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Abstract Cognition in technical systems is especially
relevant for the interaction with humans. We present
a newly emerging application for autonomous robots:
companion robots that are not merely machines per-
forming tasks for humans, but assistants that achieve
joint goals with humans. This collaborative aspect en-
tails specific challenges for AI and robotics. In this ar-
ticle, we describe several planning and action-related
problems for human-robot collaboration and point out
the challenges to implement cognitive robot assistants.

1 Motivation

Research on intelligent autonomous robots has mainly
focused on machines that perform certain services for
humans, such as robot butlers or autonomous cars [24,
26,16,7]. The interaction in such systems is restricted
to a user interface to give a task to the robot and when
acting, such a robot has to ensure the safety of humans
in its vicinity.

A new class of robot applications takes a different
view: a robot assistant performs tasks together with a
human in order to achieve a joint goal. This approach
combines the cognitive capabilities and manual dexter-
ity of humans with the strength, endurance and accu-
racy of robots. Rosenthal et al. [20] use the term “sym-
biotic relationship” to describe the reciprocal comple-
mentation of skills.
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On the one hand, the combination of human and
robot skills moves useful robot applications closer to the
state of marketable products. Whereas a robot butler
would be expected to prepare a cup of tea all by it-
self, a robot assistant might only be expected to bring
the kettle and the tea for a person to prepare the tea
herself. On the other hand, the close interaction and
collaboration with humans requires a range of new cog-
nitive capabilities for robots in order to coordinate the
human’s and robot’s actions in a way that feels natural
to people.

This paper is concerned with the action side of human-
robot collaboration. This includes AI techniques for
planning and plan execution as well as specific action
primitives for navigation and joint manipulation tasks.

1.1 Application Scenarios

To illustrate the idea of assistant robots, we present two
application scenarios where a collaboration of a human
and a robot can be of substantial help, even if the robot
has restricted capabilities.

The aging society is a pressing problem in all indus-
trialized countries. Attending elderly people in nursing
homes is not only costly, but is also perceived by most
elderly people as diminishing the quality of life. The
need to move into a nursing home is often caused by
the inability to perform activities of daily living such
as eating, washing and dressing, which can be caused
even by minor bodily or cognitive impairments.

Collaborative robot assistants are a promising ap-
proach to enable elderly people with minor disabilities
to live an independent life for a longer time. In such a
scenario, the robot would not take over all of the per-
son’s tasks, but rather stimulate the human to be ac-
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tive and participating and assist in tasks that the per-
son cannot perform on his own. This behavior would
lead to a longer independence of elderly people in two
ways: 1) the robot would assist in tasks that the per-
son cannot perform because of some minor disabilities
and 2) the person would be encouraged to keep per-
forming as much of his everyday activities on his own.
Note that such assistive robots do not need to be capa-
ble to perform general household activities completely
autonomously. In consequence, the time to market for
such robots is reduced in comparison to general fully
autonomous systems.

Another interesting application domain for collab-
orative robots are workplaces such as factories or of-
fice buildings. The demands on modern manufacturing
are moving towards mass customization, which means
that production faces high flexibility requirements. The
machines used in current production environments are
very accurate and reliable, but lack the necessary flexi-
bility. On the other hand, humans have the capability to
adapt quickly to new requirements and situations. The
combination of the flexibility of human workers and the
strength and accuracy of machines is a promising ap-
proach for future manufacturing environments.

Although production environments can be adapted
to the needs of robots (as is currently the case), the
cognitive workload for humans in such an environment
must not be neglected. The use of technology some-
times has not led to the expected advantages, but has
created new problems. For example in the domain of
automated airplane control missing transparency of the
system and limited coordination between humans and
machines has caused serious accidents [22]. Collabora-
tive robot technology would provide a solution, which
takes into account human needs at the workplace and
provides the additional advantages of automation.

1.2 Challenges

The quality and usefulness of autonomous robots is
usually measured in terms of time efficiency, quality
of task achievement and reliability. When collaborating
with a human, the focus shifts from these quantitative,
measurable units to human-centered evaluation criteria.
Most important for the interaction is that the human
can predict and understand the robot’s actions without
additional need of communication. We use the term leg-
ible to describe behavior that is intuitively understood
by humans as part of the joint plan [1].

Achieving legible behavior requires substantial knowl-
edge of how humans achieve their tasks, especially when
collaborating with others. Human behavior is usually
quite efficient, but it is also largely guided by habits,

cultural conventions and social rules. For example, when
constructing a product in a factory, a robot that brings
the component parts must know in which order the hu-
man worker likes to combine those parts and when the
robot should be ready to assist with a joint manipula-
tion task. When a part is manipulated by both partners,
the robot must also be aware of the specific preferences
of the worker to apply the correct force for the joint ma-
nipulation task. Similarly, when navigating, the robot
must make clear where it is heading and must make
sure that humans near its path do not feel threatened.

Legibility is connected to the perceived safety and
comfort of humans. Ensuring the safety of humans is
a requirement for all kinds of robots. But while this
criterion is relatively easy to fulfill in industrial envi-
ronments, where robots are spatially separated from hu-
mans by fences or other safety measures, a robot acting
in everyday household or work environments must pos-
sess enough cognitive capabilities to assess situations
correctly and always act in a safe way. What is more,
humans have a subjective feeling of safety and comfort.
Even if a robot has been developed with the utmost
safety standards, a person might feel uncomfortable if
a robot passes closely behind his back or moves its arms
very fast. Legibility is a prerequisite to establish human
comfort — if the intention of the robot is understand-
able, its actions can be expected and are not felt as a
threat — but it must be complemented by more specific
considerations.

Another challenge is the human as a collaboration
partner for the robot. Humans are very flexible in how
they decide on and achieve their goals. A person might
not even realize that she took different paths in a build-
ing to reach the same location or that she changed the
order of constructing a product. But for a robot, such
small changes raise the question if this is a normal be-
havior deviation or if the human has committed some
kind of error or has changed her mind and is trying to
achieve a new goal.

In the following sections, we explain in more detail
our research on plan-based control for joint activities.
We present the planning and plan execution mecha-
nisms and the underlying actions for human-aware nav-
igation and joint manipulation that are needed in joint
human-robot plans. We will show the specific challenges
for these tasks and explain our current research activ-
ities. We will then discuss the relation of these com-
ponents and their integration into complete cognitive
systems.
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2 Collaborative Planning

Joint action plans are necessary to coordinate the activ-
ities of a robot and a human to achieve a joint goal. The
planning problem in this collaborative setting comes
with two additional requirements compared to single-
robot planning: 1) there are special kinds of actions
involving contributions from the human and the robot
and 2) the primary objective measure to evaluate plans
are legibility and human comfort.

These requirements imply the need for new plan rep-
resentation mechanisms. A plan cannot only be com-
posed of robot actions with pre- and postconditions,
but has to include the actions of humans. This problem
has received only little attention so far. Joint intention
theory [4] provides a basis for modeling the commit-
ment of the cooperation partners to a joint tasks. The
Human-Aware Task Planner [2] combines this theory
with a classical planning approach. It uses hierarchi-
cal task planning to plan joint courses of action and
evaluates the generated plans with respect to social ac-
ceptance.

A problem with classical planning approaches is the
high flexibility that is necessary in collaboration sce-
narios. One possibility is the use of reactive planning
[6], which means that plans are represented in a richer
language than partially ordered action sequences and
allows to specify contingencies, parallel task execution
and failure handling [15]. Reactive plans can take into
account several courses of action of the human and thus
are valid for a wider range of human behavior.

Reactive plans can be generated and modified by
transformational planning. The transformational plan-
ner we use [17] has reduced the execution time of a
single-robot plan for setting the table by up to 20%. In
this scheme a robot searches through the space of pos-
sible plans by replacing parts of a plan by other sub-
plans and then testing these plans by projecting them.
Transformation rules are specified by patterns, which
are matched against a plan and when applied produce
the new plan. Projection is a kind of generalized simu-
lation, which allows the robot to assess the quality of a
plan.

To use transformational planning for joint human-
robot plans [10], the transformation rules must be com-
plemented with rules to change the executing agent of
an action in a plan and to replace a sequence of single-
agent actions by collaborative actions. Another chal-
lenge is the projection of a generated plan. For single-
robot scenarios, plans can be projected by using a phys-
ical robot simulation and evaluating the output. In the
collaborative case, we would have to simulate human
behavior. As there is no accurate simulation of humans

available, the projection must be performed with mod-
els of human behavior, abilities, habits and social rules.

These models fall in two classes: 1) models that
should be derived from social and psychological studies
and can be provided by hand-coded decision rules or
constraints on plans, and 2) individual preferences and
abilities of a user that can change over time and should
be acquired and updated constantly by the robot in the
interaction with the human.

Examples for the first class of models are the most
likely next action of a person, the space that will be
occupied by a person in the near future or the inap-
propriateness of certain actions of the robot (to touch
food, for instance). Some general knowledge about hu-
mans can be used implicitely by the choice of the action
preferences of the robot. For example, we assume that
in joint tasks it is appropriate to avoid unnecessary spa-
tial conflicts. When choosing an action, our algorithm
predicts possible conflicts by using the human-aware
navigation planner described in the next section and
selects an action with minimal spatial interference.

To support the second kind of models, a robot needs
to monitor its environment constantly to detect use-
ful experience for learning and updating models of the
user. As a part of the transformational planning frame-
work, we have developed the Robot Learning Language
[9]. Using these language constructs, a learning problem
and the necessary experience is defined by a declarative
specification, which is then used to generate code that
automatically recognizes relevant experience data and
that can be called to execute a learning problem. This
scheme allows a robot to repeat the learning process
whenever new experience is available. It also makes it
possible to adapt to changed requirements of a person.
For example, the capabilities of an elderly person might
change over time and a robot assistant must be able to
adapt its plans accordingly.

3 Human-Aware Navigation

For carrying out joint action plans, the underlying ca-
pabilities of the robot also have to take into account
the presence of the human in the task. In this section,
we consider navigation tasks, in which a robot not only
treats the human as a moving obstacle, but takes into
account human comfort and social rules to maximize
legibility of the overall task.

Although robot navigation has been subject to ex-
tensive research, there has been done only little work
considering human comfort. Tadokoro et al. examine
robot motion in the presence of humans [25] using a
probabilistic prediction model of human motion. The
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(a)
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Fig. 1 (a) Path found by classical motion planning systems.

(b) Human-aware plan found by HANP.

goals of this work was collision avoidance and efficiency,
but social rules and comfort are not taken into account.
In contrast, the social aspect of navigation was the focus
of the work of Hansen et al. [8], who provide a solution
for positioning a robot in relation to a human according
to the situation classified by motion pattern analysis.
Robots moving efficiently and acceptably in crowds of
people have been studied by Müller et al.[18].

We are interested in robot navigation tasks to reach
a certain goal position taking into account the safety
and comfort of humans. For instance, Figure 1 (a) il-
lustrates a path generated by a standard motion plan-
ner. It is uncomfortable, because the robot passes the
person’s back at a very close distance.

A collaborative robot should also be able to deter-
mine where a given task should be achieved, how to
place itself relative to a human, how to approach him,
how to hand an object and how to move in a relatively
constrained environment in the presence of humans. In
this article, we focus on those decisions concerned with
the navigation path in different situations.

The Human Aware Navigation Planner (HANP) [23]
models the safety and comfort of humans with differ-
ent kinds of cost functions, which can be adapted to
specific situations and user needs. The most basic cost
types to be considered in all cases are safety, which is
modeled by a Gaussian cost function around the hu-
man and hidden zones, which assigns higher costs to
areas behind large objects, which are not visible to a
person. The hidden zones’ costs take into account the
current distance between a human and the obstacle to
raise costs when humans are near the other side of the
obstacle.

Using the combination of all cost functions in a dis-
cretized representation of the world, HANP uses A*
search to compute an optimal path in terms of human
comfort.

This approach has been validated in different sim-
ulated domains with a varying number of humans and
different pieces of furniture and obstacles. HANP is fast
enough to replan and adapt its path along the exe-
cution. If a change occurs in the environment, like a
change in human state, position, orientation or appear-
ance of an obstacle, fast computation times allow online
replanning and a smooth switch to the new path [23].
The quality of the found navigation paths is illustrated
in Figure 1 (b), which shows an alternative path con-
sidering the cost functions for approaching humans.

3.1 Approaching Humans

When a robot and a human need to perform joint ma-
nipulation tasks, one challenge is how the robot should
approach the human. We assume that the human to be
approached is relatively static, either standing or sit-
ting. The cost function for the safety grid is adapted to
the human posture, assuming that a standing person
will feel less threatened by an approaching robot than
a sitting one. In addition to safety and hidden zones’
costs, we add visibility costs, which model the effort of
the person to trace the robot. This means in particu-
lar, that a robot avoids to pass a person closely at the
back, thus allowing the person to see the robot when it
is approaching.

The definition of cost functions does not guarantee a
human-friendly behavior unless the costs are calibrated
with the actual comfort felt by humans. The data col-
lected in two user studies was used to find appropriate
cost parameters [5]. In these user studies, a robot ap-
proached a sitting person from different directions with
different speeds with the purpose of handing over an
object to the person.

3.2 Avoiding Humans

The method for approaching humans generally works
well when humans in the environment are relatively
static and there is enough room for the robot to find
paths with low costs. Because HANP calculates paths
very efficiently, it allows to recalculate paths constantly
while the people are moving in the world. However,
this constant reconsideration of the path may lead to
robot behavior, where the robot constantly changes its
intended course of action, which diminishes legibility.
Moreover, the space in everyday environments like of-
fices or households is very restricted, which means that
an overcautious robot will end up waiting for a path to
become free and never reaches its goal.
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For the navigation tasks with moving humans, we
lowered the safety costs to allow a robot to plan a poten-
tially unsafe path along a position, which is currently
occupied by a human. This measure assumes that the
people are moving and might have cleared the way be-
fore the robot has reached their position. Besides, even
if a person in the robot’s way did not have the inten-
tion to move, the approaching robot might initiate the
human to step aside.

Another difference in the cost functions is that we
replaced the visibility cost of the approaching case with
a function that assigns a higher cost to the area in front
of the human. At first, this seems a contradiction to the
rationale for the visibility cost, because the robot will
prefer paths behind the back of the person. But this
cost function assumes a linear movement of the person
and thus leads the robot to plan a path which makes
way for the human to pass first.

The plans HANP generates with these modified costs
are potentially unsafe. Therefore we use a controller
that recognizes imminent conflict situations and stops
the robot early enough to avoid collisions.

The navigation method for dynamic navigation tasks
has been tested in a simulated kitchen domain [13]. The
robot behavior was more legible in that the robot seem-
ingly did not switch between paths (although the plan
was recomputed constantly) and the intention of the
robot to reach a certain goal position was better recog-
nizable.

4 Joint Manipulation

Many assistive tasks require special actions in which
both the human and the robot have to take part, for
example jointly carrying an object, holding an object
steady for the other agent to manipulate on it, lifting
an elderly person from the bed or simply handing over
an object from one agent to another.

In the following we first describe the link between
human-aware navigation to approach a human and the
manipulation part of indicating an intended handover.
After that, we present the cognitive challenges of jointly
carrying an object.

4.1 Initiation of Joint Manipulation Tasks

In Section 3.1 we have described the considerations for
a robot to navigate towards a human with the goal
of a joint action like handing over an object. In most
robots, navigation and manipulation are distinct mod-
ules, which operate sequentially. This leads robots to
approach a human, stand in front of her and then lift

the arm. In a realistic environment with uninstructed
people, a person would probably not even wait for the
robot to lift its arm, but consider it as an obstacle and
proceed on her way. A robot must take care to make
its intention legible for initiating a joint manipulation
task.

A first step to implement joint manipulation and
navigation is to understand how humans coordinate
such movements. There have been several approaches
to study the navigation behavior of humans and to use
these findings for robot behavior [11,21], the combi-
nation of navigation and arm movement has not been
studied so far.

We have investigated human behavior for prepar-
ing a handing over task with the goal of finding ap-
propriate parameters for when and how a robot should
start its manipulation actions [3]. Not surprisingly, the
study found that the phases of approaching and the arm
movement blend smoothly into each other. The exact
parameters of when to lift the arm and at which speed
varied among subjects, but the overall profile of the
task execution was comparable.

The study also showed that the parameters of the
handing over action seem to be independent of the re-
ceiving subject. In a second experiment, the receiving
human was replaced by a table. Even though the goal
position for “handing over” was different in the table
case, the parameters for preparing this action were sim-
ilar.

This behavior for handover tasks helps humans to
predict the intentions of other people. In ongoing work,
we implement the observed strategy of early task prepa-
ration on a robot. We will then investigate if this im-
itation of human behavior enhances legibility for the
receiving human.

4.2 Physical Cooperation

Whereas in a handover task the agents jointly hold the
object for a very short time, there are other forms of
interaction, where an object is manipulated jointly over
a longer time period. Figure 2 shows a scenario with a
human and a robot jointly carrying a bulky object in a
constrained environment.

In this kind of interaction, haptic feedback, i.e. the
measurements from force sensors, can be used for con-
trolling the robot’s movements. The direct coupling of
the actions of humans and robots requires special at-
tention regarding the stability of the coupled dynamical
systems and human comfort and safety, and raises the
demand for immediate compliant reaction under real-
time constraints.
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The classical approach for joint manipulation tasks
is — similar to other aspects of human-robot interaction
— that the robot is merely a passively following tool
for the human. In this paradigm, the human leads the
joint manipulation operation, while the robot serves as
an additional load carrier, which reactively adapts its
behavior based on force and position input from the
human to share the overall task load [12,28].

Similar to task planning for joint activities, this
use of a robot as a pure tool limits the capabilities of
the human-robot system. Combining abilities of both
agents can make it possible to achieve goals that are
out of reach with the human/master — robot/slave con-
cept. For one thing, it has been shown mathematically
that for two agents to navigate an object jointly in nar-
row space, two initiative taking partners are necessary
to achieve the desired trajectory [14]. Also the differ-
ent perception and manipulation capabilities of both
agents and limited visibility are arguments to combine
their cognitive capabilities.

A challenging aspect of joint physical actions is that
the task of negotiating a feasible path and the action
execution are performed concurrently. Consider as an
example two humans jointly carrying a bulky object
through a narrow passage with the person at the ob-
ject’s front walking backwards and the partner at rear
facing forwards. Without explicit prior negotiation of a
joint plan or any other than haptic interaction during
task execution, from our experience humans will be able
to fulfill the task. Both partners combine their percep-
tual capabilities to produce a collision-free path, indi-
cating proximity and divergent individual plans through
interaction forces. The agents’ force contributions to
the physical trajectory following task are dynamically
shared, based on capabilities and user-preference poli-
cies. Task sharing strategies and their influential factors
are currently under investigation.

The generation of joint plans for motion and dy-
namic interaction behavior faces similar challenges as
the formulation of task plans: the human part of the
action must be taken into account at planning time,
but only the robot’s force input and its compliance is
controllable. Thus, such plans must be flexible enough
to account for unexpected behavior of the human part-
ner.

The generation of motion plans for motion and dy-
namic interaction behavior faces similar challenges as
the formulation of task plans: the human part of the
action must be taken into account at planning time,
but only the robot’s force input and its compliance is
controllable. Thus, such plans must be flexible enough
to account for unexpected behavior of the human part-
ner.

Fig. 2 Joint manipulation task of a human and a robot using

haptic interaction.

Our planning problem is defined by a set of mo-
tion primitives, which are inspired by observations in
nature [19]. The parallel and sequential composition of
such motion primitives is a motion plan. We use an ef-
ficient sampling-based hypothesize-and-test method to
generate those plans. Because of its efficiency, the algo-
rithm can be repeated constantly to ensure the neces-
sary flexibility to react to human motions. An extension
to planning over a set of sensori-motor primitives, i.e.
including both partners’ reactive dynamic behaviors is
envisaged.

As in navigation and task planning, a planner for
joint motion needs an objective function to assess the
comfort, legibility and respect for social rules in combi-
nation with standard criteria such as minimizing the ap-
plied force or reducing the duration of the task. Finding
appropriate objective functions for human-robot joint
physical actions is subject to ongoing research.

5 Discussion

Controlling a robot to collaborate closely with humans
includes all levels of activities from task planning and
plan execution to specific capabilities such as naviga-
tion and manipulation. The different aspects we have
presented show that the challenges listed in Section 1.2
apply to all the levels of robot control. However, the
solutions have to depend on the specific problem: flex-
ibility on a task planning level can be achieved by re-
active planning methods and needs sophisticated skills
for assessing unexpected human behavior. On less ab-
stract levels, the control loops are much tighter and the
algorithms are efficient enough to allow continuous re-
calculation of values as long as this does not interfere
with the legibility of the behavior.

Another observation from this article is that the dif-
ferent aspects of joint activities should not be regarded
as completely separate problems: On the level of task
planning and plan execution, the spatial considerations
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of the environment play an important role (Section 2).
This means that already on a task planning level the
later navigation and manipulation behavior of the robot
is important to allow legible actions that respect human
comfort. Also navigation and manipulation should not
be seen as completely separate. The decision of the nav-
igation goal position is highly influenced by subsequent
manipulation actions. And Section 4.1 has made the
point that the intention to initiate a joint manipulation
task can be communicated implicitly by a smooth tran-
sition between the navigation and manipulation action.

In this work we have focused on the action side of
robot control for assistive technology. Except for the
physical cooperation, where the readings of the force
sensors can be used directly, the necessary perception
to perform the actions is a complex issue of its own.
For the work presented here, a robot must know the
positions, orientations and to some extent also the hand
movements of humans. For the reactive task planning,
more abstract interpretations are needed to recognize
the current action (like reaching, gripping or searching)
[27] and predict subsequent actions.

These perception problems are subject to ongoing
research, but are not yet at a reliable stage to use them
as “plug-and-play” input components for the control
methods presented in this paper. To make the develop-
ment of these methods efficient and scientifically valid1,
we have designed specific evaluation frameworks or pro-
vide the perception by task-specific perception methods
[23] or marker-based tracking systems.

For instance, to work on reactive task planning,
we have extended an existing physical simulation of a
kitchen robot with a user interface to control a robot in
simulation. This interface allows the user to move the
robot in all directions and to grip and put down objects
(which are preprogrammed methods). This computer-
game-like interaction makes it possible to place two
agents in the world: one is controlled by a human opera-
tor, the other works as an autonomous robot (Figure 3).
Using a physical simulation allows to reproduce real-
world inaccuracies in plan execution for the robot, but
the perception can be regulated from complete observ-
ability to noisy images. Evaluating plan-based control
in simulation has the additional advantages of guaran-
teeing safety for human subjects and making the exper-
iments repeatable (which is next to impossible on cur-
rent completely integrated robots). The physical simu-
lation in combination with a geometric simulation has
also been used to develop and evaluate the navigation
capabilities described in Section 3.2.

1 When executing imperfect action with imperfect perception,
it is not possible to assign the success or failure to one of the

subsystems.

Fig. 3 Simulated collaboration of a human and a robot in a
kitchen environment.

Although there are currently ways to develop action
and perception for collaborative robots more or less
independently, an important next step is to integrate
both sides more closely. It cannot be expected that au-
tomatic perception will reach the accuracy of ground-
truth data in simulation and the robot’s actions can
support perception, for example by actively searching
for objects. In this respect, completely integrated cog-
nitive systems are an important basis for collaborating
assistive robots.

6 Conclusion

Robots that are able to engage in joint activities with
humans are a promising scheme for assistive technol-
ogy, for example in the context of work places or elder-
care. On the one hand, the combination of capabilities
reduces the demand on dexterity and perceptual capa-
bilities of the robot, because these are typical human
skills. On the other hand, the need for cognitive inter-
action with humans is especially strong.

The challenges for implementing assistive robots are
the same at all levels of planning and action execution:
1) How can a robot show legible behavior? It has to
make its intentions clear to the human, but this pro-
cess is mostly implicit and happens during the joint task
execution. 2) How can not only the objective safety of
humans be maximized, but also the subjective feeling
of comfort? A crucial problem here is the modeling of
human preferences, which comprises general models of
human behavior and specific models for cultural con-
ventions and personal habits. In Section 4.1 we have
given an example of how neuroscience and psychology
can provide valuable input for AI and we are convinced
that such collaborations are an important step towards
legible, safe robot behavior. 3) How to make robot be-
havior flexible enough to deal with human deviations
from presumed fixed plans or action patterns? In par-
ticular, it is difficult to decide if a person’s behavior is
compliant with the joint goal or if there is some kind of
failure or the human has decided to abandon the joint
goal.
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In this article we have presented three specific as-
pects of joint activities from our current research activ-
ities: collaborative task planning, human-aware naviga-
tion and joint manipulation. We have briefly sketched
the necessity to integrate all the levels of plan-based
control as well as perception skills in a complete cogni-
tive framework.
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