UNIVERSITÄT TÜBINGEN

Wirtschaftswissenschaftliche Fakultt Abteilung Statistik und Ökonometrie Professor Dr. Joachim Grammig

26. Juli 2005

Final Exam: TIME SERIES ANALYSIS (SS 2005)

Task 1

Calculate $E(Y_t)$ for the following stationary stochastic processes with $\varepsilon_t \sim N(0,1)$:

1-1)
$$(1 - 0.5L)(1 + 0.6L^4)Y_t = c + \varepsilon_t$$
 (3)

2-2)
$$Y_t = c + (1 - 0.8L)(1 + 0.2L^4)\varepsilon_t$$
 (3)

3-3)
$$(1 - 0.9L - 0.3L^2 + 0.8L^3)Y_t = c + (1 + 0.2L + 0.4L^2)\varepsilon_t$$
 (3)

Task 2

Suppose, you have the following bivariate system with $\varepsilon_{i,t} \sim N(0, \sigma_i)$, $Cov(\varepsilon_{i,t}, \varepsilon_{i,t-j}) = 0 \ \forall j$ and $Cov(\varepsilon_{i,t}, \varepsilon_{j,t}) = 0$ for $i \neq j$:

$$z_{t} = \omega_{1} + \beta_{12}v_{t} + \gamma_{11}z_{t-1} + \gamma_{12}v_{t-1} + \tilde{\gamma}_{11}z_{t-2} + \tilde{\gamma}_{12}v_{t-2} + \varepsilon_{1,t}$$

$$v_{t} = \omega_{2} + \beta_{21}z_{t} + \gamma_{21}z_{t-1} + \gamma_{22}v_{t-1} + \tilde{\gamma}_{21}z_{t-2} + \tilde{\gamma}_{22}v_{t-2} + \varepsilon_{2,t}$$

- 2-1) How do we call such a representation? Can you consistently estimate the structural parameters β_i and γ_{ij} when using the above specification? If not, explain why not. (5)
- 2-2) Collect z_t and v_t in a vector $X_t = (z_t, v_t)'$ and transfer the above system in the standard VAR form. (5)
- 2-3) What is the crucial difference between the composite shocks in the VAR in standard form and the original shocks in the above VAR in primitive form? (3)
- 2-4) Why do we need the Cholesky decomposition and how does that work? Why is the ordering of variables in the Cholesky decomposition important? (5)
- 2-5) What would the null be hypothesis if you want to test whether v_t does not Granger cause z_t ? (3)
- 2-6) What restriction on β_{12} and β_{21} would be imposed if z_t does not Granger cause v_t ? (3)

Task 3

A linear projection of Y_{t+1} on X_t is computed as $\hat{E}(Y_{t+1}) = \alpha' X_t$ where $\alpha = E(X_t X_t')^{-1} E(X_t Y_{t+1})$.

- 3-1 Derive the expression for α . (5)
- 3-2 What conditions have to hold for a linear projection to deliver an optimal forecast? (2)
- 3-3 Explain how ordinary least squares estimation is related to linear projection. (3)
- 3-4 Under which circumstances do OLS estimators provide consistent estimates of linear projection coefficients? (2)
- 3-5 What does the term loss function mean for forecast evaluation and for which specific loss function do the results in 3-1 apply? (3)

Task 4

	ARMA(1,0)	ARMA(0,1)	ARMA(1,1)	ARMA(2,1)	ARMA(1,2)	$\overline{ARMA(2,2)}$
\overline{C}	_					
S.E.			_	_	_	
$\overline{AR(1)}$	0.689		0.496	0.586	0.217	-0.193
S.E.	0.032		0.052	0.136	0.111	0.120
AR(2)		_	_	-0.079	_	0.262
S.E.				0.105		0.089
MA(1)		0.668	0.412	0.332	0.722	1.125
S.E.		0.033	0.054	0.132	0.109	0.111
MA(2)					0.249	0.386
S.E.		_			0.082	0.058
SBC	2.979	3.036	2.995	2.896	2.900	2.906
LL	-740.153	-750.981	-716.213	-714.298	-714.158	-711.227
p(Q)	0.000	0.000	0.043	0.049	0.514	0.781

- 4-1 In the above table you find estimation results for different specifications of a univariate time series regression. SBC denotes the Schwartz/Bayes criterion, LL the value of the Log-Likelihood function and p(Q) is the p-value of the Ljung-Box statistic computed for the estimated residuals for 20 lags. Provide a comprehensive discussion to select an appropriate specification. (10)
- 4-2 Sketch graphically, not analytically the theoretical autocorrelation function (ACF) for
 - a) an ARMA(1,0) process with $\phi = 0.5$ (2)
 - b) an ARMA(0,3) process with $\theta_1 = 0.8$, $\theta_2 = 0.4$ and $\theta_3 = -0.2$ (2)
 - c) an ARMA(0,0) process (2)

Task 5

Discuss in short the following issues:

- 5-1 It is always feasible to estimate an MA(q) process with conditional maximum likelihood techniques. (3)
- 5-2 X_t and Y_t are two I(1) variables. If the R^2 is high in a regression of Y_t on X_t we can rely on the estimation results. (3)
- 5-3 For a stationary Gaussian process $\{Y_t\}$, only the first sample moment converges in probability to $E(Y_t)$. (3)
- 5-4 An AR(p) process is said to be stationary, if all eigenvalues of the F-matrix lie outside or on the unit circle. (3)
- 5-5 Solely the MA part of an ARMA(p,q) process determines, whether the process is stationary. (3)
- 5-6 If you want to explore the dynamics of three I(1) variables it is always the best strategy to estimate a structural VAR in first differences. (5)

Task 6

The Daimler-Chrysler (DCX) stock is traded in Frankfurt and in New York. Denote with DCX_{NY} the stock price in New York and with DCX_X the stock price traded on the XETRA trading platform in Frankfurt. Further, denote with FX the exchange rate of US-Dollar and Euro (in EUR/USD).

- 6-1 Formulate a suitable economic model to test the hypothesis that the law of one price holds. (5)
- 6-2 What do you have to do before choosing the estimation strategy? (3)
- 6-3 The Dickey/Fuller test for the level of your three series delivers τ -values $\left(\frac{\hat{\rho}-1}{\hat{\sigma_{\rho}}}\right)$ of -0.5, -0.65 and -0.8. How do you conclude? (3)
- 6-4 Write down all the necessary steps in order to estimate your model. Outline the implicit assumptions. (8)
- 6-5 The Dickey/Fuller test for the residual of a regression of DCX_{NY} on FX and DCX_x delivers a p-value of 0.015. Your conclusion? (3)
- 6-6 Would you expect a specific cointegrating vector a priori? If yes, which one? (3)
- 6-7 How could you test which market reacts faster to deviations from the equilibrium price?
 (3)