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1. Mathematical Techniques of Time Series Analysis 

Necessary Techniques: 

Complex Numbers, the Unit circle, working with Difference- and Lag-Operators, Solutions of stochastic difference 

equations 

Unit circle: Working with complex numbers. 

In order to solve stochastic difference equations it is necessary to know the calculation rules of complex numbers.  

Basics: 

The algebraic equation in x  

( )x ax a b2 2 22 0− + + =  
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e.g. has the formal solution  

x a b= ± −1  

But those solutions are only defined for b = 0  (for the set of real numbers). 

Solution: 

Definition of the set C of complex numbers as a superset of R 

Requirements of C 

(1)    The sum (the product) of real numbers as elements of C is equal to the sum (the product) defined for real                

numbers. 

(2) The set C contains an element with the property  i 2 1= − . 

(3) For each element z of C there exist two real numbers a, b, so that the complex number z can be written as       

z a ib= +  . Here, a is called the real part  of Z and b the imaginary part of z. 
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We render this definition more precisely by defining the 2x2 Matrices: 

a a
a a R: ,

:

= 


 ∈

= −


 




0
0

0 1
1 0 i

 

We define the complex number a bi+  as 

a bi a
a

b
b

a b
b a a b R+ = 



 + −



 


 = −



 


 ∈: , ,0

0
0

0  

The set of 2X2 Matrices together with basic matrix algebra (addition and multiplication) represents a model for 

complex numbers. The complex number z a ib= +  is called imaginary, if a = 0  and b ≠ 0  and real, if b = 0 . The 

complex number z a ib= −  is the complex conjugate of  z a ib= + . 

Example: The equation ( )x c c2 0 0+ = >  has as solutions the imaginary numbers z i c1 =  and  z i c2 = − , 

since z z c1
2

2
2= = − . The numbers z1 and z2  are complex conjugates. 
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For Illustration of complex numbers the complex plane  is used: 

.

a

z a i b= + ⋅
i b⋅

− ⋅i b z a i b= − ⋅

|z|

|z|

−
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The horizontal axis depicts the real numbers while on the vertical axis we find the imaginary numbers. Each point in 
the plane represents exactly one complex number. 

Die real number z a b= +2 2
 is the absolute value of z a i b= + ⋅  

z  is the distance to the point of origin.  

It is therefore identical to the usual absolute value of real numbers. 

Important results: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

a i b c i d a c i b d

a i b c i d a c i b d

a i b c i d a c b d i a d b c

+ ⋅ + + ⋅ = + + +
+ ⋅ − + ⋅ = − + −

+ ⋅ ⋅ + ⋅ = ⋅ − ⋅ + ⋅ + ⋅
 

Trigonometric Representation of complex numbers 

A complex number z x iy= +  with an absolute value of 1 satisfies  x y2 2 1+ = . We say z lies on the unit circle in 
the complex plane. 
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z

x ( )10,

( )0 1,

i y⋅

( )0 0,
reelle Achse

imaginäre Achse

( )0 1,−

( )−10,

|z|
=1

ϕ

 

The circumference of the unit circle is  2π . The arc length from (1,0)  to (0,1), (-1,0),(0,-1) equals 
π

π
π

2

3

2
, , . 

ϕ  is  the arc length from (1,0) to z 
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( )
( )
( ) 0:tan

0:sin

:cos

≠=

≠=
=

xif
x

y

yify

x

ϕ

ϕ
ϕ

  

If the complex number z lies on the unit circle it can be represented as:  

( ) ( )z i= + ⋅cos sinϕ ϕ  

 

 

 

Any complex number has an absolute value of  R a b= +2 2 , 

it can be represented as ( )z R x i y= + ⋅  with x
a

R
= , y

b

R
=  and (x,y) on the unit circle. 
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Hence, z has the trigonometric form ( ) ( )( )z R i= ⋅ + ⋅ ⇒cos sinϕ ϕ    Polarcoordinate representation of z 

Theorem of de Moivre:  For each complex number z ≠ 0 and each rational number q :  

( ) ( )[ ]z R q i qq q= ⋅ + ⋅ ⋅cos sinϕ ϕ  

Z 

a 

real  axis 
imaginary  axis 

ϕ 
i y ⋅ 

x 

i b ⋅ 
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Exponential representation of complex numbers 

e x
x xx = + + + +1
2 5

2 5

!
.......

!
....(power series) 

with x i= ⋅ϕ   we can write, using i i i i i i2 3 4 51 1= − = − = =, , ,  

 

e i i i i i

Potenzreihe inus

i

Potenzreihe us

i

iϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ

ϕ ϕ

= + ⋅ − − + + − −

= − + − +








 + − + − +











= + ⋅

1
2 3 4 5 6

7

7

1
2 4 6 3 5

7

7

2 3 4 5 6

2 4 6 3 5

! ! ! ! ! !
....

! ! !
...

cos

! ! !
...

sin

cos sin

1 24444 34444 1 24444 34444  

The representation of a complex number z a i b= + ⋅  according to z R ei= ⋅ ⋅ϕ  with ( )R z
b

a
= =, tan ϕ  is called its 

Exponential form. 
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2. Difference equations 

(The presentation follows Hamilton (1994), chapter 1) 

Difference equations  of 1st order 

Dynamic properties of 

y y wt t t= +−φ 1   (1) 

w t  can be a random variable. Then: (stochastic difference equation of 1st order) 

Example : money demand equation Goldfeld (1973) for the USA 

mj  (log real money demand) as a function of log GDP (real) I t , the logarithm of the interest rate on deposits rG t and 

the interest rate for bonds rCt .  

m m I r rt t t G t Ct= + + − −−0 27 0 72 019 0 045 0 0191, , , , ,  (2) 



TIME SERIES ANALYSIS: MATHEMATICAL BASICS 

Prof. Dr. Joachim Grammig 

This is a special case of equation 1 with 

w I r rt t G t Ct= + − −0 27 019 0 045 0 019, , , ,  

y mt t=  

φ = 0 72,  

Objective : understanding the dynamic behavior of y  if w changes. 
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Period Equation 

0 y y w0 1 0= +−φ  

1 y y w1 0 1= +φ  

2  

. ........ 

t y y wt t t= +−φ 1  

⇒  If the starting value y−1 for t = −1 and w t  for 0,1,...,t is known, the sequence of y t  can be calculated via 

recursive substitution:  

 

y y w w w w wt
t t t t

t t= + + + + + ++
−

− −
−φ φ φ φ φ1

1 0
1

1
2

2 1K  (3) 
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Dynamic behavior 

If w 0 changes and w w t1K  are unaffected, the effect on y
y

wt
t t:

∂
∂

φ
0

=  

Dynamic multiplier = (impulse response function) 

How strong the effect of the dynamic multiplier is depends on the time span from 0 - t  and the parameter φ . 

If the dynamic simulation begins in t: 

y y w w wt j
j

t
j

t
j

t t j+
+

−
−

+ += + + +φ φ φ1
1

1
1K . 

The size and the sign of  φ  determine the sequence of the dynamic multipliers. 
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The effect of w t on y t j+  is given by 

∂
∂

φ
y

w
t j

t

j+ =  

Thus, the dynamic multiplier depends only on  j, the time span between w t and y t j+ . 

Possible dynamics: exponential increase ( )φ > 1 , a geometric decay (0 1< <φ ), an oscillating decay (− < <1 0φ ), an 

explosive oscillating behavior (φ < −1) 

Difference equations of higher order 

As a generalization consider a difference equation of order  p 

y y y y wt t t p t p t= + + + +− − −φ φ φ1 1 2 2 K  (4) 

Objective : Explaining the dynamic behavior of (4) 
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First, we transfer the difference equation of order p in a vector difference equation of order 1. Therefore, we need the 

following notation: 

( )ξ t

t

t

t p

y

y

y

p Vektor≡





















× −
−

− +

1

1

1
M  

( )F
p p

≡
















−φ φ φ φ1 2 1

1 0 0 0
0 1 0 0
0 0 1 0

L

L
L
L

                       pxp - Matrix 

( )v

w

p xt

t

=
















−0
0
0

1 Vektor 

For p = 1 (difference equation of  order 1) the matrix  F becomes F = φ  (scalar) 
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Now, we can define the vector difference equation of order 1: 

ξ ξt t tF v= +−1   (5) 

Recursion, as in the case of difference equations of order 1: 

For period 0:  ξ ξ0 1 0= +−F v  

For period 1:  ( )ξ ξ ξ ξ1 0 1 1 0 1
2

1 0 1= + = + + = + +− −F v F F v v F Fv v  

For period t:  ξ ξt
t t t

t tF F v F v Fv v= + + ++
−

−
−

1
1 0

1
1 1L             (6) 

Of special importance concerning the dynamics of the system: 1. row  of the system given in (6) for period t: 

Define  
( )f t
11 : as the (1,1) element of Ft ,  

( )f t
12  as the (1,2) element of Ft . 
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 For the first row   of ξt = K we can write 

( ) ( ) ( ) ( )y f y f y f y f w f w f w wt
t t

p
t

p
t t

t t= + + + + + + + ++
−

+
−

+
−

−
−11

1
1 12

1
2 1

1
11 0 11

1
1 11

1
1

( ) ( )K K  (7) 

⇒ y t  is a function of p initial values  of y and the complete History  of w. 

Beginning the dynamic simulation in t: 

ξ ξt j
j

t
j

t
j

t t j t jF F v F v Fv v+
+

−
−

+ + − += + + + + +1
1

1
1 1K  (8) 

For a difference equation of order p the impulse-response-function is 
( )∂

∂
y

w
ft j

t

j+ = 11  (9) 

For j=1 this is the (1,1) element of F, or the parameter φ1  ! 
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For each system of order p the effect of a one unit increase of w t  on y t+1 is given by: 

∂
∂

φ
y

w
t

t

+ =1
1  

Via direct multiplication of  the matrix F we obtain F2 :  

∂
∂

φ φ
y

w
t

t

+ = +2
1
2

2  

This is the (1,1) element of F2 . In order to describe the dynamic behavior of difference equations of higher order 

analytically (when is the system explosive?) we can analyze the eigenvalues of the matrix F . 

⇒  Matrix-Algebra (see e.g. Greene (1993)) 

Eigenvalues (characteristic roots) of the matrix F are the solutions λ  of:  

F Ip− ⋅ =λ 0  
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with I p  as the identity matrix of order p.  For a system of difference equatons of order  2 , i.e. p = 2 

( )φ φ λ
λ

φ λ φ
λ

λ φ λ φ1 2 1 2 2
1 21 0

0
0 1

0






− 





= −
−

= − − =  

⇒   characteristic equation 

The two eigenvalues are then: 

λ
φ φ φ

1
1 1

2
24

2
=

+ +
 and  λ

φ φ φ
2

1 1
2

24

2
=

− +
 

⇒  Eigenvalues can be complex numbers  

For difference equations of order p a general result is, that the eigenvalues of F can be obtained as a solution of the 

charakteristic equation 

λ φ λ φ λ φ λ φp p p
p p− ⋅ − ⋅ ⋅ − =− −

−1
1

2
2

1 0,...  
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Proposition from matrix algebra (see e.g. Hamilton (1994), S. 729-731) 

If the eigenvalues of a (p x p) -Matrix F are distinct, there exists a non-singular matrix T, so that 

F T T= −Λ 1  

where Λ  is a (p x p)-diagonal matrix with the eigenvalues of F as the diagonal elements: 

Λ =

















λ
λ

λ

1

2

0 0
0 0

0

L
L

M M O M
L L p

 

We can write: 

F T T T T2 1 1= ⋅− −Λ Λ = −T TΛ2 1 

Because of the diagonal structure of Λ  we can write: 
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Λ2

1
2

2
2

2

0 0
0 0

0

=



















λ
λ

λ

L

L
M M O M

L L p

 

In general,  F T Tj j= −Λ 1   (10).           The diagonal structure of Λj  is retained:  

Λj

j

j

p
j

=



















λ
λ

λ

1

2

0 0
0 0

0

L

L
M M O M

K
 

Denote with t ij  the element of row i, column j of T and t ij  the element of row i, column j of T−1, then we can obtain 

through simple matrix multiplication the (1,1)  element of Fj  : 

( ) [ ] [ ] [ ]f t t t t t tj j j
p

p
p
j

11 11
11

1 12
21

2 1
1= ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅λ λ λ...  = ⋅ + ⋅ + + ⋅c c cj j

p p
j

1 1 2 2λ λ λ...  

[ ]c t ti i
i= ⋅1
1
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(To show this, write (10) extensively) 

c c cp1 2+ + +...  is the (1,1) element of T T I p⋅ =−1
, so that c c cp1 2 1+ + + =...  

Plugging this into (9) leads to: 

∂
∂

λ λ λ
y

w
c c ct j

t

j j
p p

j+ = ⋅ + ⋅ + + ⋅1 1 2 2 ...  

The impulse-response-function of order j is a weighted average of the p eigenvalues raised to the jth power. 

For p=1 the charakteristic equation is 

λ φ λ φ1 1 1 10− = ⇒ =  

It follows for the dynamic multiplier: 

∂
∂

λ φ
y

w
ct j

t

j j+ = ⋅ =1 1 1 da c1 1=  (see above) 
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If at least one eigenvalue of F has an absolute value > 1, the system is explosive , since: 

The eigenvalue with the largest absolute value dominates the dynamic multiplier in an exponential function . For 

real eigenvalues with an absolute value <1 the dynamic multiplier converges either geometrically or oscillating 

towards zero. 

(Caculate the dynamic multiplier of the equation y y y wt t t t= + +− −0 6 0 21 2, . ) 

Complex eigenvalues for p=2: 

Eigenvalues of F are complex, if φ φ1
2

24 0+ ⋅ < . Writing the solutions of the characteristic polynom as complex 

numbers:  

λ
λ

1

2

= +
= −

a bi

a bi  

with       a b= = − − ⋅
φ

φ φ1
1
2

22
05 4, .  



TIME SERIES ANALYSIS: MATHEMATICAL BASICS 

Prof. Dr. Joachim Grammig 

To illustrate the dynamics of the system of difference equations, we write the eigenvalues in their polar coordinate 

representation: 

( ) ( )[ ]λ ϕ ϕ1 = + ⋅R icos sin  

R a b= +2 2 , ( ) ( )
R

b

R

a == ϕϕ sin,cos  

 

Or in their exponential representation: 

[ ]
[ ] ( ) ( )[ ]

λ

λ ϕ ϕ

ϕ

ϕ

1

1

=

= = +

R e

R e R j i j

i

j j i j j cos sin
 

For the complex conjugate of λ1 , which is λ2  we can write: 

[ ] ( ) ( )[ ]λ ϕ ϕϕ
2
j j i j jR e R j i j= ⋅ = ⋅ − ⋅− cos sin  
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Substitution results in: 

( ) ( )[ ] ( ) ( )[ ]∂
∂

λ λ ϕ ϕ ϕ ϕ
y

w
c c c R j i j c R j i j

t j

t

j j j j+ = ⋅ + ⋅ = ⋅ ⋅ + ⋅ + ⋅ ⋅ − ⋅1 1 2 2 1 2cos sin cos sin  

[ ] ( ) [ ] ( )= + ⋅ ⋅ + ⋅ − ⋅ ⋅c c R j i c c R jj j
1 2 1 2cos sinϕ ϕ  

It can be shown that c c1 2,  are also complex conjugates (For a prove: see Hamilton (1994) p. 15): 

ic

,ic

2

1

⋅β−α=
⋅β+α=

 

Plugging this result in we obtain real multipliers: 

( ) ( )c c R j R jj j j j
1 1 2 2 2 2⋅ + = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅λ λ α ϕ β ϕcos sin   
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⇒ If the modulus of the eigenvalues is larger than 1 the system explodes at the rate R j . For R=1 (the 

eigenvalues lie on the unit circle) the mulpliers a re periodic sine and cosine functions of j. Only fo r R<1 („the 

eigenvalues lie inside the unit circle“) the amplitu de of the multipliers decays with the rate R j . 
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Because of the enormous importance of difference equation systems of order 2 we present the stationarity triangle of 

Sargent (1981). For an easy derivation, see Hamilton (1994) p. 17f.)  

 


