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Abstract— For digital mobility assistants it is advantageous to
know users’ mobility habits to be able to infer the most probable
departure time and next destination. Different approaches are
known to face this challenge, but most of them either have a
very static feature model and limited extensibility capabilities
or they are very complex and require exponential amount of
training data for every added feature. This paper introduces a
flexible and extendible mobility model – to represent a user’s
movement and habits – using a Variable-order Markov Model
(VOMM) based on users’ mobility patterns enriched with
different temporal context information. Since this model uses a
tree like data structure, it is possible to find patterns of different
lengths in the same training data. Spatio-temporal next location
prediction is based on the Prediction by Partial Matching (PPM)
algorithm. We examine several classification and regression
based machine learning algorithms for probability fusion of
next location candidates and possible departure times to obtain
the most accurate joint probability for the predicted location.
The resulting prediction accuracy is between 60% and 81%.

I . I N T R O D U C T I O N

Big cities are growing fast and the population is rising. For
the first time in history, in 2007 more people were living in
cities than in rural areas [1]. Among others, in some Asian
countries, e.g. China and India, the population is increasing
faster than the urban transport infrastructure can be extended.
Commuting from place A to B is challenging in such cities,
especially when using a car. A lot of traffic, particularly in the
rush hours, can be seen as a result of urbanization and rising
car ownership. Increasing traffic, on the one hand, is causing
a higher risk for traffic jams and, on the other hand the air
pollution caused by car exhaust gas increases dramatically.
Increasing air pollution and rising number of car owners are
also one of the reasons for road space rationing (also called
driving restriction) in various Chinese cities, such as Shanghai
and Beijing. This policy regulates, which car is allowed to
enter a common road space based upon the last digit of the
license number on certain established days. Thus, not every
car owner is allowed to use the own car on specific days. This
issue especially affects commuters without sufficient access
to a public transportation network.

As a solution we propose a ridesharing based approach
to still be able to commute to work without spending high
amount of money or forgo on the comfort of using a car.
Thanks to the widespread adoption of smartphones with
integrated localization capabilities, interested users can easily
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track their mobility habits. An interesting aspect of a predic-
tive system is that it can proactively trigger actions based on
the user’s habits. Predictive ridesharing strongly benefits from
removing the effort of manually entering rides into the system
but instead offering automated entries based on a user’s habits.
Benefits are time saving by removing periodic ridesharing
related tasks, traffic reduction by increasing the number of
riders per car, splitting costs and being eligible for other
benefits, such as car pool lanes. In predictive ridesharing, the
system predicts when drivers and riders from the same area
will travel to similar destinations and match them. Drivers
just need to accept automatic matches by confirming e.g. a
push-notification of a smartphone app. Taking the effort out
of every day tasks by proactively suggesting solutions based
on the user’s habits is an exciting aspect of mobility pattern
prediction.

To proactively trigger actions based on the users’ daily
movements, it’s advantageous for the ridesharing assistant to
know the users’ mobility habits and infer information about
further movements, such as next location and departure time.
This knowledge can help the assistant to announce ridesharing
demands on an online ridesharing platform and match the
right drivers and riders for carpooling with the same commute
demands and almost no interaction for the users. Thus,
we propose a model for spatio-temporal next location and
departure time prediction. This model incorporates different
spatial and temporal context information. While predicting
next location and departure time, sub-probabilites of the
different used features will be merged, using machine learning
algorithms, into a joint probability to gain the most probable
result. Knowledge of recent movement habits enable the
assistant to respond to fast habit changes and the ability to still
offer the best ridesharing assistance. Therefore it’s beneficial
to use a simple data structure regarding model updates to
keep the most recent model of the users’ movements.

Our contributions to spatio-temporal next location predic-
tion with Prediction by Partial Matching (PPM) on a Variable-
order Markov Model (VOMM) are a) a model for predicting
arrival and departure time with fine-grained resolution as
well as location prediction, b) analysis of the variety of
temporal context information trees and c) a model for merging
different predictions based on different features to obtain a
joint probability for predicted next location including arrival
and departure time.

I I . R E L AT E D W O R K

The modeling of mobility patterns is an active research
topic. The entire field covers a variety of applications, like the
identification of significant locations, activities and means of



transportation detection as well as social aspects influencing
a person’s mobility. For our mobility habit model the work
in location prediction is of special relevance.

In case of everyday use of location prediction it is
important to detect a user’s significant location changes.
Continuous usage of Global Positioning Systems (GPS) can
drawn a smartphone’s battery fast. In [2], [3] the authors
apply battery saving strategies to reduce battery consumption
of localization up to 87% whereat over 90% of significant
location changes can be detected. In addition Papandrea et al.
proposes a mobility model that can detect the user’s behaviour
to adapt the location monitoring parameters and predict the
next action [3].

Noulas et al. try to extract a set of features from 35m
Foursquare check-ins made by 1m users to capture user
movements and intentions. Due to the sparse check-in data
an accuracy of 50% could be achieved using M5 model trees
[4]. Foursquare and Gowalla check-ins are also exploited in
[5] using a Hidden Markov Model (HMM) to predict whether
the users’ next location will be a never observed or already
known one. A classification error rate of almost 20% could
be achieved. Ye et al. also try to predict a users’ next location
based on Gowalla check-ins. They use a mixed HMM, but
first they predict the category of the next location to restrain
the solution space and in the next step the next location within
the predicted category [6]. This approach predicts the next
category with an accuracy of 44%.

Similar to [6] Lee et al. also predict the next location
based on the predicted action at the next location using a
dynamic Bayesian network (DBN) [7]. In this case students
were asked to provide a diary (time, location, action) about
their movements at a university campus over several weeks.
Based on this dataset an accuracy of over 72% was achieved.
A similar low accuracy is shown in [8] based on the same idea
as [5], [6] using Mixed Membership Stochastic Blockmodels
(MMSB).

The model approaches by [9], [10] proofs higher accuracy
using next location prediction without prior context recog-
nition based on GPS and/or other smartphone sensor data.
Scellato et al. achieved a prediction accuracy up to 90%.

Markov chains show lower next location prediction ac-
curacies on GPS or WiFi data. In [11], [12] accuracies of
48% (WiFi, indoor) and 80% (GPS, outdoor) are shown
respectively.

Another popular approach is based on VOMM for pre-
dicting discrete sequences over a finite alphabet using PPM
[13]. VOMMs are more flexible and easier to train than
HMMs [14]. Also the computation of transition probabilities
is not needed, since probability computation is done by PPM
in another step. Bapierre et al. extend the VOMM with
a temporal and a social component and use it for spatio-
temporal next location prediction [15]. This approach was
very limited to only one coarse-grained temporal tree without
result fusion. Different possible departure time possibilities
have not been considered. Due to a limited amount of
co-locations for the social context component, no serious
accuracy results are evaluated.

Arrival at location

Now

Departure from location
Arrival at next location

Dwell time Travel time

Timeline

Fig. 1: Prediction timeline. The usual arrival, dwell, departure,
travel time will be considered for next location prediction.

In this work we use approaches like the ones described
in [13], [15] to build a model for predicting arrival and
departure time but with fine-grained resolution as well as
location prediction. Further, we provide an analysis of the
variety of temporal context information trees. To our knowl-
edge, none of the existing approaches allow for the explicit
continuous retraining of the model and sub-result merging
while predicting next location. Thus, we propose a model
for merging different predictions based on different features
to obtain a joint probability for predicted next location and
departure time.

I I I . P R E D I C T I O N A L G O R I T H M

A. Prediction Concept

The prediction goal is to determine the user’s most likely
transition to the next location given the current location and
time. The steps and components involved in the prediction are
visualized in fig. 1. Upon arrival at the current location the
departure time prediction is triggered. Then, to estimate the
arrival time at the next location candidate the travel time to
that location has to be added. Each visited location is logged
in a tree (see fig. 2) and contains the arrival time of each
visit. This information can later be used by the prediction
component to derive how likely a visit at the predicted time
would be. Two other temporal aspects – dwell time and
departure time – are treated analogously.

The spatial prediction component determines the number
of times the next location candidate has been observed after
the current sequence of locations.

B. Variable-order Markov Model

In the field of lossless compression the VOMM has it’s
classical application [16]. The VOMM extends the concept
of Fixed Order Markov Movels (FOMMs) and is a powerful
approach to model and predict sequential data [13]. Its main
advantage is the ability to detect patterns of varying context
length.

The following example is taken from [17]: the sequence
xxxyzxxxyzxxxyzxxxyz. . .xxxyz of random variables from the
alphabet {x, y, z} is represented by a VOMMs with upper
bound order of 2 by the conditional probabilities:
• Pr(x|xx) = 0.5
• Pr(y|xx) = 0.5
• Pr(z|xy) = 1.0
• Pr(x|yz) = 1.0
• Pr(x|zx) = 1.0

With an upper bound model order of 3, every
successor symbol can be determined with a 100%
confidence, such as by replacing Pr(x|xx) = 0.5



with Pr(x|zxx) = 1.0 and Pr(y|xx) = 0.5 with
Pr(y|xxx) = 1.0. In contrast, a VOMM of order
1 requires the 9 conditional Probability components:
{Pr(x|x), P r(x|y), P r(x|z), P r(y|x), P r(y|y), P r(y|z),
P r(z|x), P r(z|y), P r(z|z)}. A VOMM of order 2 requires
27 evaluations: {Pr(x|xx), P r(x|xy), . . . , P r(z|zz)}.
And a fixed order of 3 demands 81 evaluations:
{Pr(x|xxx), P r(x|xxy), . . . , P r(z|zzz)}. This exercise
exemplifies the amount of training data a FOMM requires
to evaluate all the conditional probabilities. The same
problem can be expressed by a VOMM with 5 conditional
probabilities, which is a great reduction in model parameters
[16].

Nomenclature:
• Σ finite alphabet
• qt ∈ Σ random variable q at time t from alphabet Σ
• s context
• n upper bound model order
• P (qt|s) conditional probability for symbol given context
• s ∈ Σ∗ the * sign represents a sequence of states of any

length
The VOMM has a main difference in contrast to the

FOMM, because n is only an upper bound for the VOMM,
but it’s the required context length |s| = n for the FOMM.

A VOMM tree has a depth of n + 1. The symbol q
is denoted by the leaves and based on the context s =
(qt−n, . . . , qt−1), that represents the path from the root to
a leaf. To construct the tree it’s either necessary to create
new nodes for symbols, that has never been observed after the
given context or increment the count of the already existing
node as shown in fig. 3a. Note that after processing the first
three symbols (Home, Work and Gym), only Home is fully
finished. On the path each node represents a sub-pattern for
a path leading up to it from the root. After processing a
sequence of 8 locations the final tree structure is depicted in
fig. 3b. The location’s popularity can be determined by the
count attribute of the first layer nodes. Thus, for instance, only
having the root as context an estimation of the next location
still can be done. To determine the probability of the next
location it’s necessary to traverse the tree according to the
given context, e.g. s = (Home,Work), and then calculate
the conditional probability based on the leaf node’s count.

To train the VOMM three main tasks exists: counting,
smoothing and modelling. As mentioned before the oc-
currence counts of symbols after their context determines
the probabilities. Smoothing describes how the problem
of not seen symbols is handled, also called zero-frequency
problem. To solve this issue the PPM allocates a certain
probability share for unobserved symbols. In the last step,
the modelling, the actual VOMM is constructed. After the
first context sequence starting with Home is processed the
next (sub-)sequence starts with Work and creates the next
path originating from root.

C. Prediction by Partial Matching

The PPM algorithm predicts a symbol based on the context
represented by the VOMM [13]. The probability for a symbol
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Fig. 2: Context tree extension with temporal context informa-
tion. Every spatial node keeps several temporal context trees
as attributes.
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Fig. 3: Constructing the VOMM context tree of order 2 from
HWGHWSHF. An occurrence counter is present in every
node. Fig. (a) shows the context tree after the very first three
locations were processed. In (b) the context tree is fully build.
Subsequently every time a branch has reached the model order
n, a new branch is created adopting the last two locations
qt−1, qt and adding the next location qt+1.

q appearing after the context s of the model order n is
calculated by the count of that sequence divided by all
symbols appearing after the context and all of their counts:

P̃ (q|s) =
C(sq)

|Σs|+ Σq′∈ΣsC(sq′)
(1)

C(sq) denotes the occurrence count of symbol q following
sequence s and Σs is the set of symbols following a context
s. The |Σs| in the denominator acts as a Laplace additive
smoothing factor to account for possible symbols appearing
after the context that have not been observed in training. If
q1 with a count of two, C(sq1) = 2, is the only successor
of context s, the conditional probability is not 100%, but
P (q1|s) = 2

1+2 = 67%. The remaining 33% are allocated
for yet unseen symbols.

For symbols that have not appeared after the context s, the
PPM subsequently escapes to shorter contexts by removing
the first element of s until q can be observed or an empty
context has been reached. The conditional probability for an
empty context is defined as P (q|ε) = 1

|Σ| . In general, a PPM
allocates a probability mass of P (escape|s) to all symbols
that have not been observed after the context s and distributes
the remaining proportion between the observed successors to
the context.

P̃ (escape|s) = 1−
∑
q∈Σs

P̃ (q|s) =
|Σs|

|Σs|+ Σq′∈ΣsC(sq′)

(2)



The complete expression for the conditional probability for
an arbitrary symbol q is therefore:

P (q|s) =

{
P̃ (q|s) q ∈ Σs

P̃ (escape|s) ∗ P (q|sub(s)) q 6∈ Σs

(3)

sub(s) is the sub-sequence that results from removing the
first element of s.

Another big advantage of this approach is the low complex-
ity. The VOMM context tree can be learned in O(g) time,
where g is length of training data.

D. Context Tree

For spatio-temporal predictions the mobility model requires
an extended tree data-structure for different temporal informa-
tion. Yet, a person’s mobility behavior is governed by many
more factors than just the previous |s| locations. Especially
temporal features like the usual arrival time, duration of stay at
a location, departure time and travel time to the next location
are valuable insights when predicting the most probable next
location and departure time. Thus, the spatial context tree is
extend with these additional temporal features. Every location
node within the tree has several temporal trees as attributes,
as shown in fig. 2. The spatial context tree determines the
basic structure of the entire context tree. The other features
can be regarded as supportive properties to the location node.

1) Arrival Time: Arrival time trees store the time of
occurrences in a calendar like structured way. To any arrival
time node there is a departure time tree of the same structure
associated. This way for every arrival time at a location,
the most probable departure time can be derived from the
associated departure time tree. The first layer in fig. 4a divides
the week in weekday and weekend. It is further sub-divided
into day of week, hour and 10-minute time slots to account
for finer grained patterns and departure time predictions. The
location node Shopping in fig. 4a has been visited 56 times,
which implies also 56 arrival times as shown in the calendar
time tree’s root node. The tree shows the shopping patterns
of Monday and Thursday around 18:00 and Saturday at about
15:30 easily comprehensible. The departure time trees that
are attached to every arrival time node are omitted for clarity.

In contrast to the location tree, the paths through the tree
do not describe a sequence but different layers of abstraction.
This plays an important role, in particular when escaping
from unobserved data points. The probability for observed
nodes is still computed as in the location tree eq. (2). In case
of escape the predictions lead to the parent node and not to a
path of shortened context. For the arrival time tree in fig. 4a,
this means a probability estimation for the unobserved time
Monday 17:20 has to escape to the Hour 17 node, which
aggregates all the departure times of its children nodes. So,
even without having observed an arrival at 17:20 before, the
most likely departure time is estimated based on the 17:40
and 17:50 arrival time nodes’s most probable departure times
which are summarized in the Hour 17 node.

2) Dwell Time: The dwell time tree encodes the duration
that someone spends at the location it is attached to. Struc-
turally, it is similar to the arrival time tree. As the dwell time
at a location is normally limited to a couple of hours, the
hour and minute-slice levels are information. It is evident that
the regular working time is about 8 hours with some days,
maybe Fridays, around 6 hours. The dwell time information
is especially helpful with irregular arrival times but mostly
constant resting duration. Take, for instance, as assembly line
worker, who has varying work start times during the week and
different schedules assigned every month. The most probable
departure time is difficult to derive based on the very noisy
arrival and departure time trees. Assuming fixed shift duration
it is straightforward to estimate the departure time based on
the current arrival time. For a Monday shift start at 8:00 the
most likely departure time based on the dwell time tree will
be predicted to be around 16:00. For a late shift on Tuesday
starting at 14:00 the same mechanism will predict 22:00 as
departure time. If the shifts turn the following week, the same
mechanism will still work, as it is not bound to the day of
the week like the calendar like time trees.

3) Periodicity: Periodicity describes by which locations
are visited. Similar to the dwell time the periodicity tree
encodes a duration. Yet, the time is measured between
the different arrival times at the associated location. As
the time between visits of the same location can greatly
vary, the periodicity tree incorporates additional layers for
months, weeks and days passed since the last occurrence.
The periodicity information allows to represent time-relative
patterns, such as going to the gym every second day. Based on
the time since the last visitation of a location, the periodicity
tree estimates the probability of going there next. Fig. 4b
illustrates the pattern of visiting your parents every other
weekend. If it has only been a week since the last visit,
predictions based on the tree will result in a very low
probability, as there are no counts for the Week 1 node. Yet, if
a next location prediction is triggered on a Saturday morning
and the estimated arrival time at the Parents location is close
to the two weeks after the location’s timestamp of the last
visit, the periodicity based prediction will result in a very
high probability.

4) Travel Duration: The travel duration is based on the
historic data, how long it took the user previously to get from
one location to another. The initial travel duration can be
estimated by using a routing service with the coordinates
of the two locations. For each destination candidate, the
travel duration is added to the estimated departure time
from the current location to come up with an arrival time
prediction. This estimated arrival time is then checked with
the destination candidate’s periodicity and arrival time tree
for its likelihood.

While the previous trees are directly assigned to a location
node, or in case of the departure time tree to an arrival time
node, the travel duration trees are embedded in a mapping
from origin to destination location. Thus, every instance of a
location, independent of its sequence position in the location
tree, shares the same travel duration trees. Fig. 4c shows the
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Fig. 4: Each tree contains different temporal context information and is attached independently to one location node. Fig.
(a) depicts an arrival time tree for location node Shopping. The similar structured departure time trees, that are attached
to every arrival time node, are omitted for clarity. Periodicity tree (b) contains temporal context for visiting parents every
other weekend. Travel duration mapping (c) from origin Work to all its successors. Travel duration trees are added to every
origin-destination mapping, for instance, Work → Home mapping.

travel duration mapping from origin Work for all locations.
Each origin-destination pair maps to a travel duration tree
that is identical in structure to the dwell time tree. The
example shows the commuting time from Work to Shopping
of normally 30 to 40 minutes with some outliers at an hour
and 20 minutes, for instance, due to bad traffic.

E. Model Update

The model is based on the sequence of stops. A stop
describes the visit of a location and consists of:
• a unique location identifier
• longitude and latitude
• street address
• arrival timestamp
• departure timestamp
As soon as the user arrives at a new location, a new stop

is created. The stop detection is part of the pre-processing
(clustering algorithm) and, thus, not further described. At this
time the departure time is not yet known and the departure
time field remains empty. The departure time and dwell time
trees can only be updated after the user left the location
and the stop’s data is completed. The remaining trees are
refreshed upon arrival at the location. First, the location tree is
updated. The new stop is added to the existing stop sequence
that contains the previous stops. Together, they form the
location context. In fig. 3a, the new stop is Gym, which
is added to the existing sequence Home → Work. For the
first element of the location context, the predecessor node
is identified and the algorithm decides whether to add the
new node as a child or in case the predecessor is already a
leaf node to start a new tree path from the root. For every
stop we check if the location node already exists in that
layer of the tree. If this is not the case, a new location node
is added as child to its predecessor. Otherwise, the existing
node is updated. In both cases, the node’s access counts from
the root node to the current location node are updated. In
the arrival time tree, the arrival timestamp is transformed

into the different levels of abstractions given by the tree
structure. As with the location tree we check if the temporal
information is already encoded in the tree and otherwise new
tree nodes are created. The counters of the entire path from
the arrival time tree root to the minute node is incremented
to encode the arrival time’s probability. Next, the periodicity
tree is updated in a similar way by calculating the duration
between the current stop’s arrival time and the timestamp
of the location’s last visit. As soon as the user leaves the
current location and the departure time is known, the dwell
time tree is updated by calculating the duration between the
stop’s arrival and departure time and incrementing the counter
of the corresponding tree nodes. Further, the departure time
trees for each node associated with the current stop’s arrival
time are updated. The entire update process is repeated for
every stop in the location context.

F. Merging of individual Features

The next location prediction is based on the probabilities
of spatio-temporal features. For the current location, all other
known locations are potential successor candidates. Every
candidate is evaluated regarding the following features:
• location
• arrival time: calendar based
• arrival time: calendar based, evaluated by periodicity
• arrival time: dwell based
• arrival time: dwell based, evaluated by periodicity
As the correct candidates for previous location transitions

are known, a classifier we trained on the mentioned features
to come up with a model that identifies the most promising
next location candidate. For evaluation, the following classi-
fier and regression algorithms will be considered using the
implementation and default parameters from Weka1:
• Decision Tree
• Random Forest
• Naive Bayes

1http://www.cs.waikato.ac.nz/ml/index.html



• AdaBoost
• Support Vector Machine (SVM)
• Random Forest Regression
• Linear Regression
• SVM Regression
Besides the next stop’s location, also the departure time

is of interest. The PPM comes up with two departure times,
based on the following features:
• departure time: calender based
• departure time: dwell based
A likelihood is associated with each of these times, which

allows a machine learning algorithm for classification to be
trained on these two temporal features to come up with the
most probable departure time. The five classifier mentioned
earlier in this section were used for classification. In this case
regression algorithm were not used for departure time predic-
tion. For finding the most probable next location candidate the
classification is not enough, as more than one or no candidate
at all could be classified true. Therefore, the classification
results are further ranked by their classification confidence
of their affiliation of the specific class to identify the most
probable candidate. The same applies for departure time
candidates. A classifier weights all sub-probabilities, given
by the VOMM’s spatial and temporal context information,
and builds an individual model to obtain a joint probability
for each next location candidate and the departure time.

I V. E VA L UAT I O N

A. Database

The used database for evaluation contains GPS logs
recorded by a co-worker in the time span from 1 August
2015 until 1 December 2015. 369 stops have been recorded
in that time at 98 unique locations, mostly centered around
Munich but also include trips to northern Germany and a
vacation in Portugal. Note that the first stop at each of the
98 unique locations (27% of the training data) of the 369
stops in total have been impossible to predict. A stop at a
new location is predictable only after the first occurrence of
this location in the recorded data. Thus, the evaluation of
the prediction accuracy is made on the 271 predictable stops.
Once a stop is completed – a stop is completed after the user
has left this stop – the habit model is updated and trained on
all previous stops.

B. Prediction Performance

To measure the prediction performance we need update
the VOMM with the first stop of the 369 stops. To simulate
that this is the current location at that the user just has arrived
the departure time is deleted to be able to predict the next
location and departure time.

The prediction result is the most probable next location
ranking. The deviation from the correct result is specified in
the number of ranking positions. The departure and arrival
times deviation is calculated in minutes.

Additionally, all candidates that were considered as succes-
sor locations are logged with their different spatio-temporal

TABLE I: Next location candidates single feature probabili-
ties per prediction. Two predictions are shown separated by
a double empty row. The first prediction has two location
candidates and the second prediction has three location
candidates. The last column indicates whether next locations
candidate is the correct next location or not respectively by
{1, 0}.

locationP dwellP calendarP
dwell
Perio-
dicityP

calendar
Perio-
dicityP

correct
candidate

0.12500 0.00010 0.00010 0.00001 0.00001 1
0.06250 0.00010 0.00010 0.00001 0.00001 0

0.04167 0.00050 0.00050 0.00001 0.00001 1
0.04167 0.00010 0.00010 0.00001 0.00001 0
0.01563 0.00050 0.00050 0.00001 0.00001 0

feature values and labeled, as shown in table I. These
additional features are one of our contributions. This training
data result shows two predictions. The first prediction has
two location candidates and the second prediction has three
location candidates. Predictions are separated by a double
empty row. The column correct candidate indicates whether
next locations candidate is the correct next location or not
respectively by {1, 0}. Self transitions are not allowed in this
model. Thus, all identical origin and destination locations
are filtered. The correct location candidate can also occur in
differently escaped levels, e.g. Work → Gym → Home, Gym
→ Home and Home. To

The last evaluation step is to set the correct departure time
for the current stop, which simulates the user leaving the
location. The evaluation then continues with the next step and
incorporates all previous knowledge. The VOMM improves
its predictive performance by increment the relevant counts
of location node visits. With regard to our first contribution,
the classifiers which predict the most probable next location
and departure time based on the VOMM’s output gets better
through the growing number of training data (see fig. 5).

Table II shows a benchmark of different classifiers and
regressors based on the training set for next location candi-
dates. This approach was further compared with regression
models that were trained on the same data. Only the class
attribute was changed to the numeric values 0 and 1 instead of
false and true. The prediction results have been verified with
10 folds cross validation. All evaluated classifier except the
Naive Bayes perform with almost the same accuracy of 98%
(see table II). The Naive Bayes gains an accuracy of only 95%.
The SVM with a polynomial kernel, in this case, is identical
to a Zero-R classifier which simply predicts the majority class.
Even with using a cost sensitive evaluation and increasing the
costs for false negatives the number of true positives could
not be increased without dramatically increasing the number
of false positives with the other classifiers.

Table III shows the next location prediction benchmark of
all classifiers and regressors that were successively retrained
after each stop. The Random Forest classifier based on 100
trees, each trained on a subset of int(log2(predictors)+1) =
3 features, achieves the best perfect prediction performance



TABLE II: Next location candidates classification accuracy
and regression (Regr.) error

Classifier Accuracy-%
Relative
absolute
error-%

Root relative
squared error-%

Decision Tree 98.7085 – –
Naive Bayes 95.3155 – –
Random Forest 98.6519 – –
AdaBoost 98.5499 – –
SVM 98.4649 – –
Random Forest Regr. – 60.3059 82.7705
Linear Regr. – 82.8586 83.0316
SVM Regr. – 50.8814 100.697

TABLE III: Prediction accuracies of different classifier and
regression (Regr.) models with respect to different deviation
(Dev.) counts for next location prediction. Perfect prediction
means no deviation.

Classifier Perfect
Prediction

Dev.
of 1

Dev.
of 2

Dev.
of 3

Dev.
> 3

Decision Tree 58% 12% 3% 3% 24%
Random Forrest 60% 10% 2% 4% 24%
Naive Bayes 55% 13% 5% 2% 25%
AdaBoost 58% 13% 5% 5% 19%
SVM 55% 13% 5% 2% 25%
Random Forest Regr. 58% 12% 4% 3% 23%
Linear Regr. 56% 13% 3% 4% 24%
SVM Regr. 57% 13% 4% 2% 24%

with 60%. One drawback of the Random Forest is its com-
putational complexity. Compared to the similarly performing
decision tree with a prefect prediction accuracy of 58%,
the training and prediction of the 369 models takes 288
seconds (Random Forest) vs. 15 seconds (Decision Tree)
on an average personal computer. Another strong contender
is the AdaBoost boosting algorithm with Decision Stumps
(one-level decision trees) as classifiers. Especially if small
deviations from the perfect predictions are acceptable, it
performs significantly better than all other classifiers with
only 19% of the predictions deviating more than 3 spots
from the correct solution. The computation time is with 25
seconds also on the lower end of the spectrum. The regression
models’ performance is not superior to the classifiers.

In spatio-temporal next location prediction, not only the
correctly predicted next location is of relevance but also the
predicted departure time to the next location, that is also
one of our contributions. Table IV shows the predicted next
location departure time benchmark results for the models
retrained after each stop. In this benchmark the Naive Bayes
performs best. The deviation of the predicted departure time
with Naive Bayes classifier from the actual departure time is
broken down in table V. These numbers include the departure
from locations that are visited for the first time.

In fig. 6 the performance of the different features is
outlined. The purely location based prediction determines
the correct next location with a maximum deviation of 3
twice as likely as purely time based predictions based on
any of the temporal features. Another contribution is to
merge spatial and temporal prediction probabilities based
on different features with the AdaBoost classifier into one

TABLE IV: Departure time prediction classification results.

Classifier Accuracy-%
Decision Tree 68.29268
Random Forest 65.58265
Naive Bayes 69.37669
AdaBoost 68.02168
SVM 65.58265

TABLE V: Departure time prediction deviation results com-
pared with actual departure time.

Deviation ± 10 min ± 30 min ± 1 h ± 2 h > 2 h
Value 10% 18% 15% 12% 45%

combined model the accuracy of the spatial prediction is
improved by 9% which leads to the total performance of 219
out of 271 or 81%. One of the biggest advantages of the
used PPM model is that it delivers accurate predictions right
away without requiring a long learning process in comparison
to other approaches, for instance, DBN [18] or HMM [19].
Fig. 5 shows how the prediction deviation develops over time.
Even without much historical data, less frequent locations can
be predicted accurately by our model. It is evident that the
deviation is only influenced by phases of irregular behavior
and does not depend much on the training duration.

V. C O N C L U S I O N

In this paper we proposed a spatio-temporal next location
prediction approach for a predictive ridesharing assistant
based on the PPM algorithm. The main idea is to built
a VOMM based on the location history and enhance the
model with temporal context information to predict arrival and
departure time with fine-grained resolution as well as the next
location. Further main parts of this work are the analysis of
the variety of temporal context information trees and a model
for merging different predictions based on different features to
obtain a joint probability for predicted next location including
arrival and departure time. The output of this model can
be used for the predictive ridesharing assistant to match
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Fig. 5: Evolutionary prediction benchmark of VOMM over
time. It shows the deviation of predicted next location after
every model update. The model is updated after each stop.
The negative value encodes locations that have not been seen
before. Thus, a correct prediction is not possible.
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Fig. 6: Next location prediction performance (deviation of 3)
of different context information.

driver and rider with the same next location and departure
time. Ridesharing is one of the low hanging fruits to ease
urban congestion if managed properly. In this paper we have
shown how to antagonize, for instance, urban congestion using
predictive ridesharing with little effort to the participants.

For evaluation purposes the model is trained subsequently.
Each previous stop candidate is labeled as wrong or correct
candidate. The output of the model is a ranking of the
most probable next location candidates. The best classifier to
predict the next location is Random Forest with an accuracy
of 60% without any deviation. AdaBoost achieves an accuracy
of 81% for next location prediction with a maximum deviation
of 3. The temporal features are used to derive the most
probable departure time. In this challenge we got 69%
accuracy picking the most reliable temporal prediction with
a Naive Bayes classifier. This model predicts the correct
departure time time within ± 10min in 10%,± 30min in 18%
and ± 1h in 15% of the cases. The VOMM possesses several
advantages over FOMMs, for instance, a good prediction
accuracy and the ability to detect patterns of different lengths.
Thus, it’s possible to detect more patterns without the need to
increase the model order. In contrast to a VOMM the FOMM
must have a higher model order to detect more patterns,
which also implicate a higher amount of training data is
needed. To deal with the cold-start and the zero-frequency
problem the VOMM allocates a certain probability share for
symbols that have not been contained in the training data.
Adding more features causes an exponential grow of the
transition matrix when using a fixed order model and the
need of more training data. The VOMM’s variable length
pattern detection in conjunction with the escaping strategy
allow the addition of extra features without increasing the
training data demand which gives it a strong extensibility.
High costs for model training can limit live tracking of a
person’s continuously changing lifestyle. The VOMM’s quick
trainability can process model updates within O(n) and is
therefore well suited for live tracking.

Our model’s strong spatio-temporal prediction performance
will be further improved by future work by a) implementing
a forgetting factor to weight recent stops stronger and decay
older, less frequently visited stop over time, b) advanced travel
duration determination using a real time routing service to
predict the most likely travel duration at the time and c)

additional context information, which also influence mobil-
ity patterns, for instance, weather information and semantic
classifications of a location.
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