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1. Introduction to the Probit model

Recall our example from the introduction:
Binary choice variable: voting yes-no y < {0,1}
Explanatory variable: household income X € R™

y
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Introduction to the Probit model — latent variables

We aim to model the probability that the observed binary
variable takes one of its values conditional on x, such as

p=P(y, =1]X)

where () < p<l1

We need to derive this probability to estimate the model by
maximum likelthood
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Introduction to the Probit model — latent variables

We think of the process generating observations on discrete
outcome y as driven by an unobserved (latent) variable y*
which can take all values 1n (-00, +00).

Example: y* = net utility from labour income, y = observed
labour market participation

the underlying model 1s in terms of the latent variable
and 1s linear

Ly*>0
Vi 0,y,*<0
yi =XB+¢
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Introduction to the Probit model — latent variables

Probit 1s based on the latent model:

P(Y; =1]x)=P(y; >0[X) )
_P(Xf+& >0|X)
—P(s > X | %)
C_F(-Xp) _Xﬂ
Assumption: Error terms are independent and normally
distributed: |
Py =119 =1-0(- X0 o=

=®d(xf) because of symmetry ‘/:':
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Background on probability distribution functions (PDF)

PDF: probability distribution function f(x)

Example: Normal distribution:

Example: Standard normal distribution:
N@,1),u=0,c=1

;o
)=z
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Notation and statistical foundations — CDF

CDF: cumulative distribution function F(x)

Example: Standard normal distribution:

)= [ pe o
The cdf is the integral of the pdf. It 1s bounded between 0
and 1, as required 8
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2. Estimation

The probability of choosing y. = 1 1s

O ()

Similarly, the probability of choosing y. = 0 1s
- ®(xB)

Combining these, the likelihood of observing unit 1 in the
state actually chosen 1s

L (%,,B) = ©(xp)" (1-©(xp))
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Derivation of the log likelihood function

Taking the product over all units in the sample1=1,....,n
gives the likelihood function

L(y [%.8) =T @B [1-@(xp)] "
[lora-o)

It 1s more convenient to use the log likelihood function:

lnL:ZYi In®; +(1-Y;,)In(1-D;)

10
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The ML principle

The principle of ML: Which value of [ maximizes the
probability of observing the given sample?

OlnlL _ | Yi®; n (1- yi)(_(Pi)_X_
op = O, -0, |
:Z yi_cDi 0 Xigo
| 0,(1-D;)

Usually, use k explanatory variables rather than one

The gradient vector 0ln L(0)/00 1s also called the score
vector 11
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Distribution of the ML estimator

Under certain regularity conditions (see Cameron / Trivedi,
p. 142) the MLE defined by dIn L(6)/00 =0 1s consistent

for 0, and
. d
Jn(®,, —0,)>N|0,-A"]
. ,0°InL(0)
=plimn™
where Ay =D 5050" ,

Then, the asymptotic distribution of the MLE can be
written as

- -1
a 2
5 “nlo._E Ka lnL(O)j

0000’

_ | 12
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Derivation of the MLE

It can be shown that the likelihood function for the
Probit model is globally concave = there exists only
one maximum of the likelihood function

However, the first-order conditions d1ln L(0)/00 =0
cannot be solved analytically

Hence, need to find numerical solutions

Mostly used: Newton-Raphson Algorithm

13
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Newton-Raphson Algorithm

[terative procedure: from an estimate in the s-th step, apply
a rule that finds the next-step estimate

The rule must be chosen such that it ensures a move
towards the maximum

Process stops if the distance between steps s and s+1
becomes very small

14
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Newton-Raphson Algorithm

In the Newton-Raphson case, the rule 1s
és+1 = és o Hs_lgs

where g_is the gradient g; =01nL(0)/30

o derived from
S

step s and
B 0’ In L(0)
© T 0000" |

Intuition: 1f the score is positive, need to increase 0 in order
to get closer to maximum (note that H 1s always negative,

as claimed previously).
15
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Newton-Raphson Algorithm

B, — — [,
I B : B Taken from:
| | . .
/—\ \ K. Train (2003), Discrete
Choice Methods with
Positive slope =% move forward Negative slope=p move backward Simulation, Cambridge
LL(B) LL(B) University Press
Figure 8.2. Direction of step follows the slope. http://elsa.berkeley.edu/b
ooks/choice2.html
B, B B, B (Chapter on numerical
: : B : | B maximisation highly
/q //_I\ recommended!)
Greater curvature =3 Less curvature =b
smaller step larger step
LL(B) LL(B)

Figure 8.3. Step size is inversely related to curvature.

16
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Newton-Raphson Algorithm

What happens if the likelihood

function is not globally concave? Taken from:
«— B, K. Train (2003), Discrete
B Choice Methods with

Simulation, Cambridge
University Press

http://elsa.berkeley.edu/b
ooks/choice2.html

(Chapter on numerical
maximisation highly
LL(B) recommended!)

Figure 8.6. NR in the convex portion of LL.

17
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Analysis of the effect of a new teaching method in
economic sciences

Data:

Obs.No. GPA
2.66
2.89
3.28
2.92
4
2.86
2.76
2.87
3.03
3.92
2.63
3.32
3.57
3.26
3.53
2.74

a A ala A a
mm#w,\)_\ocooo\lom-bww—\

TUCE
20
22
24
12
21
17
17
21
25
29
20
23
23
25
26
19

P

S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

Grade
0

OO 2~ 000 20000 ~0 0O0O0o

Obs.No.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

GPA
2.75
2.83
3.12
3.16
2.06
3.62
2.89
3.51
3.54
2.83
3.39
2.67
3.65
4
3.1
2.39

TUCE
25
19
23
25
22
28
14
26
24
27
17
24
21
23
21
19

P

S
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Grade

NI N P N PN N o I = I Y = I Y )

Source: Spector, L. and M. Mazzeo, Probit Analysis and Economic Education. In:

Journal of Economic Education, 11, 1980, pp.37-44

18
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Application — Variables

Qrade

Dependent variable. Indicates whether a student improved his grades after
the new teaching method PSI had been introduced (0 =no, 1 = yes).

PSI

Indicates if a student attended courses that used the new method (0 =no, 1
= yes).

GPA
Average grade of the student

TUCE

Score of an intermediate test which shows previous knowledge of a topic.

19
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Application — Estimation

Estimation results of the model (output from Stata):

. probit grade psi tuce gpa

Iteration 0: log likelihood = -20.59173
Iteration 1: log likelihood = -13.315851
Iteration 2: log likelihood = -12.832843
Iteration 3: log likelihood = -12.818826
Iteration 4: log likelihood = -12.818803

Probit estimates Number of obs = 32

LR chi2(3) - 15.55

Prob » chi2 = 0.0014

Log likelihood = -12.818803 Pseudo R2 = 0.3775

grade Coef. Std. Err. Z P>|z| [95% Conf. Interval]

psi 1.426332 .595037 2.40  0.017 .2600814 2.592583

tuce .0517289 0838901 0.62 0.537 -.1126927 2161506

gpa 1.62581  .6938818 2.34  0.018 2658269 2.985794

_cons -7.45232  2.542467 -2.93  0.003 -12.43546  -2.409177

20
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Application — Discussion

ML estimator: Parameters were obtained by maximization
of the log likelihood function.

Here: 5 1terations were necessary to find the maximum of
the log likelihood function (-12.818803)

Interpretation of the estimated coefficients:

- Unlike in OLS, estimated coefficients cannot be
interpreted as the quantitative influence of the rhs variables
on the probability that the lhs variable takes on the value
one.

«  This 1s due to non-linearity and using the standard normal
distribution for normalisation.

21



Bernhard Boockmann Applied Microeconometrics Spring 2009

Coefficients and marginal effects

The marginal effect of a rhs variable is the effect of an
infinitesimal change (dummy variables: unit change) of this
variable on the probability P(Y = 1|X = x), given that all
other rhs variables are constant:

OP(y; =1|%) _ OE(Y; | %)
OX. OX

=p(xA)p

Recap: The slope parameter of the linear regression model
measures directly the marginal effect of the rhs variable on

the lhs variable.
22
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Coefficients and marginal effects

The marginal effect depends on the value of the rhs
variable.

Therefore, there exists an individual marginal effect for
cach person of the sample:

23
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Two different types of marginal effects can be calculated:

- Average marginal effect
Stata command: margin

3737514

Marginal effects on Prob(grade==1) after probit

Coef. Std. Err, z Pz
.3637883 1129461 3.22 0.001
011476 0184085  0.62 0.533
1399912 2,67 0.008

[95% Conf. Interval]

1424181

- 024604
.0593741

5851586
047556
6481253

-  Marginal effect at the mean:
Stata command: mfXx compute

24
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Coefficients and marginal effects — Computation

. Principle of the computation of the average marginal

effects:
5
o |_"I'|:_'!l'= 'I:-':|='_'::':.ﬁ:
e [ P EF'rI::I.'_-'!lx:'J..-"ﬁZ':
| ———
I'H-h i
[l
=
LR,
=2
i
h:l- -—
] - : i
= : - |
) o ~
- *1 *2 "3

. Average of individual marginal effects
25
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Coefficients and marginal effects — Computation

Computation of average marginal effects depends on type
of rhs variable:

«  Continuous variables like TUCE and GPA:
1 & .
AME =3 o(xP)B
i=1

«  Dummy variable like PSI:
1 n ' k ' k
AME =— B X =1)—D(x B x =0
+2] QX =D-0X X =0)

26
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Coefficients and marginal effects — Interpretation

Interpretation of average marginal effects:

«  Continuous variables like TUCE and GPA:
A change of TUCE or GPA of size 1 changes the
probability that the lhs variable takes the value one by X%.

«  Dummy variable like PSI:
A change of PSI from zero to one changes the probability
that the lhs variable takes the value one by X%.

27
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Coefficients and marginal effects — Interpretation

Variable

Estimated marginal effect

Interpretation

GPA

0.364

If the average grade of a
student goes up by size
1, the probability for the
variable grade taking
the value one rises by
36.4%.

TUCE

0.011

As with GPA,with an
increase of 1.1%.

PSI

0.374

If the dummy variable
changes from zero to
one, the probability for
the variable grade

taking the value one
rises by 37.4%.

Spring 2009

28
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Coefficients and marginal effects — Significance

Significance of a coefficient: test of the hypothesis whether
a parameter 1s significantly different from zero.

The decision problem 1s similar to the t-test, whereas the
probit test statistic follows a standard normal distribution.
The z-value 1s equal to the estimated parameter divided by
its standard error.

Stata computes a p-value which shows directly the
significance of a parameter:

z-value p-value Interpretation
GPA: 3.22 0.001 significant
TUCE: 0,62 0,533 insignificant
PSI: 2,67 0,008 significant 29
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Coefficients and marginal effects

. Only the average of the marginal effects 1s displayed.

. The individual marginal effects show large variation:

Degcriptive statigtics for individual marginal effects

Mean sD Min Max
gpa 0.36378% 0.21358 | 0.06783 0.64807
tuce 0.01148 0.00687 | 0.0020% 0.02063
ps1 0.37375 0.12878 | 0.06042 0.519589

Stata command: margin, table

30
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Coefficients and marginal effects

Variation of marginal effects may be quantified by the
confidence intervals of the marginal effects.

In which range one can expect a coefficient of the
population?

In our example:

Estimated coefficient Confidence interval (95%)
GPA: 0,364 - 0,055 - 0,782
TUCE: 0,011 - 0,002 - 0,025
PSI: 0,374 0,121 - 0,626

31
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Coefficients and marginal effects

- What is calculated by mFx?

. Estimation of the marginal effect at the sample mean.

— Priy=11)=F(xg) |

=== GPr(y=11x)/ax

.......

0.00 0.25 0.30 0.73 1.00

Sample mean

32
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Goodness of fit

Goodness of fit may be judged by McFaddens Pseudo R>.
Measure for proximity of the model to the observed data.

Comparison of the estimated model with a model which
only contains a constant as rhs variable.

« InL(M_,): Likelihood of model of interest.

¢+ InL(M,en): Likelihood with all coefficients except that of
the intercept restricted to zero.

. Italways holds that InL(M_,) > In L(M Intercept)

33
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Goodness of fit

The Pseudo R? 1s defined as:

- InL(Mgy)
InL(M

PseudoR® =R; . =1

Intercept )

Similar to the R? of the linear regression model, it holds
that 0< R? - <1

An increasing Pseudo R? may indicate a better fit of the
model, whereas no simple interpretation like for the R* of
the linear regression model 1s possible.

34
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Goodness of fit

R?,.r Increases with additional rhs variables. Therefore, an
adjusted measure may be appropriate:
_InL(Mg,)-K

PseudoR? -
InL(M

adjusted

= ﬁl\%lcF =1

Intercept )

Further goodness of fit measures: R* of McKelvey and

Zavoinas, Akaike Information Criterion (AIC), etc. See
also the Stata command Fitstat.

35
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Hypothesis tests

Likelihood ratio test: possibility for hypothesis testing, for
example for variable relevance.

Basic principle: Comparison of the log likelihood functions
of the unresticted model (In L{;) and that of the resticted
model (In Ly)

Test statistic: LR =—2InA=-2(InL, —InL,) (K)

LR

A = 0<A<1

U

The test statistic follows a y? distribution with degrees of
freedom equal to the number of restrictions.

36
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Hypothesis tests

Null hypothesis: All coefficients except that of the
intercept are equal to zero.

In the example: LR y*(3) =15,55
Prob > chi2 = 0.0014

Interpretation: The hypothesis that all coefficients are equal
to zero can be rejected at the 1 percent significance level.

37
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The Logit model

1

. Binary dependent variable: Y = {O

. Let P(y,=1|x)=F(x./)

(as 1n the case of Probit)

. In the Logit model, F(.) 1s given the particular
functional form:
exp(X; /)

PO =D exp ()

38
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. The model 1s called Logit because the residuals
of the latent model are assumed to be distributed
standard logistic.

39
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Notation and statistical foundations — distibutions

Standard logistic distribution:

e T’
1= (1+ef u=0.07 =

X

Exponential distribution:

X

1e9

— ,X=>0 ) 5
f(X)=900 ,0>0,u=0,0"=0

Poisson distribution:

-0 N X
f(x):e 0

40
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PDF Probit vs. Logit

PDF of Probit:

2.0

4.0

PDF of Logit:

. 257

Spring 2009

41
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CDF Probit vs. Logit

F(z) lies between zero and one

CDF of Probit: CDF of Logit:
B.! 0.4
L4 0 2.0 2.DZ _ Xl'ﬂ L -3 ] Z _ X;ﬂ

42
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The Logit model 1s implemented in all major
software packages, such as Stata:

. logit grade psi tuce gpa
Iteration 0: log likelihood = -20.59173
Iteration 1: log likelihood = -13.496795
Iteration 2: log likelihood = -12.929188
Iteration 3: log likelihood = -12.889941
Iteration 4: log likelihood = -12.8B9633
Iteration 5: log likelihood = -12.889633
Logit estimates Number of obs =
LR ch12[3) 2
Prob » chil =
Log likelihood = -12.889633 Pseudo R2 =
grade Coef. Std. Err. Z P»|z| [95% Conf.
psi 2,378688  1.064564 2.23  0.025 .25218
tuce .0951577 .1415542 0.67 0.501 -.1822835
gpa 2.826113  1.262941 2.24  0.025 .3507938
_cons | =13.02135  4.931325 -2.64 0.008 -22.68657

iz
15.40
0.0015
0.3740

Interval]

4.465195
.3725588
5.301432
-3.35613

Spring 2009
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Coefficient magnitudes

Coefficient Magnitudes differ between Logit and
Probit:

Probit Logit
gpa 1,626 2,826
tuce 0,052 0,095
psi 1,426 2,379

This 1s due to the fact that in binary models, the
coefficients are identified only up to a scale
parameter

44
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Coefficient magnitudes

. Coefficient magnitudes can be made comparable by
standardizing with the variance of the errors:

« with logarithmic distribution: Var=1r%/6
» with standard normal distribution: Var=1

. approximative conversion of the estimated values
using
! ~ 0.61
n’/6

45
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Marginal effects

For interpretation we have to calculate the marginal
effects of the estimated coefficients (as in the Probit
case)

5 . margin, tanle (AKA margeff)

Marginal effects on Prob(grade==1) after logit

- .

grade Coef. Std. Err. z P>|z| [95% Conf. Interval]
gpa : .3682795 .1088308 3.38 0.001 .1549751 .581584
tuce .0122101 .0177541 D.69 D.493 -.0226656 .0470859

psi -3575152 .1420034 2.52 0.012 .0791536 .6358367

Interpretation of the marginal effects analogous
to the Probit model
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