Time Series Analysis

Second set of assignments:

1. Are the following stochastic processes $\{y_t\}$ stationary and ergodic?

- a) $y_t = \varepsilon_t$
- b) $y_t = y_{t-1} + \varepsilon_t$ with $y_1 = \varepsilon_1$
- c) $y_t = y_{t-1} y_{t-2} + \varepsilon_t$ with $y_1 = \varepsilon_1$
- d) $y_t = a \cdot t + \varepsilon_t$ with a a real number
- 2. Compute $\mathbb{E}(y_t \mu)(y_{t-j} \mu)$ [i.e. $cov(y_t, y_{t-j})$] for the stochastic processes b) and d).
- 3. Check, by writing $\mathbb{E}(y_t)$, $Var(y_t)$ and $cov(y_t, y_{t-j})$ $j \ge 1$, whether a MA(2) process $y_t = \mu + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \varepsilon_t$ is stationary and ergodic.
 - Plot the autocorrelation function for a MA(2) where $\theta_1 = 0.5$ and $\theta_2 = -0.3$.
- 4. Write $\mathbb{E}(y_t)$ and $Var(y_t)$ for a MA(q) process.

$$y_t = \mu + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

5. The sequence of autocovariances $\{\gamma_j\}_{j=0}^{\infty}$ of a Gaussian process $\{y_t\}$ evolves as $\gamma_j = \theta^j$ where $|\theta| < 1$.

Is the process ergodic?

- 6. What do we mean by a Gaussian process?
- 7. Why is ergodic stationarity such an important property for the purpose of estimating the moments $\mathbb{E}(y_t)$, $Var(y_t)$, $cov(y_t, y_{t-j})$,... of a stochastic process $\{y_t\}$?

<u>Hint</u>: refer to the ergodic theorem (Hayashi, *Econometrics*, p. 101) and note that if $\{y_t\}$ is stationary and ergodic, so is $\{f(y_t)\}$ where $f(\cdot)$ is a measurable function like $\ln(y_t)$, y_t^2 i.e. a function that produces a new random variable.

8. A $MA(\infty)$ is given by

$$y_t = \mu + \theta^2 \varepsilon_{t-1} + \theta^4 \varepsilon_{t-2} + \theta^6 \varepsilon_{t-3} + \dots$$

where $|\theta| < 1$.

Compute $\mathbb{E}(y_t)$ and $Var(y_t)$.