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Topics in financial econometrics include

- Estimation and testing of asset pricing
models Cochrane (2001)
Campbell et al. 1997 Ch. 5 and 6

- Modelling dynamics of financial market
processes using statistical models
Tsay (2002), Brooks (2002)

- Estimation of Value at Risk
Tsay (2002)

- Estimation of Continuous Time Finance
Models

Tsay (2002), Campbell et al. (1997) Ch.

- Predictability of asset returns
Campbell et al. (1997) Ch. 2

- Empirical Market Microstructure
Price formation processes in real markets
Campbell et al. (1997) Ch. 3
Bauwens and Giot (2001)
Gourieroux and Jasiak (2001)

- Event Studies
Measure effect of an economic event on

value of firm
Campbell et al. (1997) Ch. 4




What is financial econometrics?

Financial Economics
Deals with: valuation of assets, portfolio choice

/\

Time dimension Risk (payoff uncertain)
(payoff in future)

Economic agents: time preferences & risk aversion

proposes:

- Economic models explaining behaviour of
asset prices/returns

- models contain unknown parameters

- models imply time series and cross sectional
properties of asset prices/returns

Data

Prices/returns of financial assets
(stocks, bonds, options)

/\

Time series Cross section

other micro- and macro-economic data

statistical features of data (stylized facts)

Financial Econometrics

- Estimate unknown model parameters
- Test hypotheses about parameters

- Develop statistical models that account
for stylized facts (more or less close link to
theory)




Topics in financial econometrics include

- Estimation and testing of asset pricing
models Cochrane (2001)
Campbell et al. 1997 Ch. 5 and 6
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- Predictability of asset returns
Campbell et al. (1997) Ch. 2

- Empirical Market Microstructure
Price formation processes in real markets
Campbell et al. (1997) Ch. 3
Bauwens and Giot (2001)
Gourieroux and Jasiak (2001)

- Event Studies
Measure effect of an economic event on

value of firm
Campbell et al. (1997) Ch. 4




Textbooks on Financial Econometrics

Gourieroux and Jasiak (2001) Financial Econometrics, Princeton University Press
Covers rather specialized topics

Tsay (2002) Analysis of Financial Time Series, Wiley
Time series oriented, some specialities like VaR and continuous time finance and transaction data

Brooks (2002) Introductory Econometrics for finance, Cambridge University Press
Useful beginners econometrics book with many financial applications (of Brooks)

» Bauwens and Giot (2001) Econometric Modelling of Stock Market Intraday Activity, Kluwer
Focusses on econometrics of high frequency data in finance. Specialized topics

= Cochrane (2001) Asset Pricing, Princeton (revised edition 2005)
One of the best economics/finance textbooks and synopsis of the recent years. Theory and Econometrics

= Campbell, Lo, MacKinlay (1997) The Econometrics of Financial Markets, Princeton University Press
The classic. Very broad topics, comprehensive chapter on event study methodology

» Boehmer, Broussard, Kallunki (2002) Using SAS in Financial Research, SAS Institute.
Hands on financial econometrics, uses SAS with applications

= Hasbrouck (2004) forthcoming textbook on Econometrics of Market Microstructure. Download preview:
http://pages.stern.nyu.edu/~jhasbrou/Empirical%20Market%20Microstructure/Microst
ructure%20Notes%2002%20Ful l .pdf

Will close a gap in textbooks, reviews comprehensively accomplishments of past two decades




I. Empirical Asset Pricing

Readings:
Cochrane (2001), Ch. 1 (without 1.5), 3 (3.1 and 3.2), 4 (4.1 and 4.2), 7, 10, 11
Hamilton (1994), Ch. 14
Hayashi (2000), Ch. 3
Lettau and Ludvigson (2001)
Garcia, Renault and Semenov (2002)




Empirical asset pricing - Introduction (1)

Asset pricing  (Valuation of financial assets)
— T~

delay Oﬂf {
account for
payoff

risk of
payoff

— risk correction

50 years US stocks: 9% average return (real) p.a.
1% real interest rate p.a. (treasury bills)

8% premium earned for holding risk

What is the risk that is priced?
Asset pricing

/ \

normative positive

how should the world work? how does the world work?

are the prices "wrong”?

- trading opportunities?

- cost of capital

- non traded assets: "fair’ price




Empirical asset pricing - Introduction (2)

Basic : Prices equal discounted expected payoff
What probability measure?
Absolute Asset Pricing
exposure to ”t‘undamental” macroeconomic risk

Asset priced given other asset prices (e.g. option pricing)

RelativTe Asset Pricing

e.g. CAPM: & (RZ) =R/ + Bi (E(le _ R]i)

Ccov (Ri,Rm)

673 — var(R™) \

Market price of risk (factor)risk premium not explained




Empirical asset pricing - Introduction (3)

Basic pricing equation p; = Ei(m417441)

— N\

asset price stochastic payoff
at t discount (r.v.)
factor

(r.v.)

m;41 = f(data pgrameterg)

the model

Moment condition: Et(mt_|_1xt_|_1) —pr =0

use =Y —E()  WLLN

Generalized Method of Moments (GMM) to estimate parameters




Empirical asset pricing - Introduction (4)

Portfolio theory

Mean-Variance frontier

CAPM
APT

Option pricing

time line of discovery traditional

Cochrane's approach

contingent claims state preference

consumption-based modell

stochastic discount factor
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From an utility maximising investor's first order conditions we
obtain the basic asset pricing formula (1)

Basic objective: find p¢, the present value of stream of uncertain payoff x4

dividend
A/

Tt = Pe41 + dig1

I price of asset in t+1

Utility function { period utility function
Uty cr1) = uler) + BB [u(cp41)] -
4 expected utility
consumption y subjective discount factor

consumption level without asset purchase (other income)

A I J— quantity of asset bought/sold
Cty1 = 1 T 21§ |

Random variables: p; 1, di11, Tt41, €141, Ci+1, u(Ci41) B[] £ E[ | A
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From an utility maximising investor's first order conditions we
obtain the basic asset pricing formula (2)

H(lg)x U (ct,c441)] st

ct = et — pt&; Cr41 = €41 + Te1€

r?gx {u(er — pe&) + BB [u (ep+1 + T441€)] }

—pr-d () + 8- By [ (crs1) - we1] =0

utility loss if investor buys discounted expected utility increase
another unit of the asset j l from extra payoff
/ N
pru(ct) = By [Bu (cr41) Tii1] |
Investor continues to buy
p = By 6 ( +1> or sell the asset _until marginal
( loss equals marginal gain.
No complete solution: endogenous variables
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Turning off uncertainty we are in the standard two-goods case (1)

max [u (ct) + Bu(cpq)] st =er —pr- & cpp1 = e+ x4 - &
oU (ct,cpe1) - Ou(cy) Ou(cet1)

o€ Pt 5, + 0 T4 Ders =0

»
»

pr-u (ct) = wpe1 - Bu' (cpen)

Pt = Lg41 o (Ct)

marginal valuation /
of consumption dct — 5 U <Ct+1> _ b - opportunity cost to transfer

in t4+1 in terms of dCt+1 u (Ct> Tt consumption from t to t+1
consumption in t

pe (cr) = By [Bu (cpg1) Teg1]

L (crt)
= [
Dt t_ﬁ o (Ct> Li+1

v
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We often use a convenient power utility function (1)

I 1= . 1 1=
u(ct) = 1 — ,yct ! 711211 (1 _ Wct 7) = In(ct) marginal
/ — rate of
u (cr) = ¢ ! dey — Bu’ (c+1) — 3 Gl «— substitution
! de u' (ct) ct
utility u(ce)
10,

parameter v:

0.3 05 038

-

increasing concavity
of utility function

00 2 4 6 8 10 12 consumption (ct)
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Prices, payoffs, excess returns

Price pt Payoff x4
stock|  pr || pr+1 + deta
return 1 Riq
excess return 0 Rf =R — R?H
one $ one period discount bond Dt 1
risk-free rate 1 R/
Payoff x;,1 divided by price p; = gross return Ry = x}étl

Return: payoff with price one

1 =Bt (meg1 - Reqr)
/ero-cost portfolio:

Short selling one stock, investing proceeds in another stock
=-excess return R°

Example: Borrow 13 at R/, invest it in risky asset with return R.

Pay no money out of the pocket today — get payoff R = R — R/

Zero price does not imply zero payoff.
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The covariance of the payoff with the discount factor rather than its
variance determines the risk-adjustment

cov (Mmi41, Te4+1) = B(mer1 - we1) — B (miy1) B (2e41)
pt = B(mypq - xp41)
= B (mi+1) B (w41) + cov (myr1, Tp41)

R/ = !
B <mt+1> Marginal utility declines
I3 (:Ut_|_1) as consumption rises.
bt = 7 + cov (M4, Ty41)
Price is lowered if payoff
covaries positively with
I3 (iBt+1) w! (Ct+1) consumption. (makes consumption
Pt = Rf +cov | B u () Li+1 stream more volatile)
E (g;tJrl) COv (u’ (Ct—|—1) : 5’3t+1) Price.is increa§ed if p.ayoff
Pt = 7 + 7 ; “—] covaries negatively with
N R S U (Ct> D consumption. (smoothens
~" —~ .
: : t I !
price in risk-neutral risk adjustment consumption) Insurance
world

Investor does not care about volatility of an individual asset, if he can keep a steady consumption.
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All assets have an expected return equal to the risk-free rate, plus
risk adjustment

1 =k (mt+1 ' R%H)
1 = E(my ) E (R§+1) + cov (mt+1, R%+1)

1 1 . .
Rl — = (th); 1 — EE ( %Jrl) = Ccov (mHl, Ry
E( %Jrl) R = —R/ . cov (mHl,R%Jrl)

i\ nof 1 . w (ci11) o
E(Rt—H) R’ = E(ﬁu,(ct 1)) Cov (6 u/<ct> 7Rt—|—1>

u'(ct)

excess return

A
- N

B (Ri) - Al - -

cov (u’ (1), R%Jrl)
E (v (¢t+1))

Investors demand higher excess returns for assets that covary positively with consumption.
Investors may accept expected returns below the risk-free rate. Insurance !
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The basic pricing equation has an expected return-beta

representation

K (R%H) ~ R = —R' . cow (R%H, th)

. cov (R%H, mi1) Var (mypq)

Var (mg41)
B (Ri ) _pf_ cov (R%+1,mt_|_1) | (
i Var (mi1)
asset specific quantity of risk —T l l
Beta-pricing model: E (RZ) = Rf + ﬁRi,m A

B (my11)

Var (mt+1)>
B (myy1)

|

price of risk for all assets

: - :
With m = j3 (6—756‘*7;—1) and lognormal consumption growth C—tc‘;—l

E (R@') —

~

>‘Ac ~

Rf + ﬁRi,Ac " AAc
v-Var(Alnc)

The more risk averse the investors
or the riskier the environment,

the larger the expected return
premium for risky (high-beta)
assets.

18



Marginal utility weighted prices follow martingales (1)

Ki+1

Basic first order condition: RN
pu'(cp) = Ey (5 (ul(ct—l—l)) (pt4+1 + dt))

Market efficiency <> Prices follow martingales (random walks)? NO!

Risk neutral investors u’( )=const.

/ or no variation in consumption
Required: \: B8 =1 « OK short time horizon
no dividends

Then: pt = E(pi+1)
Pt+1 =Dt T Et41
if o2(ep41) =02 — Random Walk
= Returns are not predictable [ (Zﬂ) =1
bt
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Marginal utility weighted prices follow martingales (2)

With risk aversion (but no dividends) and =1

pt = E(Di41)

~

pr =P -u'(c)

Scale prices by marginal utility, correct for dividends and apply risk neutral
valuation formulas

Predictability in the short horizon?

consumption }
: : does not change day by da
risk aversion ge day by day

— Random Walks successful = Predictability of asset returns (day by day)?

Technical analysis, media reports...

20



Some popular linear factor models

Factor pricing models J— return on wealth portfolio

CAPM:  myyq =a+bRY,
A

Free parameters

— _
——

Compatible with utility maximisation ?

ICAPM mt_|_1:a_|_b/ft_|_1
A4
parameter factors 1 factors (macro, term spread, price-
vector earnings ratio help forecast
— Y ~__conditional distribution of future

asset returns)

APT - similar, but factors determined by principal
' component analysis of payoff covariance
— _ .
gl matrix

Practice : just test 1m = b/ f and don't worry about derivations

21



The basic pricing equation implies a set of CONDTIONAL moment
restrictions

B {my} and
pt =y (mt+1xt+1) {x¢} non i.i.d. =

=B (141 | 1) Ey () # B ()

!

Information set (partially) not observed,
conditional density not known, conditional expectation cannot be computed

Conditioning down to coarser
information set

P = I (mt+137t—|—1)

E(p) =E Et(mtﬂxtﬂ)) .i.e.
=B (mep12041)
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Estimation and evaluation of asset pricing models (Basics)

Models contain free parameters
-y
Ct41
pr = Iy (5( C_It_ ) 33t—|—1>

e Estimation from data

e [esting hypotheses about parameters

e How good is the model?

23



Estimation and evaluation of asset pricing models (CBM)

pt = By(mypyqxp41) of 1 =Ei(myyq Retq)
T f(data, parameters)

e.g. CBM with u(c) = 1—5701_7 = M1 = 5(%)_7

Cﬁq‘—l . data (random variables)

b= (B,v) :free parameters

Assume model correct: " Best” choice for g,~7
Best " fit", smallest (average) pricing errors
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Estimation and evaluation of asset pricing models. The basic idea.

Estimates b from data, distribution of b?

Average pricing errors:

sample mean \(observed price - predicted price)/= Q

should be close to zero
pt = Ly (mt+1(b) ' xt+1) =B (mt+1(b) ' $t+1|ft)

E(pt) = BBy (myg1(0) - w441 )] = Blmyy1(0) - 241

Unconditional expectation: Elmiq41(b)xiqr1 —pt] =0

Equivalently using returns:

1 =By (myy1(0)Ryq1) = 0=E (myy1(b)Rpyq — 1)

25



Generalized Methods of Moments estimation is based on the
WLLN

1 N
WLLN NZ P E)

sample average consistent estimate for population moment

1 T
— Z pt— > myy1(B)zpyq =0
N t—l =1 |

(8%

GMM basic idea(first step):
choose b to minimize a2 (squared average pricing error) among
set of test assets.




The two asset, two parameter case

E (my41(8,7) 2i41 — p
& (mt—l—l (B,7) 51%24-1 —p

mi41 (8,7) Rt1+1 —1
myt1 (B,7) Rip1 — 1

B (
B (

solve equations for 3, ~

@)

@)
)
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To apply GMM data have to be generated by stationary (and
ergodic) processes (not necessarily i.i.d.)

Problem: WLLN works for stationary data:

(Weakly) stationary process: {Y;}22_

{' - ry07y17°'°7y57°'°}
B(Y:) =u

var(Y;) = o2

cov(Yy, Yi_j) = ;

Solution: = We use:

1=F (mt_|_1(b) : Rt_|_1) instead of  E(p;) = E (mt+1(b) : xt_|_1)
0=k (mt+1(b) cRyq1 — 1)
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We define the GMM residual or “pricing error”

Define GMM residual: object whose mean should be zero
u1(b) = mypyp1(b)Reyq — 1

E(uig-1(b)) =0

1 T
Brlu(®)] = 7 3 ui(b) ~ 0
t=1

Notational convenience (Hansen's notation, sometimes causing
confusion)

1 T
Br() =23 ()
t=1

29



We have more assets than unknown model parameters

For GMM parameter estimation: Select N test assets
Rtlatha”'aRtN t=177T

- Erluf(b)]
Ep[uf(b)]
; =gpr(b) N x1 vector

Brluf (0)] |

If # assets = § parameters b can be chosen such that average
pricing errors are zero usually § assets > § parameters.
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The GMM objective function

b=argmin g/(b) - In-gr(b) first step GMM estimate

{0}

: 2 2 2
= argmin Brlujr 11|+ Brlup W]+ .. 4 [Brlu 1 ()]
= minimize sum of squared average (pricing)errors

equal weight for all test assets 1,..., N

Alternatively other weight matrix

O
N O

gzar%?in gr(d) Wgor() e g W= 100 --




GMM estimators have desirable properties

GMM estimators consistent:
Bias and variance of estimator go to zero asymptotically b 7 b

GMM estimators asymptotically normal. Required for inference

var(by) ce
var(b) = cov(by1,b2) wvar(by)
\cov(gl, bi) e fuar(gk)/
To conduct t—test: 2 2 N(0,1)
ok
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There exists an optimal weighting matrix

Optimal weighting matrix
(and GMM parameter standard errors): use consistent esti-
mate S of S in minimization:

b= argmin gp(b) ST gp(b)
{b}
ut (b)

(uf(b) = myq1 (b2} 4y — pi)

write ut(b) = :
uiv(b) i=assets

0
Recall: B(u}) =0 = E(u(b) = |°
0
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The optimal weighing matrix takes into account variances and
covariances of pricing errors across assets

B ([uf(0)]?)- -

S =E[u(b) - u®)| = | [} (B)u2 (b))

B ([uf (0)1?) |

S= variance covariance matrix of pricing errors
i 1
var (ut (b)) ce

| cov (utl(b)utz(b)) var (ug(b)) .

var (u,{v(b)) |

Estimate S: Replace E by %Z using b obtained with weighting
matrix Iy = S.




Steps of GMM estimation

1) bl = ar%?in gr(d) In gr(b) =

2) S =

3) b2 =argmin  gr(b)'S™t gp(b)

{b}
...repeat... ...

35



Another look at the optimal weighting matrix

Efficiency: Smallest asymptotic variance
among GMM esimators

4 2 00 2 7
Efficient estimator: employ S instead of unity matrix ’ 0
00
S =T |uy(b) - up(b)] resp. Y B|ug(b) - uy_; (b))
variance—covari)afce \ N ~/ /
matrix of moments when no serial correlation T _ _ _
conditions! in moment conditions with serial correlation

in moment conditions
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Some intuition behind optimal weighting matrix (1)

Intuition behind GMM weighting matrix
Example
N =2, cov(u}(b), u?(b)) = 0 [zero covariance of pricing errors]

_ var[ut (b)] O ]
S [O vafr[utz(b)]

L 0
o1 {W[ug@] 1 1 _ [ Wy 0 ]
0 var[u? (b)] 0 W2

(10 O
Example S = ( 0 0.1 )
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Some intuition behind optimal weighting matrix (2)

GMM objective g7(b)' S~ g7(b) becomes
T T

ar%fn}’zin Er [u%(b)}z - W1 + Ep [uQ(b)}Q - Wo
b

Example
Wi : 0.1 = var (utl(b)) = 10
Ws: 10 = var (ug(b)) =0.1

= Asset (1) gets less weight in minimization
"Model imprecise” for asset 1, more precise for asset 2.
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Some more intuition behind optimal weighting matrix: Correlations
across pricing errors (1)

Another example: Correlations between asset returns: Two " sim-

ilar'" assets (high correlation of pricing errors) are downweighted.
Count more like one asset.

1 0 0
Example S=| 0 1 0.999 cov(ug,up) = 0.999
0 0.999 1
cor’r(uf,u?) ~1= ?/%9/%
10 o ]°°%
argmin |Ep(ui (b)), Ep(u? (), Er(uf(®)| x | 0 1 0.99 X
{b} 0 0.99 1
Ep(uf (b))
Ep(uf (b))

Er(up (b))
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Some more intuition behind optimal weighting matrix: Correlations
across pricing errors (2)

[1 0 0 w
S~1=10 50025 —499.75
| 0 —499.75 500.25

argmin gr(b) S~tgr(b) =
{b}

Er (utl(b)) Ep (uf(b)) .500.25 — By (uf(b)) . 499.75,

Er(ut (b))
B (uf (b)) - 500.75 — Ep (u? (b)) -499.75] x | Ep(u?(b))

Ep(u? (b))
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Some more intuition behind optimal weighting matrix: Correlations
of pricing errors (3)

argmin gp(b) S™tgp(b) =
{b}

Er (utl(b))Q + Ep (ug(b))Q- 500.25 + Er (u?(b))Q- 500.25 —
2. Ep (ug(b)) Ep (uf(b)) . 499.75

~ Ep (utl(b))Q + 0.5 Ep (ug(b))Q + 0.5 (utS(b))Q
since

Er (u?(b)) ~ Er (u?(b))
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To test hypotheses about our models we need the distribution of
the GMM estimates

Standard errors of GMM estimates

We want:

[(var(b1)  cov(by,bp)--- cov(by,by) )
cov(by,bs) wvar(bs)
var(b) = (K x K)

cov(by,br) --- var(by,)

\ /

b:(b07b17"' 7bk)

——bkif\'&N(O,l) under Hg: b =0

t = =
v var(by)




The central limit theorem plus an application of the delta method
gives the asymptotic variance covariance matrix of estimated

parameters

Application of Delta-Method

C.L. T. 4+ delta method gives:

VT - (b—1b) & N(O, (d’s—ld)—1>

var (B) = L(@s ta)y~1 q=240]

asymptotic VC matrix

(Note: asymptotic variances T' — oo )
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Some details of the asymptotic variance covariance matrix (1)

Some more details:

a) In application: replace S—1 by consistent estimate S—1
b) Recall

FYut®) | [ FZm®RE -1
gr(b) = = = 5
_%zug\f(b)_ _%zm(b)RgV—l_
[ 1 — Oul(b) oul (b) oul(®) |
o DR el DV R DI
g
ouN (b) ouN (b) ouN (b)
P T T T




Some details of the asymptotic variance covariance matrix (2)

1T Omy(d) p, - ]
T Zt:l 0bq Rt’ 0bo o
13) b _ l —
b Parameters
L N -

For power utility
-
mey1(b) = B8 (22

b=p5,v
Linear factor models myy1 =bVf;41 b7#07

Risk factor?

aTnt—l—l(b) —
0b1 -




We employ the estimated variance covariance matrix to test
hypotheses about the model

var(b) used for testing hypotheses:
HO . bk = OA

t-statistic: —%2=2_ & N(0,1) = Standard t¢-test.
var(by,)

joint significance:

Hoi(bj1=bj2= = 0N = O)or bJ =0
h ~~ 7 Jx1

some subset of b

B;- [var(g) J] -

appropriate subset of var(b)

1/\
bj ~ XQ(J)] = Standard F-test
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One can test the validity of the model (the moment conditions)
using the J-test

A~

{Rt, Acy, .. } data is a random sample = b is a random variable =
Is a random
u+(b) is a random variable = Er (u (b)) = % > Variable

pricing errors too large to be explained by random sampling?
Is a random

' ?
<> |s the model in correct? vector

- no. of parameters.

T -Jp="T- [QT(B)/ g1 a7 b)} a X2 [no. moment conditions}

——

objective function at minimum < ¢ 5 (andom variable. too

—> Reject or accept model (resp. moment conditions) at given specificance level
Example: no. of moment conditions: 10, no. parameters: 2,

TJT — 7.9,
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Some important remarks

Inference is different if other weighting matrix than optimal weighting matrix is used
- different formula for parameter standard errors
- different formula for J-statistic

When comparing alternative models (e.g. parameter restrictions) use the same
weighting matrix (weighting matrix depends on unknown parameters)
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Performance comparison (1)

Problems using J-statistic
Popular measure

Compare observed average return with E(R) predicted by model

From 1= E(mR)

1= E(m)E(R) + cov(m, R)

_ 1 cov(m,R)
E(R) = Eimy — Blm)
Use as predictor

E(R) = 7 __t ) Tt ¢
T ;1 mi T ;1 mit
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Performance comparison (2)
_ T _
Plot E(R) vs. + > Rt =R
t=1

Similarly using excess returns as test assets

From 0= E(mR°)

0= E(m)E(R®) 4+ cov(m, R°)

B(Re) = —oos(nt)

Again: replace E(-) by +>(-) to obtain E(Re)

A

Plot E(R¢) against R

N — 12 N — .

RMSE = | 5 [E(R?)—RJI or= | % [E(Rea)—Reﬂ
j=1 j=1

rank and compare alternative models

2
] used to
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Performance comparison. Example: Consumption-Based Model
estimated on 25 Fama-French portfolios

First—Stage GMM: Consumption—Based Model

4.0

3.5
T

2.5
T

1

.0

1

Fitted mean excess return (in 7)

O
0 O O O
<1 © o 0% O ]
© aD @
O @O =¥o o
Q | | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

Realized mean excess return (in %)




Performance comparison. Example: CAPM estimated on 25 Fama-

French portfolios
First—Stage CMM: CAPM

(@)
%
LO‘? _
(O O
£ ol - o
N
c O © O
B Ion il O i
NN O - O
3 O O S
o 2L O i
O A O O 00
>
O O
. S |
O —
O
-
(@]
o [ .
v
T ool |
o
Q | | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Realized mean excess return (in %)
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Performance comparison. Example: Fama-French two factor

model estimated on 25 Fama-French portfolios

Fitted mean excess return (in %)

3.0 3.5 4.0

2.5

2.0

5

1

.0

0.5 1

0.0

First—Stage GMM: Fama—French—Model

O
o O
B o i
©O
| @ —
O
O O
O
© O
- O ]
O
©
L O |
O
| | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 5.0 3.5

Realized mean excess return (in 7)

4.0
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GMM estimation using the Gauss library: Ingredients and recipe

. Supply data

. Provide GMM/optimization
settings (number of
iterations, weighting matrix)

. Supply initial parameter
values

. Call GMM minimization

procedure

/'

iteratively calls procedure to
compute GMM residuals u,(b)

5. Check parameter estimates

and test statistics

Parameter values

b

Ut (h) =

— =

Procedure to compute GMM
residuals uy(b)

u,(b) : object with unconditional
expectation equal to zero

*u%(h) *uf(b)

ud(b)y - ud(b)

/

Procedure returns
u(b):GMM residuals
evaluated at b

,Global“ control
variables like

model version

specification

—details

Data:
-Returns
-Factors

-Economic
Variables
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The canoncical example: Estimate the CBM by GMM

For consumption based model with power utility
Er(u() =45L, (%) Ri-1=0
r(ui(b)) =55, B (L (-1=

Exercise: 10 test assets (NYSR decile portfolios)

Perform GMM estimation of v and B using EXCEL solver.

Input: Time series of returns and consumption growth.

Rl ... RO RI dey

1 10 pf o
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Newer models consumption based model and habit formation
Garcia et al. (2003)

Period utility function / habit level (external)
() # -1
u(er/Hy, Hy) = - T
~
Marginal utility
u'(cp) = ct_ng_w

Stochastic discount factor
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Modelling the habit level (1)

Hyqq
AHyq

Hyyq

Hyyq

using ——

!

B(cit1let, c—1,--2)
)\(Ct—Ht) OS)\S].
a—+Aeg+ (1 —A)H,

a s :
B\ + A Z (1 =N
1=0

a e :
Ct4-1 T TA 2L A= Nei+erta
S

(4
a

ctr1 = S A+ A1 = Ne1+ A0 - N2+

a

(1—=XNex = X(1_>\)+>\(1_)\)Ct—1‘|‘---+(1_>\)5t

+ e14-1
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Modelling the habit level (2)

Subtracting two previous equations
cey1— (L =N =a+ X+ ...+ — (1= Ney

Aciy; =a—(1—XNeg+er41
ARIMA(0O,1,1) model - Estimation by Maximum Likelihood
Use parameter estimates of a and )\ to iterate on

Ht—l—l — a _I_)\Ct -|— (1 — )\)Ht

to estimate habit level

Plug in GMM objective function
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An alternative model for the habit process (1)

Log habit growth (unobservable)

Aht—l—l — In(Ht—I—l) . ln(Ht) log return market portfolio
n
Ahyy1 = ag+ Y a;-Alnggq ;+b- i1
1=1
with
orhogonal forecast error
Ahyy 1 = E(AIncq|Alne, Alne_q,...)
n
A|nct_|_1 — aQ-I— Z a; * A|nct_|_1_i—|—b°7“g?|_1 -|—€t_|_1
1=1

ap,ai,...,b can be estimated by GMM additional moment

restrictions
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An alternative model for the habit process (2)

Estimation
Add to usual moment conditions additional moment restrictions

from habit equation:

use E(my1Rj, —1)= 0
E(m+1R, — 1) — 0

along with E(ej4-1my41) = O

E(€t+1A N Ct) = 0
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An alternative model for the habit process (3)

Habit growth is then

Hiy1 _ ﬁ [Ct—|-17;]ai( ?3|—1>b

Hy /' i=0

exp(ap)

Stochastic discount factor

— ﬁ [Ct—l—l.—z’

mi41 = SAYVY [cH_l

Ct

Used for estimation

PV, Py
miy1 =06 [Ct_'_l] 11 [Ct_HZ] ( ?—LH)R

Ct i=0 L Ct—i

We estimate using
n=20 "Epstein-Zin SDF"

n=1
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Some more models (1)

- Linearized consumption based model
mi4+1 =bo +oacDINC
/
Taylor approximation of %‘#
- CAPM

g1 = bo + bm R

- Scaled CAPM by Lettau and Ludvigson (2001)

miy1 = bo + bcaycayt + meﬁ_l + bcaymcathﬁ_l
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Is a conditional asset pricing model testable at all?

Most asset pricing models imply conditional moment restrictions

1=E (mt+1(bt) ' R¢+1|It)

e.g. CAPM My 1 = at — btR}i{/I—l'

Parameters of factor pricing model vary over time.
=unconditioning via l.i.e. no longer possible:

1=k (mt+1(bt) ' Rt+1|1t)
does NOT imply

1=E (mt—l—l(b) ' Rt+1>
this is not repaired by using scaled returns. GMM estimation no
possible.

Hansen and Richard critique: CAPM (or other factor model) is
not testable.
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Scaled factors are a partial solution to the problem

With linear factor model

myt1 = by fra1
Kx1

use of ""scaled factors’ a partial solution:

"Blow up” number of factors by scaling factors with (M x 1)
instruments vector z; observable at ¢

myp1 =0 (fry1® 21)
KMx1
Unconditioning via l.i.e. and GMM procedure as above.

64



Time varying parameters lead to scaled factors (single factor case)

Motivation
Consider linear one factor model m;41 = a;+bfy41 (fi41 Scalar)
Assume Parameters vary with M x 1 instruments vector z;.

met1 = a(zt) + b(2t) fr41
With linear functions

a(zy) =d'z and b(z) = bz

= my11 = a'ze + (b'2) fraq

Mathematically equivalent to
mit1 =0 (fi41 ® 21)

where b “A T 1
pu— , t+1 pr—
b Jt+1
Number of parameters to estimate 2- M
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Time varying parameters lead to scaled factors (multi factor case)

Multi-factor case:

my11 = by fra1
Kx1

Again: Time varying parameters linear functions of M x 1 vector
of observables z;.
mip1 = b(z) frg1 With b(z) = Bz
KxM

Equivalent to myy1 = b (fi4+1 ® 2t) where b = vec(B)
K XN

In practical application some elements of B may be set to zero.
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Using scaled factors we can condition down and apply GMM

Conditioning down and GMM estimation possible

¢ (E,(ft—l—l & Zt)) Riy1|=1 lie.= E ((B,(ft—l—l 03¢ Zt)> Ri1q — 1) =0
mit1 unconditional moment restrictions

Scaled factors and managed portfolios can be combined.
(z+ might be the same).

= B (fi41 ® 2) Ri1 — 1]®2) = 0O

e Inclusion of conditioning information as managed portfolios
(scaled returns, increases number of test assets.

e Scaled factors increase number of unknown parameters
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Cochranes (1996) CAPM with scaled factors

1
1 bi1 b1z D13
=\ w|2=| 5 |B=
R bo1 boo bo3
term
(1)
RW
P
foz=| D o 5=/ b11.b01.b15, b5 b1z, boz )
RW . P 11,b21,b12,b22,b13,b23)
"D
term
KRW-term)

~ P P
m=0(fRz) = bll—|—leB—|—b13t€Tm+bleW—|—b22RW-5—|—b23RW-t€7“m

In application Cochrane (1996) restricts b15 and b13 to zero
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Some more models (2)

- Scaled CBM by Lettau and Ludvigson (2001)

Mi41 = bo + bcaycayt + bAcA IN Ct41 —+ bcayAccaytA IN Ct+1

- Fama French model

myy1 = bo + omBR +bsyBSMBi1 + by HMLy 4
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Model comparison (practical exercise)

- 10 decile portfolios and t-bill rate (Cochrane 1996)
- 25 size/book-to-market portfolios and t-bill rate

- EXxcess returns or gross returns as test assests

- Estimation using GMM (alternatives = course 1)

- J-test

- RMSE comparisons (plots)

Models:

x Consumption Based Model (CBM), CAPM, Scaled (LL) CBM,
Scaled (LL) CAPM, various habit model variants
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Il. Econometrics of Financial Market Microstructure (1)
References:

« Boehmer (2004)

 Glosten and Harris (1988)

 Harris (2003)

« Hasbrouck (2004)

« Henker and Wang (2005)

« Huang and Stoll (1997)

« Madhavan, Richardson, Roomans (1997)
« SEC (2001)
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II.1 Important Empirical Concepts
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Basic concepts of (empirical) financial market microstructure (1)

(best) ask price (or offer price) depth at best ask price

(best) bid price depth at best bid price

- best quotes

Inside spread or quoted spread: ask price — bid price

Spread: natural measure of liquidity and market quality and (implicit) transaction costs
(cost of “round trip®)

midprice or midquote or midpoint
(ask price + bid price)

: : quoted spreacl) 10007,
relative (quoted) spread: ( nidauiote (100%)
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Basic concepts of (empirical) financial market microstructure (2)

Trades occur at the ask or bid

—>transaction price = bid price or ask price

or inside the quoted spread

—> transaction price of buyer initiated trade < ask price
respectively

transaction price of seller initiated trade > bid price

or outside the quoted spread (if trading volume exceeds depth)
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A sequence of quote changes and trade events (transactions)

Time Index Type Bid Ask Price Volume
100405 36245 Q 10 105

100407 36247 T 10 500
100445 36285 T 10 700
100502 36302 T 10% 450
100506 36306 Q 104 103

100507 36307 T 101 100
100509 36309 T 1u§ 900
100513 36313 Q 105 103

100610 36370 T 101 2500
100611 36371 T 141% 250
100812 36492 Q 103 103

100822 36502 T 101 500
100824 36504 T 111i 200
100904 36544 T m% 400
101547 36947 Q 103 103

101548 36948 T 102 1500
101550 36950 T 1u§ 700
101555 36947 Q 10% 102

Hypothetical trade and quote dataset. The first column gives the time of the trade or quote
(T or Q in the third column}, the second column gives the time in number of seconds after
midnight, the fourth and fifth columns give the bid-ask prices of the quote (if relevant), the
sixth and seventh columns give the price and volume of the trade (if relevant).
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Basic concepts of (empirical) financial market microstructure (3)

Ask/ bid prices and depths provided by liquidity suppliers
» market makers (NYSE: specialist, NASDAQ: dealer)
* limit order traders (Xetra, Euronext, virt-x)

limit buy order: buy order with upper price limit and given buy volume
limit sell order: sell order with lower price limit and given sell volume

Non-executable limit orders (LO) constitute the limit order book
market order (MO): no price limit (but buy and sell volume)
MO: liquidity demand

non-executed LO: supply liquidity

marketable limit order: like MO
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Three components influence the spread

order processing costs

(also opportunity costs of
market making)

inventory holding costs costs incurred
4" by market
spread .« (of liquidity supply market maker (liquidity
maker holds suboptimal supplier)

portfolio, risk aversion)
spread has to

compensate for

adverse selection costs or these costs

asymmetric information
Costs

(when some traders are

better informed about true

asset price than market

maker) /

Competition among liquidity suppliers reduces gains of liquidity supply in excess of
these costs
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Measures of market quality (execution quality)

quoted spread ask price — bid price
_ measured : : :
effective spread at time of { 2 * (execution price — midquote) for buy order
execution of _ _ _
order 2 * (midquote — execution price) for sell order
realized spread 2 + (execution price (-t) — midquote (t + x)) for buy order
2 + (midquote (t + x) — midquote (t)) for sell order
price impact = (effective spread — realized spread)/2

= midquote (t+x) — midquote (1)

SEC Rule 11AC1-5 (Nash-5): Nov. 2000: US market centers (NYSE, Nasdaq, AMEX et
cetera) have to report effective, realized and quoted spreads

SEC Rule 11AC-5 x =5 min
Relative quoted, effective, realized spread and price impact: Relative to time t midquote

Average (relative) quoted, effective, realized spread: sample means over all transactions

78



A numerical example (1)

*a (t+ 5 min) 107 €
ibnuizged\ *a(t) 105 € *mq (t + 5 min) 105 €
transaction *p (1) 104 €

* mq (1) 103 €
*b (1) 101 € *b (1) 101 €
i i
t \ t+ 5 min

buyer initiated
transaction takes place
at time t

* a (t): ask price

* b (t): bid price

* mq (t): midquote time t
* p (1): execution price t
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A numerical example (2)

quoted spread 105€-101€=4€

effective spread 2(104€-103€)=2¢€

realized spread 2(104€-105€)=—2€

price impact ) _105€-104€=1€

(2€-(-2€)
2

relative quoted spread 4—€-100=3.88 %
103€

relative effective spread _2€_ 4100-0.97%
103€

relative realized spread i€.100:—1.94%
103€

relative price impact € 100-0.97%
103€
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Another empirical example (1)

. a(t) 106 €

seller initiated

transaction * mq (t) 103 €

™.

*a (t+ 5 min)

105 €

*mq (t+ 5 min) 103 €

*p()=b(t) 101¢€ - b (t) 101 €
| |
t seller initiated t+ 5 min
transaction takes place
at time t
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Another empirical example

quoted spread 106€-101€=5€

effective spread 2(103€-101€)=4€

realized spread 2(103€-101€)=4¢€

price impact =103€-103€=0¢€

(4€—4€)
2

d 5€

relative quoted sprea 103€ -100=4.85%

relative effective spread_4€_ 490_3 889
103€

relative realized spread % 100=3.88%

relative price impact 0€ .100=0%
103€
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Interpretation of market quality measures

Effective spread: incorporates costs of liquidity supply and adverse selection
costs
Realized spread: Transaction cost or liquidity measure “purged” of adverse

selection costs

Price impact: Adverse selection cost part of the effective spread
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Empirical example quoted effective, realized spreads

COMPAITy ILame ticker | market cap. | mean % spread | mean % eff. spread | mean % real. spread
m mull. Bura in percent in percent n percent
ADIDASSALOMON AG O.N. ADS 4104 0. 066%, 0.070%, -0.002%,
ALTANA AG ON. ALT 1338 0.073% 0.078%, 0,08,
ALLIANE AG VNA ON. ALV 23805 0.045% 0.0489%, 0.010%,
BASF AG O BAS 25475 0.047% 0.051% 0. O0ET
BAYER AG ON. BAY 15911 - OOTIH 0.O0TES, 0.012%,
BAY MOTOREN WERKE AG ST | BMW 12211 0.055%, 0. 080%, 0,03,
COMMERZBANK A 0N, CBR THEY 0.0945%, [, 100, INIFRE
CONTINENTAL AG .M. COMNT J 0D (L N=8A% I LY =0.011%,
DEUTSCHE BOERSE NA O DE1 4847 0, 068%, 0.075% 0,003
DEUTSCHE BANK AG NA ON. DEK 38228 0.040%, 0.044%, 0.004%%,
DAIMLERCHEYSLER AG NA LA RIES L LLUS1Y% (US55 (LU,
DEUTSCHE POST AG NA ON. DPW B ELIE — LTI ST .01 8%,
DT TELEKOM AG NA DTE 24858 00709, 0.07Z%, 0,031 %,
E.ON AG ON. KA 2ATRS L0455, INIE LT INCIREE
FEESEM MEDZCARE AG Q.M. FME 1044 0.092%, 0.098%, 0.010%,
HENEEL KGaA VEO ON. HEN3 1682 0.072%, 0.077T%, 0.005%,
BaY HYPOVEREINSEE .O.N. HVM e 29 0.082% 0.098%, 0.0 8%,
[NFIMEON TECH. AG MA 1. IFX 4780 . 100, (L1045, IET
LUFTHANSA AC VNA ON. LHA 4548 0. 104%, 0.111%, 0.022%,
LINDE AG .. LIN 2448 0.074% 0.080%, -0.008%;
MAN AG 5T ON. MAN 2434 L O, LR INCIREE
METRO AG ST O.N. MEO 5018 0.083%, 0. D05, 0.000%,
MUENCH.RUECKVERS.VNA ON. | MUVZ 16304 0.046%, 0.049%, 0.5
FWE AG 8T O.N. EWE 12453 0.058%, 0.062%, 0.02%,
REAP AC ST ON SAP 2rd12 00465, (NE [ L0015,
SCHERING AG O.N. SCH 7055 0.086%, 0.071% 0,004
SIEMENS AG NA SIE IR0 0.038%, 0.041%, 0. 06,
THY SeEMEROPF AG ON. TEA B450 0. 105%, 0.111%, (. U285,
TUT 4G ON, T 2025 0.114% 0.125% 0.015%,
VOLKSWAGEN AG ST O.N. VOW BERS 0.052%, 0.056%, 00049,
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mean percentage spread

Mean percentage spread versus market capitalization
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Mean percentage effective spread versus market capitalization
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mean percentage realized spread

Mean percentage realized spread versus market capitalization
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1.2 Trade indicator models and estimation
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A transaction price series (from Glosten and Harris (1988))

I e |'

s 4 'l-'
P
] n i 4, S 2 2 B
1 I.- B |
C | |
E ; E b] I|_ “m—q
; i transactions :.T' r \ MO +
N at the ask L] ‘ ' \ ‘
b W l,-'F L
o | J.
L
L Fo e
A "'E
n Wﬂ—!
¥ M 1

transactlons at the b|d
245 38 - =1 T | I | T T L L S |
L0 1:.{-:: um L3000 14:00 BLt 1640

TIME B HOLURS

Fig. 1. Complete NYSE transaction price time ﬂu for Alcos Aluminum on December 1, 1981,
T8 trades.
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Trade indicator models decompose components of the spread

Structural models
« Assumptions about how trades move fundamental asset values, midquotes and
transaction prices

* liquidity suppliers account for order processing costs, inventory holding costs and
adverse selection costs when posting bid- ask quotes

Important contributions
* Glosten and Harris (1988): seminal model
« Huang and Stoll (1997): disentangles inventory and adverse selection component

« Madhavan, Richards and Roomans (1997): correlation in order flow, explain time of
day effects of spreads and volatility

Estimation by GMM or OLS
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Glosten and Harris (1988) model (basic version)

Data required:

Sequence of transaction prices with associated volumes and trade side indicator

P, : transaction (or execution) price of trade at time t
V , : volume (number of shares) traded
Q , : trade side indicator Q, = +1if trade buyer initiated

Q, =-1if trade seller initiated
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Glosten and Harris (1988) model: the model structure

Evolution of efficient asset price

my = myi—1 + er + Qi 2y

/ T \ impact of time t trade event

on efficient price

efficient price (permanent)

new public information (i.i.d.
normal) accumulated since last
trade

Zt =29+ 21 Vs

|/

parameter
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Glosten and Harris (1988) model: the model structure (2)

Crt = co + Clv; transitory component, order

/ processing cost

adverse selection component of spread

Py = my + (thrt
— Ty_q + €t —+ Qth + (QTC’}
N Y, \_

J

e N

efficient price
without time t trade Nalf of the spread

information

Note: liquidity supplier anticipates transistory and permanent component

transaction price of abuy Q,, ;

Pt —
liquidity supplier take into account
Zt + Cj"t public information when selling bid and
ask prices
My_1 + €4
a buy transaction at time t
mMi_q
|
1 ‘ same goes for sell transaction...
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Glosten and Harris (1988) model: the model structure (3)

Combining
B — P =QiCy — Qi 1Cr 1 + Q12 + €
=co(Qt — Qt—1) + 1 (Ve — Qe—1Vi1)
+ 20Q¢ + z10Q:V: + €.

« Estimation by OLS possible

* Account for conditional heteroskedasticity and serial correlation in e,
by using robust standard errors.

Eviews Application Glosten/Harris (1988) model
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Glosten and Harris (1988) model: the model structure (4)

“Implied” spread
2(Ct + Zt) = 2(co + Vi) + 2(20 + 21 Vi)

Share of implied spread attributable to adverse selection costs

zo0 + 21 V4
20 -+ 211} —+ Cp —+ Cq 1;

Share of implied spread attributable to order processing costs

o co +c1Vy
f 20 —+ A 1; —+- Cp -+ Cq I;

* Plot evolution of @t and 7+ and implied spread (time of day patterns)

« sample averages of o+ and 7+ for comparison across stocks and trading
venues
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Timing: Quote setting and price formation in Huang & Stoll (1997)

Immediately before t

»®and pb and a7, — (PE+PE prevail
1% +ag. Q ~ the fundamental Pt Pt M; = ( 3 t) P
t—1 7T 2 - Vi assetvalue prior public N
the update of the fundamental to the time t trade information prevailing
asset value caused by thet-1 accrued quotes prior to
trade , . . sincet-1 time t trade
Vi=Vi1+55-Qt1+e: a 3 - g
vV — g _ Py = Vi+ 3-8 i1 Qi + 5
t—1 g Y
the fundamental :
value just prior /,méntory effect (Stoll, 1978)
A
to thet - 1trade , r . \1 g
bid and ask prices (and miquotes) change pi=Ve+B-5),21Qi—3
as public information occurs l
/\ \
< N
t—|1 t
atrade another trade
event event occurs at
occurs time t
trades occur at bid orask «—— My =V, + 3 - % Z:;} Q;
g T N —
P=M+=0, + 7 _ prevailing midquote prior to
t D) % \\;’:-/ time t trade
- ; Price discreteness
Note: a + 3 # 1
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The Huang and Stoll (1997) base model

Accounts for inventory cost component

Dynamics of fundamental asset value (Huang/Stoll (1997) notation)

“traded” spread (Huang and Stoll (1997))

Vi=Viei+ (a- %)Qt—l—l—&/

|
Impact \
coefficient

only trade indicator, not
equiv. to m,in ~ ~ - volume as in Glosten/Harris
Glosten/Harris asymmetric information

public information

Quote midpoint contains inventory control mechanism

midquote, do not confuse with
m, in Glosten/Harris (1988) When number of buy orde_r exceed
sell orders market maker increases
/ ask and bid price to discourage
further buys and encourage sells.

M, =Vi+3- 531210,
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The Huang and Stoll (1997) base model
Midquote dynamics

AM; = (o + 3)%%—1 + &4

/ Midquote change affected by
__ __ adverse selection and
:Ur — ﬂﬁ[t—l inventory effects, fundamental

value only affected by adverse
selection component

Combining we get

S
(Qt—Qt 1)+\_v'_,? Qi1+ e
(a+/3) (ee+An)

AP, =

f\-—*luz

a and B not separately identified

Inventory and adverse selection component lumped together unknown parameters: .S

(traded spead);y = (v + )
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GMM estimation base model Huang and Stoll (1997)

Moment conditions

E(f-’tQt) — U

2 moment conditions, 2 parameters

E(e;Qi—1) =0 - exact identification

e could be estimated by OLS  AF; = o AQ: + 1Qi—1 + €;

« advantage of GMM: standard errors robust against conditional heteroskedasticity
and serial correlation in €

EVIEWS: use Newey-West standard errors

use Delta Method to obtain standard errors for .S and v from (35 =




Estimation results Huang and Stoll base model

Traded Spread,

Adverse Selection and
Inventory Holding, A

Company  Coefficient  Standard Error  Coefficient  Standard Error
AXP 0.1178 0.0002 0.0272 0.0016
CHV 0.1177 0.00006 0. 15-’—}6 0 .'[:]"[:]'39

DD 0.1254 0.0003 0.1603 0.0026

T 0.1214 0.0001 0.0 l_Hﬁ 0.0008
XON 0.1111 0.0003 0.0013 0.0021
AVG., 0.1222 0.0004 0.1135 0.0024
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Huang and Stoll's (1997) model with trade size categories (1)

Define D = @, if share volume at t <1000 shares
— 0 otherwise
Di" = Qy 1000 shares < if share volume att < 10,000 shares
— otherwise
D = @ if share volume att = 10,000 shares
— 0 otherwise

Evalution of fundamental value subject to trade information

S JTT

- - i , L ; *S‘rﬂ
T"”z‘. _ I’;t—l 4 a8 > f—l 4 o™ 5 i?i |+ a,f. ; Di—l + €
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Huang and Stoll's (1997) model with trade size categories (2)

Midquote (as above) affected by inventory effects

1[f_1f+z ZDJ

"f

for j e {s,m,l}

Combining we get

qs qm q 1]
AMy = AV + 37 -Di_y + 8" =Dy + 8= D
S qm

AM; = (o + ) 2D, + (@™ + ™) 2-DJ*, + (o + )2

2 2

gl
2

Di J_—i_{'f
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Huang and Stoll's (1997) model with trade size categories (3)

As above: transaction price incorporates the half spread
5 S 5 7

P, = m+_D + Dm+ Df
Equation estimated by GMM
5‘? S sm i
APy = —-Di+ (X —1)2Df 1t 5D
s S
+ 5 D+ (N —1) 5 D;_| +e

where j = s, m. [ for /\j = Qv + .-33‘

.’h‘_

(/\-m L l) s m
9 t—1
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Estimation results Huang and Stoll model with trade size

categories

Traded Spread, Adverse Selection and

5 Inventory Holding, A
Company  Estimate Small Medium  Large Small Medium Large
AXP Coeft. 0.1194  0.1138  0.1141  —0.0133  0.0308 0.2524
Std. Error 0.0002 0.0004 '[:]'.{:}'[:]'{:]'9 0.0022 0. '[:]"[:]'3? 0.0 1_'[:]'3
CHV Coeft. 0.1148 0.1192 0.1526 0.0372 0.3008 0.5082
Std. Error 0 .{:}{:}{:}6 0.0010 0.0041 0. {:}{:]_'49 0. '[:]"[:]'H(} 0.0229
DD Coeft. 0.1261 0.1207 0.1297 0.0620 0.2730 0.4471
std. Error  0.0004 0.00006 0.0015 0.0035 0.0051 0.0135
T Coett. 0.1217 0.1187 0.1186 —0.0104 0.0633 0.2398
Std. Error  0.0001 0.0003 0.0005 0.0008 0.0027 0.0072
XON Coett, 0.1100 0.1085 0.1229 —0.0348 0.1664 0.3900
Std. Error 0.0003 0.0005 0.0014 0.0029 0.0050 0.0128
AVG. Coettf. 0.1213 0.1211 0.1357 0.0325 0.2174 0.4289
Std. Error  0.0004 0.0007 0.0023 0.0031 0.0050 0.0156
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Huang and Stoll (1997): Three way decomposition (extended model)

Allows to distinguish adverse selection (av) and inventory component (/3) of traded
spread

Identified if Q, (positively) serially correlated P ((Q; = Q¢_1) # 0.5
Why?

Splitting of large orders to cushion price impact

|dentified through predictability of midquote changes
Why?

Liquidity suppliers raise midquote after buyer initiated transaction
lower midquote after seller initiated transaction
Inventory effect on expected midquote change

serial correlation of Q, > predictability of midquote change AM; = f((Q:_1)

v
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Huang and Stoll (1997) extended model (1)

Define

™= P(Q: # Q¢ allegedly: 7 > 0.5 (bid-ask-bounce due
(Qt # Qt-1) gedly. =~ U0 to inventory effect)

no trades inside the quote considered!
> E(Q:Qi—1) = (1 —2m)Q¢— order flow predictable!

Evolution of fundamental value

Surprises in order flow matter

Vi=Vio1+ a3 (Ur —E(Q¢|Qt—1)) + &
Y

-~

s
surprise
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Huang and Stoll (1997) extended model (2)

change in fundamental value unpredictable

E(

still: V; timed prior to time t trade

using ();instead of Qy — E(Q¢|Q¢—1)

with 7 # 0.5 would imply predictability of AV}

Midquote evolves as above

M; =V; + B5 Zf Q)

mventory effect

AM, = AV, + B5Q;_,

di—2.Vi_1) =0 > {A{T} m.d.s.
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Huang and Stoll (1997) extended model (3)

Writing extensively

My = My + (o + J’)% i1 — a-:‘%(l — 2m)Qt—2 + &¢
— v

could be used for estimation when midquotes available

As P = M; + %(;}T + 1 (as above)

we have
AP, = 5Qi+ (a+B—-1)3Qt—1 — a5 (1 — 2m)Qi—2 + & + 1t + -1
€t

GMM estimation possible when series of transaction prices and trade indicators available
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Huang and Stoll (1997) GMM estimation extended model (1)
GMM residuals

AP, — 2Q;— (a4 8-1)2Q;1 + a3 (1 — 2m)Q;—2

Lu|

N -
—
€t
e,y (E(et) =0)
tf(w:]f—l - E(E‘.f(ﬂ]f_l) =0 )
; 3 moment conditions
etQt—2

4 parameters

additional moment restriction required
E(Qr — E(Q1|Qi-1)) = 0
E(Q; — (1 — 27)Qs—1) = 0

_/

—~—

another GMM residual
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Huang and Stoll (1997) extended model estimation results

Panel A

Y

No. P

Company ot Obs. Coett. Std. Err.  Coeft.  Std. Err.  Coeft.  Std. Err.
AXP 08,583 —0.0526  0.0024  0.1209  0.0029  0.2080  0.0018
CHV 47,753 —0.0298  0.0043  0.2388  0.0045  0.1466  0.0019
DD 71,913 —0.0732  0.0030  0.2669  0.0034 0.1732  0.0016
T 144,640 —0.0311  0.0009  0.0684  0.0012  0.1540  0.0012
XON 72,649 —0.0673  0.0031  0.1920  0.0036  0.1910  0.0017
AVG. 92,560 —0.0314  0.0031 0.1868 0.0033  0.1605  0.0015
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Huang and Stoll (1997) extended model estimation

results with bunching

Panel A

Y

No. P

Company of Obs. Coeft.  Std. Err.  Coeff. Std. Err. Coeff.  Std. Err.
AXP 27,562 0.1647  0.0075  0.13806  0.0036  0.9740  0.0011
CHV 20,062 0.0384  0.0091  0.3771  0.0096 08111  0.0027
DD 32,871 0.0650  0.0051  0.3712  0.0051 0.8774  0.0019
T 50,721 0.2094  0.0053  0.0744  0.0019 09804  0.0007
XON 30,668 0.1737  0.0082  0.2111  0.0050  0.9248  0.0014
AVG 36,891 0.0959  0.0068  0.28065 0.0060 0.8675  0.0018
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Huang and Stoll’s (1997) alternative using spread information

Huang and Stoll suggest to use

AM; = (a+ B)222Qu_1 — o1 — zwgf_g + e

— jl X t1 + ;’33 X 2 + €

—> form orthogonality conditions and use GMM

Use E(Q;— (1 —-2m)Qi—1) =0

to identify structural parameters

Recent research: Henker and Wang (2005) doubt validity and consistency of procedure
using St sequence: Timing incorrect.

Correct midquote dynamics with time varying spreads

AM; = (a+ B)251Qu1 — a(1 - 27721‘—2 + €
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The model by Madhavan, Richardson and Roomans (1997) (1)

» Accounts for serial correlation in order flow (in Q,)
—> predictability of order flow
reasons: splitting of large orders to cushion price impact
« fundamental asset value affected by surprise in order flow
» three states of trade indicator
purchases at ask Q, = +1
sales at bid Q, = -1

,crosses” inside the spread Q, =0

Why not model trade volume?
« splitting of orders - volume not informative
* parsimonity

* block trades (at NYSE upstairs market) have peculiar effect (non anonymous
market, uninformed trades)
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The model by Madhavan, Richardson and Roomans (1997) (2)

Ingredients
P(Qf = U) = A\ probability of crossing (may be zero like in Xetra system)

P(Qy=—1)=P(Q; = +1) =12 unconditional probability

> E(Q) =0 var(Qr) = B(Q3) =1 — A

Evolution of fundamental value (MRR: expected value of stock given public information)

@ >0 measures degree of
information asymmetry

pe = g1 + 0[Qr — E(Q¢|Qr—1)] + &t
~ ~

post (1) trade surprise in order
value flow

public information
(accrued since t-1)
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The model by Madhavan, Richardson and Roomans (1997) (3)

market makers anticipate price impact of trade and costs for supplying liquidity
p¢ =1 + 0|1 —E(Q¢|Qr_1)] + &+ ¢+ (assuming Q, = +1)

p? = pp_1 +0|—1 —E(Q|Q¢_1)] — &+ 2+ (assuming Q, = -1)

Y \
market maker

lowers bid price
depending on

cost for supplying liquidity

-transaction costs (order processing)

surprise in order -inventory costs
flow : :
-risk bearing
-monopolist gain
pg+p}

MRR account for trades at midquote 5

(pre-negotiated trades in upstairs market)

Expression for transaction price (valid for Q, = +1, Q, = -1, Q, = 0)

P; = Ht + 'fi’@t + ‘f,t Y account for effects of rounding (1/16

ticks at NYSE 1 cent ticks in Xetra)
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The model by Madhavan, Richardson and Roomans (1997) (4)

Collecting
Py = 1 + 0[Q¢ — E(Q¢|Qi—1)] + 0Qt + &1 + &
N J

Y .
to derive an estimable
version use

P(Qt = Q1-1|Q1—1 #0) = v

Probability of two ask successions or two bid successions identical

. . p = cov(Qt.Qe—1) _ E(QtQ¢_1)
First order autocorrelation Vvar(Qe)\/var(Qi_1) var(Qy)
wehave p=27—(1-2A) Note: E(Q¢) =0

Var(Q¢) =1 — A

E(Q:|Qt—1) = pQi—1
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The model by Madhavan, Richardson and Roomans (1997) (5)

Combining we have

Po—P_1=(0+0)Qt — (¢ + p0)Qt—1+ &t + & — &—1/

YO
observed observed residual

Parameters to estimate @, 9_, £, A
\ probability
of crossing

order processing

inventory -
component (in adverse selection CO(;reI?IItlon in
cent per share) component (in cent per order Tlow

share)
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The model by Madhavan, Richardson and Roomans (1997) (6)

Estimation by GMM

Moment conditions

Define Uy = ¢ + ‘51* — £T—1 — &PT — ((ﬂ -+ 6‘)(;215 + ({’ﬂ -+ [)9)(915_1

E(’E.ﬂf) =0
E("Etht) — 0
E("Efif@t_l) = (

E(Q? —(1—-X)=0  from

E(Qt(gf—l —_ ,0(92?) = () from

var(Q¢) =1 — A

E(Q:Q¢_1)

E(Q7)

:;’_}
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The model by Madhavan, Richardson and Roomans (1997) (7)

GMM residuals are
up = AR — (¢ +0)Qt + (¢ + pf)Qi—1

er
u Qi1
Q7 — (1))
QiQi—1 — pQ7
Built series from data and plug in GMM tool

Note: MRR introduce a drift parameter in
pe = pr—1 +a+0[Qr — E(Qe]| Q1) + &4

but v small
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The model by Madhavan, Richardson and Roomans (1997) (8)

* MRR estimate model for 4 day time intervals

* study time of day evolution of asymmetric information component  and cost of
liquidity supply @

Explain stylized facts

"U-Shape” of bid-ask spread and return volatility

Results
6 ”L-shaped” (asymmetric information declines over the day)
@ increases over the day inventory costs (overnight risk)

explain stylized facts well.
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The model by Madhavan, Richardson and Roomans (1997) (9)

Summary statistics of estimated trading costs

0:30-10:00 10:00-11:30 11:30-2:00 2:00-3:30 3:30—4:00

s
Mean 0.1518 0.1440 0.1425 (0.1448 0.1496
(Avg. Std.Er.) (0.0066) (0.0027 (0.0024) (0.0029) (0.0048) — 9(d é
Std. Dev. 0.0351 0.0252 0.02353 0.0238 0.0246 s = ( + )
Median 0.1467 (.1389 0.1380 0.1419 0.1461
Mean 0.5107 (0.4149 0.3630 0.3553 0.3601
(Avg. Std.Er.) (0.0378) (0.0167) (0.0138) (0.0165) (0.0270) r — 9
Std. Dev. 0.2527 0.2153 0.1977 0.1943  0.1994 (6+0)
Median 0.4812 0.3923 (0.3345 0.3302 0.3210

Table 3 presents summary statistics of estimates of trading costs for 274 NYSE-listed
stocks in the 1990 sample period over five intraday trading intervals. Specifically the
mean coetficient estimate across the stocks, the mean standard error of the mean
estimates, the standard deviation of the estimates across the 274 stocks, and the median
estimate are provided for various parameters of interest: s, the implied spread; r, the
fraction of the implied spread attributable to asymmetric information; s*, the effective
bid-ask spread; and £, the ratio of the effective to the implied spread.,
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lll. Event study methodology
References:

 Boehmer et al. (2002), Ch.5+6
« Campbell et al. (1997), Ch. 4
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Notational conventions

In asset pricing module we have used notation R! to denote gross
return of asset ¢ in period ¢.

R — pi + & dividend
Pi-1

\
Following Campbell et al. (1997)

price

) di
Rz‘t=pt-+ L1

7
Py_1

denotes net returns of asset ¢ in period t.

123



Event study philosophy (1)

Studies of stock market responses (valuation of firms) to public
announcements of new value-relevant information:

e stock splits Fama (1969) pioneering work
e €arnings announcements
e announcement of merger or acquisition

e macroeconomic announcements (interest rates, unemploy-
ment)

e liquidity stocks (Gomber et al. 2004)
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Event study philosophy (2)

Studies of stock market responses (valuation of firms) to public
announcements of new value-relevant information:

e regulatory environment

e issues of new debt or equity

e IPOs (a special case: no estimation period available)

One of the most widely used techniques in empirical finance.
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Event study philosophy (3)

Idea:

Markets are efficient w.r.t public information. Asset prices should

reflect relevant information i.e. react quickly to value relevant
effect.

Measure price changes around events and compare "normal” or
"expected’ price changes.

Expected price change calculated based on conditioning infor-
mation (e.g. market-wide changes)
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Event study methodology focusses on abnormal returns

Can deviations from normal (or expected) returns be attributed
to event or is it just a random fluctuation due to public informa-
tion?

measure impact of event
on deviation from
expected return

\&‘%kt = Rj; — B[R;| X¢]
/

actual return period ¢,
asset ¢

expected return
(normal return)

conditioning information

Needed:
Distribution of abnormal return under null hypothesis of no effect

of event
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Classical event study methodology based on the multivariate

normal assumption of cross-sectional returns (1)

Rt (N x 1) vector of asset returns for calendar time period ¢t.
R; independently multivariate normally distributed with mean u

and covariance matrix €2 for all t.

cov(Ry) =

var(R1¢)
cov(R1t, Rot)

| cov(Ri¢, Rny)

var(Rpy¢) |
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Classical event study methodology based on the multivariate
normal assumption of cross-sectional returns (2)

R: (N x 1) vector of asset returns for calendar time period t.
R+ independently multivariate normally distributed with mean u
and covariance matrix €2 for all t.

 E(Rq1¢) | w1
E(Rot) | _ | wo

 E(RnNt) | LN
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The constant return model does not use conditioning information

Ry = p; + &5

E(¢) =0 wvar(¢y) = of = o7

( Eit )
cov : = cov(Rt) = Q2

ENt
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The market model is widely used

Ryt = o + B;Rmt + €it

E(ei) =0  wvar(ey) = o2,

Note:

This is not the CAPM!

R, is just one (yet powerful) conditioning variable
Other statistical models: factor models

Effect of conditioning: Variance of abnormal returns reduced
More precise detection of effect of event otherwise drowned in
noise
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Statistical background and motivation for the market model (1)

We assumed: Ry = N (u, 2)
Market portfolio return is a linear combination of jointly normally
distributed variables (the stock returns)

Rt * * * __ M * Q X/
() ~oee =) o =(F 2

bivariate normal distribution

> = [cov(R1s, Bint),- -+, cov(Bye, Bnt)] = lo1ms -+ - O N

Recall:
linear combinations of (multivariate) normally distributed ran-
dom variables yield (multivariate) normal random vectors!
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Statistical background and motivation for the market model (2)

R\ % Ué Tim
()~ (( ) (o 8]

A familiar result R;|Rmt ~ N[E(R;t|Rmt),var(Ris| Rmt)]
where

Thus

cov(Rmt, Rit)
var(Rmt)

E(Rit|Rmt) = u; + [Rnt — py] = a3+ B; Rt

_ coo(Runt, i)
var(R;)

o = py — Bty Bi

var(R;;| Rmt) = aé(l — ,OZ-Qm) Pim = corr (R, Ryt )
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Statistical background and motivation for the market model (3)

Define Eit — Rit — E(th|Rmt)
We have

E(£it|Rmt) =0

var(git| Rint) = var(Riyg|Rmy) = 02,(1 — p3,) = 02

and  g;¢| Rt ~ N'(0,02) homoskedastic innovations
Hence

Ry =E(Ry|Rmt) + €4 = o+ B;Rmt +€in

Rm 7R’i
where o; = p; — Bl Bi = COga(,r(Rint)t)

= Market model follows from assumption of joint normality
(and not asset pricing theory)
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Why not using asset pricing model (like CAPM) to form normal or
expected returns? (1)

e You could (actually frequently done in earlier studies), but
currently out of fashion

e empirical failure of models

e Other successful models in sight?

e time varying parameters
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Why not using asset pricing model (like CAPM) to form normal or
expected returns? (2)

e more complicated estimation, constant mean-return model
does basically same job!

e rather rely on statistical assumptions than on false economic
model

e uUsing conditioning information allows more precise conclu-
sions

Campbell et al. (1997): " There seems to be no good reason
to use an economic model rather than a statistical model in an

event study”
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Time line for an event study

Time line:

|

estimation
window

post-even
window

}

we use returns of this period
to estimate the parameters of
the market model

sometimes no data for
estimation available, e.g. IPO’s
then use market adjusted return model

Rt = BRm,

the event date 7T

So-called event time
(time relative to event)

We measure abnormal
returns in this period

Can we attribute them to
The occurrence of the event
Event window possibly
before event date
(information leakage)
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Time line and timing convention (1)

window window window
| | | |
| | | |
T
T=20 event date
T=1714+1tor=1T event window
L1 =171 —"1p length of estimation window
Lo ="1T>—1T}4 length of event window

Lz =13 —"1T5 length of post event window
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Time line and timing convention (2)

In order to get a "clean” estimation period: Stop some time
before event window.

Usually: daily frequency

Analyze abnormal returns in sub-interval of event window [r1, 75]
71 211 72 <715

Example: Ty = —250

Tl — —20
event period T € [-5, 0]
days —19,—18, ... — 6 not considered for estimation and not used

for analysis of abnormal returns.
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The recipe for an event study (1)

1. Define event of interest: Make sure you can allocate the
event date (or at least the event window)

2. Define criteria to select firms/events
Examples:
e membership in an industry
e small/large firms
e tech-stocks

3. Decide model for measuring normal performance
(e.g. market model)
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The recipe for an event study (2)

4. Estimate parameters (of market model or mean return) using
data in estimation window

5. Calculate abnormal returns in event period
Test significance of abnormal returns

6. Empirical results, interpretation and conclusions
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The recipe for an event study (3)

Basic question:

Is the unconditional distribution of the abnormal returns differ-
ent from the distribution of abnormal returns conditional on the
occurrence of the event

(i.e. the distribution of abnormal returns in the event period)

Null-hypothesis: conditional distribution of abnormal returns is
not affected by event!
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Estimation of market model (1)

Note:
Event assumed to be exogenous w.r.t. market value of security

Undisputed for macroeconomic announcements, regulatory envi-
ronment changes

Problematic for IPO, stock splits

Revision of value of firm caused by event and not the other
way round
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Estimation of market model (2)

Estimation of market model parameters using estimation period
data by OLS (or give GMM interpretation)

Rir = a; + BiRmT + &ir

OLS yields Estimation window
Sample covariance
1 11 R 1 T
Ol — L_ Z Rr Bi = L_ Z Rmr
1 T=T0—|—l 1 T:TO‘I']-
g = L1 Rir - Bmr —>_Ri7 > Rmr
ES

L1 R2_ — [ Rms)? — Estimation window

Sample variance
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Properties of abnormal returns (1)

In matrix notation

R; = X;0; + &
— /
R; = [Rimy41,-- - Bir ]

X; = [’/7 Rm] Ry, = [RmTO—I—la . '7RmT1]/ L= [17 1,..., 1]/

/
0; = (i, B;)
min y_(Rir — a; — BiRmr)?
yields sum over estimation period data

0; = (XiX;) ' X[R;

standard OLS formula
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Properties of abnormal returns

. . _ 2 .
an unbiased estimate of var(g;;) = oZ;:

_ 1 .
ag. = g
! L1 —2

var[f;] = (X{Xi)_lagi

Standard OLS
results under
conditional
homoskedasticity
and absence of
serial correlation
of residuals and
predetermined
regressors or strict
exogeneity
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Properties of estimators are as usual returns in event period

Assuming:

BE(eir|Rm) =0
(strict exogeneity) OLS unbiased

With

var(e;r|Rm) = ng. cov(gjr,e,1) =0 V7' &1

assuming only E(e;r, Rmr) = 0: OLS consistent
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Properties of abnormal returns in event period (under null-
hypothesis of no effect of event) (1)

With only one day event window
Estimated abnormal return at event day

g0 = Rio — @ — B;Rmo = Rio — X006

Xio = (1, Rpo) 0;= [ 5:z ]
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Properties of abnormal returns in event period (under null-
hypothesis of no effect of event) (2)

E(E50| Rmo) E(R;0 — ;00| Rmo)

E(R;o — z;00; — z;0(0; — 0;)| Rmo)

= E(Rjp — 70| Rimo) — zioB(0; — 0| Ryp0)

0-0=0
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Properties of abnormal returns in event period (under null-
hypothesis of no effect of event) (3)
Same goes for multiple day event window

~% __ ko~ B Pk Pk WvED.

vector of abnormal
return

— / - _ /
& [Riry 41, - Bl X§ = [, Ryl Ry = [Riry 40+ - B

//
—
event period data

ef = (Biry41s- - &)

Ble7[X/]

B[R — X;0,X7]
E[(R} — X}0;) — X7 (Bi — 0,)|X}] = 0

(under Hp)

Note:
We implicitly assume strict exogeneity, i.e.
E(eir|Ry,) =0 V71 where ;; = Rjr — a; — B Ry
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Properties of abnormal returns in event period (1)

. [ ~sk~k /| vk
Vi = Blgel|X;)

7

= B[l — X7 @ — 0[] — X7 (@ — 09V

= E:afsf’ —e7(0; —0,)' X} — XF(0; —0,)ei’ + X7 (0, — 0,)(0; — &Q’X;‘"|Xﬂ

= IoZ + X7 (X/X;) 1 X{o2
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Properties of abnormal returns in event period (2)
More precisely we would write E(gfe}| X}, X;, R;)".
For a single day event window this becomes

var(&;0|Rmo) = BE(&0|Rmo) = o¢, (1 +(1,R mO)(Xq{X’i)_l [ Ri%o ] )
e

(13 Y . 13
parameter uncertainty

er| X} ~N(0,V;) or more precisely 7| X}, X;, Ry ~N(0,V;)
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Properties of abnormal returns in event period (some details)
Note that for

~ 1 ~ 1 _
gio = Rijp — [ R o ] 0 = R0 — [ R . ] (X! X171 X'R;

conditioning on R,,0 and X; and R;:
g;0 @ normally distributed random variable.

Same goes for

el = [Eiry41, - -, )

conditioning on R} , R; and X,

g; results from linear combinations of normally distributed ran-

dom variables (R 41,-- -, Rz'TQ)’
_ _/

YT
event period returns
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Abnormal returns of subinterval of event period are summed up to
generate accumulative abnormal returns (1)

Campbell at al. (1997) convention

window window window
| | | |
| | | |
T
T=20 event date
T=171+4+1tor=1T event window
L1 =171 —"1p length of estimation window
Lo ="1T>—1T}4 length of event window

Lz =13 —"1T5 length of post event window
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Abnormal returns of subinterval of event period are summed up to
generate accumulative abnormal returns (2)

Pick subinterval from (74,75], |[r1,72] 71 > T1 7o < 715 and
cumulate abnormal returns = CAR(71,72)

Define v a (Lp x 1) vector

v 001111111

I I A I

1T 1T 1T 1T 11

T 8-7-6-5-4-3-2-10
use abnormal returns from this period

_ /

~N
event window
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Abnormal returns of subinterval of event period are summed up to
generate accumulative abnormal returns (3)

C/fTR(Tl, 75) = +'E}

= E(CAR(r1,72)) =0 as E(g¥) =0

var[CAR(71,72)] = 02(11,72) = +'Viy

Since linear combinations of normally distributed random vari-
ables are normally distributed

CAR(71,72) ~ N(O, 07;2(71, 72))

N
_ _\/
univariate normal
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Abnormal returns of subinterval of event period are summed up to
generate accumulative abnormal returns (4)

In V=021 — X}(X/X;)"1X}) oZ not known,

consistently estimated by

~2 1 ~2 ~/ =
o. = e, = E:E;
€ Ll—QZ L L1—2 vt

V, =62(I — XF(XiX) X
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Abnormal returns of subinterval of event period are summed up to
generate accumulative abnormal returns (5)

Vi=062(I - X;(X]X;)"1X})

Hence var(CAR(r1,72)) = 62(71,72) ='Viy
or 524/ (I — X7 (X/X) 71X} )y

Distribution of test statistic under Hg

CZR(T]_,’TQ)
6;(T1,72)

;@2(7‘1,7‘2): Nt(Ll—Q)

Proof analogous to proof that OLS t-statistic is t-distributed

with degrees of freedom equal to a number of observations -
number of regressors.
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Abnormal returns of subinterval of event period are summed up to
generate accumulative abnormal returns (6)

Properties of t-distribution

Bt(k) =0  war(t(k)) = ——
k— 2
Hence
_ . Li—2
E(SCAR(71,72)) =0 var(SCAR(71,72)) = 7 2
_

For L1 (estimation window large) use standard normal approxi-
mation of ¢t(L{ — 2)

Single event: test significance of @(71,72) under Hp.

Fix o (significance level).

Reject for large or small values of test statistic.
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We analyse typically many events. Then we average abnormal
returns (1)

For a sample of N events
Compute market model estimates and abnormal returns per event

Compute sample averages of abnormal returns

1N s ]
1 N 2i=1 Ty +1
) — 1 N =x
=1 | N Xi=18iT,
N J
N

averages per event day averaged over events

160



We analyse typically many events. Then we average abnormal
returns (2)

Assume independence of abnormal returns across events (no
overlap of event windows) and also ignore dependence induced
by estimating &; and B; that may exist.

E(*) =0
cov(e*) =V = ﬁ SN . V; for one event day var(g}) = ﬁ S wvar(g;0)

variance of average
event day abnormal returns
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Using the averaged abnormal returns we proceed as in the single
event case (1)

CAR(11,70) = 'y/E*

var[CAR(71,72)] = 3%(71,72) =~V

Equivalently average the cumulative abnormal returns across
securities

N approximately
Z CAR;(71,72) normal for
1=1

N large

_ 1
CAR(71,72) = ~N

_ 1 X
var[CAR(T1,72)] =5°(11,72) = ~2 S o7 (r1,72)
i=1
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Using the averaged abnormal returns we proceed as in the single
event case (2)

CAR(T1,72) NN(OaEQ(TlaTQ))

s
y 7 Viry
1 9 ~D variance of
— o; (11, 72) =0 (11, T
N2 z; C (71,72) (71,72) abnormal return

we Can use

to consistently estimate o2(71, 7o)
Using a central limit theorem

CAR(71,7 approximation works
= (T 22 ~ N(0,1) » well for large number
[0°(T1,72)]2 of events

4

under Hp that event does not influence distribution of abnormal
returns
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An alternative method averages standardized cumulative returns

(1)
Equal weighting of events using

- 1 &
SCAR(Tl,TQ) = N Z SCAR?L(TLTQ)
1=1

— _/
Y

|

t(Ly —2) E(SCAR(r1,75)) =0

distributed (see above)

var(SCAR(711,72)) = %1:—2

S L2 L2
var(SCAR(71,72)) = ]&QNL1—4 = %[Ll—d
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An alternative method averages standardized cumulative returns
(2)

coverges in distribution
o a normal distribution
(for large sample of
events)

By a central limit theorem

_ SCAR(71,72) a

L1-2
NiL,—4

N(0,1)

Jo

Advantage:
Reduces effect of stocks with large return standard deviations

on test statistic
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Patell’s test statistic accounts for different estimation period
lenghts

CAR standardized by estimation

/ period standard deviation

N _—
Z SCARi(Tla 7-2)

_ 1=1 a
tPatell — ~ N(O’ 1)
/21 \
~N for longer length of estimation period varies
estimation periods across events

Z SCAR (7’1,7'2)
tpatell = =1 \/N

% N(0,1)
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Campbell et al.'s (1997) application (1)

600 earnings announcements

Dow Jones firms Jan. 1989 - Dec. 1993
Data stream: data of announcement
Compustat: actual earnings (per quarter)

Institutional Brokers Estimate System (I|B|E|S): mean (over
analysts) quarterly earnings forecast

= Deviation of actual earnings from forecast: good news
(189), no news (173), bad news (238)
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Campbell et al.'s (1997) application (2)

Market Model "~ Constant-Mean-Return Model
Good News NoNews  Bad News Good News  No News Bad News

Da I ————— e — — ——— e —————— e T T —
yth""CARE"‘CARé""CAR € CAR €& CAR ¢ (AR

Event

—20 093 093 .080 .080 -.107 -.107 105 105 .019 .019 -.077 -.077
-19  -.177 -.084 .018 .098 -.180 -286 —.235 -.129 —.048 -.029 -.142 -.219
-18 088 .004 .012 .110 .029 -.258 069 -.060 —086 —.115 —-.043 -.262

-5 085 .616 —.085 .107 .164 -.527 061 .349 -.068 -120 320 -.415
-4 099 715 040 .147 -.139 -.666 031 379 .089 -.031 -.205 ~.620
-3 d17 832 036 .183  .098 -.568 067 447 013 -018 .085 -.536
-2 006 .838 .226 .409 -.112 -.680 010 456 311 .294 -256 -.791.
~1 164 1001 -.168 241 -.180 -.860 198 654 -.170 .124 -.227 -1.018

0__~ .95 1966 —091 150 —.679 —1.539 1.034 1.688 -164 —.040 -.643 —1.661
1 251 2217 —008 .142 -.204 —1.743 357 2045 -.170 -.210 -.212 -1.878
19 —.043 2863 .119 —.144 —088 —12%0 —055 2.292 088 —.568 026 -.769
20 013 2377 .094 —.050 -.028 —1.258 019 2311 .013 -554 -115 -.884
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Campbell et al.'s (1997) application (3)

0.03

- ~
~ o ~ e
’ =
0.02 £ Nae =
. ; 5
1

[ [
001 I \ L= No-News Firms

002} .

_003 0 LA N R O OO [ N Y M N (e (N (V5 W oty (i D00 O (AW (NN U W PO (OO | (I Y IO T T Y NN T O N O | 1

Event Time
Focusing only on event day CAR = &* = 0.965%
12(0,0) = 0.104% J; = 9.28

under Hg: J; ~ N(0,1) = Hp rejected on conventional
significance levels
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Campbell et al.'s (1997) application (4)

0.03

0.02

0.01

r
- !
! .
= No-News Firms

Bad-News Firms ol
N R NN T NN NOUN (U WO TR NN NN SN NNR NNNN NN DN NN DU DO MU N NN NN N DN N NN N RO N T N N N S N N I
-20 —-10 0 10 20

Event Time
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Why using the market model instead of the constant-mean-return
model?

Variance of abnormal return for market model

agz. = wvar[R;; — a; — B; Rt
var[R;:] — B%var (Rt
(1 — B7)var[Ry
(1 — R7)var[Ry]

R,L-2 — R2 of market-model regression for security i

o g% = war|[Ry — ;] = var|Ry]
agz. = (1-— R%)aé

7

Since R? lies between 0 and 1 abnormal return variance of market model less
than or equal to abnormal return using constant-mean-return model
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Boehmer et. al (1991) propose a modified Null Hypothesis

Hg: given event has no impact on behavior (more precisely:
distribution) of security returns

ity mean of
we assume normality I|.e. abnormal returns
distribution of
abnormal variance of abnormal
returns returns

Boehmer er al. (1991): Isolation of and testing for mean effect
Cross sectional approach to estimate abnormal return variances
so far: estimation of variance of abnormal returns using

estimation period data!

Vi = 152, + X7 (X[ X)X} 62
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Two ways to account for event induced abnormal return variances

,otandard cross sectional test":
Standardize cross section average CAR by event period cross sectional standard deviation:

N
Z (C’AR (11,72) — CAR(’T]_,TQ))
1

Var [m(Tl,TQ)} =

1
N2
L
N2

Mz

Var|[SCAR(r1,72)| =

e

Standardize cross sectional average SCAR by cross sectional variance of the SCAR

2
(SCARi(r1,72) — SCAR(r1,72))
1

Consistency of estimators requires abnormal returns to be cross sectionally
uncorrelated (covariances have to vanish).

Avoid overlapping event periods (clustering)
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Boehmer (2002) considers two test statistics that account for event
induced abnormal variance changes

Standard cross sectional test
. CAR(T1,72)
JVVAR(CAR(1,72))

~ N(0,1)

CS

Problem: not a consistent estimate if event induced
variance different across stocks/events

Standardized cross sectional test (Boehmer et al. 1991)

SCAR(711,75)
VVAR(SCAR(r1,72))

tpMpP = ~ N(0,1)
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