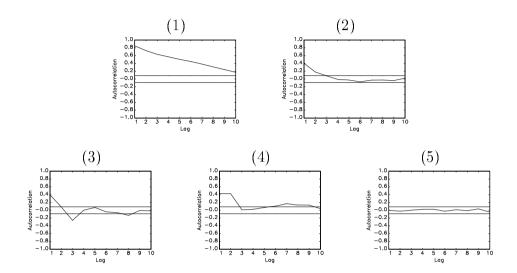
A 1: Assign a stochastic process to each of the five ACF graphs (5).



a)
$$Y_t = 0.5\varepsilon_{t-4}$$
 b) $Y_t = 0.5\varepsilon_{t-1} + 0.7\varepsilon_{t-2} + \varepsilon_t$

c)
$$Y_t = 0.4Y_{t-1} + \varepsilon_t$$
 _____ d) $Y_t = 0.9Y_{t-1} + \varepsilon_t$ _____

e)
$$Y_t = \varepsilon_t$$
 ____ f) $Y_t = 0.7\varepsilon_{t-1} + 0.6\varepsilon_{t-2} - 0.3\varepsilon_{t-3} + \varepsilon_t$ ____

A 2: Are the following stochastic processes stationary? Argue why (or not). (8)

(1)
$$(1 - 0.9L - 0.1L^2)Y_t = \varepsilon_t$$

(2)
$$(1 - 0.3L)Y_t = (1 + 0.3L)\varepsilon_t$$

(3)
$$(1 - 0.4L - 0.2L^2)Y_t = (1 + 0.1L + 0.05L^2)\varepsilon_t$$

$$(4) \quad (1-L)Y_t = \varepsilon_t$$

(5)
$$Y_t = (1 + 0.3L + 0.2L^2 + 0.1L^3)\varepsilon_t$$

Use the eigenvalues of F, to check whether the following AR processes are

where

stationary (8)

where

(1)
$$\mathbf{F} = \begin{pmatrix} 0.6 & -0.4 \\ 1 & 0 \end{pmatrix}$$
, (2) $\mathbf{F} = \begin{pmatrix} 0.4 & 0.8 & -0.3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, (3) $\mathbf{F} = \begin{pmatrix} 1.2 & -0.1 \\ 1 & 0 \end{pmatrix}$

 $\lambda_1=0.30+0.55677644i$ $\lambda_1=0.91584462$ $\lambda_1=1.1099020$ $\lambda_2=0.30-0.55677644i$ $\lambda_2=-0.88568851$ $\lambda_2=0.090098049$ $\lambda_3=0.36984389$

where

A 3: Select the suitable ARMA(p,q) process based on the following estimation results. Defend your choice. (8)

	ARMA(0,0)	ARMA(1,0)	ARMA(0,1)	ARMA(1,1)	ARMA(2,1)	ARMA(1,2)	ARMA(2,2)
С	0.129	_	_	<u>—</u>	_	_	_
$S.E.^a$	0.066	_				_	_
AR(1)		0.689		0.496	0.586	0.217	-0.193
$S.E.^a$	_	0.032	_	0.052	0.136	0.111	0.120
AR(2)	_	_	_	_	-0.079	_	0.262
$S.E.^a$	_	_	_	_	0.105	_	0.089
MA(1)	_	_	0.668	0.412	0.332	0.722	1.125
$S.E.^a$	—	_	0.033	0.054	0.132	0.109	0.111
MA(2)	_	_	_	_	_	0.249	0.386
$S.E.^a$	—	_	_	_	—	0.082	0.058
$\overline{\mathrm{SBC}^b}$	3.614	2.979	3.036	2.895	2.906	2.900	2.906
logL	-900.291	-740.153	-755.981	-716.213	-714.298	-714.158	-711.227
$p(Q)^c$	0.000	0.000	0.000	0.153	0.196	0.514	0.781

 $[^]a$ S.E. $\hat{=}$ standard error of parameter

 $[^]b$ SBC $\hat{=}$ Schwartz Bayes Criterion

 $^{^{\}rm c}$ p-value of the Q-statistic was calculated with 10 degrees of freedom

A 4: Compute $E(Y_t)$, $Var(Y_t)$ and $Cov(Y_t, Y_{t-1})$ for the following stochastic processes, where $\{\varepsilon_t\}$ i.i.d N(0,1). (8)

(1)
$$(1 - 0.9L)Y_t = \varepsilon_t$$

(2)
$$(1 - 0.8L - 0.1L^2)Y_t = \varepsilon_t$$

(3)
$$Y_t = (1 + 0.4L + 0.3L^2)\varepsilon_t$$

Compute $E(Y_t)$ and $Var(Y_t)$ for the following stochastic processes (5)

(4)
$$(1-0.9L)Y_t = (1-0.3L)\varepsilon_t$$

$$(5) \quad (1-L)Y_t = \varepsilon_t$$

A 5: Identify the following ARMA processes (e.g. ARMA(0,1),...)? (5)

(1)
$$(1 - \phi_1 L)(1 - \phi_{12} L)Y_t = (1 + \theta_1 L)(1 + \theta_4 L)\varepsilon_t$$

(2)
$$(1 - \phi L)(1 - L)Y_t = (1 + \theta L)\varepsilon_t$$

(3)
$$Y_t = (1 + 0.4L + 0.3L^2)\varepsilon_t$$

A 6: Give your opinion to the following statements. Answer "Correct, since..." or "Incorrect, rather .."

- a) Any MA process is a stationary process (3).
- b) Any finite Gaussian AR(p) process is stationary (3).
- c) Whether an ARMA(p,q) is stationary is solely determined by its MA part(3).
- d) Assuming that the data is generated by a non-stationary process, one can use a weak law of large numbers and estimate consistently expectations by sample means.(3)
- f) A White Noise process is an ergodic process (3)
- g) Any finite MA(q) is ergodic. (3)

A 7: Multiply the lag polynomials and verbally describe the respective stochastic process. (8)

(1)
$$(1 - 0.9L)(1 - L)Y_t = (1 + 0.3L)\varepsilon_t$$

(2) $(1 - 0.3L)(1 - 0.2L^{12})Y_t = (1 + 0.2L)(1 + 0.3L^{12})\varepsilon_t$

A 8: Describe the basic approach towards Maximum Likelihood Estimation of stationary ARMA processes. What are main the problems that we encounter?(8)

A 9: Describe the difference between exact ML estimation and conditional ML estimation of an AR(p) process. Explain why the conditional ML approach is equivalent to an OLS approach.(8)

A 10: Have a look at figures (1)-(3) and propose a suitable stochastic process to model these data. Defend your choice.(5)

