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Abstract—With large parts of human population increasingly
living in big cities, the mobility behavior of humans is about
to change faster than ever before. Not only convenience and
increasing ecological awareness lead to more intermodal mobility
behavior, also the rise of new mobility options like car- or bike
sharing are becoming more and more common. Wide distribution
of smartphones and the on-trip availability of high-speed Internet
let users inform themselves about a vast variety of mobility
options. This information overload can overburden users who
often have the simple wish to conveniently travel from A to
B. Digital Mobility Assistants ease the burden of selecting the
best mobility option for a particular user by incorporating the
users’ habits and preferences and providing relevant information
at just the right time. To enable such intelligent assistance, we
propose to create personalized mobility models that include not
only information about habitual trips and destinations, but also
allow for the detection of preferred travel modes. Our system
is specifically designed to use sparse sensor data from mobile
devices, such as smartphones, to offer an adequate balance
between battery-life and data quality.

I. INTRODUCTION

Today’s population experiences a growing trend of urbani-
sation. For the first time in history, in 2007 more people were
living in cities than in rural areas. The United Nations Popula-
tion fund expects the number of people living in metropolitan
areas to rise up to 5 billion by 2030 [1]. Providing mobility
to such a vast amount of people living together in narrow
space not only poses challenges to city planners and mobility
providers. It also confronts inhabitants with challenges when
planning their daily mobility. The variety of mobility options
including private car, public transport, car- and bike-sharing
as well as taxis and private shuttle companies offer services
each of which might be the best option in a specific situation.
While a broad selection of offers is generally advantageous for
customers, it makes it hard to decide which mobility option is
the best one for a specific customer in a specific situation. The
pure display of all available information without accounting for
a user’s needs can overburden users, leading to frustration and
impairing the advantage of the large range of mobility options.

Digital Mobility Assistants are designed to easy the burden
of selecting the appropriate mobility option for a specific user

in a specific situation by incorporating personal profiles to
display only information that is relevant to the user.

Our daily mobility is, in fact, characterized by a deep-
rooted regularity [2]. They found that a majority of trips are
habitual trips that are carried out at the same times to the
same places and it is possible to predict up to 93% of such
trips. To enable these predictions, we propose a new method
to generate personal mobility profiles by the aggregation of
various sensor data and the application of different algorithms.
Such mobility predictions might, for instance, include the
most likely destination of an upcoming trip as well as likely
departure times. It is also possible to draw conclusions about
mobility habits and identify trips that are repeatedly executed
to the same destinations around the same time.

Based on information about trips of a user in near future,
a digital mobility assistant can, for instance, display infor-
mation only about the preferred mode of transportation on
the preferred route. Such information might be the current
traffic situation on the trip in case the car is preferred, or the
departure times of the preferred subway of a person. Thus, the
user is presented with relevant information instead of being
overwhelmed with information he/she is not interested in.

In this paper, we present a framework that aggregates
spatio-temporal data from mobile devices, for instance smart-
phones, in the backend. It uses such data to generate mod-
els of mobility habits to enable predictions about upcoming
destinations, departure times and the preferred transportation
mode of a person. The framework is specifically designed to
work on sparse smartphone data to achieve a decent battery
life while maintaining data quality that is accurate enough for
our predictions.

II. RELATED WORK

The prediction of human mobility behavior has been ex-
plored from a variety of facets in research. Krajnik et al. show
how human behavior can be forecast for a short period of time
after an action was initialized. In [3], Pentland et al. predict
short term human behavior based on automobile drivers’
subsequent actions from their initial preparatory movements.
They model human behavior using a Markov Dynamic Model



(MDM) which is based on Kalman filters sequenced together
by a Markov chain. In [4], Liao et al. build hierarchical Markov
models to learn and infer a person’s daily movements. Their
approach is based on several levels of abstraction in order to
bridge the gap between raw GPS measurements and high level
information. Supervised learning is used to infer the transport
mode and means of transportation in order to predict popular
destinations of a person. Furthermore, Liao et al. describe
how to extract a person’s activities from GPS traces using
Conditional Random Fields (CRF) [5].

An improved approach towards understanding human mo-
bility is proposed by Zheng et al. [6]. He and his team extracted
new features out of GPS logs, such as heading change rate
(HCR), stop rate (SR) and velocity change rate (VCR). They
use the data in addition to their previous work [7] to train
a Decision Tree-based inference model. The new features
result in eight percent improvement in inference accuracy over
previous results.

The approaches mentioned so far focus on learning and
inferring user actions from GPS traces logged with mobile
phones. But the extracted features mentioned by Zheng et al.
are well suited to distinguish between bus, car and walking
as well. To achieve a very high accuracy in transport mode
detection (over 90%), Geographic Information System (GIS)
information is used [8] in many cases. Hence, it is not only
possible to detect the transportation mode, such as walking,
bike, car, bus, etc. but furthermore information about which
particular bus the user is riding. Gonzales et al. [9] even try to
understand human mobility patterns. Studying the trajectory
of 100,000 anonymized mobile phone users, they found a
high degree of temporal and spatial regularity. It particular, it
exists a high probability to return to a few highly frequented
locations, such as home or work. To be able to understand
human mobility patterns and predict trips, the recognition of
unknown behavior and anomalies is promising. Liao et al. [4]
show how to recognize unknown behavior and anomalies, and
Ma et al. [10] propose a method to detect anomalies from
GPS logs in real-time for traveling individuals without the
need for a previously trained model. Their approach relies on
trajectories to be modeled as a discrete-time series of axis-
parallel constraints (”boxes”) in the 2D space. The incremental
comparison between two trajectories where one trajectory has
the current movement pattern and the other is a norm can be
calculated according to similarity between two boxes. Biagioni
et al. describe how to detect anomalies between day routines
based on day clustering and how to predict future travel [11].
There is no need for supervised learning, instead a modified
similarity algorithms was applied to clustering days using
location traces.

In this work we use approaches like described by Liao et
al. to infer human mobility by tracking the user and training
a HMM [4]. To gain more knowledge about locomotion of
the user we use a HMM for travel mode detection instead
of a Decision-Tree based inference model like proposed by
Zheng et al. [7]. Hence, enables us to enrich the user’s
mobility with informative knowledge and provide pervasive
computing systems with more context information. Taking
this into account our framework can predict user’s future
mobility behaviour regarding temporal information as well as
transportation mode information about the next trip.

III. SOURCING OF MOBILITY DATA

To be able to extract spatio-temporal mobility patterns from
GPS logs we need information about the daily mobility from
subjects. Three persons were asked to track their daily life and
allow us to analyze their movement information. The intention
is to not equip the subject with additional expensive GPS
logging hardware, but rather use already owned telemetry of
the user, i.e. built-in smartphone sensors (GPS, acceleration,
pressure, etc.). On the one hand we might not get the most
possible accurate data but on the other hand we can check our
approach against available real life data because a) the subject
does not have to carry additional hardware and can perform
all daily routines as usual and b) then we can evaluate what
is the possibility to use the approach with average users.

The mobility data is therefore collected from smartphones
using a commercial application. It saves location readings
every 45s on average. Three different persons recorded their
outdoor movements over a period of several months resulting
in 415 hours of data. The data is mostly located in the area of
Munich, Germany. In total, more than 13,000 km are collected
and divided in 1,700 movement segments. Places, at which the
user stays for a longer period of time, are extracted from the
movements. The mobility movements are manually labelled
with the utilized travel modes which consists out of car, bus,
train, tram, subway, walking, running, cycling, plane, and
Pendelbus. The latter is a private shuttle bus service which
is used frequently by the test users.

A GPS log pk represents data recorded with the commercial
application mentioned above using a smartphone. The format
of the log is pk = {lat, lon, t} where: lat represents the lati-
tude; lon represents longitude; and t represents the timestamp
of the sensor report

The measurement units of the GPS log attributes are:
latitude (lat) and longitude (lon) are in decimal degree; and
the timestamp of the GPS log (t) is in ISO 8601 combined
date and time format.

A GPS trace list D is a sequence of GPS logs, D =
{p0, . . . , pN}, where the timestamp in the sequence strictly
increases.

Additionally, road and public transportation network data
is extracted from the OpenStreetMap.org1 project, see Fig. 1.

IV. MODEL GENERATION

To enable our envisioned predictions of mobility behavior,
we use different models to capture spatio-temporal patterns
in our mobility data. Therefore, we use a preprocessing step
to segment our data between places where the person moves
and places where he/she is standing still. Based on this
segmentation, we can create relations between places the user
visited and cluster resulting trips according to different features
like weekdays, travel mode or the route the user has taken.

A. Location and Trip Clustering

In a first clustering step, we partition our raw mobility data,
which consists of tuples of timestamp, latitude and longitude.

1http://www.openstreetmap.org
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Fig. 1. Geographic Information System (GIS) data is extracted from the
OpenStreeMap.org project. The public transportation networks from the inner
city of Munich can been seen which is used for the feature extraction by using
a map matching method.

Therefore, the data is segmented into parts where the person
is moving (moves) and parts where the person is standing still
(stops). One challenge when using smartphone-based location
data arises from the inaccuracy of the localization measures.
Even when a person does not move, the estimated location
might vary due to uncertainties in the location estimation.
This uncertainties are emerged from a combination of different
algorithms which use a variety of data sources, such as GPS,
GSM or WiFi. While GPS offers the most accurate location
data, it is often not available for places where a person stays for
an extended period of time, e.g. inside buildings. To account
for such variances and to distinguish between stops and moves,
we use the CB-SMoT algorithm.

CB-SMoT [12] operates in two phases. In the first phase,
stops are extracted from the recorded location data. Here, a
variant of DBSCAN [13] is used. At the beginning, all points
are set to be unprocessed. Iteratively, for each unprocessed
location pk the Eps-neighborhood NEps over the time-sorted
point list D = {p0, . . . , pN} is computed such that:

NEps ={pm ∈ D|(
k−1∑
i=m

dist(pi, pi+1)) ≤ Eps}∪

{pn ∈ D|(
n∑

i=k+1

dist(pi−1, pi)) ≤ Eps},
(1)

where pi = (xi, yi, ti) with ti holds the timestamp of
the location and t0 ≤ tm < tk < tn ≤ tN . xi and yi
are the longitude and latitude, respectively. The parameter
Eps determines the maximum distance between pk and its
neighbors on the point list.

The point pk is considered to be a core point with respect
to Eps and MinTime if |tn − tm| ≥MinTime. MinTime
describes the minimum duration the user has to stay at one
location to be count as stop. Therefore, by setting both
parameters, Eps and MinTime, we only allow a maximum
average speed of Eps/MinT ime for a stop. This speed limit
should be set in such a way that both, slow walking segments

and the inaccuracy of measurements at stops, are detected
correctly. We choose values of 75m for the Eps parameter
and a minimum time of 3 min a user should stay at the same
stop. This corresponds to a speed limit of 1.5 km/h.

If point pk satisfies the conditions of a core point, a new
stop S = (RS ,∆S) is created where RS describes the region
of the assigned locations as topologically closed polygon and
∆S is the visiting duration. Furthermore, for all points in
NEps the Eps-neighbourhood is computed and the resulting,
unprocessed points are added to S. In a last step, the points in
S are marked as processed and the procedure is repeated for
the remaining unprocessed points in D.

The second phase of CB-SMoT finds movements and
merges stops. In general, a user visits specific places very
frequently, e.g. work and home. To build our prediction and
habit detection on these frequently visited places rather than
on each stop itself, CB-SMoT clusters the resulting stops from
the previous step. Therefore, we compare each stop Si with
already found places. If the region RSi

of Si intersect with
cluster Ck, the stop is assigned to the cluster. Otherwise a
new cluster is created. For each sub-list of points which is not
assigned to a stop, a movements is generated.

We obtain a number of clusters and a number of transitions
between those clusters, which represent single trips of a person.
In a second clustering step, we create start-destination relations
between places which correspond to a user’s trips. This simple
clustering basically just categorizes trips according to their
start and destination locations. For instance, all trips from a
person’s home location to the person’s workplace represent
one cluster of trips.

B. Travel Mode Detection

After obtaining movement segments from the raw location
data, transportation modes are estimated from the resulting
trip data. We distinguish between both motorized and non-
motorized travel modes, including car, bus, subway, train, tram,
Pendelbus, plane, walking, running and cycling.

A point-based approach is taken for the travel mode
detection, i.e. instead of predicting the most probable trans-
portation mode for each movement segment, we predict the
most probable mode per movement location. As described in
section IV-A, a movement segment is constructed between two
consecutive stops at which the user stays for a minimum period
of time. However, when changing from one transportation
mode to another, a person does not always stop in between.
For example, after arriving at a station via train, the user might
directly walk to her car and continue travelling to her home.
Such a behavior can be correctly classified using a point-based
approach but not with a segment-based detection.

For each point of a movement segment, a set of features
is extracted using a GIS of the surrounding environment and
the raw location data. Similar to Zhang et al. [14] we use a
set of basic and advanced features. The basic features consist
of velocity, distance, velocity- and heading change. All these
features are computed by comparing the current point with the
last processed location of the movement. The more advanced
features use GIS information. For each public transportation
mode, we compute the distance from the current point to the
nearest transportation line of this type.
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Fig. 2. The HMM detects the travel modes of a location point. For a better
visualisation, only 3 states are used (car, bus, walk) which can emit 2 discrete
symbols ycar,walk or ybus,walk . aij is the probability to transition from
state xi to state xj . bj(yk) is the probability to emit symbol yk in state xj .

When a person is riding a bus, locations of the location
trace should be close to a bus line network. The other public
transportation lines, e.g. a train line, should be farther away
from the trace points. A special case should be considered
when a user travels by an underground transportation mode,
e.g. subway. Here, the location updates are most likely drop-
ping in their frequency since smartphones are not able to
receive GPS signals underground. Using GPS alone, the only
recorded locations are probably at the entry and the exit of
the subway. Using additional localization sources, i.e. GSM
and WiFi signals, it is possible to receive location updates
at subway stations given there are WiFi networks in range.
Hence, the distance of a point to the next subway line does
not provide as much information. The distance from each point
to the next subway station proves useful in this case.

The framework for travel mode detection we created con-
sists of two parts. In an offline step, features are extracted
from a manually labeled ground truth dataset (see section III).
A first guess of the travel mode builds up on a supervised
learning method. We choose a random forest [15] to construct
the inference model using a training set of a series of move-
ment segments. Since the provided features are optimized to
describe different motorized travel modes, additional features
are used to compensate the lack of information of non-
motorized modes. In particular, we benefit from Androids
build-in Activity Recognition. This framework provides low
cost methods to extract additional travel modes which include
walking, running, cycling, and general driving.

A Hidden Markov Model (HMM) is constructed using the
training set of movements. Therefore, the observation states
of the HMM are both the predictions of the Random Forest
and the Activity Recognition results. The hidden variable is
assembled by the final travel mode prediction for the location
points. See Fig. 2 for a visualisation.

Let Y = (y1, y2, . . . yL) be the observation sequence of
length L where yt, t ∈ (1, L) is the observation of one point.
Hence, yt is a tuple of the output of the random forest and
the Activity Recognition. Since we are interested in the joint
probability P (xt, y1:t) where xt is the hidden variable of point
t and y1:t = (y(1), . . . , y(t)), we use the Forward Algorithm
to filter the HMM. Both, the transition matrix and the emission
matrix, can be extracted directly from the ground-truth dataset
and are given by P (xt|xt−1) and P (yt|xt), respectively.

In an online step, the features of motorized travel modes are

extracted from a set of movement locations. A first prediction
is obtained using the random forest. The first guess together
with the activity recognition result are the input data for the
HMM. In a last step, the HMM provides the final travel mode
prediction for the movement segment.

A simplified HMM is constructed for evaluation. It uses
only the observations emitted by the random forest without
the activity recognition. The observations are no tuples but
the discrete predictions obtained from the random forest.
Therefore, a main task of the simplified HMM is to smooth the
observations. Using a point-based prediction model, the results
can oscillate between two or more travel modes in one move-
ments segments. For instance, when a user is driving by car and
crosses a bus line segment every now and then, she might get
the observation sequence (car, car, bus, car, bus, car). Using
the simplified HMM the prediction is smoothed and results
in the correct sequence (car, car, car, car, car, car). The tran-
sition matrix and the emission matrix can be obtained as
explained above.

C. Trip clustering

In this third preprocessing step, we account for the depar-
ture times of specific trips from one location to another using
a specific mode of transport on a specific weekday. We define
a trip as a relation between a start cluster and a destination
cluster that are generated as described in sectionIV-A. Trips are
clustered according to their start and destination clusters, their
mode of transportation and the weekday of the trip. Accounting
for weekdays is important, since the regularity of most persons
mobility strongly varies depending on the current day being a
workday or weekend. To this end, we distinguish each specific
weekday from Saturdays, while we treat Sundays and holidays
the same. One cluster of trips might, for instance, consist of
various trips that were done by car from the cluster ”home”
to the cluster ”work” on Mondays.

For each trip cluster, we can now generate statistical models
about common departure times. Since a set of observed depar-
ture events in the continuous domain of time can in most cases
not be described by parametrized functions, we need a way of
estimating the probability density function of a departure event
over time in a non-parametric way. We therefore use a variant
of Kernel Density Estimation [16] to describe a probability
density function of the random variable using a Gaussian
kernel function. Such an exemplary probability density is
illustrated in figure 3. Here, the probability p of a departure
from a specific cluster to a destination is plotted over time
t. The function is generated by the Gaussian kernels of the
observed data points ti.

The estimated density is represented by the average of all
kernel functions averaged over the number of data points N
as illustrated in equation 2.

P (x) =
1

N

N∑
i=1

G (ti) (2)

G (ti) here describes the Gaussian kernel function.



Fig. 3. An exemplary gaussian kernel density estimation over departure times
of a specific trip generated by the observations ti.

V. DESTINATION PREDICTION AND HABIT DETECTION

In this section we describe how destination prediction and
habit detection is done by our framework.

A. Destination Prediction

The models generated so far can be used to predict likely
next destinations of a person given a location and optionally
a time as an input. Such predictions can be useful for Digital
Mobility Assistants to filter information that is to be presented
to the user. The destination prediction uses information about
the current location as well as the current time as input
and outputs a weighted list of likely next locations. Our
implementation is based on a combination of heuristics that are
merged to return a confidence value for each location cluster.
The destination prediction considers the following factors:

• Frequency of visits: When a prediction is triggered
from one location, only locations that have been ap-
proached from the requested locations are considered
as likely destinations. The higher the frequency of past
visits (from the requested location) is, the higher is the
impact of the specific destination.

• Day of week: Each type of day is treated differently
regarding the prediction. We distinguish each weekday
individually and group sun- and holidays.

• Departure time: For each cluster, a mean departure
time is measured. We therefore perform a local search
in the probability density function described in section
IV-C.

We use this combination of heuristics due to good experi-
ences in previous projects, but alternative prediction methods
like Bayesian Networks [4] or Conditional Random Fields [5]
also proved to offer reliable predictions. An overview about
different methodologies and common accuracies can be found
in the work of Herder et al. [17].

B. Habit Detection

Based on the statistical models explained in section IV-A,
we can not only create predictions about likely next location,
but also extract patterns in the users’ daily mobility. We
therefore partition the data into tuples of days and analyze trip
clusters with respect to human habits. We therefore calculate a
habits value to express on how many days since data recording
a specific trips has been made. For instance, if a person traveled
from work to the gym on six out of ten days, the habit value
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Fig. 4. The confusion matrix displays the performance of the travel mode
detection. The simplified HMM is trained by an pseudo-random subset of
training data. Another i.i.d. subset is used for the evaluation. The evaluation
data is obtained by 10-fold cross-validation using around 3,000 data points.
It is visible that most movement points lay on the diagonal and are therefore
classified correctly. The simplified HMM achieves an accuracy of 90.9%.

for this trip would be 0.6. Using such a habit value, we can
group habitual trips according to their habit-strength. First
experiments showed that for our participants, the detection of
commutes from home to work obtain high habit values, as well
as trips to canteens, or similar. We can also draw conclusions
about common departure times, arrival times and durations of
habitual trips based on the corresponding trip clusters.

The filtering of trips according to their habit value enables
us to generate an overview about habitual trips sorted by their
strength. Such information could, for instance, be used to
predict trips that a user will do some when during his/her
day, thus supporting him in planning his/her day. In contrast
to the destination prediction introduces in section V-A, this
predictions do not depend on a specific trigger and enables
predictions farther into the future than only the next most likely
trip. The habit detection presented so far only represents a first
approach into habit detection and will be subject of future
work.

VI. EVALUATION

In this section we evaluate the results of our system against
the ground truth.

A. Travel Mode Detection

The validation of the travel mode detection is based on the
data collected by the commercial smartphones application. To
keep the amount of different transportation modes balanced,
pseudo-randomly, independent and identical distributed (i.i.d.)
subsets are used for training and testing. The subsets are
assembled in a way to keep the amount of different travel
modes equally distributed inside each set. Since the application
does not provide access to the Activity Recognition data, the
preliminary evaluation uses the simplified HMM model for the
travel mode detection. Therefore, only motorized travel modes
are considered.



TABLE I. AVERAGE PERCENTAGE OF CORRECT PREDICTIONS OF OUR
DESTINATION PREDICTION. THE LEFT COLUMN INDICATES THE

PERCENTAGE OF CORRECT PREDICTIONS OF THE NEXT LOCATION OF A
PERSON. THE RIGHT TABLE INDICATES SITUATIONS WHERE THE NEXT

VISITED LOCATION OF THE TEST PERSON WAS WITHIN THE MOST LIKELY
THREE PREDICTED DESTINATIONS.

Most likely Within first 3

Overall 57.7 % 75.2 %
Weekday 62.1 % 76.4 %
Weekend 48.8 % 71.2 %

A total of 3,000 location points are employed and divided
into training and test data according to a 10-fold cross-
validation. In each run, a random forest is trained. Afterwards,
the Hidden Markov Model smooths and corrects some of the
misclassified travel modes using the same set of training data.

The prediction model of the random forest achieves an
average accuracy of 89.8% on the cross-validation. However,
the travel mode detection performance can even be increased
slightly using the HMM which provides an average accuracy
of 90.9%. Therefore, it increases the travel mode detection
performance by around 1%. Nevertheless, the introduction of
the HMM provides foremost a method to handle Activity
Recognition data of the Android platform which is not included
in the current evaluation.

A confusion matrix with a detailed detection performance
can be seen in Fig. 4. All travel modes which are located on
the diagonal, are detected correctly while all other points are
misclassified by either the random forest or the HMM.

B. Destination Prediction

In an initial evaluation step, we estimated the correctness
of our destination prediction explained in section V-A. For this
evaluation, we used six persons of our dataset and split their
trip data into mutually exclusive training sets of six weeks,
while three weeks data were used for testing. Generally, the
average percentage of correct predictions varied between 73
% and 45 % depending on the different persons. We also
investigated, in how many cases the correct prediction is within
the most likely three destinations, where the correctness varied
between 94 % and 63 % in this case. We also distinguished
between weekdays and weekends and averaged percentages of
correct predictions are shown in table I.

We assume the high variance in the prediction rates being
caused simply be the different way of lives of our test persons.
While some of our participants are strongly driven by a high
amount of regular events (commutes, kindergarden, ...), others
experience a lower amount of regularity in their daily life.
Since our dataset is rather small to allow for a general conclu-
sion about the average accuracy of our destination prediction,
such an evaluation is left for future work.

VII. CONCLUSION

In this paper, we introduced a framework to generate
models of habitual human mobility behavior using spatio-
temporal data from mobile devices. The framework includes
an estimation of likely next locations of a person as well
as corresponding departure times and the preferred mode
of transportation. We evaluated our approach, focusing on

the evaluation of travel mode detection. We showed how
to distinguish between different motorized modes of trans-
portation even when only sparse location data from mobile
devices is available. Future work will include the clustering
and prediction of different routes or lines for single trips using
one specific mode of transportation as well as further research
in the detection of mobility habits of users.
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