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1 Introduction

Term structure of yields associated with bonds of different maturity was heavily discussed

in recent years, since the idea of cointegration was brought up by Engle and Granger(1987).

Ever before, the empirical analysis of the relationship between yields, which typically move

together, was quite difficult, because interest rates are assumed to be rather I(1) than sta-

tionary processes. Cointegration now made it possible to link the movements of interest rates

with different maturities in long run equilibriums. Then error correction models show how

interest rates react on deviations from those equilibriums.

Fundamental literature on this topic was written by Campbell and Shiller(1987) and partic-

ularly Hall, Anderson and Granger(1992), who extended their approach from a bivariate to a

multivariate case. This paper orientates on that by Hall et al.. However, we now are able to

observe data from 1954:07 to 2007:03. We also divided in two subsamples, due to a regime

shift in 1979. For the first subsample the results remain the same. Nevertheless, the second

subsample can not support theory with the idea, that the term structure of interest rates is

well modeled as a cointegrated system. We will have a closer look on that.

The reminder of this paper is as follows. Section II sets a theoretical framework, which relates

cointegration and error correction models to term structure models. Section III presents the

data used and mentions some problems. Section IV presents the test methods applied and

the results obtained. We also provide a discussion on the results and refer to problems with

the test procedures. Then Section V gives an short overview about the results from an error

correction model, which was implemented for the first subsample. Section VI will conclude.

2 Theoretical Framework

In the following I will introduce a theoretical framework, which likes to show possible coin-

tegration of interest rates with different maturities. The framework bases on that by Hall et

al.(1992), which is also used in many other papers, such as Lanne(2000) for example. We let

r(k, t) be a k-period interest rate, while f(k, t) is a forward interest rate for an one period

pure discount bond maturing at time t + k. Then, with f(1, t) = r(1, t) we obtain by means

of the Fisher-Hicks formulae,

r(k, t) =
1
k

 k∑
j=1

f(j, t)

 for k = 1, 2, 3, . . . . (1)

It states that the k-period interest rate r(k, t) can be calculated as a sample mean of the k

forward rates f(j, t).
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The forward rate f(j, t) is equal to an expectation on r(1, t + j − 1), that is the yield of a

one-period discount bond, which matures at time t + j. Therefore, it is possible to assume

the following relation:

f(j, t) = Et [r(1, t + j − 1)] + Λ(j, t), (2)

where Et denotes the expectation on the yield of a one-period discount bond at time t+ j−1

and Λ(j, t) is a premia, that can be due to risk aversion or deviations in investors´s preferences

about liquidity, while for a technical analysis it can be seen as a disturbance term.

By substitution of equation (2) into equation (1) we receive a general relationship between

interest rates with different maturities,

r(k, t) =
1
k

 k∑
j=1

Et (r(1, t + j − 1))

 +
1
k

 k∑
j=1

Λ(j, t)


=

1
k

 k∑
j=1

Et (r(1, t + j − 1))

 + L(k, t). (3)

Equation (3) implies that the k interest rates with different maturities are tied in one long-run

equilibrium and will move together. There are different assumptions about the premia L(k, t).

One is the pure expectations hypothesis, which assumes L(k, t) = 0. An other assumption

only requires the premia to be constant over time, so that the mean might differ from zero.

For later estimations stationarity is required.

As said before, by means of equation(3) we have derived a general relationship, however

we can not use it directly for further empirical studies. This is in particular due to non-

stationarity of interest rates. Interest are rather assumed to be I(1)-processes and there is

considerable evidence, that supports this assumption. As a consequence we have to bring in

the idea of cointegration, that I will explain briefly.

Cointegration The idea of cointegration was first mentioned by Engle and Granger(1987).

For the following only cointgration of I(1)-processes will be recognized. Now, let Z(t) contain

two such I(1)-processes. If there exists a parameter a such that the linear combination a′Z(t)

is stationary, than the two I(1)-series are cointegrated and a is called a cointegrating vector.

However, one has to be cautious, because a is not a unique solution. There always exists a

nonzero scalar b so that ba is again a cointegrating vector.

For any k-period interest rate a possible cointegration with the one period interest rate can
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be shown by rearranging equation (3). We finally obtain1

[r(k, t)− r(1, t)] =
1
k

k−1∑
i=1

j=i∑
j=1

Et∆r(1, t + j) + L(k, t), (4)

where ∆r(v, l) = r(v, l) − r(v, l − 1). If the right hand side of equation(4) is stationary,

that is if ∆r(1, t) and L(k, t) are stationary, then one possbile cointegrating vector would

be β = [1,−1]. This result implies that any of the k yields of r(k, t) is cointegrated with

the one-period interest rate at time t. Defining the spreads between two yields as s(i, j, t) =

r(i, t)−r(j, t), cointegration also implies that those spreads are stationary linear combinations

of the vector series X(t).

Of course, cointegration is also possible for more than just two time-series. Since, any k-period

interest rate is cointegrated with the one-period interest rate, we can assume a new vector

series X(t) = [r(1, t), r(k2, t), . . . , r(kn, t)], that contains n different yield series, including the

one-period interest rate, where k2, . . . , kn are the maturities for the n − 1 other yield series.

Equation (4) has shown that any interest rate with maturity k2, . . . , kn is cointegrated with

the one period interest rate. Thus there exists a (n− 1)× n-matrix A of the following form

A =


−1 −1 . . . −1

1 0 . . . 0
0 1 . . . 0
...

...
0 0 . . . 1

 ,

for which the linear combination A′X(t) is stationary. It is easy to see that the columns ai

of A are all linearly independent. That means there does not exist a scalar b so that i.e.

a1 = ba2. However, as seen in the two variable case before, the vectors ai are not unique,

there always exists a vector h, such that the scalar h′AX(t)′ is stationary. This result is quite

important for our case of interest rates, as it implies, that any spread of two interest rates

with different maturities ki is stationary. Hence those two yields are cointegrating.

Since all vectors ai are linearly independent the rank of A is equal to n − 1. Then also the

cointgrating space has rank n−1 and the rows a1, . . . , an−1 form a basis for this cointegrating

space. Stock and Watson(1988) found out that there exist k common trends for system of

n variables and a cointegration rank, that equals n − k. For our case of interest rates with

a cointegration rank of n− 1, there has to exist one common trend. We can therefore write
1for further details on how to rearrange equation (3) see Appendix
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our system of interest rates as follows

r(1, t) = u1 + c1e(t)
r(2, t) = u2 + c2e(t)
...

...
r(k, t) = uk + cke(t)

,

where uj is a stationary component, cj is a parameter and e(t) is the common stochastic

trend. This common trend drives the time series behavior of every interest rates and since

the other components are all stationary, this common trend dominates the behavior of each

yield.

A further implication of the finding that any spread is cointegrating, is that all the results

that we obtained so far, have to hold theoretically for any set of n − 1 linearly independent

spread vectors.

Vector Error Correction Model Cointegration implies and is implied itself by an error

correction representation, as shown by Engle and Granger(1987). A VECM can be derived

from a typical VAR with p-lags

X(t) = Φ1X(t− 1) + Φ2X(t− 2) + . . . + ΦpX(t− p) + ε(t) , (5)

where for our purposes X(t) is the vector series from above, and ε(t) is a vector of white noise

disturbances, which may be contemporaneously correlated. The resulting VECM is then of

the following form

∆X(t) = πX(t− 1) +
p−1∑
i=1

πi∆X(t− i) + ε(t) , (6)

where π = −(I −
∑p

i=1 Φi) and πi = −
∑p

j=i+1 Φj .

Now, I will focus on the n×(n−1) matrix π, which is can be written in the form π = αβ′, where

β is a cointegrating vector for X(t). For economic purposes it is now possible to consider an

underlying equilibrium relationship β′X(t) = µ, where µ is vector containing the equilibrium

values. We may also assume that agents react on a disequilibrium error β′X(t)−µ 6= 0. The

vector α can then be seen as a matrix of adjustment coefficients, displaying the speed with

which the variables return to the equilibrium. However, this assumption has to be treated

cautiously, I will explain it more detailed soon. In our case of interest rates with different

maturities the cointegrating vector β equals our matrix A from above. This result implies

that any spread between two yields is tied in one long-run-equilibrium. We may now rewrite

the above VECM to receive

∆X(t) = α∗ [s(t− 1)− µ] + πi∆X(t− i) + ε(t) , (7)
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where [s(t− 1)− µ] is the error correction term and α∗ is a matrix containing the adjustment

coefficients. The spread-vector s(t − 1) is obtained as a linear combinations of A′X(t), so

that it may contain every possible spread between two yields, while as a matter of course α∗

has to be modified for different spreads.

Returning to equation (6) there is another important fact we should be aware of. We have

already seen that the rank of A equals the rank of the cointegrating space. Since π is a

linear combination of A, the rank of π equals that of A, if α has full rank. Therefore, we

have now the possibility to obtain the rank of the cointegrating space by checking for the

rank of π. For rk(π) = 0 the VECM is equal to a VAR estimated in first differences, while

for a 1 ≤ rk(π) ≤ (n − 1) we have n − 1 linearly independent cointegrating relationships,

what implies cointegration between any yields of different maturities. Testing for statistical

significance of α∗ in equation (7) is a similar way for checking for cointegration.

One point already mentioned also has to be regarded. As said, the assumption that agents

react on a disequilibrium error has to be treated cautiously. Hall et al. (1992) mention

that a VECM does not necessarily imply an adjustment of yields because spreads are out of

equilibrium. It could be rather the point as shown by Campbell and Shiller (1987, 1988) that

spreads might measure anticipated changes in yields. This is based on the idea that agents

have more information for forecasting changes in yields than the history of short yields alone.

3 Data

The data used in this study consist of monthly nominal US Treasury bill rates from the Board

of Governors of the Federal Reserve System in Washington. The file contains ten series for

Treasury bills with different maturities, that goes from overnight interest rates up to yields

with thirty years to maturity. However, only five series are available for the full distance

from 1954:7 to 2007:3. Availability is provided for the overnight rate and the yields with one,

three, five and ten years to maturity. The overnight rate is used because data is available for

a long period. However, it has to be treated carefully since it has not a maturity of k = 1,

although it is treated as it would, since data for the yield with one month to maturity is only

available from 2001 up to now.

The full sample are separated in two subsamples which go from 1954:07 to 1979:09 and

from 1979:10 to 2007:03. This was done due to a regime change in the degree of interest

rate targeting undertaken by the Federal Reserve and is line with other papers like Hall et

al.(1992) and Lanne(2000). Nevertheless, the second subsample contains a lot more data

now, then the two papers mentioned. Regime shifts are structural breaks, that may lead

5



to distortions of our empirical results, when we test on whether the series contain unit or

whether they cointegrated.

For the time span of 1954:07 to 1979:09 the interest rate was fully targeted, while there was

only a partial targeting for the latter subsample. Hall et al. divide their latter subsample a

further time, due to a second regime shift in 1982. Because it was a slight one, I will follow

Lanne who only appoints the change in 1979.

As already mentioned monthly data is used in this paper. This is by virtue of a lack of data, if

the frequency would be increased on weekly or even daily basis. However, it is worth noticing

that a latter study from Choi and Chung(1995) has shown that an increase in frequency may

significantly improve the finite sample power of the Augmented Dickey Fuller test for data

like interest rates. Moreover, an increase in the time span also increases the power of unit

root tests.

4 Econometric Methodology and Empirical Results

This section will give an overview from testing the implications due to the theoretical frame-

work. First the tests, which have been applied are introduced, then the results are presented.

Finally the results are discussed and several problems linked with the tests, that are presented.

4.1 Unit Root Tests

First of all I will have a look on the unit root assumption of interest rates, since it is crucial

for all further results theoretically, as well as empirically. Problems with the assumption of

interest rates as realizations of unit root processes mainly arise due to the fact that interest

rates are bounded, i.e. they can not take values lower than zero, at least nominally. Hence,

interest rates can not be seen as exact unit roots. Moreover we should ask if the assumption

can be taken for granted over the long run. As John Cochrane remarked: ”Interest rates

now are the same as in Babylonian days. How can there be a unit root in interest rates?”

The assumption of interest rates being realizations of unit root processes may thus only hold

for certain time spans. However, testing this point becomes quite difficult, since frequent

data is only available for a short time span of maybe a hundred years. It may also be the

point, that the unit root assumption holds for time spans referring to certain regimes. Then

tools like Markov-Regime-Switching-Models come into play, though they will not be used here.

Augmented Dickey-Fuller Test I applied two test procedures for testing on unit roots,

one is the Augmented Dickey Fuller test(ADF). The original Dickey-Fuller test assumed the
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errors to be independently and identically distributed. The ADF test allows for serially

correlation, therefore difference lags are included in the test equation, which looks as

∆r(j, t) = (ρ− 1)r(j, t− 1) + θ1∆r(j, t− 1) + . . . + θk∆r(j, t− k) + ε(t) , (8)

where the lag length k is chosen in order to ensure that ε(t) are purely random. The lag

length was selected by the Schwartz Information Criterion(SIC). The ADF test tests the null

hypothesis that the series contains a unit root, that is

H0 : ρ = 1 vs. H1 : ρ < 1 .

The asymptotic test distribution is not a χ2-distribution, it rather depends on whether trends

or constants are used2.

Dickey-Fuller GLS test The Dickey-Fuller GLS test is quite similar to the ADF test,

however, the time series is detrended before it is tested on a unit root. The null hypothesis is

the same as with the ADF test and lag length is also selected via SIC. The test distribution

depends also on how the test is implemented.

The ADF test is used, although Maddala et al.(1998) considers it as useless for practical pur-

poses, since it has low power problems. However, it is a standard test and was also used in

Hall et al. I also like to refer some words to why only a constant is used in the test statistics.

As Hamilton(1994) says, there is no economic reason why time series of interest rates should

contain a linear trend, since they do not show any behavior that supports this idea. We are

also in line with Lanne(2000) and Hall et al.(1992).

Results Table 1 reports the results from the ADF and the DF-GLS tests. On the 5%

significance level both tests can not reject the H0, that the series contains a unit root, except

for the overnight rate of the second subsample. In this case, howver, only the ADF test can

reject the H0, while the DF GLS test can not reject. The assumption of the interest rates

being realizations of unit root processes can not be rejected for both subsamples, as for the

full sample as such. The lag length selected by the SIC is also reported in Table 1. The lag

length differs strongly between different interest rates, but does not differ between the two

tests except for the case of the overnight rate of the second subsample. Here fifteen lags are

recommended for the DF-GLS test, while fourteen are used for the ADF test.

It is worth to have a closer look on the results. For any sample the probability of non-
2Asymptotic test distributions for the ADF test can be seen in the Appendix, Critical Values for the

DF-GLS test can e.g. be obtained from Elliott et al.(1996)
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Table 1: Unit root tests for the full sample and the two subsamples

Interest rate lag length ADF t-statistics prob. DF-GLS t-statistics
1954 : 07 - 2007 : 03

r1 13 −2.759 0.0649 −1.407
r12 6 −2.167 0.2185 −0.863
r36 2 −2.172 0.2167 −0.930
r60 2 −2.010 0.2823 −0.860
r120 2 −1.791 0.3846 −0.758

1954 : 07 - 1979 : 09
r1 2 −1.703 0.4282 −0.312
r12 1 −1.321 0.6202 0.379
r36 1 −1.305 0.6280 0.482
r60 2 −0.887 0.7916 0.939
r120 2 −0.350 0.9141 1.603

1979 : 10 - 2007 : 03
r1 14 −3.105 0.0272 −0.639
r12 12 −2.360 0.1539 −0.376
r36 2 −1.472 0.5465 −0.514
r60 2 −1.303 0.6289 −0.462
r120 2 −1.144 0.6987 −0.392

rejection increases with the maturity of the yields. This holds for all yields for the ADF test,

while there are two small exceptions with DF-GLS test. The yield with one year to maturity

rejects less stronger than the yield with three, five and ten years to maturity for the full

sample, as for the second subsample. Moreover, the probability of non-rejection is weaker for

the full sample than for both subsamples. While there is also less probability for the period

of 1979:10 to 2007:03 than for the period from 1954:07 to 1979:09. The result, that the tests

for full sample tend to reject the H0 more than the first and second subsample may be due

to the regime shift. Hence we are in line with Lanne(2000), if we conclude that a structural

break is likely for the time series of interest rates. The evidence in favor of a unit root for

the first subsample is strong. This finding is in accordance with the theory, which says that

interest rates are random walks because of central bank smoothing behaviour3. Lanne(2000)

sees the lower probabilities of non-rejection in the second subsample due to the small number

of observations. We may now reject this assumption, since we have even more data for the

second subsample than for the first.
3see e.g. Mankiw and Miron (1986)
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Correlations It is now worth to have a look on the correlations between the interest rates

for the full sample as for the two subsamples. The correlations vary between 0.8466 between

the overnight rate and the yield with ten years to maturity of in the first subsample and

0.9961 between the yields with three and five years to maturity also of the first subsample.

Especially the correlations containing the overnight rate are relatively low. This may come

from the fact that the overnight rate can only be seen as an approximation for a yield with

one month to maturity. Nevertheless, also the other correlations are lower than the results

Lanne(2000) reports. The correlations are higher for the second subsample than for the first

subsample and the full sample. This fact is quite surprising when we compare it with the

results from the cointegration tests, which we will see later. Altogether, we have to be aware

of the nonrobustness of cointegration methods, which will probably be problematic in this

data set.

4.2 Cointegration Tests

I will now give a quick overview about the cointegration tests used. Then a survey about the

results is made and some comments on problems of the test procedures are mentioned.

The Johansen Procedure Johansen´s procedure is a multiple equation method and tests

on the number of linearly independent cointegration relationships of a set of variables. More

precisely it tests for the rank of the cointegration space. We have already seen that in a

VECM like in equation (7), this is equal to checking for the rank of π. This is exactly what

the Johansen procedure does by applying maximum likelihood to a VECM. The errors are

assumed to be Gaussian. The procedure delivers to two test statistics for cointegration. The

first one is called trace test and test the hypothesis of there being at most r0 cointegrating

relationships against the hypothesis of more than r0 relationships. Thus in a set of n variables

H0 : rk(π) = r0 vs. H1 : r < rk(π) ≤ n ,

where r0 < n. The second is called maximum eigenvalue statistic and test the null hypothesis

of a cointegration rank equal to r0 against the alternative of a rank equal to r0 + 1, that is

H0 : rk(π) = r0 vs. H1 : rk(π) = r0 + 1 .

Although, errors are assumed to be Gaussian, the test statistics are asymptotically not χ2-

distributed. The distribution depends on the number of common trends K − r0, as well as

on how the procedure is implemented, that is whether an intercept or a deterministic trend
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are used4. In our case no drift is used, and a constant enters only via the error correction

term. This procedure was used, since, interest rates do not show any tendency to have a

deterministic trend.

LR-test for Restrictions on Cointegration Vectors Johansen also provides a likeli-

hood ratio test for restrictions on cointegration vectors. For simplicity I will call this test,

the LR-test. This test also assumes, that errors are Gaussian. For our case it is of inter-

est to restrict the cointegration vectors to be spreads between yields of different maturity.

Then we may test whether the spreads span the cointegration space, as it is assumed by our

framework. Therefore, the null hypothesis is, that n− 1 spreads formed by n yields span the

cointegration space, all conditional on the rank of cointegration being n− 1. Under the null

hypothesis the test statistic is asymptotically χ2(n− 1)-distributed.

Empirical Results The results for the trace test5 and the LR-test for restricted cointe-

gration vectors6 are reported in Table 2 through Table 4. The maximum eigenvalue test was

also employed, but the results implied the same rank as the trace tests. Also systems were

considered, consisting of only two, three or four yields. The overnight rate was included in

every sample, this can be seen as a type of normalization, although tests on the cointegration

rank are invariant to normalization and it need not to be reconsidered here. The entire sam-

ple displays clear tendency in favor of a rank of n − 1 for subsets with two or three yields,

since the H0 of a rank equal to n− 1 can not be rejected, while the H0 of a rank, that equals

n−2 can be rejected. But this evidence weakens as the dimension of the system increases. In

particular the full system may not reject the H0 of a rank of only three. For smaller systems

the assumption that the spreads between yields span the coitegrating space is rejected on a

5% significance level only for the spread between r1 and r12. For larger systems the H0 can

not be rejected only for the system r1, r36, r60, r120. We see that, although the λtrace-test can

not reject a rank of n − 2, the LR-test, is not able to reject the H0, that spreads are the

cointegrating vectors. Thus, both test also may be contradictory.

The results of the period from 1954 : 07 to 1979 : 09, presented in Table 3, show a different
4Distribution is displayed in the Appendix
5critical values for the λtrace and for the λImpr.

trace are taken from Osterwald Lenum(1992). For n − 2 and
n− 1 the 5% critical vaules are 20.26 and 9.16 respectively.

65% and 10% critical values are 3.84 and 2.71 (two-variable system), 5.99 and 4.61 (three-variable system),
7.81 and 6.25 (four-variable system) and 9.49 and 7.78 (five-variable system), respectively, and degrees of
freedom are n− 1
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Table 2: λtrace-test, improved λtrace-test and LR-test for the full sample

Interest rates in the system λtrace λImpr.
trace LR-test

rank at most n− 2 n− 1 n− 2 n− 1

r1, r12 31.27 6.30 30.88 6.22 6.55
r1, r36 29.06 5.67 28.69 5.60 2.18
r1, r60 28.20 5.37 27.85 5.30 1.40
r1, r120 26.41 4.57 26.08 4.51 0.69

r1, r12, r36 32.72 6.53 32.10 6.41 5.13
r1, r12, r60 28.36 5.95 27.82 5.83 4.45
r1, r12, r60 25.81 4.74 25.33 4.65 4.59
r1, r36, r60 20.36 5.08 19.97 4.99 1.61
r1, r36, r120 20.20 3.70 19.82 3.63 1.77
r1, r60, r120 21.42 3.31 21.88 3.25 1.34

r1, r12, r36, r60 19.22 5.19 18.74 5.06 9.82
r1, r12, r36, r120 20.12 4.04 19.61 3.94 9.01
r1, r12, r60, r120 22.71 3.91 22.14 3.81 7.31
r1, r36, r60, r120 19.04 3.51 18.56 3.42 2.24

r1, r12, r36, r60, r120 17.77 3.98 17.21 3.86 9.60

pattern. The picture is not quite clear, but there is a tendency that the results evolve in

the opposite direction. That is smaller systems may not reject the H0 of a rank of n − 2

while, larger dimensioned system do and can not reject the H0 of n− 1 linearly independent

cointegrating relationships, all on a 5% significance level. However, there is also a tendency

that systems containing yields of low maturity can not reject the H0 of a rank of n− 2, while

systems containing yields with higher maturity can. The LR-test implies for every system,

that the spreads span the cointegration space. Also here the λtrace-test and the LR-test are

contradictory for some cases. Table 4 shows the results for the second subsample. Here only

the systems r1, r12 and r1, r12, r36 can reject the H0 of a cointegration rank of n− 2. For in-

creasing dimensions of the systems, as well as for higher maturities, the rejection becomes less

possible. The LR-test can not reject the H0 for any small system, except r1, r12. Again those

results are contradictory to the λtrace-test, this time, however, for almost every small system.

For larger systems, also the LR-test rejects the null hypothesis, except for r1, r36, r60, r120.

The finding that the cointegration rank is n − 2 for systems larger than two, would imply

that mutual cointegration in those systems is not possible.

The theoretical framework implies for a set of n yields a cointegration rank equal to n − 1.

Results from the Johansen test supporting this implication can only be found for small sys-
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Table 3: λtrace-test, improved λtrace-test and LR-test for the first subsample

Interest rates in the system λtrace λImpr.
trace LR-test

rank at most n− 2 n− 1 n− 2 n− 1

r1, r12 18.01 3.30 17.53 3.21 3.42
r1, r36 18.79 3.20 18.29 3.12 2.42
r1, r60 20.97 3.05 20.41 2.97 1.66
r1, r120 24.73 3.53 24.08 3.44 0.87

r1, r12, r36 15.64 3.17 15.03 3.05 3.32
r1, r12, r60 16.80 2.94 16.14 2.82 2.94
r1, r12, r60 20.21 3.69 19.41 3.55 2.25
r1, r36, r60 21.07 2.54 20.23 2.43 3.90
r1, r36, r120 22.80 5.11 21.90 4.90 5.77
r1, r60, r120 24.17 7.08 23.21 6.80 5.37

r1, r12, r36, r60 16.15 2.38 15.30 2.26 5.33
r1, r12, r36, r120 23.05 5.27 21.83 4.99 6.08
r1, r12, r60, r120 25.21 5.69 23.88 5.39 5.54
r1, r36, r60, r120 29.19 6.41 27.65 6.07 6.24

r1, r12, r36, r60, r120 23.67 5.68 22.11 5.30 6.95

tems (containing two or three yields) of the full sample and for larger systems (four or five

yields) of the first subsample. For the first subsample the λtrace-test rejects this implication

in almost every case, while the LR-test implies that the spread vectors are the cointegration

vectors. In some cases we found this result, although the λtrace-test does not imply a rank

of n − 1. For the second subsample hardly for any system n − 1 cointegrating relations can

be found, while the LR-test implies that the spread vectors are cointegrating, at least for

small systems. For the full sample this outcome only arises for the system r1, r36, r60, r120.

Concluding we can state that the λtrace-test and the LR-test are in many cases not in line

with theory, although in some cases they are even contradictory. In particular the second

subsample does not show evidence in favor of the theoretical implications.

However, the Johansen tests are not very robust. Some characteristics of those tests, will

be mentioned now. We have seen, that in some cases the LR-test assumes spreads to be

the cointegrating vectors, although the λtrace-test displays a rank of n − 2 or even lower.

This is particularly the case for small systems. Moreover, in the first subsample we found a

cointegration rank of n−1 for systems, consisting of four or five yields, while for two-variable-

systems often no cointegration was found. Podivinsky(1990) showed that all test used may

be misleading if too few variables are included. Thus, results of small systems should be

12



Table 4: λtrace-test, improved λtrace-test and LR-test for the second subsample

Interest rates in the system λtrace λImpr.
trace LR-test

rank at most n− 2 n− 1 n− 2 n− 1

r1, r12 21.11 4.25 20.60 4.15 5.15
r1, r36 19.07 3.94 18.61 3.84 1.12
r1, r60 17.11 3.89 16.70 3.80 0.85
r1, r120 14.57 3.53 14.21 3.45 0.52

r1, r12, r36 20.95 4.30 20.19 4.15 3.00
r1, r12, r60 15.09 4.12 14.54 3.97 1.25
r1, r12, r60 12.38 3.63 11.94 3.49 0.60
r1, r36, r60 10.37 4.02 9.99 3.88 0.07
r1, r36, r120 9.67 3.84 9.32 3.70 0.32
r1, r60, r120 10.71 3.48 10.33 3.35 1.58

r1, r12, r36, r60 11.13 4.59 10.60 4.36 15.54
r1, r12, r36, r120 10.57 4.37 10.06 4.16 18.44
r1, r12, r60, r120 11.55 3.67 11.00 3.49 19.72
r1, r36, r60, r120 9.69 3.52 9.22 3.35 6.61

r1, r12, r36, r60, r120 10.07 3.93 9.46 3.69 20.35

regarded cautiously.

For LR-tests the fact that interest rates are not be exact I(1)-processes, at least for the second

subsample, may lead to rejection of the H0, that spreads span the cointegration space, as

Lanne(2000) mentions. Our analysis has shown, that on a 5% significance level we can not

reject the H0, that interest rates are I(1)-processes. However, probability in many cases is

low. Therefore, it may also be the case, that they are only near a unit root process.

I have already mentioned, that the Johansen tests base on the assumption of error terms to

be independently normal. The procedure is very sensitive to this assumption. Rejection of

the H0 and thus finding of a higher cointegration rank is more likely in case of nonnormality.

Results from residual analysis show, that in our case we have to deal with the problem of

nonnormal errors. Tests on the hypothesis of errors being normally distributed can be re-

jected for all three samples. Rejection is mainly due to excess kurtosis. Results from Huang

and Yang(1996) have shown that with nonnormal errors overestimation of the cointegration

rank is more likely for the Johansen procedure than for least square procedures. Therefore,

nonnormality of the errors probably can not explain the reason why, specifically for the sec-

ond subsample, we found a cointegration rank, that is lower, than the one implied by theory.

Both, the λtrace and the λmax-statistic have to deal with a bias. Cheung and Lai(1993) found
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out that this sample is a positive function of T/(T − np), where T is the sample size, n is

the number of yields and p the number of lags used. Therefore Maddala et al.(1998) states

that it is appropriate to multiply the test statistics with (T − np)/T . I also applied this

”improvement”. As before a lag length of four was used. The results are reported in the

Tables 2 to Tables 4. However, the results do not differ much from those before. They also

do not support the theoretical assumptions, since this procedure lowers the test statistics and

so non-rejection of a cointegration rank equal to n− 2 becomes more probable.

An insufficient lag length may lead to substantial size distortions. Therefore, I also provided

the test with a lag length of ten. Results remained the same for the second subsample, while

they changed for the first subsample. Now, large system do no more indicate a rank equal to

n − 1. However, this result may be due to overspecification, which leads to a loss of power,

as Boswijk et al.(1992) state.

As said, only the first sample provides evidence in favor of the framework model. However,

the second subsample clearly does not. Lanne(2000) refers to the structural break, due to the

regime shift, as a plausible factor, why also the entire sample may not be in line with theory.

Those structural breaks, however, does not have to be due to regime shifts, also business

cycles may drive them. Bansal et al.(2004) mention regime-shifting-models, which can catch

up those structural breaks. They also call the time span between 1996 and 2000 a tough

challenge for standard term structure models, since it was characterized by several economic

recessions and also periods of booms. If they are right, this seems to be a plausible solution,

why the framework model fails, at least for the second subsample. Also the entire sample

must be influenced, since the second sample covers more than the half of it. We can finally

conclude, that the theoretical framework seems to hold only for the first subsample, which

is in line with bank-smoothing behavior. But it does not for the second subsample, which

might be due to a higher influence of structural breaks like business cycles, after the interest

targeting behavior had changed.

5 A Vector Error Correction Model

I will now present an estimation of a VECM for our case of interest rates. Results from

cointegration tests induced to apply this estimation only to the first subsample. Some features

of a VECM were already outlined in the theoretical framework, but some further points

have to be mentioned. It was used a VECM as the one presented in equation (7), and

for estimation Johansen´s maximum likelihood was applied. Restrictions are imposed by

using selected spreads. The theoretical framework implies that it should not matter which
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spreads are used. However, for a practical purpose Hall et al.(1992) supposed to use the least

correlated ones. This was also done in our case, and the spreads used, thus were s(12, 1, t−1),

s(36, 12, t − 1), s(60, 36, t − 1) and s(120, 60, t − 1). The test procedure was applied using

no determinstic trend and two lagged differences. The results are presented in Table 5. The

Johansen LR-test on restricted cointegration vectors shows evidence, that the spreads are the

cointegrating vectors, since the H0 can not be rejected on a 5% significance level7. I only

Table 5: Estimation Results from a VECM: 1954:07 to 1979:09

Explanatory Variable ∆r(1, t) ∆r(12, t) ∆r(36, t) ∆r(60, t) ∆r(120, t)
S(12, 1, t− 1) 0.061451 -0.034084 -0.024921 -0.029149 -0.016586
t-value (1.89766) (-1.22525) (-1.08753) (-1.47285) (-1.09949)
S(36, 12, t− 1) -0.090005 -0.044490 -0.133718 -0.080028 -0.112222
t-value (-0.77395) (-0.44534) (-1.62487) (-1.12597) (-2.07140)
S(60, 36, t− 1) -0.464122 0.048036 0.327593 0.112230 0.343421
t-value (-1.30152) (0.15681) (1.29820) (0.51495) (2.06724)
S(120, 60, t− 1) 0.537289 0.347972 0.168324 0.178487 -0.062963
t-value (2.99272) (2.25626) (1.32492) (1.626709) (-0.75281)

Diagnostic Statistics
R2 0.278588 0.256499 0.215691 0.188405 0.189262
S.D. dependent 0.381272 0.322626 0.258759 0.219692 0.167549
Log-likelihood -86.92598 -41.34425 16.81932 60.79105 142.2354

display the coefficients for spreads, because from an economic point of view long-run behavior

is of a higher interest. As mentioned in the frameork part, the coefficients can be seen as

adjustment coefficients. They display on how strong the interest rates react on deviations

of the equilibrium. Results show that yields react more intensely, if spreads between yields

of higher maturity deviate from their equilibrium values, than if spreads between yields of

lower maturity do. However, we have to be careful with the results, because many of the

coefficients are not statistically significant on a 5% level8, as can be seen when looking for

the t-values printed in parentheses.

6 Conclusion

This paper has showed by means of a theoretical framework, that the idea of term structure

of interest rates implies mutual cointegration in a set of n yields of different maturity. Then

different test procedures for testing on unit roots and cointegration were introduced. Those

procedures then were applied to empirical data. However, the results obtained, many times
7χ2(4)-test statistic is 6.951628 and so non-rejection has a probabilty of 0.138467
8T-values can be obtained from any standard t-distribution
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were not in line with the theoretical implications, particularly for the second subsample.

Only the first subsample showed evidence in favor, which may be due to bank smoothing

behavior. Results from the second subsample may reject the implication of our framework,

because interest rates are not exact I(1)-processes. For this sample, it is referred to the

paper by Bansal et al., which assume unsteady conditions in the nineties as a tough challenge

for models like ours. Hence, structural breaks, like business cycles, might be the reason,

why results for the second subsample and also for the entire sample are not in line with

our theoretical implications. For further studies the application of regime-shifting models is

recommended, since they seem to deal better with such structural breaks.

Last but not least a VECM was applied to data from the first subsample. It showed that

interest rates tend to react more if spreads between yields of high maturity deviate from there

long run equilibria.

In a nutshell, we can conclude that new data has not brought evidence for cointegrating

behavior of interest yields, and thus for our theoretical framework. It is rather be the case,

that new procedures like regime-shifting models have to be applied for further studies.

16



7 Appendix

A How to rearrange equation (3):

[r(k, t)− r(1, t)] = 1
k

[∑k
j=1 Et (r(1, t + j − 1))

]
− r(1, t) + L(k, t)

= 1
k

[
Et (r(1, t)) + Et (r(1, t + 1)) + . . . + Et (r(1, t + k − 1))− k · r(1, t)

]
+ L(k, t)

= 1
k

[
Et (r(1, t + 1)− r(1, t)) + Et (r(1, t + 2)− r(1, t)) + . . .

+Et (r(1, t + k − 1)− r(1, t))
]

+ L(k, t)

= 1
k

[∑k−1
j=1 Et

[
r(1, t + j)− r(1, t)

]]
+ L(k, t)

= 1
k

[ ∑k−1
j=1 Et

[
r(1, t + 1)− r(1, t)

]
+ Et

[
r(1, t + 2)− r(1, t + 1)

]
+ . . .

+Et [r(1, t + i)− r(1, t + i− 1)]
]

+ L(k, t)

= 1
k

∑k−1
i=1

∑j=i
j=1 Et∆r(1, t + j) + L(k, t)

B Test distribution of the ADF test: The asymptotic distribution of T ρ̂ and T θ̂ are

independent. This result can be used to show, that the distribution of ρ̂ is the Dickey-

Fuller distribution, while the asymptotic distribution of
√

T (θ̂ − θ) is normal. The

t-statistic for ρ̂ then is

tρ̂ ⇒
∫

W∗dW∫
W∗2dr

,

where W∗ = W (r)−
∫

W (r)dr is the ”demeaned” Brownian Motion.

C Distribution of the λtrace-statistic:∫
(dW )W∗′

(∫
W∗W∗′

)−1 ∫
W∗(dW )′ ,

where W∗ is again the ”demeaned” Brownian Motion.
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