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Schenck & Möller (2007)
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rR

Setup

Two degrees
of freedom:
● ∆pan
● ∆tilt

Camera image Retinal image

▶ Power function: rC = r +(1-)rR
 rC: Normalized radius in camera image
 rR: Normalized radius in retinal image
   = 0.8,  = 2.5



5Visual Prediction

Visual Forward Model for Saccades

mt

mt = (∆pant,∆tiltt)

Forward
Model
(FM)

Input image: 207x207 pixels Output image: 159x159 pixels
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Mapping and Validator Model
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mt = (∆pant,∆tiltt)

Predictive remapping: Visual 
prediction in the brain by 
shifting receptive fields (e.g., 
Duhamel et al., 1992; Umeno 
& Goldberg, 1997)
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Prediction Examples
Real

Predicted

Real

Predicted
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Saccade Control Task

▶ Task: Schedule commands (∆pan, ∆tilt) such 
that a target object is projected onto the center 
of the camera image

Saccade
Controllerx

(xt,yt)

tilt
(∆pan, ∆tilt)

Plant
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Problem of the Missing Teacher Signal

▶ Goal: Train an adaptive saccade controller
▶ Required: Learning examples associating 

sensory input and the correct motor output
▶ Problem: The correct motor output (and thus 

the motor error ∆m) is unknown...
▶ Solution: “Direct Inverse Modeling” (DIM)

(e.g., Kuperstein, 1990)
▶ But: DIM requires st and st+1  
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Target Re-Identification Problem
▶ Sensory state for the saccade learning task:

target position st = (xt, yt)
▶ To determine st+1 after saccade excution:

 Target re-identification necessary
 In past studies with plain camera images: By 

correlation approach
▶ Problem: Correlation approach not applicable to 

retinal images

Strongly non-linear
image warping
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Visual Prediction for Target Re-Ident.

▶ Solution:
 Predict location of target object after saccade by 

visual FM
 Search for real target in close vicinity of the 

predicted location
 Use other distinct features like color or shape for 

final re-identification
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Basic Image Processing Steps

Color
segmen-
tation

Target
selection
(at random)
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Basic Image Processing Steps

Color
segmen-
tation

Target
selection
(at random)

Execute saccade

Visual
prediction
(green)
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Basic Image Processing Steps

Color
segmen-
tation

Target
selection
(at random)

Execute saccade

Visual
prediction
(green)

Color
segmen-
tation

Target
re-identi-
fication
(purple)
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Experiments

▶ Controller network:
 Multi-Layer Perceptron (MLP)
 Weight adaptation by online back-propagation
 Training set: 6000 randomly collected learning 

examples
▶ Indicator for saccade precision:

Radial target distance
 Distance between center of mass of target 

object and image center
(normalized to range [0;1] along the 
horizontal/vertical direction)
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Training Results
▶ Controller training over 3,000 epochs:

⇒ Test error down from 0.09 to 0.0002
▶ Controller network performance over 100 trials:

Mean radial target distance 
over these 100 trials: 0.08
Corresponding value for plain 
camera images: 0.018
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Results for DIM: Examples

Post-saccadicPre-saccadic

Green: Predicted
Purple: Real
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Results for DIM: Examples

Post-saccadicPre-saccadic

Green: Predicted
Purple: Real
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Intermediate Discussion

▶ Successful saccade learning on retinal images
▶ Problem of the missing teacher signal solved by 

direct inverse modeling
▶ Problem of target re-identification solved by 

visual prediction

Link to “spatial representations and dynamic 
interactions”:
Visual prediction enables the agent to shift freely between 
different eye-centered frames of reference (“different” with 
respect to the gaze direction)
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Schenck, Hoffmann, & Möller (2009)
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Grasping to Extrafoveal Targets

▶ Usually: Saccades precede arm movements for 
reaching and grasping
 Target objects are projected onto the fovea

▶ Arm movements towards extrafoveal target 
objects are possible, but with less precision 
(e.g., Vercher et al., 1994)
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Arm Control Scheme

Arm
controller

Motor command
for grasping

Target position

Target attributes
(e.g., orientation)

Eye position

Target shape Retinal activation
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Retinal Variance

➔ Depending on retinal position, sensor activation differs 
considerably!
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Arm Control Scheme

Arm
controller

Motor command
for grasping

Target position

Target attributes
(e.g., orientation)

Target shape

Eye position

Retinal activation
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Premotor Theory

▶ Spatial attention: Consequence of preparation 
of goal-directed movements (Rizzolatti et al, 
1994)
 Attention shifts are accompanied by the 

preparation of eye movements
▶ Additional hypothesis:

 The preparation of eye movements triggers a 
prediction of the retinal images after the 
movement
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Retinal Invariance Through Visual Pred.
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Revised Arm Control Scheme

Arm
controller

Motor command
for grasping

Target position

Target attributes
(e.g., orientation)

Target shape

Saccadic
motor command
(+ Eye position)

Predicted retinal activation
(after prepared saccade)
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Revised Arm Control Scheme

Arm
controller

Motor command
for grasping

Target position

Target attributes
(e.g., orientation)

Target shape

Saccadic
motor command
(+ Eye position)

Predicted retinal activation
(after prepared saccade)

➔ Single arm controller for both fixated and non-fixated 
target objects!
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Experimental Results

▶ Grasping performance over 100 trials in four 
different experimental conditions

Task conditions
0

20

40

60

80

100

120

Fixated
Fixated (only 1 
saccade)
Simulated saccade
Simulated without 
prediction

Gr
as

pi
ng

 su
cc

es
s r

at
e



31Grasping

Intermediate Discussion

▶ Model successful in grasping to extrafoveal 
targets
 Real-world robotic test

▶ Visual prediction might be an important 
component of visuomotor coordination in this 
task domain

Link to “spatial representations and dynamic 
interactions”:
Visual prediction (in combination with a saccade controller) 
enables (kind of) invariance of the retinal representation with 
respect to the gaze direction
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Kaiser, Schenck, & Möller (submitted)

Alexander Kaiser
Doctoral Student at the

Computer Engineering Group
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Mental Imagery for Motor Simulation

▶ Simulation theories: Simulation of action 
sequences and their accompanying sensory or 
system states as basis for perception and 
cognition (e.g., Hesslow, 2002; Möller, 1999; 
Ziemke at al., 2005)

▶ Covert (simulated) sensory and motor states: 
“Mental images”

▶ Here: Mental images of visual gripper states 
(to be used in forthcoming cognitive 
architectures)
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Overall Model
▶ Input: Gripper pose, viewing direction
▶ Output: Image of the gripper

 (simulated “mental” image)

Visual
Association

Gripper pose

Visual
Prediction

Kinesthetic
Association

Gripper
viewing dir.

Viewing dir.
- +

Saccadic motor
command
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Sorry, further slides...
▶ … on this topic removed since this work has 

been recently submitted for publication 
(decision pending)
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Intermediate Discussion
▶ Model successful in generating “mental 

images” of visual gripper states
▶ Holistic approach: The image is generated as a 

whole in its original “raw” format, not on the 
basis of single features

▶ Need for visual prediction results from the 
decomposition of the overall problem in a visual 
association and a prediction part

Link to “spatial representations and dynamic 
interactions”:
Visual prediction allows to generalize from a purely foveal 
representation (target fixated) to other gaze directions
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Summary and Open Questions
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Summary: Three Studies

▶ Visual prediction in the context of saccade 
learning
 Purpose: Facilitates target re-identification

▶ Visual prediction in the context of grasping
 Purpose: Transforms extrafoveal visual 

representations of target objects into foveal 
representations

▶ Visual prediction in the context of mental 
imagery
 Purpose: Facilitates the generation of “mental 

images” by simplifying the visual association 
task
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Open Questions

▶ Algorithms to learn visual prediction for motor 
tasks with many degrees of freedom?

▶ Visual prediction for movements where depth 
information is relevant?

▶ Multi-step visual prediction – stability, 
precision?
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Thank you for your attention!
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