Übungsaufgaben diskrete Zufallsvariable

- 1. Erklären Sie formal, in Worten und graphisch (letzteres am Beispiel einer stetigen und diskreten Zufallsvariable), was die Verteilungsfunktion, F_X (x), und die Wahrscheinlichkeitsfunktion f_X (x) einer Zufallsvariable X aussagt.
- 2. X ist eine diskrete Zufallsvariable mit P(X=0) = 0.25, P(X=1) = 0.125, P(X=2) = 0.125 und P(X=3) = 0.5. Zeichnen Sie die Verteilungsfunktion und die Wahrscheinlichkeitsfunktion.
- 3. Die folgende Tabelle zeigt die Verteilungsfunktion einer diskreten Zufallsvariable mit den möglichen Ausprägungen $x_i = 1, 2, 3, 4, 5$. Schreiben Sie daneben die dazugehörige Wahrscheinlichkeitsfunktion $f_X(x_i)$ und stellen Sie Wahrscheinlichkeitsfunktion und Verteilungsfunktion graphisch dar.

Xi	$F_{X}(x_{i})$	$f_X(x_i)$
1	0,1	
2	0,3	
3	0,7	
4	0,8	
5	1	

- 4. Für eine stetige Zufallsvariable gilt P(X = x) = 0 für $x \in R$. Interpretieren Sie dieses Ergebnis.
- 5. Ein Zufallsexperiment liefert das Resultat "Erfolg" mit Wahrscheinlichkeit 0,4 oder "kein Erfolg" mit Wahrscheinlichkeit 0,6. Das Zufallsexperiment wird 8 mal wiederholt. Die interessierende Zufallsvariable X ist die Anzahl der Erfolge. Zeichnen Sie Wahrscheinlichkeitsfunktion und Verteilungsfunktion. Wie bezeichnet man die Zufallsvariable X?
- 6. In der Finanzmarkttheorie modelliert man manchmal den Kursverlauf einer Aktie in einem Binomialbaum. Nehmen Sie an, der initiale Kurs einer Aktie sei 100 Euro. In n = 5 aufeinander folgenden Schritten kann der Kurs entweder um +1 Euro nach oben springen oder 1 Euro nach unten. Beides ist gleich wahrscheinlich (p=0,5). Die fünf aufeinander folgenden Ereignisse (Kurssprünge) sind unabhängig.
 - 12.1 Zeichnen Sie den Binomialbaum mit dem Kurs an jedem Knotenpunkt und an den Endpunkten.
 - 12.3 Schreiben Sie an den Enden des Binomialbaums den jeweiligen Kurs und die dazugehörige Wahrscheinlichkeit, mit der dieser Kurs erreicht wird. Zeichnen Sie die Verteilungsfunktion für die Zufallsvariable X="Kurs nach 5 Schritten". Interpretieren sie die Werte F_X (100) und F_X (96)
- 7. Zeigen Sie an einem selbst gewählten numerischen Beispiel, daß für $p \to 0$ und $n \to \infty$ sowie $n \cdot p = \lambda$ die Wahrscheinlichkeitsfunktion der Binomialverteilung mit

 $f(x)=e^{-\lambda}\frac{\lambda^x}{x!} \quad x=0,1,2,... \text{ angen\"ahert werden kann. Wie nennt man die resultierende}$ Verteilung?

- 8. In modernen Handelssystemen wie dem Xetra System der Deutschen Börse finden im Laufe des kontinuierlichen Wertpapierhandels (von 9.00-17.30) Transaktionen (Käufe und Verkäufe von Wertpapieren) statt. Zur Analyse der Marktaktivität auf dem Xetra-System wird die Zufallsvariable X= "Zahl der Handelsereignisse während der ersten Stunde des Handelsprozesses" mit einer Poissonverteilung mit Parameter λ = 20 modelliert.
 - 8.1. Begründen Sie, weshalb eine solche Approximation sinnvoll ist (bzw. warum nicht).
 - 8.2. Zeichnen Sie die Verteilungsfunktion $F_X(x)$ für -1 < x < 12.
 - 8.3. Interpretieren Sie den Wert F_X (10). Interpretieren Sie den Ausdruck 1- F_X (10). Interpretieren Sie den Wert f_X (10).