Luis Huergo

Abteilung Statistik, Ökonometrie und Empirische Wirtschaftsforschung

Prof. Joachim Grammig

Wirtschaftswissenschaftliche Fakultät

Universität Tübingen

Vorkurs zur Veranstaltung Mathematische Methoden der Wirtschaftswissenschaft

3. Aufgabenblatt

Aufgabe 1

Berechnen Sie die folgenden Summen:

- a) $\sum_{i=1}^{5} i$
- b) $\sum_{j=12}^{15} j$
- c) $\sum_{i=1}^{100} i$
- d) $\sum_{i=1}^{10} (i^2 i) \sum_{i=1}^{9} i^2 + \sum_{k=2}^{10} k$
- e) $\sum_{i=0}^{5} \left(e^{\pi \cdot i} \sqrt{i+1} \right) \sum_{j=6}^{10} \left(e^{\pi \cdot (j-5)} \sqrt{j-4} \right)$

Aufgabe 2

Die Glieder einer arithmetischen Folge sind definiert als $a_n = a_1 + (n-1)d$ für $n \in \mathbb{N}$ und $a_1 = c$. Die Differenz zweier benachbarter Glieder $a_{n+1} - a_n$ ist konstant und gleich d.

Prüfen Sie, ob es sich im folgenden um eine arithmetische Folge handelt. Wenn ja, bestimmen sie d und c. Wenn nein, so versuchen Sie eine alternative Bestimmunsgleichung anzugeben.

- a) $2, 4, 6, 8, 10, \dots$
- b) $12, 0, -12, -24, -36, \dots$
- c) $1, 7, 17, 31, 49, \dots$

Aufgabe 3

Die Summe der ersten n Glieder einer Zahlenfolge heißen n-te Partialsumme. Schreiben Sie n-te Partialsumme in der Summennotation auf. Leiten Sie daraus eine einfache Berechnungsformel der n-ten Partialsumme einer arithmetischen Folge her. Berechnen Sie damit die n-te und die zwanzigste Partialsumme der in Aufgabe 1 genannten Folgen.

Aufgabe 4

Prüfen Sie ob folgende Aussagen wahr sind:

- a) Für beliebige a > 1 und b > 1 gilt: $\log_a x = 0 \Rightarrow \log_b x = 0$
- b) Für beliebige a > 1 und b > 1 gilt: $\log_a x = 1 \Rightarrow \log_b x = 1$

Aufgabe 5

Sie haben keinen Taschenrechner zur Verfügung, wissen aber, dass $\log_{10} 5.2 = 0.716$ hinreichend genau gilt. Geben Sie nun folgende Ausdrücke an:

- a) $\log_{10} 52$
- b) $\log_{10} 520$
- c) $\log_{10} 5, 2^2$
- d) $\log_{10} 5200^7$

Aufgabe 6

Bestimmen Sie die folgenden Logarithmen:

- a) $\log_{0.5\pi} 1$
- b) $\log_{100} 5, 2$
- c) $\log_2(1/8)$
- d) $\log_{1/2} 4$

Verallgemeinern Sie das Ergebnis aus d), indem Sie zeigen, dass generell gilt: $\log_{1/a} x = -(\log_a x)$.

Aufgabe 7

Exponentialfunktionen sind leicht auf eine andere Basis transformierbar:

Formen Sie a^x in e^{cx} um. Wie muss c definiert sein, damit $a^x=e^{cx}$ gilt? Transformieren Sie damit 10^z und $2^{(0.5y)}$ auf die Basis e.