1. Mathematical Techniques of Time Series Analysis

Necessary Techniques:

Complex Numbers, the Unit circle, working with Difference- and Lag-Operators, Solutions of stochastic difference equations

Unit circle: Working with complex numbers.

In order to solve stochastic difference equations it is necessary to know the calculation rules of complex numbers.

Basics:

The algebraic equation in x

$$x^2 - 2ax + (a^2 + b^2) = 0$$

e.g. has the formal solution

$$x = a \pm b\sqrt{-1}$$

But those solutions are only defined for b = 0 (for the set of real numbers).

Solution:

Definition of the set C of complex numbers as a superset of R

Requirements of **C**

- (1) The sum (the product) of real numbers as elements of **C** is equal to the sum (the product) defined for real numbers.
- (2) The set **C** contains an element with the property $i^2 = -1$.
- (3) For each element z of **C** there exist two real numbers a, b, so that the complex number z can be written as z = a + ib. Here, a is called the **real part** of Z and b the **imaginary part** of z.

Prof. Dr. Joachim Grammig

We render this definition more precisely by defining the 2x2 Matrices:

$$a := \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, a \in R$$

$$i := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

We define the complex number a + bi as

$$a + bi := \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in R$$

The set of 2X2 Matrices together with basic matrix algebra (addition and multiplication) represents a model for complex numbers. The complex number z=a+ib is called imaginary, if a=0 and $b\neq 0$ and real, if b=0. The complex number $\overline{z}=a-ib$ is the complex conjugate of z=a+ib.

Example: The equation $x^2+c=0$ (c>0) has as solutions the imaginary numbers $z_1=i\sqrt{c}$ and $z_2=-i\sqrt{c}$, since $z_1^2=z_2^2=-c$. The numbers z_1 and z_2 are complex conjugates.

For Illustration of complex numbers the **complex plane** is used:

The horizontal axis depicts the real numbers while on the vertical axis we find the imaginary numbers. Each point in the plane represents exactly one complex number.

Die real number $|z| = \sqrt{a^2 + b^2}$ is the **absolute value** of $z = a + i \cdot b$

|z| is the distance to the point of origin.

It is therefore identical to the usual absolute value of real numbers.

Important results:

$$(a+i \cdot b) + (c+i \cdot d) = (a+c) + i(b+d)$$

$$(a+i \cdot b) - (c+i \cdot d) = (a-c) + i(b-d)$$

$$(a+i \cdot b) \cdot (c+i \cdot d) = (a \cdot c - b \cdot d + i(a \cdot d + b \cdot c))$$

Trigonometric Representation of complex numbers

A complex number z = x + iy with an absolute value of 1 satisfies $x^2 + y^2 = 1$. We say z lies on the unit circle in the complex plane.

The circumference of the unit circle is 2π . The arc length from (1,0) to (0,1), (-1,0),(0,-1) equals $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$.

 ϕ is the arc length from (1,0) to z

$$\cos(\varphi) = x$$

$$\sin(\varphi) = y \quad \text{if } y \neq 0$$

$$\tan(\varphi) = \frac{y}{x} \quad \text{if } x \neq 0$$

If the complex number z lies on the unit circle it can be represented as:

$$z = \cos(\varphi) + i \cdot \sin(\varphi)$$

Any complex number has an absolute value of $R=\sqrt{a^2+b^2}$, it can be represented as $z=R\big(x+i\cdot y\big)$ with $x=\frac{a}{R}$, $y=\frac{b}{R}$ and (x,y) on the unit circle.

Hence, z has the trigonometric form $z = R \cdot \left(\cos(\varphi) + i \cdot \sin(\varphi)\right) \implies$ Polarcoordinate representation of z

Exponential representation of complex numbers

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{5}}{5!} + \dots$$
 (power series)

with $x = i \cdot \varphi$ we can write, using $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$

$$\begin{split} e^{i\phi} &= 1 + i \cdot \phi - \frac{\phi^2}{2!} - i \frac{\phi^3}{3!} + i \frac{\phi^4}{4!} + i \frac{\phi^5}{5!} - \frac{\phi^6}{6!} - i \frac{\phi7}{7!} \\ &= \underbrace{\left(1 - \frac{\phi^2}{2!} + \frac{\phi^4}{4!} - \frac{\phi^6}{6!} + ...\right)}_{Potenzreihe\ cosinus} + i \underbrace{\left(\phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \frac{\phi7}{7!} + ...\right)}_{Potenzreihe\ cosinus} \\ &= \cos \phi + i \cdot \sin \phi \end{split}$$

The representation of a complex number $z=a+i\cdot b$ according to $z=R\cdot e^{i\cdot \phi}$ with R=|z|, $\tan(\phi)=\frac{b}{a}$ is called its Exponential form.

2. Difference equations

(The presentation follows Hamilton (1994), chapter 1)

Difference equations of 1st order

Dynamic properties of

$$\mathbf{y}_{t} = \mathbf{\phi} \mathbf{y}_{t-1} + \mathbf{w}_{t} \tag{1}$$

W_f can be a random variable. Then: (stochastic difference equation of 1st order)

Example: money demand equation Goldfeld (1973) for the USA

 $m_{\rm j}$ (log real money demand) as a function of log GDP (real) $I_{\rm t}$, the logarithm of the interest rate on deposits $r_{\rm Gt}$ and the interest rate for bonds $r_{\rm Ct}$.

$$\mathbf{m}_{t} = 0.27 + 0.72 \mathbf{m}_{t-1} + 0.19 \mathbf{I}_{t} - 0.045 \mathbf{r}_{Gt} - 0.019 \mathbf{r}_{Ct}$$
(2)

This is a special case of equation 1 with

$$W_{t} = 0.27 + 0.19I_{t} - 0.045r_{Gt} - 0.019r_{Ct}$$

$$y_t = m_t$$

$$\phi = 0.72$$

Objective: understanding the dynamic behavior of y if w changes.

Period	Equation
0	$\mathbf{y}_{0} = \phi \mathbf{y}_{-1} + \mathbf{w}_{0}$
1	$\mathbf{y}_1 = \phi \mathbf{y}_0 + \mathbf{w}_1$
2	
t	$y_{t} = \phi y_{t-1} + w_{t}$

 \Rightarrow If the starting value y_{-1} for t=-1 and w_t for 0,1,...,t is known, the sequence of y_t can be calculated via recursive substitution:

$$y_{t} = \phi^{t+1} y_{-1} + \phi^{t} w_{0} + \phi^{t-1} w_{1} + \phi^{t-2} w_{2} + \dots + \phi w_{t-1} + w_{t}$$
(3)

Dynamic behavior

If w_0 changes and $w_1...w_t$ are unaffected, the effect on $y_t: \frac{\partial y_t}{\partial w_0} = \phi^t$

Dynamic multiplier = (impulse response function)

How strong the effect of the dynamic multiplier is depends on the time span from 0 - t and the parameter ϕ .

If the dynamic simulation begins in t:

$$y_{t+j} = \phi^{j+1} y_{t-1} + \phi^{j} w_{t} + \phi^{j-1} w_{t+1} ... + w_{t+j}.$$

The size and the sign of ϕ determine the sequence of the dynamic multipliers.

The effect of W_t on Y_{t+j} is given by

$$\frac{\partial y_{t+j}}{\partial w_t} = \phi^j$$

Thus, the dynamic multiplier depends only on j, the time span between W_t and Y_{t+j} .

Possible dynamics: exponential increase $(\phi > 1)$, a geometric decay $(0 < \phi < 1)$, an oscillating decay $(-1 < \phi < 0)$, an explosive oscillating behavior $(\phi < -1)$

Difference equations of higher order

As a generalization consider a difference equation of order p

$$y_{t} = \phi_{1} y_{t-1} + \phi_{2} y_{t-2} + \dots + \phi_{p} y_{t-p} + W_{t}$$
(4)

Objective: Explaining the dynamic behavior of (4)

First, we transfer the difference equation of order p in a vector difference equation of order 1. Therefore, we need the following notation:

$$\xi_{t} \equiv \begin{bmatrix} y_{t} \\ y_{t-1} \\ \vdots \\ y_{t-p+1} \end{bmatrix} \qquad (p \times 1) - Vektor$$

$$F = \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_{p-1} & \phi_p \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$
 (pxp) - Matrix

$$\mathbf{v}_{t} = \begin{bmatrix} \mathbf{w}_{t} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \qquad (\mathbf{p} \times \mathbf{1}) - \mathbf{Vektor}$$

For p = 1 (difference equation of order 1) the matrix F becomes $F = \phi$ (scalar)

Now, we can define the vector difference equation of order 1:

$$\xi_{t} = F\xi_{t-1} + V_{t} \tag{5}$$

Recursion, as in the case of difference equations of order 1:

For period 0: $\xi_0 = F \xi_{-1} + v_0$

For period 1:
$$\xi_1 = F\xi_0 + v_1 = F(F\xi_{-1} + v_0) + v_1 = F^2 \xi_{-1} + Fv_0 + v_1$$

For period t:
$$\xi_t = F^{t+1} \xi_{-1} + F^t v_0 + F^{t-1} v_1 \cdots F v_{t-1} + v_t$$
 (6)

Of special importance concerning the dynamics of the system: 1. row of the system given in (6) for period t:

Define $f_{11}^{(t)}$: as the (1,1) element of F^t , $f_{12}^{(t)}$ as the (1,2) element of F^t .

For the **first row** of $\xi_t = \dots$ we can write

$$y_{t} = f_{11}^{(t+1)} y_{-1} + f_{12}^{(t+1)} y_{-2} + \dots + f_{1p}^{(t+1)} y_{-p} + f_{11}^{(t)} w_{0} + f_{11}^{(t-1)} w_{1} + \dots + f_{11}^{(1)} w_{t-1} + w_{t}$$
(7)

 \Rightarrow y_t is a function of **p initial values** of y and the **complete History** of w.

Beginning the dynamic simulation in t:

$$\xi_{t+j} = F^{j+1} \xi_{t-1} + F^{j} v_{t} + F^{j-1} v_{t+1} + \dots + F v_{t+j-1} + v_{t+j}$$
(8)

For a difference equation of order p the impulse-response-function is $\frac{\partial y_{t+j}}{\partial w_t} = f_{11}^{(j)}$ (9)

For j=1 this is the (1,1) element of F, or the parameter ϕ_1 !

For each system of order p the effect of a one unit increase of W_t on Y_{t+1} is given by:

$$\frac{\partial y_{t+1}}{\partial w_t} = \phi_1$$

Via direct multiplication of the matrix \boldsymbol{F} we obtain $\,\boldsymbol{F}^2$:

$$\frac{\partial y_{t+2}}{\partial w_t} = \phi_1^2 + \phi_2$$

This is the (1,1) element of F^2 . In order to describe the dynamic behavior of difference equations of higher order analytically (when is the system explosive?) we can analyze the **eigenvalues of the matrix F**.

⇒ Matrix-Algebra (see e.g. Greene (1993))

Eigenvalues (characteristic roots) of the matrix F are the solutions λ of:

$$\left| \mathbf{F} - \lambda \cdot \mathbf{I}_{\mathbf{p}} \right| = 0$$

with I_p as the identity matrix of order p. For a system of difference equations of order 2 , i.e. p=2

$$\begin{bmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{vmatrix} (\phi_1 - \lambda) & \phi_2 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - \phi_1 \lambda - \phi_2 = 0$$

⇒ characteristic equation

The two eigenvalues are then:

$$\lambda_1 = \frac{\phi_1 + \sqrt{\phi_1^2 + 4\phi_2}}{2} \text{ and } \lambda_2 = \frac{\phi_1 - \sqrt{\phi_1^2 + 4\phi_2}}{2}$$

⇒ Eigenvalues can be complex numbers

For difference equations of order p a general result is, that the eigenvalues of F can be obtained as a solution of the charakteristic equation

$$\lambda^{p} - \phi_{1} \cdot \lambda^{p-1} - \phi_{2} \cdot \lambda^{p-2}, \dots \phi_{p-1} \cdot \lambda - \phi_{p} = 0$$

Proposition from matrix algebra (see e.g. Hamilton (1994), S. 729-731)

If the eigenvalues of a (p x p) -Matrix F are distinct, there exists a non-singular matrix T, so that

$$F = T\Lambda T^{-1}$$

where Λ is a (p x p)-diagonal matrix with the eigenvalues of F as the diagonal elements:

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_p \end{bmatrix}$$

We can write:

$$F^2 = T\Lambda T^{-1} \cdot T\Lambda T^{-1} = T\Lambda^2 T^{-1}$$

Because of the diagonal structure of Λ we can write:

$$\Lambda^2 = \begin{bmatrix} \lambda_1^2 & 0 & \cdots & 0 \\ 0 & \lambda_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_p^2 \end{bmatrix}$$

In general, $F^j = T\Lambda^j T^{-1}$ (10). The diagonal structure of Λ^j is retained:

$$\boldsymbol{\Lambda}^{j} = \begin{bmatrix} \lambda_{1}^{j} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{j} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & & \lambda_{p}^{j} \end{bmatrix}$$

Denote with t_{ij} the element of row i, column j of T and t^{ij} the element of row i, column j of T^{-1} , then we can obtain through simple matrix multiplication the (1,1) element of F^{j} :

$$f_{11}^{(j)} = \left[t_{11} \cdot t^{11}\right] \cdot \lambda_1^j + \left[t_{12} \cdot t^{21}\right] \cdot \lambda_2^j + \dots + \left[t_{1p} \cdot t^{p1}\right] \cdot \lambda_p^j = c_1 \cdot \lambda_1^j + c_2 \cdot \lambda_2^j + \dots + c_p \cdot \lambda_p^j$$

$$c_{i} = \left[t_{1i} \cdot t^{i1}\right]$$

(To show this, write (10) extensively)

$$c_1+c_2+...+c_p$$
 is the (1,1) element of $T\cdot T^{-1}=I_p$, so that $c_1+c_2+...+c_p=1$

Plugging this into (9) leads to:

$$\frac{\partial y_{t+j}}{\partial w_t} = c_1 \cdot \lambda_1^j + c_2 \cdot \lambda_2^j + \dots + c_p \cdot \lambda_p^j$$

The impulse-response-function of order j is a weighted average of the p eigenvalues raised to the jth power.

For p=1 the charakteristic equation is

$$\lambda_1 - \phi_1 = 0 \Longrightarrow \lambda_1 = \phi_1$$

It follows for the dynamic multiplier:

$$\frac{\partial y_{t+j}}{\partial w_t} = c_1 \cdot \lambda_1^j = \phi_1^j \text{ da } c_1 = 1 \text{ (see above)}$$

Prof. Dr. Joachim Grammig

If at least one eigenvalue of F has an absolute value > 1, the system is **explosive**, since:

The eigenvalue with the largest absolute value dominates the dynamic multiplier in an **exponential function**. For real eigenvalues with an absolute value <1 the dynamic multiplier converges either geometrically or oscillating towards zero.

(Caculate the dynamic multiplier of the equation $y_t = 0.6y_{t-1} + 0.2y_{t-2} + w_t$)

Complex eigenvalues for p=2:

Eigenvalues of F are complex, if $\phi_1^2 + 4 \cdot \phi_2 < 0$. Writing the solutions of the characteristic polynom as **complex** numbers:

$$\lambda_1 = a + bi$$
$$\lambda_2 = a - bi$$

with
$$a = \frac{\phi_1}{2}, b = 0.5\sqrt{-\phi_1^2 - 4 \cdot \phi_2}$$

To illustrate the dynamics of the system of difference equations, we write the eigenvalues in their polar coordinate representation:

$$\lambda_1 = R[\cos(\varphi) + i \cdot \sin(\varphi)]$$

$$R = \sqrt{a^2 + b^2}$$
, $\cos(\varphi) = \frac{a}{R}$, $\sin(\varphi) = \frac{b}{R}$

Or in their exponential representation:

$$\begin{split} &\lambda_1 = R \big[e^{i\phi} \big] \\ &\lambda_1^j = R^j \big[e^{i\phi j} \big] = R^j \big[\cos(\phi j) + i \sin(\phi j) \big] \end{split}$$

For the complex conjugate of λ_1 , which is λ_2 we can write:

$$\lambda_2^{j} = R^{j} \cdot \left[e^{-i\phi j} \right] = R^{j} \cdot \left[\cos(\phi j) - i \cdot \sin(\phi j) \right]$$

Prof. Dr. Joachim Grammig

Substitution results in:

$$\frac{\partial y_{t+j}}{\partial w_t} = c_1 \cdot \lambda_1^j + c_2 \cdot \lambda_2^j = c_1 \cdot R^j \cdot \left[\cos(\varphi j) + i \cdot \sin(\varphi j)\right] + c_2 \cdot R^j \cdot \left[\cos(\varphi j) - i \cdot \sin(\varphi j)\right]$$

$$= \left[c_1 + c_2\right] \cdot R^j \cdot \cos(\varphi j) + i \cdot \left[c_1 - c_2\right] \cdot R^j \cdot \sin(\varphi j)$$

It can be shown that c_1, c_2 are also complex conjugates (For a prove: see Hamilton (1994) p. 15):

$$c_1 = \alpha + \beta \cdot i,$$

 $c_2 = \alpha - \beta \cdot i$

Plugging this result in we obtain real multipliers:

$$c_1 \cdot \lambda_1^j + c_2 \lambda_2^j = 2 \cdot \alpha \cdot R^j \cdot \cos(\varphi j) - 2 \cdot \beta \cdot R^j \cdot \sin(\varphi j)$$

 \Rightarrow If the modulus of the eigenvalues is larger than 1 the system explodes at the rate R^j . For R=1 (the eigenvalues lie on the unit circle) the mulpliers are periodic sine and cosine functions of j. Only for R<1 ("the eigenvalues lie inside the unit circle") the amplitude of the multipliers decays with the rate R^j .

Because of the enormous importance of difference equation systems of order 2 we present the stationarity triangle of Sargent (1981). For an easy derivation, see Hamilton (1994) p. 17f.)

