric. Choosing much larger dierences for the schedules learning rate would

heuristically lead to dierences in performance [Gotmare et al., 2018] but this will

not be the main objective of this thesis. In the case of selecting dierent maximum
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SCHEDULE_PARAMS: Dict

has_multiple: Bool Bool for model_reinit_schedule (sets itself according to schedules)

reinit_times: list[int] Defines Boundaries of schedule cycles (sets itself according to schedules)

warmup_schedule_fns: list[fns] List of warmups to be applied each cycle (set later in init_optimizer_state)

decay_schedule_fns: list[fns] List of decays to be applied in each cycle (set later defined in init_optimizer_state)

alter_decays: list[float] List of alterings of learning rates given by the hparams ( set here)

alter_warmups: list[float] List of alterings of warmup factor given by the hparams (set here)

num_early_stops: int Count of how many schedule cycles have been stopped early

currently_stopping: bool Bool to identify if the current schedule cycle should be stopped at current global step

stop_metric: dict Dictionary of all paramters and variables needed to define the early stopping routine

reset_metric: dict Dictionary of all parameters and variables to control the reset of model and optimizer

func: init_opitmizer_state()*

func: decay_fn(step_hint, hyperparamters, alter_lr_by, alter_warmup_by)
- returns a decay_schedule_fn

... may define other decay schedules...

func: warmup_fn(step_hint, hyperparamters, alter_lr_by, alter_warmup_by)
- returns a warmup_schedule_fn

... may define other decay schedules...

func: combine_warmup_decay_fn(step_hint, hyperparameters, warmup_fn, decay_fn, alter_lr_by, alter_warmup_by)
- chains together a warmup and a decay strategy
- returns a full schedule cycle as a function of learning rate

func: combine_warmup_decay_fn(step_hint, hyperparameters, warmup_fn, decay_fn, alter_lr_by, alter_warmup_by)
- chains together a warmup and a decay strategy
- returns a full schedule cycle as a function of learning rate

func: jax_lr_schedule(step_hint, hyperparameters, schedule_params)
- tests if decay- and warmup schedules, lr altering and warmup factor altering lists match in length
- defines length of one schedule cycle (evenly distributed if non-dynamic) according to step_hint and number of schedule cycles
- computes boundaries ("reinit_steps") of each schedule cycle according to step_hint and length of one schedule cycle
- chains together all given schedule cycles according to the schedule_params and the boundaries computed above
- sets schedule_params.has_multiple to True if more then one schedule cycle is applied
- returns learning rate schedule for entire run, boolean for "has_multiple", boundaries as "reinit_steps"

- defining the lists of decay schedules
- define the lists of warmup schedules

- defining the lists of decay schedules
- define the lists of warmup schedules
- defines lr schedule by calling jax_lr_schedule() according to SCHEDULE_PARAMS
- initializes adam with that lr schedule
- makes a graph of the lr schedule and saves it into folder of experiment runs as soon as the optimizer gets initialized (can check if lr

schedule is set correctly at the beginning the begin of the program run. Dont have to weight till training is finished)

...

source code by MLCOMMONS

...

defines

returns

used in

...

source code by MLCOMMONS

...

func: update_params()*

... source code...
- call model_reinit_schedule() which returns reinitialized new_params and new_optimizer_state according to SCHEDULE_PARAMS
...source code
- update reset_metric after each evaluation
- update stop_metric after each evaluation
- returns new_optimizer_state, opt_update_fn, new_params, new_model_state

resets

func: model_reinit_schedule(global_step, workload, schedule_params, rng, hyperparameters, model_params, optimizer_state,
model_params)

func: early_stopping(schedule_params)
func: is_stopping_early(schedule_params)

- define conditions under which the current learning rate cycle should be stopped early
- call is_stopping_early()
- if is_stopping_early() is true then stop the current cycle and divide the runtime left equally under the cycles that are still to do

and set the schedule params accordingly
-else make no changes
-returns new num_early_stops, new reinit_steps, new currently_stopping

- reset SCHEDULE_PARAMS according to call of early_stopping()

- checks if reinit is even needed in this run
- checks if the global step is same as on of the schedule boundaries
if both true then:
- reinit model parameters
- reinit optimizer
- test if model parameters changed
- test if momentums got set to zero correctly
- refactor optimizer parameters of current optimizer momentum according to alpha and current reset metric
- refactor model paramters according to current reset metric
- test if refactoring of optimizer momentum worked
- test if refactoring of model paramters worked

- returns reinit model paramters and optimizer state

Figure 3.2: UML diagram of the implementation of our approach using the submission
template by the AlgoPerf self-tuning baseline.24



learning rates for the cosine decay in Figure 3.3d there are minor dierences to

observe. It seems that a greater maximum learning rate seems to promote a steeper

learning curve but also causes some training instabilities. However, this cannot be

generalized, as we observe individual runs with a potentially noisy data set.
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(a) Learning rate schedule with sequential
maximum learning rates as η1 ≈ 0.00175,
η2 ≈ 0.00275, η3 ≈ 0.00075 for each cy-
cle, cosine decay and warm-up-factor of
0.02.

(b) Training run with sequential learning
rate schedule of a) and full reset. Evalu-
ated on target metric of validation Mean
Average Precision (mAP) of OGBG.

(c) Learning rate schedule with sequential
maximum learning rates as η1, η2, η3 ≈
0.00175 for each cycle with cosine, expo-
nential, and linear decay and warm-up-
factor of 0.02.

(d) Training run with sequential learning
rate schedule of c) and full reset. Evalu-
ated on target metric of validation Mean
Average Precision (mAP) of OGBG.

(e) Learning rate schedule with sequential
maximum learning rates as η1, η2, η3 ≈
0.00175 for each cycle with cosine de-
cay and warm-up-factor of 0.02, 0.2 and
0.005.

(f) Training run with sequential learning rate
schedule of e) and full reset. Evaluated
on target metric of validation Mean Av-
erage Precision (mAP) of OGBG

Figure 3.3: Training runs with dierent learning rate schedules. Training on OGBG
dataset with one Nvidia A100 GPU. η given approximately because we
adopted it from the original baseline as η = 0.0017486387539278373.26



3.2.2 No Momentum Reset vs. Momentum Reset on OGBG

In the experiments seen in Figure 3.4 training runs with the same learning rate

schedules and hyperparameters as in Figure 3.3 were conducted but this time keeping

the momentum of the optimizer and not setting it to zero. The graphs of Figure 3.4

show these training runs (red curves) side by side with the runs from Figure 3.3

where also the momentum is set to zero (blue curves). The model parameters were

reinitialized in every of these cases. The motivation is to see how much the optimizer

momentum inuences the reset and the preceding schedule cycle.

Before discussing the results of Figure 3.8 we would like to remark that some of

the graphs fall back to initial validation loss after the third cycle. This is due to

the schedule containing a reset at the last global step. For the training runs in the

full reset and kept momentum condition, this last reset can be found in the data.

Later on there will be training runs where the last reset is not evaluated. The exact

reason for this is not known by now but will not aect the discussion of the results.

The graph of Figure 3.4c shows that the runs without resetting the optimizer

momentum do not fall back near the values of the rst validation loss in step 0.

This is because evaluation steps depend on the wall-clock runtime and not the global

steps. So it is not ensured that an evaluation step is made immediately after the

reinitialization of model parameters, which leaves some time for the loss to improve

between the reset and the next evaluation step. This is also why the validation loss

does not necessarily return to the initial value after each reset, even with a complete

reset (blue curves).

There are two interesting things to observe here. First, there is a big eect of the

optimizer momentum in Figure 3.4c but there seems to be no eect in Figure 3.4a

and Figure 3.4b. There was a preceding experiment where we ran the baseline with-

out a reset of the momentum and it also showed a strong eect on the recovery of
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the target metric when keeping the optimizer momentum Figure A.1. This hints

that Figure 3.4c is probably not just a coincidence. This eect of faster recovery

in itself is not surprising but the strength of this eect in some of the experiments

is. We can not explain the inconsistency of this eect. It is to be researched if it

is due to unknown behavior in the training or a mistake of any nature on our side

which can never be ruled out. To conclude, keeping the momentum of the optimizer

when resetting seems to signicantly inuence the recovery of model performance

after a reset in at least some cases. Therefore besides the reinitialization of model

parameters, it is important to consider optimizer momentum when choosing a reset

strategy for sequential or cyclic training runs.
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(a) Training run Figure 3.3b (blue) and
training run with the same learning rate
schedule and hyperparameters as Fig-
ure 3.3b but no reset of optimizer mo-
mentum (red).

(b) Training run 3.3d (blue) and training run
with the same learning rate schedule and
hyperparameters as 3.3d but no reset of
optimizer momentum (red).

(c) Training run Figure 3.3f (blue) and train-
ing run with the same learning rate sched-
ule and hyperparameters as Figure 3.3f
but no reset of optimizer momentum
(red).

Figure 3.4: Training runs with dierent learning rate schedules and reset strategies. One
with a reset of model parameters and optimizer momentum (blue) and one
with just a reset of the model parameters (red). Training on OGBG dataset
with one Nvidia A100 GPU. η is given approximately because we adopted it
from the original baseline as η = 0.0017486387539278373.
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3.3 Our Algorithm

The rst results of the training runs on OGBG showed that not resetting the op-

timizer momentum after each cycle can have surprisingly positive eects on the

subsequent cycle compared to a full reset. The validation target metric rises sur-

prisingly fast after reinitializing the model parameters but not the optimizer momen-

tum compared to reset everything. This leads to the assumption that cyclic learning

rates with no reset or a partial reset improve sequential learning rate cycles with

a complete reset of model parameters and optimizer momentum. The assumption

of positive eects of cyclical learning rates is also backed by Loshchilov and Hutter

[2017], Gotmare et al. [2018]. On the other hand, just keeping the model param-

eters and optimizer momentum unchanged at each cycle may harm the robustness

of the approach of sequential learning rates with a complete reset at the beginning

of every cycle. The original idea was to use sequential learning rates to make use

of the 3 × runtime budget granted in the self-tuning rule set by sequentially trying

out dierent learning rates and or decay variations within one training run. The

advantage of this approach is that we will have more than one chance to reach the

validation target score. The robustness of the sequential approach stems from the

fact that the runs are independent of each other and a failed cycle does not aect

the other cycles. Preceding experiments showed that there can be runs where al-

most no learning occurs in some or all of the scheduled cycles. This can be even

more signicant in noisy datasets. These training cycles most often will not escape

their plateau and waste valuable training time. With a cyclical approach, a failed

cycle can lead to no learning in all following cycles by keeping bad parameters. An

example of this can be seen in Figure 3.5. Having a cyclical learning rate approach

that does not reset parameters and momentum each time yields the risk of keeping

parameters and momentum of failing cycles resulting in a continuation of a failed
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cycle or a very bad start of the current cycle resulting in slower learning by having to

rst escape the plateau of the preceding cycle. In summary, cyclical learning rates

have an advantage in keeping parameters and momentum at the start of every cycle

instead of resetting potentially promising model parameters and optimizer momen-

tum. This can lead to a faster convergence as can be seen in preceding experiments

and Loshchilov and Hutter [2017], Gotmare et al. [2018]. However cyclical schedules

lack the robustness of sequential schedules that ensure that a failed training run will

not be continued in the subsequent cycle.

We will introduce two approaches to rstly, tackle the problem of wasting time on

failed training cycles which probably have no chance of reaching the validation tar-

get score, and secondly to combine the faster convergence of cyclical learning rate

schedules that keep promising model parameters and optimizer momentum congu-

rations at a subsequent cycle with the robustness and training stability of sequential

learning rate schedules. The rst problem is tackled by introducing early switching

criteria for training cycles in Subsection 3.3.1. The second problem is tackled by

introducing a reset strategy of model parameters and optimizer momentum where

the degree of resetting or keeping the parameter conguration of the preceding cycle

is dependent on the validation target metric in Subsection 3.3.2.

3.3.1 Early Switching of Training Cycles

In the following, we will introduce our early switching. It is the idea of stopping

failed training runs early to switch to the next cycle not wasting time completing the

failed training cycle. Our early switching conditions are dependent on the validation

loss of the model at the validation step t written as L(θt)val. We will introduce a

heavy momentum to the validation loss to smooth out the function because we want

to make decisions based on the current approximated trend of the derivative of the
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Figure 3.5: A failed run intentionally brought to fail by choosing a learning rate schedule
with maximal learning rates of η1 ≈ 0.00175, η2 ≈ 0.02175, and η3 ≈ 0.05175.
Training on OGBG dataset with one Nvidia A100 GPU.

loss function rather than every slight change in the loss. This is to prevent making

decisions based on a potentially strongly oscillating metric. The function used for

dening the conditions for early switching is thus dened as:

l(t) = λL(θt)val + (1− λ)l(t− 1)

λ is the factor of the momentum. Aiming for a heavy momentum to prevent early

switching due to oscillating validation loss triggering the conditions. Therefore the

λ was set between 0.5 to 0.7 in my experiments. It should generally be adapted to

match the noisiness of the training data. The Figure 3.6 depicts an example of the

dierent measures of the validation loss mentioned in this chapter. The example

corresponds to the training run of Figure 3.5.

The function S(t) : N −→ {0, 1}, with t = 1, ..., T where T is the number of

validation steps, is the function that takes in the function l(t) and returns 0 or

1 that should be interpreted as boolean values. This function is implemented by

is_stopping_early() in the code. Returning 1 will lead to switching to the next cycle

early and 0 will continue the current schedule. S(t) is dened as:
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(a) Valdiation loss L(θt)val

(b) Smoothed validation loss l(t) with λ = 0.6

(c) Derivative of smoothed validation loss l′(t) with
λ = 0.6

Figure 3.6: Depiction of the dierent measures of the validation loss. It shows the mea-
surements of the training run shown in Figure 3.5.
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S(t) =





1 if l′(t) ≥ ε1

1 if t− argmin
x∈T

l(x) ≥ k ∧ ml′(t) + l(t) ≥ min
x∈T

l(x) + ε2

0 else

Where T = 1, ..., t. The variables ε1,2, k, and m are parameters set by the user. The

ε is for the rst case. The derivative l′(t) of the validation loss with momentum l(t) is

tracked and after every evaluation step it is checked if l(t) > ε1. A positive l(t)means

that the validation loss is increasing instead of decreasing which is a characteristic

of a failing training run. The ε1 is the tolerance for allowing a positive derivative.

The ε2 is for the second case. In this case, we rst check the distance of the current

index and the index of the current global minimum of l(t) with t− argmin
x∈T

l(x) ≥ k.

If we are k steps away from the current global minimum we check if we can reach

this global minimum after m steps estimated by our current state of l(t) and l ′(t).

This is the term ml′(t)+ l(t) ≥ min
x∈T

l(x)+ ε2. ε2 is the tolerance for being above the

global minimum.

In most of the experiments, the ε1,2 are set to 0 < ε ≪ 1. The second stopping

condition is redundant in the case where ε ≤ 0. The case is intended for greater

ε1, where you allow the loss to recover after a phase of a positive gradient of the

loss of k steps. If the current global minimum is not reachable within again m steps

in the direction of the current gradient the cycle also stops. The second case is

the check whether the model has a chance of recovering and improving even after a

short phase of having a positive slope. This is a condition that is interesting when

working with very noisy datasets where having a monotonic decreasing l(t) might

not be achieved with a reasonable degree of momentum.

Figure 3.7 shows a training run where early switching occurred. For the training
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Figure 3.7: A failed run intentionally brought to fail by choosing a learning rate schedule
with maximal learning rates of η1 ≈ 0.00175, η2 ≈ 0.02175, and η3 ≈ 0.05175.
The parameters for S(t) are ε1 = 0.01, ε2 = 0.01, m, k = 9 and λ = 0.7.The
rst reset followed the schedule and the following were due to early switching.
Training on OGBG dataset with one Nvidia A100 GPU.
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run, we choose bigger maximum learning rates for the second and third cycles as

displayed in Figure 3.5. The purpose of this was to intentionally introduce training

instability to enforce bad cycles showcasing the early switching. In Figure 3.7 the

model did reset at step 70001 and 80003. The rst reset was a scheduled one.

Looking at the graph of the mAP score it seems that the early switching occurred

at useful locations. The training run was killed at the moment of the third reset

because at this point the number of resets was the same as the number of scheduled

cycle. The way we implemented the early switching the run will terminate as this

occurs. One alternative way of implementation would be a queue of schedule cycles,

allowing for more early switching if needed. Choosing this learning rates is good

for displaying early switching but will always end up in early determination of the

training run due to a high probability of having bad cycles. It was not possible to

nd good examples of early switching with good hyperparameters in the given time.

The reason for this is that training on OGBG with A100 GPUs in combination

with good hyperparameters is very stable making it hard to show examples of early

switching. We choose to use greater learning rates in Figure 3.7 for this reason.

Another important thing when using early switching is the choice of parameters.

The parameters for Figure 3.7 where ε1 = 0.01, ε2 = 0.01, m, k = 9 and λ = 0.7. We

believe that these parameters are model-specic, but we will try to give you some

pointers for tuning below. It seems that it is a good heuristic to choose m = k to

reduce complexity. We also recommend choosing m, k > 5 providing enough time

to recover after an increase in the validation loss. The chosen momentum λ was

between 0.5 and 0.7. The momentum depends on the noisiness of the dataset and

the choice of ε1 and ε2. The choice of ε1 and ε2 is more complex but crucial. ε1

depends on how noisy the validation loss of the dataset and model of interest is and

is therefore very case-specic. ε2 depends on the interest to have a monotonically
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decreasing validation loss. If this is not of high interest the ε2 should be greater

than ε1 since the second case of S(t) can be very restrictive leading to too many

early switches.

The limited time given to construct this thesis kept us from tuning the early

switching perfectly for every workload. Too liberal criteria of switching to the next

cycle led to not being able to switch out bad cycles we deemed to be a waste of

training time, killing the advantage it was supposed to bring. Too strict criteria

switched out noisy but promising cycles, which led to spearing remaining cycles

over too much training time. This could at least be compensated by having a queue

of hyperparameter settings that exceeds the number of originally planned cycles but

would still not make ecient use of training time by stopping promising cycles. Due

to the lack of sucient tuning of the early switching, we decided to have very liberal

switching criteria to still be able to display the soft reset for all workloads. We still

are condent that an appropriate tuning of early switching is a valuable addition to

the approach.
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3.3.2 The Soft Reset Method

As said before the goal is to combine the advantages of cyclical and sequential sched-

ules. We therefore want to have the robustness of sequential schedules regarding

failed learning cycles but do not want to throw away promising model parameters

or optimizer momentum after a more or less successful training cycle. This would

cost valuable training time and resources. The approach to this problem is not to

completely reset the model parameters and optimizer momentum but to make it

dependent on the value of the validation target metric of the workload respectively.

The validation target metric is the metric that seems to be the best t because it

is the metric that says the most about the actual performance of the model on yet

unseen data. For this, we propose the factor of the amount of reset of the model

parameters τ as a formula consisting of the validation target score ytarget and the

current value of the validation target metric yt at the validation step t. The scalar for

rescaling τ is a normalized dierence between the current and the target value of the

respective target metric. We used the max() to adjust for cases where yt > ytarget.

Those are cases where the target metric at the time of the reset yt exceeds the target

ytarget. The max() keeps us from using negative numbers which would not be the

behavior of the cyclical approach we try to reproduce in this case.

τ =
max(ytarget − yt, 0)

ytarget

This formula was intended for OGBG, FastMRI, WMT, and Criteo at best. For

those the validation score is a score that should be as high as possible like for exam-

ple the mAP for OGBG. For some of the other workloads (for example Imagenet),

the validation target score should be as low as possible. The current formula is a

proof of concept and only aimed at workloads with target metrics that increase with
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increasing training time. The formula should also be adapted for decreasing target

metrics as future work on the approach.

The scalar τ will be used to dene the ratio between using the current parameters

at step t and the reinitialized parameters at the beginning of each new cycle. The

formula for rescaling parameters at the beginning of each new training cycle of the

schedule is as follows:

Soft reset of model parameters:

θt = (1− τ)θt + τθreinit

The function in the code for θreinit is given by the AlgoPerf source code and ini-

tializes the parameters following the same distribution but with a dierent rng seed

each time it is called.

Soft reset of optimizer momentum:

mt = (1− τα)mt

vt = (1− τα)vt

Where mt and vt are the rst and second moment averages of the Adam optimizer

respectively. It is only one summand in the formula because resetting the optimizer

means setting the momentum to zero. The variable 0 < α < 1 should reduce the

amount of rescaling. This is due to the observation of preceding experiments, that

39



keeping the momentum of the optimizer can be very eective in some cases and not

as harmful as bad model parameters in failed training cycles.

This approach makes two restrictive assumptions. The rst is that we know the

exact target score of each workload in advance, which is not common outside the

AlgoPerf ruleset.

The second one is that we assume our proposed schedule has cycles of roughly

the length of one target runtime. With durations of a cycle much less than one

target setting runtime, it is of course very unlikely for a training cycle to get near

the target score even if it is very promising because the target setting runtime is

the estimated time to reach the target score. In this case, we would enforce a much

harder reset on every training cycle much less dependent on the actual performance

of the training cycle.

Figure 3.8 shows the soft reset approach to resetting parameters and optimizer

momentum compared to their full reset counterparts in terms of hyperparameter

settings. The rst thing to notice is that the runs with the soft reset start with way

higher mAP scores after the reset due to the faster recovery of the validation loss.

Second, these runs reach the asymptotic learning phase, meaning the phases where

almost no increase in the target metric occurs, very soon after the reset. The results

show that the approach leads to a softer reset of the model and faster recovery in

terms of the target metric. Thus, the soft reset approach shows the eects on the

learning behavior we were trying to achieve.

The results show that the soft reset is not as consistent as the full reset. With

constant we mean how similar the learning behavior is compared to one another

after a reset. We see in Figure 3.4 that the shape of the mAP score curve looks

very similar after every reset for the full reset condition. This is not the case for the

soft reset. This is seen in Figure 3.8a where at the start of the second cycle there
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(a) Training run Figure 3.3b (blue) and
training run with the same learning rate
schedule and hyperparameters as Fig-
ure 3.3b but with soft reset method
(green). The τ values for the resets are
0.014 and 0 respectively.

(b) Training run Figure 3.3d (blue) and
training run with the same learning rate
schedule and hyperparameters as Fig-
ure 3.3d but with soft reset method
(green). The τ values for the resets are 0
and 0 respectively.

(c) Training run Figure 3.3f (blue) and train-
ing run with the same learning rate sched-
ule and hyperparameters as Figure 3.3f
but with soft reset method (green). The
τ values for the resets are 0 and 0 respec-
tively.

Figure 3.8: Training runs with dierent learning rate schedules and reset strategies. Once
with a complete reset of model parameters and optimizer momentum (blue)
and once with the soft reset method (green) proposed in section Subsec-
tion 3.3.2. Training on OGBG dataset with one Nvidia A100 GPU. η is
given approximately because we adopted it from the original baseline as
η = 0.0017486387539278373. The α for the reset of the optimizer momentum
was set to 0.5 for all runs.
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is a noticeable reset in the mAP curve whereas at the start of the third cycle, the

mAP score is almost immediately back to the asymptotic phase of the preceding run.

This is probably due to the values of τ that determine the proportion of reinitialized

parameters. The τ for the rst rest in Figure 3.8a is τ = 0.014 and τ = 0 for the

second reset. Heuristically, you would expect that a cycle with a high last mAP

score and therefore small τ value is followed by a softer reset and fast recovery in

the next cycle. In Figure 3.8a we see an example of this. The other results do not

show examples of this due to τ = 0 for every rest in Figure 3.8b and Figure 3.8c.

We did not expect to reach the target in this many training runs. We see that

the approach is almost identical to a cyclical approach with no reset keeping the

advantages of the cyclical approach in the case of a promising training cycle. Even

for the resets with τ = 0 we see at least some kind of a reset or disruption in the

learning curve. We suspect that this could be due to the change in learning rate,

but this assumption cannot be supported by the results.

Another interesting remark for Figure 3.8c is that the mAP curve in its shape is

very similar to the corresponding curve of Figure 3.4c where the model parameters

were reinitialized but the optimizer momentum was kept. Both show a quick recovery

after the reset, followed by a short phase of decline. We can not oer a satisfactory

explanation for this occurrence of similarity in dierent conditions.

The last important observation of the results depicted in Figure 3.8 is the max-

imum mAP score of each cycle. Although the soft reset does lead to a way faster

recovery of the mAP score the results only show an improvement of the maximum

mAP score in the last cycle of Figure 3.8a. The depicted training runs of the OGBG

dataset so far do mostly not show a steady incline of the mAP score but rather

enter a phase of asymptotic learning. In our results, a faster recovery due to a soft

reset does lead to an earlier entry in this asymptotic phase but does not improve the
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maximum score in most cases. This might be a characteristic of the OGBG dataset.

(a) Learning rate schedule for WMT dataset
with maximum learning rates of η1 ≈
0.00175, η2 ≈ 0.00275, η3 ≈ 0.00075 for
each cycle.

(b) Training run with full reset (blue) and
training run with soft reset method
(green). The τ values for the resets are
0.028 and 0.024 respectively.

Figure 3.9: Training runs with dierent learning rate schedules and reset strategies. One
with a complete reset of model parameters and optimizer momentum and one
with the soft reset method proposed in section Subsection 3.3.2. Training on
WMT dataset with one Nvidia A100 GPU. η is given approximately because
we adopted it from the original baseline as η = 0.0017486387539278373. The
α for the reset of the optimizer momentum was set to 0.5 for all runs.

To see if the soft reset method also works on other workloads we trained on the

WMT dataset. The results of Figure 3.9 shows the comparison between a sequential

schedule with a full reset and a cyclic schedule with the soft reset method. You

can see in Figure 3.9b that the training on WMT with the soft reset shows similar

characteristics as the OGBG training runs. At the time of reset, there is a way

smaller dip in the Bleu score, which is the target metric of the WMT dataset, than

in the full reset condition. This eect is very pronounced at the last cycle where

the reset is almost not noticeable for the soft reset with condition (τ = 0.024) but

goes down to a Bleu score of almost 0 for the full reset. We also see again that a

greater of τ = 0.028 in the rst reset does lead to a harder reset than for the second

with τ = 0.24. Even subtle dierences in τ seem to aect the softness of the reset.
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Unlike most runs on OGBG, the soft reset does lead to a higher maximum target

metric score as can be seen in the second cycle of Figure 3.9b.

The learning behavior after the rst reset is also worth mentioning. It shows

the same short phase of decreasing target metric score that can also be observed in

Figure 3.8c and Figure 3.4c. The fact that Figure 3.4c has a dierent learning rate

schedule with the same maximum learning rate for every cycle speaks against the

explanation of this eect due to the same learning rate schedule. The reason for this

short phase of decrease is therefore unknown.

Figure 3.9 shows that the soft reset also works as intended for the WMT dataset.

This reinforces the assumption that the advantages of the soft approach might gen-

erally apply to deep learning methods.

Figure 3.10: A cyclical training run with no reset and only 1× the target setting budget.
The rst cycle is intentionally brought to fail by choosing a learning rate
schedule with maximal learning rates of η1 ≈ 0.05175 and the second cycle
with the baseline learning rate of η2 ≈ 0.00175. Training on OGBG dataset
with one Nvidia A100 GPU.

We showed that the soft reset approach does have a big advantage over the se-

quential approach for cycles with good training performance. This is because we do

not perform a full reinitialization of parameters and potentially discard promising

model parameters which would waste valuable training time. This is almost the
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same reset behavior as for cyclical learning rates with no reset if the cycle had a

successful preceding training cycle. So in that case the soft reset is similar to the

cyclical approach. The advantage as mentioned also in Subsection 3.3.1 is that the

soft reset is much more robust to failed cycles. The Figure 3.10 shows the disad-

vantage of the cyclical approach. In Figure 3.10 we set the learning rate of the rst

cycle very large to force a failed cycle. We see that keeping the parameters at the

reset leads to a at-lining of the target metric even after the reset where we continue

with a cycle with the baseline maximal learning rate.

Figure 3.11: A training run with the soft reset approach and only 1× the target setting
budget. The rst cycle is intentionally brought to fail by choosing a learning
rate schedule with maximal learning rates of η1 ≈ 0.05175 and the second
cycle with the baseline learning rate of η2 ≈ 0.00175. The τ scalar for the
reset was 0.868. Training on OGBG dataset with one Nvidia A100 GPU.

This at-lining of the target metric does not happen for the soft reset condition.

The results in Figure 3.11 show that the training run is able to recover after a failed

cycle. The soft reset approach enforces a hard enough reset with τ = 0.868 to recover

the performance. This shows that the soft reset does not have the vulnerability

regarding failed training cycles as the cyclical approach.

We were able to show that the soft reset approach shows the advantages of the

cyclical approach by reusing promising parameters after a promising training cycle.
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We also showed that, unlike the cyclical approach, it is robust to failed training

cycles, keeping the advantage of the sequential approach. It seems that we were able

to combine the cyclical and sequential approaches, discarding the disadvantages and

mostly getting the best of both worlds.
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4 Conclusion

In the following, we will discuss the chances and advantages of our approach as well

as the limitations and future adaptations that are to be made to make this approach

usable for a wide variety of deep learning problems.

4.1 Summary

In this thesis, we implemented our approach with the submission template and en-

vironment of the AlgoPerf Benchmark [Dahl et al., 2023]. We utilized the codebase

and means of evaluation provided by the benchmark to test our hypothesis on some

of the workloads of the benchmark. The approach is to use the AdamW optimizer

with the thesis focusing on the learning rate schedule and the strategy of resetting

parameters following the schedule. The initial idea was to eciently use the extra

granted runtime budget by trying out dierent learning rate schedules sequentially

in one training run. Sequentially means that after every learning rate schedule, there

is a full reinitialization of the model parameters and a reset of the optimizer momen-

tum to zero. In contrast, we will call schedules that go through dierent learning

rate settings without resetting or reinitializing any parameters cyclical schedules.

Observations of the rst baseline experiments and insights from literature about

cyclic learning rate schedules with no reset of parameters Smith [2017], Gotmare

et al. [2018] lead to a new approach to the reset. This is to further optimize the

schedule and fully utilize the runtime. We proposed a method combining two ideas
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to be able to better utilize runtime, keeping the advantages of robustness against

training instability and also being able to try out dierent learning rate schedules

within the training loop. These two elements of the algorithm are the strategy of

resetting the parameters and early switching criteria for training cycles that show

training instability or a decline in learning performance. For the reset strategy, we

propose a method we call the soft reset method. The idea is to utilize the runtime

more eciently by forcing a soft reset for promising parameters and momentum

but performing a type of hard reset in the event of a previous failed learning cycle

Subsection 3.3.2. This is utilized by making the hardness of the reset dependent on

the workload’s target metric score at the moment of the reset which is the beginning

of a new schedule cycle. In addition, the early switching criteria are implemented

to make more ecient use of time by stopping schedule cycles that do not seem

promising due to declining performance or severe training instability. The cycles

get switched early to gain more time for other learning rate settings in the new

cycle (Subsection 3.3.1). These changes to the learning algorithm are expected to

make more ecient use of the time budget of the Benchmark.

4.2 Advantages of our Approach

The results of the experiments with the soft reset approach are shown and discussed

in the Chapter 3. It showed that our formulation of a soft reset has the eect of a

much faster recovery of performance after a reset that follows a cycle that showed

sucient learning progress. The assumption that having a soft reset boosts the

performance of the following cycle cannot be conrmed by the results. It is still

to be researched with more data and appropriate metrics if our approach does lead

to a better balance of exploration and exploitation for multimodal problems by in-

troducing a soft reset even in good-performing cycles leading to more exploration.
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The fast recovery of performance after a reset does provide a clear advantage for

similar use cases with the same goal as this benchmark, especially when combining

it with early switching mechanisms. The fast recovery allows for a higher frequency

of schedule cycles. This is very desirable because one motivation for the sequen-

tial/cyclic approach to this benchmark was to be able to try out multiple learning

rates in the course of one training run. The soft reset allows for a higher frequency of

schedule cycles by omitting the rst phase of learning that starts from the ground up

ultimately enabling us to try out more learning rate settings, which is an advantage

over the sequential approach. This is not restricted to trying out dierent learning

rate settings but can be extended to any hyperparameter search.

Another advantage we hoped for was to keep the robustness against failed cycles

with our formulation of the soft reset, which is an advantage over a cyclical schedule

that does not change the parameters at the ends of cycles. Not changing parameters

after a cycle when trying out dierent hyperparameter settings leaves the model

vulnerable to failed cycles that could lead to dead ends of learning for the whole

training in the worst cases. We can observe this being true for most of the conducted

experiments.

The advantages above are assumed to be potentiated by also introducing early

switching. The results of Subsection 3.3.1 show that the early switching works

somehow satisfactorily for the runs displayed, but it took tuning to get this to work

just for the experiments on the OGBG dataset. It was not possible in the course of

this thesis to tune the early switching to work as intended on every dataset.

An additional argument in defense of our approach is that it is not computationally

heavy in theory and in practice our code could still be improved by wrapping our

methods in the compiled and parallelized functions provided by the benchmark.

This was dicult considering that our implementation has been constructed in the

49



context of the submission template.

4.3 Limitations

Although the approach has some advantages and the results mostly improve the

training performance, the interpretation of our results as well as the approach itself

is subject to a few limitations. First, as mentioned before, the results shown in

Chapter 3 are individual training runs rather than an average of trained ensembles.

This is due to the limited research time and hardware. The results are therefore not

supported by enough empirical data to be generalized. The motivation behind this

research was exploratory in nature and should be seen as a proof of concept rather

than making strong claims that could be supported by large amounts of data. As a

proof of concept, however, the results are sucient to demonstrate the advantages

of the soft reset approach in combination with early switching methods.

Secondly, our proposed approach introduces hyperparameters for the soft reset

and early switching which have to be tuned in practice. Especially for the early

switching, hyperparameters are not obvious and depend on the specic data and

model. Every approach that adds more hyperparameters introduces more complex-

ity. The additional complexity of a problem must be outweighed by the benets it

brings. The approach therefore has to yield an improvement of the current algorithm

to be useful. We argue that it does yield benets in some cases.

Other than methodological limitations, there are some limitations implied by the

theoretical approach itself due to the assumptions that are made. The most notice-

able assumption is that the formula for the soft reset needs a target value. This exact

target value of the corresponding workload target metric is dened for each work-

load. Therefore, in the context of this benchmark, we can always assume knowledge

of an exact target score. In a more general use case, having an exact predened tar-
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get is a rare case. Another assumption for adjusting a learning rate schedule in this

experiment was that the estimated runtime to reach the target setting is provided for

each workload. Even with knowledge of the target setting runtime budget and target

score, there is a restriction to the frequency of cycles in the current formulation of

the soft reset. For a cycle length that is much less than a target-setting budget, the

current formula has the issue that it is highly unlikely in every case for the model

to reach the target within the cycle. This means that even a good performance will

be punished to some degree because the target score is almost impossible to reach

within the cycle. Then the dierence between the target metric score at the time

of the reset and the actual target and therefore the rescaling coecient for a soft

reset will be large in almost every case. Therefore, knowing the expected or desired

performance at the time of reset is crucial in formulating the soft reset coecient of

parameters and momentum. Although knowing the training time needed to reach

the target seems like a restrictive assumption, it is not absolutely necessary to know

the exact target setting and runtime of a model. Possible workarounds are discussed

below.

4.4 Future Research, Improvements, and

Addressing of Limitations

Knowing the limitations of the soft reset approach, I will suggest some changes that

can be implemented to try to improve the outcome of the method and tackle some

of the problems stated above. I will also put some seemingly restrictive limitations

into perspective to show that they are not so restrictive in practice.

A limitation of the thesis stated above is that it was not possible to gather enough

data to make general statements about the soft reset with an early switching ap-
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proach. This is tackled by gathering more training runs on a bigger variety of

workloads.

Further, one characteristic of the AlgoPerf Benchmark is that the exact target of

a workload is dened which is utilized in the soft reset of the model at the time of

the reset. As already stated it is not common to have an exact predened target in

practice. Although this is mostly true, it should be said that in most cases where a

deep learning model is used, you have an estimated target in mind. This is especially

true for benchmarks but can also be true for other more general cases. In most cases

outside the AlgoPerf Benchmark, the soft reset approach can be used because you

can probably dene an estimated target that aligns with your training goals and

desired performance.

Another assumption made for the cyclical schedule is that we know the estimated

target setting runtime of each workload. This is needed in this case to construct

cycles that in theory can reach the target within the cycle. One of the problems

with this is constructing a cyclical schedule with unknown runtime. Looking at the

results of Zhai et al. [2022] where they introduced an innite cyclical learning rate

schedule. Another problem was the case where the length of a schedule cycle was

signicantly shorter than the estimated target setting runtime. A workaround for

this is to construct a monotonically rising function of runtime or training steps to

estimate the training progress. Then the refactor coecient will compare the output

of this time-dependent function with the current target metric score rather than the

overall target when resetting. This solution has a clear disadvantage in that you

have to have some knowledge of the problem and training behavior of the model to

estimate this time-dependent function.

This cannot be done analytically and has to be done with either experience or

preceding experiments which has to be seen as a clear limitation of the proposed
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approach.

In addition to the future improvements to the approach, I would like to mention

another interesting observation of our results. The surprising result was the unex-

pectedly strong impact of the optimizer momentum on the reset and the following

learning behavior in some cases. I hope the results motivate further research to

unravel the optimizer momentum’s role when reinitializing the model parameters,

especially in the context of multimodal loss functions.

4.5 Takeaway of this Thesis

This work has shown that the approach of cyclical schedules with a soft reset in

combination with early switching strategies has potential. There are still some

important questions to be answered and there is room for improvement in this

method, some of which have been already discussed above. We are condent to say

that it is worth investing time in further research and optimization of this method.
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A Figures

A.1 Figures

(a) Learning rate schedule with cosine de-
cay learning rates as η1 ≈ 0.00175, η2 ≈
0.00275, η3 ≈ 0.00075 for each cycle.

(b) Training run with schedule of Fig-
ure A.1a and full reset.

(c) Training run with schedule of Figure A.1a
but no reset of optimizer momentum.

Figure A.1: Training runs with dierent learning rate schedules and reset strategies. One
with a reset of model parameters and optimizer momentum and one with just
the model parameters. Training on OGBG dataset with two Nvidia 2080Tis.
η is given approximately because we adopted it from the original baseline as
η = 0.0017486387539278373
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B Lists

B.1 List of Figures

2.1 Depiction of an example for a learning rate schedule consisting of a

warm-up phase, indicated by the orange area, in combination with

a decay phase, indicated by the blue area. The dimensions of the

depiction are oriented to the dimensions of the experiments below.

The warm-up phase is greatly exaggerated for visualization purposes

to 0.22. The warm-up factor usually lies between 0.01− 0.05. . . . . . 15

3.1 A run with full and soft reset (explained in Figure 3.8a) with time

score measured as described in [Dahl et al., 2023] on the x-axis. Train-

ing on OGBG dataset with one Nvidia A100 GPU. . . . . . . . . . . 21

3.2 UML diagram of the implementation of our approach using the sub-

mission template by the AlgoPerf self-tuning baseline. . . . . . . . . . 24

3.3 Training runs with dierent learning rate schedules. Training on

OGBG dataset with one Nvidia A100 GPU. η given approximately be-

cause we adopted it from the original baseline as η = 0.0017486387539278373. 26
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3.4 Training runs with dierent learning rate schedules and reset strate-

gies. One with a reset of model parameters and optimizer momen-

tum (blue) and one with just a reset of the model parameters (red).

Training on OGBG dataset with one Nvidia A100 GPU. η is given

approximately because we adopted it from the original baseline as

η = 0.0017486387539278373. . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 A failed run intentionally brought to fail by choosing a learning rate

schedule with maximal learning rates of η1 ≈ 0.00175, η2 ≈ 0.02175,

and η3 ≈ 0.05175. Training on OGBG dataset with one Nvidia A100

GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Depiction of the dierent measures of the validation loss. It shows

the measurements of the training run shown in Figure 3.5. . . . . . . 33

3.7 A failed run intentionally brought to fail by choosing a learning rate

schedule with maximal learning rates of η1 ≈ 0.00175, η2 ≈ 0.02175,

and η3 ≈ 0.05175. The parameters for S(t) are ε1 = 0.01, ε2 = 0.01,

m, k = 9 and λ = 0.7.The rst reset followed the schedule and the

following were due to early switching. Training on OGBG dataset

with one Nvidia A100 GPU. . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Training runs with dierent learning rate schedules and reset strate-

gies. Once with a complete reset of model parameters and optimizer

momentum (blue) and once with the soft reset method (green) pro-

posed in section Subsection 3.3.2. Training on OGBG dataset with

one Nvidia A100 GPU. η is given approximately because we adopted

it from the original baseline as η = 0.0017486387539278373. The α

for the reset of the optimizer momentum was set to 0.5 for all runs. . 41

57



3.9 Training runs with dierent learning rate schedules and reset strate-

gies. One with a complete reset of model parameters and optimizer

momentum and one with the soft reset method proposed in section

Subsection 3.3.2. Training on WMT dataset with one Nvidia A100

GPU. η is given approximately because we adopted it from the orig-

inal baseline as η = 0.0017486387539278373. The α for the reset of

the optimizer momentum was set to 0.5 for all runs. . . . . . . . . . . 43

3.10 A cyclical training run with no reset and only 1× the target setting

budget. The rst cycle is intentionally brought to fail by choosing a

learning rate schedule with maximal learning rates of η1 ≈ 0.05175

and the second cycle with the baseline learning rate of η2 ≈ 0.00175.

Training on OGBG dataset with one Nvidia A100 GPU. . . . . . . . 44

3.11 A training run with the soft reset approach and only 1× the target

setting budget. The rst cycle is intentionally brought to fail by

choosing a learning rate schedule with maximal learning rates of η1 ≈

0.05175 and the second cycle with the baseline learning rate of η2 ≈

0.00175. The τ scalar for the reset was 0.868. Training on OGBG

dataset with one Nvidia A100 GPU. . . . . . . . . . . . . . . . . . . 45

A.1 Training runs with dierent learning rate schedules and reset strate-

gies. One with a reset of model parameters and optimizer momen-

tum and one with just the model parameters. Training on OGBG

dataset with two Nvidia 2080Tis. η is given approximately because

we adopted it from the original baseline as η = 0.0017486387539278373 55
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