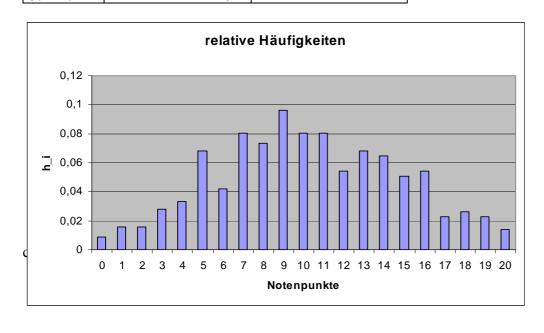
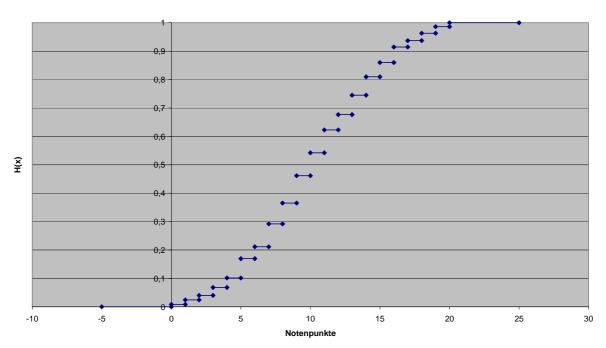
Kurzlösungen für die ersten fünf Übungsblätter zur Vorlesung Statistik I

Übungsblatt zum Stoff der 2. Vorlesungswoche Statistik I


Aufgabe1:

Die Strategie "immer wechseln" ist optimal.

Aufgabe2:


b)

Notenpunke	Absolute Häufigkeit	$h_i = (absH(X = x_i)) / n$
0	5	0,008741259
1	9	0,015734266
2	9	0,015734266
3	16	0,027972028
4	19	0,033216783
5	39	0,068181818
6	24	0,041958042
7	46	0,08041958
8	42	0,073426573
9	55	0,096153846
10	46	0,08041958
11	46	0,08041958
12	31	0,054195804
13	39	0,068181818
14	37	0,064685315
15	29	0,05069930
16	31	0,054195804
17	13	0,022727273
18	15	0,026223776
19	13	0,022727273
20	8	0,013986014
Summe	572	•

Notenpunke	Absolute Häufigkeit	kum. abs. Hfkt.	kum. rel. Hfkt.
	-		
0	5	5	0,008741259
1	9	14	0,024475524
2	9	23	0,04020979
3	16	39	0,068181818
4	19	58	0,101398601
5	39	97	0,16958042
6	24	121	0,211538462
7	46	167	0,291958042
8	42	209	0,365384615
9	55	264	0,461538462
10	46	310	0,541958042
11	46	356	0,622377622
12	31	387	0,676573427
13	39	426	0,744755245
14	37	463	0,809440559
15	29	492	0,86013986
16	31	523	0,914335664
17	13	536	0,937062937
18	15	551	0,963286713
19	13	564	0,986013986
20	8	572	1
Summe	572		

empirische Verteilungsfunktion

- d) H(9) entspricht dem Anteil an Studenten, die durch die Klausur durchgefallen sind. e) H(12)-H(10) entspricht dem Anteil an Studenten, die die Klausur mit der Note "4" abgeschlossen haben.

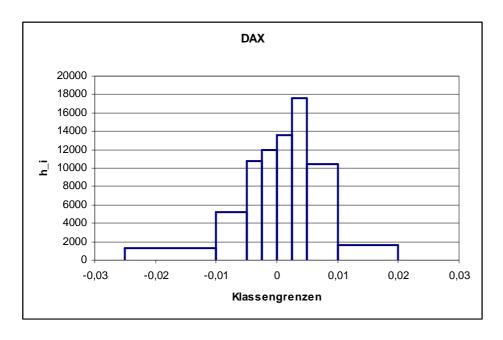
Aufgabe3:

a) $VaR(p=0.05) \approx -0.09$. Interpretation: In 5% der Fälle war die Rendite der Finanzanlage kleiner oder gleich -0.09 (negative Rendite von 9%).

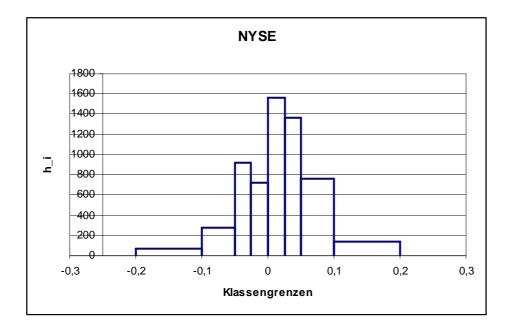
b) $H(0,05) - H(0,05) \approx 0,725 - 0,12 = 0,605 = 60,5\%$

Zweites Übungsblatt

Aufgabe1:


arith. Mittel $\bar{x} = 10,2$

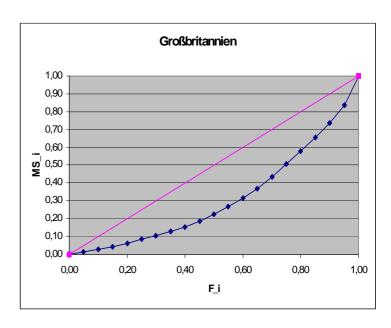
Median $x_{med} = 10$

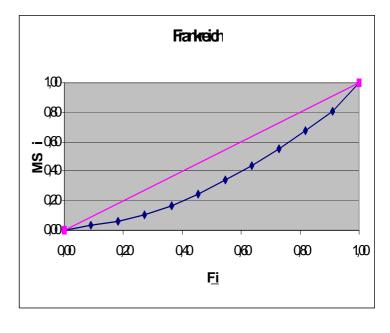

Da $\bar{x} > x_{med}$ ist die Notenverteilung eher linkssteil (rechtsschief).

Aufgabe2:

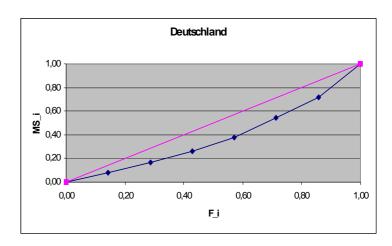
DAX	Obergrenze = -0,025		
Klassenobergrenze	absolute Häufigkeit n	$d_i = x_i - x_{i-1}$	h_i = n_i / d_i
-0,01	19	0,015	1266,666667
-0,005	26	0,005	5200
-0,0025	27	0,0025	10800
0	30	0,0025	12000
0,0025	34	0,0025	13600
0,005	44	0,0025	17600
0,01	52	0,005	10400
0,02	16	0,01	1600

NYSE	Obergrenze = -0,2		
Klassenobergrenze	absolute Häufigkeit n	$d_i = x_i - x_{i-1}$	h_i = n_i / d_i
-0,1	7	0,1	70
-0,05	14	0,05	280
-0,025	23	0,025	920
0	18	0,025	720
0,025	39	0,025	1560
0,05	34	0,025	1360
0,1	38	0,05	760
0,2	14	0,1	140


Modale Klasse bei DAX: Klasse mit Klassenobergrenze 0,005 Modale Klasse bei NYSE: Klasse mit Klassenobergrenze 0,025


In beiden Fällen ist $\overline{x} < x_{med}$. Aber beim DAX ist die Differenz signifikanter als beim NYSE, deshalb ist die Renditeverteilung des DAX eher rechtssteil, während die des NYSE eher symmetrisch ist.

Drittes Übungsblatt


Aufgabe2:

	igabez.				1
				F_i	MS_i
				0,00	0,00
75	Imperial College	142	U	0,05	0,01
74	U Leicester	147	U	0,10	0,03
71	Bank of England	167	U	0,15	0,04
64	Queen Mary+WestfieldCollege	186	U	0,20	0,06
56	U Birmingham	224	U	0,25	0,08
55	U Manchester	225	U	0,30	0,11
54	U Reading	237	U	0,35	0,13
53	U Newcastle	239	U	0,40	0,15
42	U Exeter	364	U	0,45	0,19
33	Birbeck College	419	U	0,50	0,23
32	U Southampton	421	U	0,55	0,27
27	U Nottingham	519	U	0,60	0,32
26	London Business School	521	U	0,65	0,37
16	U York	678	U	0,70	0,43
12	U College London	744	U	0,75	0,51
11	U Essex	754	U	0,80	0,58
9	U Warwick	797	U	0,85	0,66
8	U Cambridge	855	U	0,90	0,74
5	U Oxford	1012	U	0,95	0,84
2	LSE	1690	U	1,00	1,00
	GINI_normiert	0,4			
				0,00	0,00
72	CEMFI	165	F	0,09	0,03
67	HEC	175	F	0,18	0,06
63	U Cergy	200	F	0,27	0,10
38	INSEAD	372	F	0,36	0,17
35	CEPREM AP	394	F	0,45	0,24
28	U Aix-Marseille	504	F	0,55	0,34
25	U Paris I	545	F	0,64	0,44
22	EHESS-Paris	589	F	0,73	0,55
17	INSEE	648	F	0,82	0,67
15	CERAS	724	F	0,91	0,81
4	U Toulouse	1032	F	1,00	1,00
	GINI_normiert	0,32			

Wissenschaftszentrum 179 G 0,14 0,08 62 U Bielefeld 201 G 0,29 0,17 59 U Dortmund 212 G 0,43 0,26 50 Free U Berlin 255 G 0,57 0,38 39 U Mannheim 371 G 0,71 0,54 34 U Munich 402 G 0,86 0,72		GINI_normiert	0,28			
Wissenschaftszentrum 179 G 0,14 0,08 62 U Bielefeld 201 G 0,29 0,17 59 U Dortmund 212 G 0,43 0,26 50 Free U Berlin 255 G 0,57 0,38 39 U Mannheim 371 G 0,71 0,54	18	U Bonn	630	G	1,00	1,00
Wissenschaftszentrum 179 G 0,14 0,08 62 U Bielefeld 201 G 0,29 0,17 59 U Dortmund 212 G 0,43 0,26 50 Free U Berlin 255 G 0,57 0,38	34	U Munich	402	G	0,86	0,72
Wissenschaftszentrum 179 G 0,14 0,08 62 U Bielefeld 201 G 0,29 0,17 59 U Dortmund 212 G 0,43 0,26	39	U Mannheim	371	G	0,71	0,54
Wissenschaftszentrum 179 G 0,14 0,08 62 U Bielefeld 201 G 0,29 0,17	50	Free U Berlin	255	G	0,57	0,38
Wissenschaftszentrum 68 Berlin 179 G 0,14 0,08	59	U Dortmund	212	G	0,43	0,26
Wissenschaftszentrum	62	U Bielefeld	201	G	0,29	0,17
0,00 0,00	68		179	G	0,14	0,08
					0,00	0,00

Viertes Übungsblatt

Aufgabe1:

$$W_{Durchschnitt} = e^{\bar{x}} = \exp(1/3(-0.01 - 0.02 + 0.04)) = 1.00334$$

Aufgabe2:

a) Es werden nur einige Werte als Beispiel angegeben.

$$h(-0.1 \le Y < -0.05; -0.05 \le X < 0) = 1/187 = 0.01$$

$$h(0.05 \le Y < 0.1; 0.05 \le X < 0.1) = 9/187 = 0.05$$

$$h(0 \le Y < 0.05) = 72/187 = 0.39$$

$$h(X > 0.1) = 46/187 = 0.25$$

$$h(0 \le X < 0.05 \mid -0.1 \le Y < -0.05) = 0.06$$

$$h(X < -0.1 \mid 0.05 \le Y < 0.1) = 0.64$$

$$h(-0.05 \le Y < 0 \mid 0 \le X < 0.05) = 0.26$$

$$h(0 \le Y < 0.05 \mid -0.1 \le X < -0.05) = 0.32$$

b) Unabhängigkeit ist nicht gegeben, da bspw.:

b) Chabhangigkeit ist ment gegeben, da bspw...
$$h(X < -0.1) \cdot h(Y < -0.1) = \frac{5}{187} \cdot \frac{17}{187} = \frac{5}{2057} \neq \frac{5}{187} = h(X < -0.1; Y < -0.1)$$

c) Der normierte Kontingenzkoeffizient ist: $K_{norm} = 0.7725228$

Aufgabe3:

Der Korrelationskoeffizient r_{XZ} ist: $r_{XZ} = 0.85264$

Fünftes Übungsblatt

Minimum für:
$$a = \frac{\text{var}(Y) - \text{cov}(X, Y)}{\text{var}(X) + \text{var}(Y) - 2 \cdot \text{cov}(X, Y)} = \frac{s_Y^2 - c_{XY}}{s_X^2 + s_Y^2 - 2 \cdot c_{XY}}$$