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Time Series Applications in Finance
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To analyze the interdependence of three East Asian stock markets,
(Tokyo, Singapore and South Korea) we set up a Structural VAR (SVAR)

T = k7 O +89Prf+ 5§§’v~5+ Bﬁ?r?ﬁﬁf)m 1+6§13)7“tK 1+ut
7“tS = k° ‘|‘Bg&)"°t + . 23) tK 5(1)”'? 1+ 5(1)""75 1+ 6213 7“t 1+ Ut
rK =k 48907 485+ BEPT  + B | 4+ BHTE L+ uff
i k! 1 Y 83 ol
ye =[5 k =|K]| Bo=|59 1 0| w =|u
(3x1) rK (3x1) LE | (3x3) (0) (0) (3x1) uk<
t —B31 —Bp L t

Boy: = k+Bi1y;-1 +w
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The innovations of a VAR in primitive form are assumed to be both
serially and cross-sectionally uncorrelated
(orthogonal/pure/idiosyncratic innovations/shocks)

Boy: =k+Biy;1 +Boyr o+ ...+ Bpyr—p + g

E(ut)
E(uul) = {

0

D for t=r71
0 otherwise.

D diagonal matrix
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Writing the VAR in standard form ,,solves” the system

yt=C+ Py 1+ Poyro+ ... +Ppyr—pt+ &

c= Balk (n x 1) vector of constants
b, = BalBS (n x n) matrix of AR coefficients fors =1, ...,p

g = Balut (n x 1) vector generalization of white noise.
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The innovations of a VAR in standard form are, by construction,
contemporaneusly correlated (composite innovations/shocks)

yt =Cc+ Pry;_1 + Poys o+ ... + Ppyr—p + &

E(Bylu) =By 'E(w) =0

E(et)

E(ee}) = E(Bj;luwuj[B;']) =0

, QQ for t=r1
E(€t€7.) —

0 otherwise.
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The lag operator provides notational convenience

LLag operator:

L(yt) = y—1, L?(yt) = vi_2, ...
VAR(p) written with lag operator

I, — ®1L—B3L° — ... —®p[Plys =c+e

or

b(L)y;=c+ e
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We take expectations of the endogenous variables

Assuming stationarity: E(y:) = u

E(y:) c+ P®1E(yi—1) + ...+ PpE(yi—p) + E(et)
7 cC+Pipu+Pop+ ... +Ppu
p = c+[P1+Po+ ...+ D1

L — &L —...—®,[Plp = c
¢(L)p = c
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It is convenient to express a VAR in terms of deviations from the
means

yt = ¢+ P1y 1+ Py o+ ...+Ppyr—p t+ &
b(LH)p = c
(yt =) = ®1(yi—1 —p) +Po(yr—2—p) +... + Pp(yt—p — 1) + &
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With some additional notation a VAR(p) can be rewritten as a

VAR(1)

vyt — ) =P1(yi—1 —p) +Po(yr2—p) +... + Pp(yt—p — 1) + &

Define:

(npx1)

Yyt — |
Yi—1 — K

| Yi—p+1 — K]

$, P, By
L, 0 O
F =0 I, O
(npxnp) ; : :
O 0 O

& =F& 1 +wt

(npx1)
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Consider a forward iteration of the VAR(1) system

& = F& 1+
Sir1 = F&G+via
Ei420 = F&iq +vigo
= F§ o+ viys = vz +FEE L +vig2)

§i4+3

Vi43 + FVt+2 =+ F2€t—|-1
Viys +Fvipo +F2(FE + vigq)
Vi43 + FVt+2 + F2Vt+1 + F3€t

iterating s times yields:

Eivs =Vits+FVigs 1 +Fviqs o+ ... +F v +F,
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To obtain the Vector Moving Average (VMA) representation
we focus on the first rows of the system

the first n rows of the system

Cits =VirstFvipo 1 +F v o+ +F v +F%,

are.

Yidts =M+ €45+ Vigips 1 +Wogiys o+ ...+ W 1841
+F (v — ) + FSY (et — ) + ...+ ng)(Yt—p+1 — 1)
FU): F raised to the jt" power

ngl) =W,: first n rows and columns 1 through n

F%): first n rows and columns (n(p —1) +1) through np
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Forecast of y,y, on the basis of y;,y;—1, .-

Vitslt = 1+ F{)(ye— 1) +Fi3 (i1 — ) +... + ng,) (Yt—p+1— )

Forecast error:

Yt+s — yt—l—s]t = €445 T \Illet—l—s—l + \P2€t—|—3—2 + ... T \Ils—let—l—l
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Vector MA(~) Representation

Eigenvalues of F inside the unit circle — stationarity of {y;}

— Vector MA(oo) Representation

OO o
& = Z F'v;_;
1=0

First n rows:

yi = pt+ei+ Wi 1 +Woep o +W3e 3+ ...
vy = u+[1n+\111L+\112L2...}et
yt = p+ W(L)ey
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Combining results shows how VAR and MA coefficients are related

P(L)yt=c+e P2(L)p=c yt=p+¥(L)e:

P(L)[p+P(L)et] = c+e
¢(L)p+ (L)Y (L)ey, = c+ ¢y
c+P(L)P(L)ey = c+ &

[@(L)T(L)]er = e
N J
I
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The VMA coefficients can be recursively computed from the

VAR coefficients
I, = U(L)®(L)
I, = (In+ 9 L+T0° 4. )Tpn— 1L — B5L% — ... — PLP)

I, = In+ (¥; — @)L+ (¥y—D1P; — P) L2+ ...

general for L° s =1,2,...:

vy
Wy
Wy

P4
PV, + P

P1Ws 1+ PoWs o +... T (I)p\I’s—p
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The Impulse-Response Function gives the response of the
system to one unit shocks in the ¢

Yi+s — H +€t—|—3 —|— \P1€t+3_1 —|— \I’2€t—|—s—2 —|— ce —|— \IJS&“t —|— ce —I— .
0,

Yt—l—S — \IJS

Oe,
Sequence of ¥4, ¥,,.... Impulse-Response Function

e.g. response of y; ;1 , to a one-time impulse in €;; with all other

. . . ayi S -
variables dated ¢ or earlier held constant: aét; = |1, 5]
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This numerical example shows how to obtain the VMA

coefficients from VAR(2) parameters

P

v

10

-0.029
0.007
0.027

-0.071
-0.050
0.005

0.034
0.195
0.090

-0.024
-0.062
-0.016

0.035
0.044
0.060

0.020
0.016
0.004

-0.029
0.007
0.027

-0.069
-0.047
0.006

0.003
-0.008
-0.006

0.000
0.000
0.000

0.034
0.195
0.090

-0.015
-0.020
0.008

-0.005
-0.016
-0.004

0.000
0.000
0.000

0.035
0.044
0.060

0.022
0.028
0.013

-0.002
0.003
0.004

0.000
0.000
0.000
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This numerical example shows how to obtain the VMA coefficients
from the VAR(2) parameters

\IJ1:(I)1

—0.029 0.034
0.007 0.195
| 0.027  0.090
PV, + Py
—0.029 0.034
0.007 0.195
| 0.027  0.090

0.035]
0.044
0.060

0.035]
0.044

0.060

—0.029 0.034
0.007 0.195

| 0.027  0.090

0.035]
0.044

0.060

0.020]
0.016
0.004

0.022]
0.028
0.013]

—0.071 —0.024
4+ |—-0.050 —0.062
| 0.005 —0.016

—0.069 —0.015
— |—0.047 —0.020
| 0.006 0.008
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This numerical example shows how to obtain the VMA
coefficients from the VAR(2) parameters

\:[13 — (1)1\112+(I)2\:[11 ) ]
0.034 0.035 —0.069 —-0.015

—0.029
— | 0.007
| 0.027

—0.071
4+ |—0.050
| 0.005

[ 0.003
= |-0.008
| —0.006

0.195 0.044

—0.047 —0.020

0.090 0.060] | 0.006 0.008

—0.024 0.020]
—0.062 0.016/ -
—0.016 0.004]

—0.005 —0.002
—0.016 0.003

—0.029 0.034
0.007 0.195

—0.004 0.004

| 0.027  0.090

0.022
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0.035
0.044
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The plots show a graphical representation of the VMA coefficients
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To obtain the idiosyncratic shocks from the composite shocks
we need the structural parameters, the matrix B,

covariance matrix of &;:
E(eie}) = Q
relation between shocks in VAR and SVAR: ¢; = By 1w

_ o /
E(giel) = B, 1E(utu§5) [BO 1}

B; D [Bgl}’

© Prof. Joachim Grammig, Unversity of Tuebingen 21



To identify the structural parameters B,, we decompose the variance
covariance matrix of composite innovations (Choleski-Dekomposition)

Q = ADA’
1 0] 0 ... O] _dl 0 o0 ... o [1 a»1 a31 .- anl_
ar>1 1 0 0 O do O 0 O 1 a3o Ap2
= J|a31 a3zp> 1 O O O dj 0 O O 1 an3
anl Gp2 ap3 ... 1] |0 0 O ... do| |O O 0] 1]

2: real symmetric positive definite matrix

>

. lower triangular matrix with ones along the principal diagonal

D: diagonal matrix with positive elements
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The idiosyncratic innovations can then be backed out from
the composite innovations

Define A = Bal
E(ee;) = Q = ADA’
Construct from Au; = &, u; = A~ le; with variance

E(usu;) A E(eey) [A Y

= [A7'Q[A] ]

|

JADA’[A/]1

|
o

This implies: E(uitu;'t) =01i%£j
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The numerical example shows the decomposition of the
variance covariance matrix in the present application

Example:

Q = ADA’
1.79 0.62 0.16 1.00 0.00 0.00| |1.79 0.00 0.00| |1.00 0.34 0.09
0.62 199 0.28| = [0.34 1.00 0.00| |0.00 1.78 0.00| [0.00 1.00 0.13
0.16 0.28 2.67 0.09 0.13 1.00( [0.00 0.00 2.63| [0.00 0.00 1.00

2 and D multiplied by 10000.
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The composite shocks are generated as linear combinations
of the pure innovations

A - U — €&
1 0 0 . 0 U1t €1t
ar>1 1 0 . Ol [uot E¢
az1 az2 1 . O] Just| = |est
|Gl G2 g oo 1_ | Unt | Ent
Thus, uir = €1+ and ujy = €54t — aj1u1t — ajQURt — ... — Gj j—1Uj—1 ¢

= variable ORDERING matters!
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In most applications in economics and finance you want to
trace a shock in the pure innovation

OB(Y1ts|Ujts Yj—1,ts s Y1ts Xy —1) — W

a .
S
8ujt .

with a; as the jth column of A

= orthogonalized impulse response function

© Prof. Joachim Grammig, Unversity of Tuebingen
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Orthogonalized impulse response function of Tokyo to one standard deviation
shock in the SVAR(2) with Cholesky Ordering: Tokyo Singapore Korea

0.002 0.006 0.010 0.014

—— Tokyo
— — *Singapore

- - =Korea

27



Orthogonalized impulse response function of Singapore to one standard
deviation shock in the SVAR(2) with Cholesky Ordering: Tokyo Singapore Korea

0.002 0.006 0.010 0.014

—— Tokyo
— — *Singapore

- - =Korea
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Orthogonalized impulse response function of Korea to one standard deviation
shock in the SVAR(2) with Cholesky Ordering: Tokyo Singapore Korea

0.018

0.010

0.002

e S

—— Tokyo
— — *Singapore

- - =Korea
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To attribute information shares to the markets we consider a
decomposition of the Mean Squared Forecast Error

Yits = Yitsjt = Et4s T Vi€ips—1 T+ Wobrps o+ ... T Wy 16041

MSE(S’t—I—SHE) — E[(Yt—|—s — S’t—|—5|t)(yt—|—s T yt—l—s\t),]
= Q+ 9 .QU] + QU5+ ...+ T, QU 4
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The Choleski ordering allows a decomposition of the variance of the
composite innovations into the contributions of the pure innovations

et = Aus = ajuip+agups+ ... + apupy

(0 = E(é‘té?;) = A. E(utu;) . A/ — ADA/

= aja; - Var(uyy) + agas - Var(uy,) + ... + apay, - Var(u,)

31



We can also decompose the MSE of the s-step ahead forecast

MSE(§i4s) = Bl(Yits = Tigst) Fits — Tegsit)]
= () —|— \Illﬂ\Ifll —|— \PQQ\I’/Q ‘I‘ c e _I_ \Ijs—lﬂlpls—l

mn
MSEFys0) = D {Var(uj) - [a;a; + Pra;a;%7
(nxn) J=1

+%oa;a W5 + ...+ ¥, _ja;a P 4]}

contribution of the jth orthogonalized innovation to the MSE of

the s-period-ahead forecast:

Var(uj,) - [a;a; + ¥iaa5®7 + Poaa, ®h + ...+ ¥,_jaa W, ]
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The numerical example illustrates the decomposition of the variance
covariance matrix of the composite shocks (MSE 1 step forecast)

MSE(Y4+1)1)

(nxn)

MSE(Yi+1)t)

(nxn)

Var(uf) - [asai] + Var(u;) - [aza] + Var(uf") - [asas]

(1.000 0.344
1.79- |0.344 0.119
0.087 0.030
[0.000,. 0.000
2.63- |0.000 0000
0.000 0.000
[1.793 0.618
0.618 1.994 0.281
{0.157 0.281

0.157

2.674

0.087]
0.030
0.008

0.000]|
0.000

1.000

W
J

0.000 0.000 0.000
+ 1.78- [0.000 1.000 O0.127
0.000 0.127 0.016

Var(u}),Var(uy), Var(uf*) and MSE(§,41;) taken times 10000
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The numerical example illustrates the decomposition of the MSE
of the two step forecast

MSE(§42:) = Var(u/)[a1al + ¥ia1ai%)] 4 Var(u;) [azal + ¥raral ¥]

(nxn)

+ Var(ul)[azas + ¥iazas V]

(1,000 0.343 0.086] [0.001 0.008 o.ooﬂ
MSE($1410,) = 17910343 0.125 0.035| +[1.78- [0.008 1040, 0.147
(nxn) 0.086 0.035 0.012 [0.004 0.147 0.026J

[0.001 0.002 0.002]
+ 1263 |0.002 0:002 0.003
0.002 0.003 wiz004

1.799 0.633 0.167
0.633 2.082 0.332
0.167 0.332 2.707

Var(ui),Var(uy), Var(ui*) and MSE(§42,) taken times 10000
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Variance Decomposition of Tokyo
Cholesky Ordering: Tokyo Singapore Korea
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Variance Decomposition of Singapore
Cholesky Ordering: Tokyo Singapore Korea
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Variance Decomposition of Korea
Cholesky Ordering: Tokyo Singapore Korea
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Variance Decomposition of Tokyo
Cholesky Ordering: Singapore Tokyo Korea
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Variance Decomposition of Singapore
Cholesky Ordering: Singapore Tokyo Korea

Percent

50

10

—10

90

/0

50

——Tokyo
— — -Singapore

= - —Korea

39



Variance Decomposition of Korea
Cholesky Ordering: Singapore Tokyo Korea

Percent

50

/0 90

50

10

—10

——Tokyo
— = -Singapore

= - —Korea

40



Application of Cointegration Methods in Finance

Internationally cross-listed stock prices during overlapping
trading hours: price discovery and exchange rate effects
Journal of Empirical Finance 12 (2005), 139-164

Joachim Grammig, Michael Melvin, Christian Schlag
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Overview

- Motivation
- Theoretical background and econometric modeling
- Data and empirical results

- Conclusion
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Hypothesis regarding price discovery in international equity trading and
empirical tests based on high frequency data

= Simultaneous trading of same asset at different trading venues

=  Worldwide competition for liquidity. Viability of securities markets depends on
performance of trading mechanismes.
Efficient capital market: Value-relevant information flows quickly into prices.

«  Q1: Price discovery in home market or at the world s leading trading venue?

- Bacidore/Sofianos (2000): “Price discovery takes place at home and NYSE
market participants take those prices as given”

«  D)“Winner market takes all"-hypothesis (Chowdry and Nanda, RFS 1991): In
case of international parallel trading one market will dominate price discovery.

«  Kim/Szakmary/Mathur (JBF 2000): Home market dominates price discovery.
Problem: Aggregation of price dynamics in daily data. Non-simultaneous trading
(time zones).

«  Q2: Symmetric reaction of stock prices to exchange rate movements?
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Starting point: 100 % Price discovery in home market

Pth . Stock price home market at time t in (log)
P! . Stock price US market in $ (log)
F:: $/ exchange rate (log)

E; and P} follow random walks

Ey By 1 +ef

Pth — Pth—l +5?
The US price tracks the home market price:

P} = P14+ E1+¢f
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Cointegration between home market price, US price and exchange rate

Arbitrage prevents long run deviations from equilibrium ——
log-exchange rate, log-€-Kurs und log-$-Kurs are cointegrated

P! — P} 4 E
Ply4et =Py — B —ef + By ‘|‘5§] =
et —ef +ef
with cointegrating vector (1 -1 1).

Only own innovations E?exert permanent impact on € price. (100% information share)

Only own innovations £¢ exert permanent impact on exchange rate. (100% information
share)

$-Preis: Merely transitory influence of own market innovations €;'.
Only home market and exchange rate innovations permanently impounded in US price.

45



In a general model the innovations of all three price series contribute to

the long run dynamics of the system

One cointegrating relation between €-price, $-price and exchange rate but...

- .. innovations 6?, ef and ¢'may exert permanent effects on all three price series
- .. their importance (the information share) is determined empirically.
Non-stationary VAR using €-price, $-price and exchange rate.

Cointegration between €-price, $-price and exchange rate.

Granger representation theorem > VECM

Write VECM in VMA representation and simulate VMA parameters

Decompose variance of long run effect of each price series into the effects caused by

the innovations of each series.

Variance Share = Information Share
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In a general model the innovations of all three price series contribute to
the long run dynamics of the system

Assumptions for a general model:

One cointegrating relation between €-price, $-price and exchange rate but...

-.. Innovations g?, gf and 5;‘5‘ may exert permanent effects on all three price series.

their importance (the information share) is determined empirically.
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Estimation of the information shares is based on a VECM

Non-stationary VAR using €-price, $-price and exchange rate.

Cointegration between €-price, $-price and exchange rate.

Granger representation theorem E— VECM

AF; = B1(a1 Pl 1 — P —a3E) + 611 AP + 5120APY 1 + 613AE;, 1 + ¢}
AP = Bo(ay Pl — an Py — agEy) + 521 AP/ | + 00 AP | 4 623AE; 1 + &

AP = B3(a1Pl 1 — apPY | — azFE}) + 631 AP | + 630 APY | + 633AF;_1 + &%
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By simulating the VECM we obtain the weight matrix from which the
information shares can be computed

Write VECM in VMA tation: [AEﬂ Fﬂ < “-2
I e iy st
Y11 Y12 P13
V= o1 oo o3| =1+¥;+W¥r +
Y31 Y32 Y33
permanent impact on exchange rate [@011 P15 ”9013] {ef
permanent impact on -Price = %Y1 Yoo Yo3| X ef}
permanent impact on $-Price {¢31 Y35 ¢33J Ls?J

follows from Stock/Watson’s common trends representation of cointegrated systems
P g y

Economoic common sense:11, = 0, ¥;3 = 0: Stock prices do not affect exchange
rate.

COintegration ImplleS ’(p22 — ¢32 and ¢23 — w33
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Hasbrouck (1995): Defines the information share of a market as its
contribution to the variance of the permanent component of a given price
series

Var(perm. impact on exchange rate)

= 2, Var(e§) + yi,Var(el) + 23Var(ed)

(neglecting contemporaneous correlations)

3, Var(ey)
W2 Var(es) + y2,Var(el) + y23Var(e?)

= Information Share

Hypothesized 115 =0, Y13 =0
100% of relevant information is generated in exchange rate series itself (Empirically
testable)

Information shares for home market and US market?
“Winner market takes all”’-hypothesis: One market dominates!

Sofianos’ “home market hypothesis”.
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The empirical analysis is based on high frequency data for three NYSE
traded German stocks and US/€ exchange rate data

XETRA (electronic trading system of German Stock Exchange) and NYSE

(TAQ) bid-ask prices for SAP, Deutsche Telekom (DT) and DaimlerChrysler
(DCX).

US/€ indicative quotes: Olsen & Associates, Zlrich

August-Oktober 1999

Mid-quotes from overlapping trading period NYSE-XETRA [GMT 14:30-16(:30)]

Equally spaced 10 seconds data generated from transactions data.
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A look at the data
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Comparing Deutsche Telekom and SAP one finds significant differences in

intra day quoting intensity patterns

Intensity
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—
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The empirical results

= Johansen’s method confirms the existence of ONE cointegrating relation between

stock prices and exchange rate.
o Implies two stochastic trends (efficient stock price and exchange rate).
= As expected, no permanent impact of stock prices on exchange rates.

= Only the US price incorporates exchange rate shocks. The home market does

not react. Unexpected (?) asymmetric effect.

= Support for “winner market takes all”’-hypothesis.

= Support for home market hypothesis, but qualitative differences are obvious:
Deutsche Telekom as “national” stock: Price discovery exclusively in Germany
DaimlerChrysler: The larger information share is generated in the German market

SAP (“New Economy”, significant US-sales): Largest US information share
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Information of share XETRA innovations w.r.t NYSE price
(Kernel density estimates based on 1000 Bootstrap replications (Li/Maddala,

1997))
XETRA—>NYSE
O
e
estimator and s.e.
— DCX
i % ] DCX 0.838 (0.024) T
é DT  0.942 (0.008) T AR
| SAP 0.752 (0.036)
QN
I
%
-
O
o OL

0.eo5 0./70 0./5 0.80 0.85 0.90 0.95 1.00

estimated Iinformation share
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Information share of NYSE innovations w.r.t. NYSE price

NYSE—->NYSE
O
m -
estimator and s.e.
DCX 0.089 (0.027) — DCX
D — DT
o Ol DT 0.009 (0.007) --- SAP
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Information share of exchanae rate innovations w.r.t NYSE price
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Information share of XETRA innovations w.r.t XETRA price
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Information share of NYSE innovations w.r.t XETRA price
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Information share of exchange rate innovations w.r.t XETRA price
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Summary

One cointegrating relation between exchange rate and $ and € prices found
in high frequency data.
Asymmetric price reactions in response to exchange rate shocks.

I”

Support for “winner market takes all”’-hypothesis: One market dominates
price discovery.

Support for home market hypothesis.

Qualitative differences between stocks. Truly national stocks vs. stocks with
larger international focus.

DaimlerChrysler: Takeover or merger among equals?
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The following quote from " A Blueprint for Success”, TSE,
October 1998, illustrates the competitive threat from U.S.
exchanges perceived by the non-U.S. exchanges.

"The TSE cannot afford to have the U.S. markets become the
price discovery mechanism for Canadian interlisted stocks.”
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|

permanent impact on exchange rate

permanent impact on -Price
permanent impact on $-Price

| 0.435 (0.027)

| 0.539 (0.027)

| 0.444 (0.023)

|

' 0.567 (0.010) 0.005 (0.011)
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SAP |-0.149 (0.021) 0.689 (0.024)
0.685 (0.025)

P11
Vo1
131

0.011 (0.012)
0.250 (0.033)
0.261 (0.034)

0.004 (0.008)]
0.081 (0.031)
0.085 (0.031)

0.001 (0.008)
0.287 (0.026)
0.288 (0.026)

Y12
Yoo
Y32

Y13
Y03

Y33

63



	To analyze the interdependence of three East Asian stock markets,(Tokyo, Singapore and South Korea) we set up a Structural VA
	The innovations of a VAR in primitive form are assumed to be both serially and cross-sectionally uncorrelated(orthogonal/pure
	Writing the VAR in standard form „solves“ the system
	The innovations of a VAR in standard form are, by construction, contemporaneusly correlated (composite innovations/shocks)
	The lag operator provides notational convenience
	We take expectations of the endogenous variables
	It is convenient to express a VAR in terms of deviations from the means
	With some additional notation a VAR(p) can be rewritten as a VAR(1)
	Consider a forward iteration of the VAR(1) system
	To obtain the Vector Moving Average (VMA) representation we focus on the first rows of the system
	Vector MA(∞) Representation
	Combining results shows how VAR and MA coefficients are related
	The VMA coefficients can be recursively computed from the VAR coefficients
	The Impulse-Response Function gives the response of the system to one unit shocks in the e
	This numerical example shows how  to obtain the VMA coefficients from VAR(2) parameters
	This numerical example shows how to obtain the VMA coefficients from the VAR(2) parameters
	This numerical example shows how to obtain the VMA coefficients from the VAR(2) parameters
	The plots show a graphical representation of the VMA coefficients
	To  obtain the idiosyncratic shocks from the composite shockswe need the structural parameters, the matrix B0
	To identify the structural parameters B0, we decompose the variance covariance matrix of composite innovations (Choleski-Dekom
	The idiosyncratic innovations can then be backed out from the composite innovations
	The numerical example shows the decomposition of the variance covariance matrix in the present application
	The composite shocks are generated as linear combinations of the pure innovations
	In most applications in economics and finance you want to trace a shock in the pure innovation
	To attribute information shares to the markets we  consider a decomposition of the Mean Squared Forecast Error
	The Choleski ordering allows a decomposition of the variance of the composite innovations into the contributions of the pure i
	We can also decompose the MSE of the s-step ahead forecast
	The numerical example illustrates the decomposition of the variance covariance matrix of the composite shocks (MSE 1 step fore
	The numerical example illustrates the decomposition of the MSE of the two step forecast
	Variance Decomposition of TokyoCholesky Ordering: Tokyo Singapore Korea
	Variance Decomposition of Singapore Cholesky Ordering: Tokyo Singapore Korea
	Variance Decomposition of Korea Cholesky Ordering: Tokyo Singapore Korea
	Variance Decomposition of TokyoCholesky Ordering: Singapore Tokyo Korea
	Variance Decomposition of Singapore Cholesky Ordering: Singapore Tokyo Korea
	Variance Decomposition of Korea Cholesky Ordering: Singapore Tokyo Korea
	Overview
	Hypothesis regarding price discovery in international equity trading and empirical tests based on high frequency data
	Starting point: 100 % Price discovery in home market
	Cointegration between home market price, US price and exchange rate
	In a general model the innovations of all three price series contribute to the long run dynamics of the system
	In a general model the innovations of all three price series contribute to the long run dynamics of the system
	Estimation of the information shares is based on a VECM
	By simulating the VECM we obtain the weight matrix from which the information shares can be computed
	Hasbrouck (1995): Defines the information share of a market as its contribution to the  variance of the permanent component of
	The empirical analysis is based on high frequency data for three NYSE traded German stocks and US/€ exchange rate data
	A look at the data
	Comparing Deutsche Telekom and SAP one finds significant differences in intra day quoting intensity patterns
	The empirical results
	Information of share XETRA innovations w.r.t  NYSE price(Kernel density estimates based on 1000 Bootstrap replications  (Li/M
	Information share of NYSE innovations w.r.t. NYSE price
	Information share of exchange rate innovations w.r.t  NYSE price
	Information share of XETRA innovations w.r.t  XETRA price
	Information share of NYSE innovations w.r.t  XETRA price
	Information share of exchange rate innovations w.r.t XETRA price
	Summary

