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1 Introduction

The study of DUFOUR/ENGLE (2000) is an empirical contribution to information–based mi-
crostructure theory. Key claim of their study is that the impact of a trade on prices is higher in
markets with high trading intensity. Since the impact of a trade is a measure for the presence of
informed traders, they predict that active markets are more dominated by informed traders than
inactive markets.

Since their analyis is based on NYSE–data, the purpose of this paper is to apply their idea to
XETRA– data and to test the robustness of their central results. The paper is organized as fol-
lows: Section 2 gives a short survey of the theoretical background for information–based models
of market microstructure theory, as far it is relevant for the following empirical discussion. Sec-
tion 3 first introduces the underlying framework of HASBROUCK (1991) before turning to the
specification of DUFOUR/ENGLE (2000). After describing the data and relevant variables in
Section 4, we turn to the estimation of the DUFOUR/ENGLE (2000)–model with XETRA–data
in Section 5. To show the impact of a trade on prices, the role of Impulse Response Functions
is discussed in Section 6. A last section is reserved for concluding remarks.

2 Theoretical Background

2.1 Information– based models

Information– based models of market microstructure typically discuss the effects of asymmet-
ric information across market participants on financial markets. These considerations origi-
nate in BAGEHOT (1971, p.13), who points out that traders with private information (“informed
traders”) can achieve “trading gains” from their market activities, whereas “uninformed traders”
cannot. Informed traders always choose to trade if they have superior information1. Unin-
formed traders can still achieve profits from “market gains” and seek diversification of their
wealth. Since they are active in the market solely due to liquidity needs2, they are referred to as
“liquidity traders” in the literature3.

2.2 General effects of asymmetric information

Theory derives two general consequences from the presence of asymmetric information in the
marketplace: The first concerns the role of a bid/ask–spread, the second deals with the informa-
tional content of a trade:

1They might be restricted in doing so by short- selling restraints.
2BAGEHOT (1971, p.13) also identifies investors that only think they have superior information (but indeed have

not); BLACK (1986, p.531) refers to them as “noise traders”. In the following, we classify them as non–
informed and take their motivation as exogenous.

3e.g. BAGEHOT 1971, p.13; DUFOUR/ENGLE 2000, p.2468
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2.2.1 The effect on spreads

COPELAND/GALAI (1983) formalize the idea of BAGEHOT and discuss the optimal behavior of
market makers in a one–period framework. Market makers, who cannot distinguish between in-
formed and uninformed traders in the first place, need to be compensated for the losses they face
due to the presence of private information in the marketplace: Even if transaction costs and in-
ventory effects are absent4, market makers have to quote a bid/ask–spread (COPELAND/GALAI

1983, p.1463), which is optimal to offset expected losses from dealing with informed traders.

2.2.2 The persistent effect of a trade

Extending the COPELAND/GALAI–framework from a one–period to a dynamic setting, an ad-
ditional effect arises: If a purchase order occurs in the first period , there is a certain probability
that it stems from an informed trader who knows about secret good news5. The market maker
considers this information when he quotes the bid/ask–spread in the next periods. Doing so,
he gradually learns the true value of an asset. GLOSTEN/MILGROM (1985, p.74) show that the
value expectation of the market maker on the one hand and informed traders on the other tend
to converge over time. This means that private information is incorporated in the price in the
long run; the effect of a trade is a persistent one. O’HARA (2006, p.58) describes the analy-
sis about this “Bayesian learning” phenomenon as the focus of recent microstructural research.
Depending on the set–up of the underlying model, we consider specific features of trading pat-
terns, such as direction, size or duration. In the GLOSTEN/MILGROM (1985)– model the market
maker has to find out whether good news or bad news have happened. If there is bad news, the
probability of a sale is higher than the probability of a purchase. Looking at a sequence of
trades, the market maker learns from the relative number of sales if informed traders have good
or bad private information and adjusts his own quotes gradually.

2.2.3 Asymmetric Information and Market Efficiency

The assumptions that market prices do not fully incorporate all information conflicts with
the notion of strong form market efficiency. Following the concepts of FAMA (1970, p.383),
strongly efficient markets require the current market price to reflect all public as well as private

information. However, one can still apply the idea of semi- strong efficiency (FAMA, ibid.),
since publicly available information is immediately captured in the stock price. Therefore, em-
pirical analyses do not only decide about the explanatory power of a specific microstructure
model, but also about the degree of efficiency of the market.

4In inventory models the spread arises as a compensation for risk (e.g. HO/STOLL 1980, p.261). Assuming
risk– neutral market makers and unlimited capital illustrates the point of information– based models, although
a combination of both types of effects is more realistic (O’HARA (2006), p.59).

5It is obvious that the same is true for bad news. A market maker cannot distinguish between uninformed traders
who want to sell for liquidity reasons and informed traders who have private information that lowers the true
value of the stock. An adverse selection problem arises which is similar to AKERLOF’s (1970) “lemons prob-
lem”: The seller has superior information about his value expectations; the asset is sold at a lower value.
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O’HARA (2006, p.65) discusses the adjustment process of prices after a trade with respect to
market efficiency. A market is no longer strongly efficient if there is private information in the
marketplace. The predicted convergence process, however, leads to a final point in which the
market turns again from semi–strong to strong form market efficiency.

2.2.4 Asymmetric Information and Market Liquidity

DUFOUR/ENGLE (2000, p.2470) stress the close link between efficiency and liquidity. Markets
are liquid when a single trade does not have a noticeable impact on prices. This means that it
takes time until the informational content of a trade is fully captured by market quotes. A fast
path of convergence of the expectations of informed traders and market makers means a quick
return to strong market efficiency, but it is also a sign of illiquid markets.

2.3 The effects of trade size

The model of EASLEY/O’HARA (1987, p.72) discusses the scenario with a market maker who
does not know whether there is new information; if there is new information he does not know
if it is good or bad news. The latter of these two uncertainties can again be approached by the
trade directions; for a the prediction of the former the size of a trade comes into play.

In this setting, informed traders have an incentive to trade large quantities, whereas unin-
formed traders are indifferent regarding their trade size. The market maker can interpret a sale
as a signal of bad news (as seen in the GLOSTEN/MILGROM–model); additionally, he can inter-
pret a small sale as a sign of “no news”. Transaction size is hence correlated with information,
and it “signals the existence of an information event” (EASLEY/O’HARA 1987, p.86). The im-
plication of this model is that prices as well as spreads depend on traded volumes6. Since the
trade size alters the market maker’s perception concerning the informational content of a trade,
it also influences the speed of the adjustment process towards a market price which fully reflects
the private information.

2.4 The effects of time

A very similar argument can be made for time. EASLEY/O’HARA (1992, p. 578) predict
a correlation between volume and the time between trades. An informed trader, who has an
incentive to make a large trade, might decide to split up his transaction into smaller consecutive
transactions. The reason for this is strategic behavior, since the informed trader does not want to
show himself7 in order to slow down the process of convergence of his value expectations and
these of the other market participants. The timing of transactions is not any more exogenously
given, but endogenously determined by the occurrence of private information. Having this in

6LEE/MUCKLOW/READY (1993, p.371) find in their empirical work that “spreads widen [...] in response to an
increase in volume”, which confirms this prediction.

7FOSTER/VISWANATHAN (1990, p.594) describe the optimal strategic behavior of an informed trader.

6



mind, the market maker can use the duration between two trades to derive a probability about
the existence of new private information. If time between trades increases (meaning there are
no trades for a longer period of time), it becomes more likely that the following trade occurs for
liquidity reasons only. Hence, the market maker will reduce the spread.

While the market maker adjusts his expectations concerning the direction of new information
from the Trade–sign (purchase vs. sale) directly, he can adjust his expectations concerning event

uncertainty based on the time between trades or the volumes of the transactions.

3 Empirics on microstructure models

Microstructure theory elaborates the impact of private information on trade patterns. Con-
versely, empirical contributions to this problem analyze trade patterns to quantify the extent
of asymmetric information in the marketplace. Theory predicts that asymmetry is positively
related to the bid/ask–spread8 as well as to the price impact of a trade (HASBROUCK (1991),
p.180). HASBROUCK (ibid) points out that unlike other effects9 informational imperfections
have a persistent effect on prices. Therefore, the impulse response function is the appropri-
ate measure of private information (HASBROUCK (1991), p.189). The projection in the future
yields the current efficient price (ibid, p.183); the speed of convergence to this projection is
negatively related to the extent of private information.

The focus of this paper is the impact of time on prices. DUFOUR/ENGLE (2000) provide
a model that includes time effects which is based on a vector autoregression model (VAR)
introduced by HASBROUCK (1991). In the following, we present the features of the underlying
model before turning to the DUFOUR/ENGLE (2000)–framework.

3.1 The underlying HASBROUCK (1991)– Model

3.1.1 The role of autocorrelations

HASBROUCK/HO (1987) develop and estimate a complex price evolution process that contains
autocorrelations of returns as well as of Trade–signs. They find that returns have a strong neg-
ative autocorrelation in their first lag, followed by slightly positive and declining autocorrela-
tions for the following lags. There are positive but declining autocorrelations in the Trade–sign,
meaning that sales tend to be followed by sales and purchases by purchases (HASBROUCK/HO

1987, p.1036). They provide as an explanation that a single informed trader might split up
a large trade over time. This idea is consistent with the further analysis performed by DU-
FOUR/ENGLE (2000) and revised in the present paper.

8CHIANG/VENKATESH (1988, p.1047) find empirically that the spread is larger for companies with a more
concentrated ownership structure (which is taken as a proxy for private information), which confirms this
prediction.

9Inventory effects, price discreteness, price pressure, order fragmentation, price smoothing
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3.1.2 Autocorrelations and cross–correlations in a VAR- model

HASBROUCK (1991) presents a vector autoregression (VAR) model that captures returns and
trades with their autocorrelations and mutual effects in a system. He provides estimates for
the relevant mechanisms and derives the impulse response functions as a measure of market
efficiency.

xt denotes a trade in event time t (called “Trade variable” or “Trade–sign variable”), whereas
qt+1 is the exact middle of the bid/ask–spread10that emerges immediately after the trade in t.
The return (or Price Revision) rt is the delta between qt and qt+1. HASBROUCK (1991, p. 183)
distinguishes between public information (captured in υ1) that has an immediate influence on
the quote, and private information (captured in υ2) that may provoke an informed trader to
trade. Note that υ1 and υ2 are white noise components. As Hasbrouck (1991, p. 189) puts
it, “the trade is driven partially by private information and partially by liquidity needs”. A
rise in υ2 does not necessarily mean that there is private information with certainty; but if new
private information appears, it enters the system via υ2. Public information has a direct effect
on Price Revisions. Figure 1 shows that quotes are made just immediately after a trade. The

Figure 1: Trade flow

model hence assumes a contemporaneous effect of trades on returns. (Note that an immediate
effect of the return on the Trade–sign is not assumed.) Although returns are a function of public,
but not private information, private information still enters the return equation indirectly by the
contemporaneous effect of the trade on returns11.

Similarly to the HASBROUCK/HO (1987)–framework, the return equation and the trade equa-
tion include autocorrelation terms. Additionally, the return equation captures the correlation
with lagged trade variables in order to take into account that the information from a trade enters
only gradually the pricing of market makers. Finally, the model also includes the correlation
terms of lagged returns in the trade equation. These considerations define the vector autoregres-

10EASLEY/O’HARA (1987, p.81) point out that this is not an appropriate measure for the market value if the size
of transactions determine the spread. If there are more large purchases than large sales, the midpoint is an
upward-biased measure. HASBROUCK (1991, p.182) assumes that these effects are transient and quotes are set
symmetrically around the efficient value at least in terms of expectations.

11In a formal language, this can be denoted as r = r(x, υ1) and x = x(υ2)⇒ r = r(x(υ2), υ1).
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sive system (HASBROUCK 1991, p.194)

rt =
n∑

i=1

airt−i +
n∑

i=0

bixt−i + υ1,t

xt =
n∑

i=1

cirt−i +
n∑

i=1

dixt−i + υ2,t

(1)

Note that this vector autoregression model contains a contemporaneous effect of xt on rt. As
can be seen in Figure 1, however, trade and returns are not determined simultaneously. For this
reason, υ1,t and υ2,t are jointly and serially uncorrelated. It is therefore possible to include the
contemporaneous effect in the VAR estimation, and to compute the parameters consistently via
OLS (see HASBROUCK, p.184).

3.1.3 Trade–sign patterns and trade size effects

HASBROUCK (1991) applies this model to estimate the effect of simple trade direction patterns
and –in an extended version (ibid, p.198)– the effect of different transaction volumes. The
trade variable x can be interpreted as a limited dependent variable taking the value of 1 if the
transaction is a purchase and a −1 if it is a sale12. In this case, the model can be used in the
sense of the GLOSTEN/MILGROM (1985) framework. The trade variable can, however, be also
treated as a volume measure (having a positive sign if it is a trade and negative sign if it is a
purchase). This allows capturing trade size effects as introduced by EASLEY/O’HARA (1987).

3.2 The DUFOUR/ENGLE (2000)- Model

In Section 2.4 it has been argued that trade size and the time between two trades (duration)
can be seen as related variables. DUFOUR/ENGLE (2000) extend the described VAR- model
with durations in order to “test the informational role of market activity”(ibid, p.2468). Market
activity, however, can differ for various reasons. It is obvious that, on average over all trading
days, certain trading hours are more highly frequented than others. Therefore, one need to
separate these day time patterns from the remaining variation of market activity that might have
informational content concerning asymmetric information. DUFOUR/ENGLE (2000) implement
these considerations into the model given in (1) by specifying the coefficients bi and di. Besides
the autocorrelation and cross- correlation effects of the Trade–signs13 themselves as given in
(1), the Trade–sign–weighted duration as well as diurnal variables are included. The latter are
dummy variables which filter day time patterns. Both elements are included in the coefficients

12In HASBROUCK (1991, p.193), this interpretation of the trade variable is denoted by x0.
13DUFOUR/ENGLE use the simpler model without trade sizes as it is given in HASBROUCK (1991, p. 194).
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in the following way (DUFOUR/ENGLE 2000, p.2474):

bi = γr
i +

J∑
j=1

γr
j,iDj,t−i + δr

i ln(Tt−i) (2)

di = γx
i +

J∑
j=1

γx
j,iDj,t−i + δx

i ln(Tt−i) (3)

with bi belonging to the Price Revision equation and di belonging to the Trade–sign equation. j

denotes the exact dummy out of J +1 possible day time classes14. This set–up provides testable
parameters to examine different ways in which time might have an impact: If the γrs and γxare
jointly equal to zero, the day time period does not influence the Trade- or the Price Revision
equation. If the δrs and δxs are jointly zero, the assumption that durations matter cannot be
confirmed. If both is the case, the original HASBROUCK (1991) VAR of equation (1) might
be the appropriate specification. Conversely, if the δs are significantly different from zero, the
model provides evidence for an influence of trading activity on prices and trades respectively
(DUFOUR/ENGLE 2000, p.2475).

It can be seen that this framework includes a multitude of contemporaneous and lagged
dummy variables. DUFOUR/ENGLE (2000) provide some experimentation to exclude non–
significant variables. They find that all lagged diurnal and most contemporaneous dummy vari-
ables are jointly insignificant and proceed to model the interdependencies with the VAR system
(ibid, p.2481)15

rt =
5∑

i=1

airt−i + γr
openDtx

0
t +

5∑
i=0

(γr
i + δr

i ln(Tt−i))x
0
t−i + υ1,t

xt =
5∑

i=1

cirt−i + γx
openDt−1x

0
t−1 +

5∑
i=1

(γx
i + δx

i ln(Tt−i))x
0
t−i + υ2,t

(4)

The lags larger than five are truncated. The contemporaneous Trade–sign enters the Price
Revision equations in three ways: γr

i captures a direct effect (as in equation (1)), γr
open and δr

0

are interaction terms for the opening period and the duration effect respectively. Note that there
is no contemporaneous effect in the trade equation. This is consistent with the original model
in (1).

14The last one is omitted to avoid a “dummy trap”.
15Note that DUFOUR/ENGLE (2000, p.2481) also present another version of their model which is not including

i = 0 in the second sum operator in the price variation equation. This would mean that the contemporaneous
Trade–sign and duration do not enter the equation. This paper, however, focuses on the version described in
(4).
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4 The data

DUFOUR/ENGLE (2000) perform their analysis for a selection of 18 stocks which belong to the
most actively– traded stocks on the NYSE. The data contains quotes and transaction information
for 62 trading days from November 1, 1990 to January 31, 1991 (ibid, p.2477)16.

The aim of the present paper is to revise the DUFOUR/ENGLE (2000) framework with data
from the electronic trading platform XETRA. The considered stocks are those of the German
blue chip index DAX17. The models are exposed to data from the Continuous Trading order book
for the period from January 2 to January 30, 2004, which contains 21 trading days.

4.1 DAX 30

A summary table showing the characteristics of all thirty stocks is provided in Appendix A
(Table 1). The stocks within the DAX vary substantially with respect to the number of trans-
actions, average trading volume and duration. The stock with the largest number of trades is
Deutsche Telekom, which shows at the same time the largest average volume and the low-
est average time between two trades. Fresenius Medical Care, on the other hand, has
the lowest number of transactions in the sample, accompanied by the second lowest average
volume and the –by far– largest duration between trades. It appears that the link between trade
size and duration (as predicted by EASLEY/O’HARA (1992)) and between trading activity and
duration can be confirmed. To attain robust results, our estimations are performed on all 30 DAX
values, which allows to identify general patterns. Since we are using the stock of Deutsche
Telekom as an example to compute the impulse response function in Section 6, results for this
stock are mentioned separately if they deviate from the general pattern.

4.2 Relevant Variables

Due to the assumed non–stationarity of prices themselves (DUFOUR/ENGLE 2000, p.2471),
equations (1) and (4) include rt as a price variation term18. This paper follows DUFOUR/ENGLE

(2000, p.2478) in defining rt as

rt = 100(ln(qt+1)− ln(qt))

where19 qt+1 denotes the midpoint of the bid/ask–spread right after the trade, while qt is the
midpoint quote before the trade.

The Trade–sign variable xt is a limited dependent variable as described in Section 3.1.3. A
transaction is considered a purchase (xt = 1) if the transaction price exceeds the midpoint quote
of the bid/ask–spread. It is defined as a sale (xt = −1) if the actual transaction price is lower
16The data is extracted from the TORQ database by HASBROUCK (1992) (see DUFOUR/ENGLE (2000), p. 2476)).
17Deutscher Aktien Index
18This term is also referred to as “return” or “prive revision”
19Note that this is consistent with Figure 1.
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than the midpoint quote. If the midpoint quote is exactly equal to the transaction price, xt equals
zero20.

As can be seen in equations (2) and (3), the innovative idea of the DUFOUR/ENGLE (2000)
model is the inclusion of time durations. The duration variable Tt is defined as the difference in
seconds between the time of trade xt and the previous trade xt−1. We drop the first observation
of a day, since the time gap to the previous trade (which occurred the day before) cannot be
interpreted as a meaningful duration. Since logarithms are needed in (2) and (3), one second is
added to all time differences; the log–duration is thus at least equal to zero. The durations are
weighted with the Trade–sign: For purchases, durations enter the equation with a positive sign,
for sales they enter with a negative sign. Technically, the inclusion of duration is done by the
means of an interaction term xt ∗ ln(Tt).

Section 3.2 discusses the necessity of dummy variables21 in order to capture day time effects.
The trading day22 is therefore divided into eleven23 intervals; the first and the last three intervals
are shorter than the others24. Besides the interval of the opening period, the interval of the
dummy D8 (3:30 p.m. to 4:30 p.m.) might be of specific interest: This is the opening period
of the NYSE which typically triggers enhanced market activity on stock exchanges outside the
US. Table 3 shows that there is an increased market activity for all stocks in the last two hours
of the trading day. The first hour right after the opening of the NYSE accounts for 16% of
all transactions of the day, compared to 10% and 8% respectively in the two hours before the
NYSE opening. Similarly to the duration effects, the dummy variables are weighted with the
Trade–sign and enter the equation as interaction terms (xt ∗Dj).

5 Estimation and Results

Following the approach of DUFOUR/ENGLE (2000, p.2471-72), we use OLS for all estimations
and compute our standard errors with the application of WHITE’s (1980) heteroskedasticity–
robust variance matrix. For all estimates, we report p–values and decide about the rejection
of the null hypotheses on a 5% significance level. Our results for the different estimations are
reported in Appendix C.

5.1 Day time effects

The separation of day time effects and duration effects is necessary to obtain realistic insights
in the impact of time on prices. As discussed in section 3.2, DUFOUR/ENGLE (2000, p.2480)
provide arguments to drop most dummy variables from the terms (2) and (3): They first perform

20For the pure HASBROUCK (1991)–model, the quotes of market makers without a transaction could be included
in the analysis with a xt equal to 0. Since a duration can only be computed for consecutive transactions, we
follow DUFOUR/ENGLE (2000) and drop all quotes without corresponding transactions from our samples.

21The dummies are referred to as “day time dummy variables” or “diurnal variables”.
22XETRA trades from Monday through Friday from 9 a.m. to 5.30 p.m.
23D11 is omitted in all estimations.
24For the exact time intervals and the associated dummies, see Table 2.
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a Wald–test on all lagged diurnal variables to check whether all coefficients are jointly equal
to zero. Since this hypothesis cannot be rejected on a 5% level for 16 out of 18 stocks of their
sample, the insignificance of lagged diurnal variables is assumed.

To follow this approach, we estimate the VAR25 with all 10 day time dummy variables (with
5 lags each).

rt =
5∑

i=1

airt−i +
10∑

j=1

5∑
i=0

γr
i,jDt−i,jx

0
t−i +

5∑
i=0

(γr
i + δr

i ln(Tt−i))x
0
t−i + υ1,t

xt =
5∑

i=1

cirt−i +
10∑

j=1

5∑
i=1

γx
i,jDt−i,jx

0
t−i +

5∑
i=1

(γx
i + δx

i ln(Tt−i))x
0
t−i + υ2,t

(5)

We perform a Wald–test on all lagged diurnal parameters γr
1...5,j and γx

1...5,j . The results are
shown in Table 4 in Appendix C.

For the Price Revision equation, the lagged parameters are jointly significant on a 5% sig-
nificance level for only 6 out of 30 stocks. The picture is less clear–cut for the Trade equation,
where we compute significant p–values for 11 out of 30 stocks.

With the finding that lagged day time dummy variables are insignificant for most stocks in
the Price Revision equation and for the majority of stocks in the Trade equation, we exclude all
lagged dummy variables. This corresponds to the proposition made by DUFOUR/ENGLE(2000,
p.2480).

We hence reduce (5) to a VAR that only contains the contemporaneous day time dummy
variables in the price revision equation and the first–lag dummy variables in the trade equation,
which delivers

rt =
5∑

i=1

airt−i +
10∑

j=1

γr
0,jDt,jx

0
t +

5∑
i=0

(γr
i + δr

i ln(Tt−i))x
0
t−i + υ1,t

xt =
5∑

i=1

cirt−i +
10∑

j=1

γx
1,jDt−1,jx

0
t−1 +

5∑
i=1

(γx
i + δx

i ln(Tt−i))x
0
t−i + υ2,t

(6)

The estimation results for the Price Revision equation from (6) are presented in Table 5.
Although most considered day time interaction terms are insignificant, it strikes that 14 out of
30 stocks exhibit positive and significant coefficients for the opening period. For this reason,
it seems reasonable to keep the corresponding dummy variable in the equation. As discussed
earlier (Section 4.2), the opening period of NYSE (D8) might also be of interest. The evidence
from our estimates, however, is against an inclusion of this dummy variable: The coefficients
are significantly different from zero for only 5 out of 30 stocks.

A Wald–test is performed to find out whether all day time dummy variables besides D1 are
jointly equal to zero (see Table 7). This hypothesis can be rejected on a 5% significance level

25As can be seen, the quote revision equation contains 77 parameters, as opposed to the trade equation with only
65. This is due to 12 parameters for contemporaneous effects.
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for 22 out of 30 stocks. This finding for the DAX values suggest that the dummy variables
should not be removed from the Price Revision equation26.

The Trade equation parameters are reported in Table 6. For all stocks, most coefficients are
insignificant on a 5% significance level; apparently trades do not depend on day time effects27.

The Wald–test for the Trade equation (reported in Table 7) predicts that we only reject the
null in 9 out of 30 cases28.

Although the Wald–test tells a different story for the Price Revision equation, the p–values
shown in Table 5/6 justify to drop the dummy variables D2...10. For the sake of simplicity (and
according to the example of DUFOUR/ENGLE (2000)), the removal of lagged dummies occurs
in a parallel way for both the quote revision equation and the trade equation.

5.2 Estimated Coefficients

According to the set–up of DUFOUR/ENGLE (2000), we keep the dummy for the opening period
in our model. We obtain the VAR

rt =
5∑

i=1

airt−i + γr
0,1Dt,1x

0
t +

5∑
i=0

(γr
i + δr

i ln(Tt−i))x
0
t−i + υ1,t

xt =
5∑

i=1

cirt−i + γx
1,1Dt−1,1x

0
t−1 +

5∑
i=1

(γx
i + δx

i ln(Tt−i))x
0
t−i + υ2,t

(7)

The results of our estimation are reported in Table 8 (Price Revision equation) and in Table 9
(Trade equation).

5.2.1 Mainly negative effect of lagged returns

HASBROUCK (1991, p.194) finds negative coefficients of lagged return variables in the Price
Revision equation (negative autocorrelation) as well as in the Trade equation. DUFOUR/ENGLE

(2000, p.2480) find negative autocorrelation between returns in the first and second lag as well
as positive autocorrelation in the higher lags. This is consistent with the findings by HAS-
BROUCK/HO (1987) discussed in Section 3.1.1. They also find a negative effect of lagged
returns on the Trade–sign. Intuitively, this means that rising prices tend to encourage sales,
falling prices encourage purchases.

For 24 out of 30 stocks, we find significant negative autocorrelations of returns for the first
lag (see Table 8). For the second lag, there are only significant coefficients for only 6 stocks;
furthermore, there is no clear pattern about the sign of these coefficients29. Therefore, general

26Note that the estimation for Deutsche Telekom tells the opposite story; the p–value of the Wald–test is
0.0881.

27Deutsche Telekom has three significant day time variables:δ6,δ7 and δ8
28Once again, Deutsche Telekom provides an opposite pattern: Here the tested dummy variables are highly

significant (p–value of 0.00).
29Deutsche Telekom shows significant negative autocorrelation even for the first four lags.
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patterns regarding autocorrelation of returns can only be derived for the first lag.
The negative effect of the first lag–return in the Trade equation (see Table 9) can be con-

firmed for all DAX–stocks. The second lag is still significant for 25 stocks, most of them with
positive coefficients. The coefficients of the first lag are about 7-10 times higher than the co-
efficients for the second lag. We find that for all 5 lags, the coefficients are widely significant
for most stocks. Most of the higher- order lags have positive directions30. A preceding price in-
crease therefore strongly encourages a sale, which tends to be followed by –smaller– corrections
in the opposite direction (purchases).

5.2.2 Positive effect of lagged Trade–signs

More interesting from a theoretical perspective is the partial effect of lagged Trade–signs. If
consecutive Trade–signs have positive autocorrelation, this might indicate a split of large trans-
actions made by informed traders (see Section 3.1.1). DUFOUR/ENGLE (2000, p.2480) find
strong autocorrelation of Trade–signs as well as a positive cross-correlation on the Price Revi-
sion equation.

Our estimation shows (see Table 8) that strong autocorrelation is also true for our data. 28
out of 30 stocks have significant coefficients for all 5 lags in the Trade equation; all of them
are positive.

The pattern of positive effects of Trade–signs on the Price Revision equation (see Table 8)
is also clearly visible for the contemporaneous effect and in the first lag: All 30 stocks exhibit
significantly positive coefficients for the contemporaneous effect, and still 25 for the first lag31.

5.2.3 The effect of XETRA and NYSE opening

After having dropped most contemporaneous and all lagged day–time dummy variables, DU-
FOUR/ENGLE (2000, p. 2481) only keep a single day–time variable for the opening period of
the market (see (4)). For the Price Revision equation, they find significant coefficients to this
parameter for only 7 out of 18 stocks at a five percent level; for the Trade equation, this is
even the case for only 3 stocks. They conclude that “time effects are not attributable to daily

variations” (ibid., p. 2480).
Equations (7) contain a dummy for the opening period as well. The results of our estimations

for all time–related coefficients are presented in Table 10 and Table 11 respectively. They
suggest that a daily pattern does exist at least for the Price Revision equation, where we find
significant values for γr

1 in 21 out of 30 stocks. In contrast to that, the assumption that time
effects are not due to variations over the day might be strengthened by our estimation for the
Trade equation, where we find significant values for γx

1 in only 5 cases.

30Deutsche Telekom shows negative effects in the first three lags, the correction does not start until the forth
lag.

31For Deutsche Telekom there are significant coefficients for the first four lags.
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According to our XETRA data, daily patterns cannot be ruled out as easily from the Price
Revision equation as it is done by DUFOUR/ENGLE (2000) for their NYSE sample.

5.2.4 The effect of duration

The main focus of this analysis is on the duration between two trades to find out whether market
activity has an informational content.

For the Price Revision equation, DUFOUR/ENGLE (2000, p.2484) provide promising ev-
idence for the relevance of the interaction terms (capturing the Trade–sign and the duration
since the previous trade): In their analysis, the corresponding contemporaneous coefficients δ0

are negative and significant in 13 out of 18 stocks. A Wald–test on all δi leads to a rejection
of the null hypothesis that the interaction terms are jointly equal to zero in 13 out of 18 cases.
Further, a Wald–test is performed on the sum of all δi: The null hypothesis that this sum of the
interaction term coefficients equals zero can be rejected in –again– 13 out of 18 cases. DU-
FOUR/ENGLE (2000) conclude that the positive effect of the Trade–sign on prices (discussed
in Section 5.2.2) is partly offset when time between two transactions increases. That means
the price impact of a purchase that occurs right after the preceding transaction is larger than
the price impact of a purchase which happens after a longer time interval. This finding is in
line with theory (see Section 2.4): Short intervals between trades are a signal that new private
information has entered the marketplace.

Our relevant parameter estimates for the interaction terms are reported in Table 10. The
result is less overwhelming, but it still confirms the story sufficiently: The parameters for the
contemporaneous interaction term (δr

0) are significant for 14 out of 30 stocks; all but one of
them are negative32. We perform a Wald–test with the null hypothesis that δr

0 = ... = δr
5 = 0.

The last column in Table 10 shows that we can reject the null for 11 out of 30 stocks33.
The pattern of the effects of the interaction terms in the Price Revision equation are thus

found similarly to DUFOUR/ENGLE (2000), although the evidence seems to be less strong.
A similar negative effect of the interaction term is identified by DUFOUR/ENGLE (2000,

p.2483) in the Trade equation. The sums of the interaction terms δx
i (for i = 1...5) are negative

(for 16 out of 18 stocks) and significantly different from zero in 11 out of 16 cases. Wald–tests
on the null hypothesis that the coefficients are jointly equal to zero and that the sum of the coeffi-
cient is zero are performed to show that effect. The negative sign indicates that autocorrelations
of Trade–signs are stronger when trades occur in little intervals.

The evidence from our analysis (see Table 11) confirms these results. For all five lags of the
interaction term we find predominantly negative coefficients; the first lag parameter is signif-
icant on a 5% significance level for a large majority of stocks (26 out of 30). For the second
(third, forth, fifth) lag, we can still reject the null hypothesis of coefficients equal to zero for 18

32Deutsche Telekom even has significant negative coefficients for the contemporaneous interaction term and
the first and the second lag.

33Including Deutsche Telekom
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(15,17,11) out of 30 stocks. Consequently, there is also a strong support for the significance of
the duration/trade–sign interaction terms from the Wald–test on the null hypothesis that all δx

i

are jointly equal to zero: We can reject this null in 28 out of 30 cases.
Therefore, our estimation based on XETRA data supports the relevance of the interaction

terms.

6 The long-term impact of shocks

6.1 The idea

HASBROUCK (1991) introduces the Impulse Response Function as an illustration for the dy-
namics identified by a VAR-type model estimation. Besides visualizing how fast Price Revi-
sions and Trades return to their equilibrium after a shock, Impulse Response Functions identify
the long–term price effects of shocks.

The starting point is a stock which is trading in an equilibrium: This means that there is
no private nor public information in the marketplace and stocks are constantly trading at the
midpoint of the bid/ask–spread. The Trade–sign xt and the Price Revision rt are hence equal to
zero for the preceding transactions.

Unexpectedly, an impulse of υ2,t is entering the trade equation in t = 0. As discussed in Sec-
tion 3.1.2, this effect might be interpreted as private information (if it is triggered by informed
traders) or noise (if it is caused by liquidity traders). Intuitively, this means that a purchase
order occurs. Hasbrouck uses the coefficients estimated in equation (1) and computes a path of
rt and xt for the subsequent ts. These paths (called impulse response functions) show to what
extent the impulse is perceived as new information that changes the true value of the stock.

The set–up of an Impulse Response Function is based on a vector moving average. The VAR
from Equation (7) can be written as (HASBROUCK, 1991a, p.576):

rt = υ1,t + ã1υ1,t−1 + ã2υ1,t−2 + ... + b̃0υ2,t + b̃1υ2,t−1 + ...

xt = c̃1υ1,t−1 + c̃2υ1,t−2 + ... + υ2,t + d̃1υ2,t−1 + d̃2υ2,t−2 + ...
(8)

The coefficients in Equation (8) can be interpreted as Impulse Response Functions. The
cumulated coefficients are Cumulated Impulse response functions; for example,

∑T
t=0 ãt is the

effect of a shock in the Price Revision equation on Cumulative Price Revisions, which is the
long–term impact of a trade.

6.2 Impulse Response Functions and Durations– our example

Deutsche Telekom is the most frequently traded stock in the present XETRA sample. We
compute the efficients for Equation (8) and draw different Impulse Response Functions. We
assume a stable equilibrium in t = 0. The impulse is given by an unexpected shift in the Trade–
sign for Figures 2–4 and in the Price Revision equation for Figures 5–8. The size of the impulse
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υ2,t is chosen equal to the standard deviation of the Trade–sign and the Price Revision series in
our sample, which is 0.9799 and 0.024025 respectively.

To make the point about the effect of durations between trades, we compare the same situation
followed by two different –exogenously given– series of durations: These series include 20
durations which are taken from the original data and represent the most active and the least
active trading interval for Deutsche Telekom in the sample. The stock is most actively
traded in the interval starting at 4:52:20 p.m. on January 28, 2004. The interval with the highest
durations (low activity) takes place at 12:58:41 p.m. on January 6, 200434.

Recall that we do not observe an equilibrium (as described above) in these points in time.
Therefore, the Impulse Response Functions cannot be interpreted as forecasts for the consecu-
tive transactions given that a shock occurs right then. Rather, forecasts for a shock occurring
in any equilibrium are computed, but under the assumption that this equilibrium is followed by
an exogenously given series of durations35. Unlike DUFOUR/ENGLE (2000), who draw these
series from a stochastic process36, we take the observed extreme cases from reality37 to show
the range of possible outcomes.

The Impulse Response Functions are shown and discussed in Appendix C.1. Here are some
key results: For the impulses on the Trade–Sign (υ2,t), the effects on Price Revision is larger
and more persistent if markets are highly active (see Figure 2). The Cumulative Price Revisions
take longer to converge in active markets to a final value, and the long–term price effect is larger
(see Figure 4). For impulses on Price Revisions (υ1,t), which means that prices suddenly jump,
we see a correction with negative price revisions in the subsequent transactions. This correction
takes longer and is larger in markets with high trading activity (Figure 7). In low intensity
periods, Trade–signs converge faster to their equilibrium value 0 after a shock on both Price
Revisions or Trade–signs (see Figures 3 and 6). Cumulation of Trade–signs show that there is
a longer sequence of following trade–signs that is influenced by the shock if markets are more
active (see Figure 8).

7 Variance decomposition

As discussed in HASBROUCK (1991a, p.577), total variance for the stock price can be decom-
posed into an element capturing the variance of the Price Revision equation (σ2

υ1
) and an element

34Table 3 confirms that there are typically low trading intensities around 1 p.m (Dufour/Engle (2000,p. 2487): the
“lunch effect”) and high intensities around 5 p.m.

35Note that the dummy variables for the discussed points in time are excluded in equation (7). For the sake of
simplicity, we therefore compute impulse response functions for the case that D1 and D8 are equal to zero.

36Dufour/Engle (2000, p.2475) propose to understand duration series as conditionally Weibull–distributed. This
is a more general form than the alternatively appropriate exponential distribution (ibid, p.2476).

37Of course, this cannot be taken literally: The underlying sample only contains 21 trading days. Nothing tells us
that the “extreme situations” from this period are really that extreme when a longer period is considered. But
all we want to do with taking the extreme cases from our sample is to show that durations make a difference.

18



capturing the variance of the Trade equation (σ2
υ2

), which can be expressed as

σ2
w = (

T∑
t=0

ãt)
2σ2

υ1
+ (

T∑
t=0

b̃t)
2σ2

υ2
, (9)

where ãt and b̃t denote the coefficients from Equation (8). The variance which is due to trades
is

σ2
x,w = (

T∑
t=0

b̃t)
2σ2

υ2
. (10)

The fraction σ2
x,w/σ2

w can be interpreted as the share of variance that is due to a shock in υ2,t,
which is private information (of informed traders) or liquidity needs (of liquidity traders). The
remaining variance is due to a shock in υ1,t, which is public information.

The estimated coefficients ãt and b̃t for Deutsche Telekom are presented in Table 12. We
compute a share of σ2

x,w/σ2
w = 41.09% in active markets as opposed to σ2

x,w/σ2
w = 4.54% in

low–intense markets.
This result shows that in active markets the role of shocks in υ2,t is more important than in

less active markets. This can be interpreted that there are more informed traders in markets with
low durations between trades.

8 Conclusion

This paper confirms the basic findings of DUFOUR/ENGLE (2000). Time between trades does
matter; low durations are perceived as evidence for the presence of new private information.
The effect of a trade in highly active markets is not only larger, but also persistent for a longer
period of subsequent trades.

Although impulse response functions provide interesting insights about the information con-
tent of time, its results rely on the assumption of exogenously given series of durations. DU-
FOUR/ENGLE (2000) use a stochastic process, we simply draw exemplary series of durations
from our data. These approaches do not include a potential inverse causality of prices and trade
signs on durations. As DUFOUR/ENGLE (2000, p. 2496) mention, a more complex model that
relates prices, trade signs and durations as endogenous variables could provide “more accurate”
(ibid) Impulse Response Functions.
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A Data

Stock Ticker N Price Spread Volume Duration
Adidas ADS 22,956 93.24 0.093 355.70 27.95
Allianz ALV 101,130 104.29 0.055 682.73 6.35
Altana ALT 24,925 47.12 0.054 546.77 25.75

BASF AG BAS 50,172 44.99 0.030 1,029.36 12.79
Bayer BAY 47,100 24.56 0.022 1,517.69 13.63
BMW BMW 45,892 35.88 0.026 1,168.25 13.99

Commerzbank CBK 30,422 16.01 0.018 2,224.97 21.11
Continental CON 21,630 31.40 0.038 796.88 29.67

DaimlerChrysler DCX 70,846 37.79 0.024 1,613.77 9.06
Deutsche Bank DBK 72,110 64.39 0.037 1,085.65 8.90
Deutsche Börse DB1 19,179 46.03 0.050 771.89 33.42

Deutsche Post DPW 26,690 17.54 0.021 1,947.95 24.05
Deutsche Telekom DTE 106,385 15.79 0.012 5,093.50 6.04

E.ON AG EOA 60,458 51.00 0.033 1,101.47 10.62
Fresenius M. C. FME 12,596 55.79 0.088 365.49 50.96

Henkel Vz. HEN3 14,410 63.85 0.084 406.39 44.46
Hypo Real Estate HRX 34,679 20.44 0.027 1,997.98 18.52

Infineon IFX 68,573 11.72 0.013 4,797.01 9.36
Linde LIN 19,425 43.98 0.054 567.25 32.96

Lufthansa LHA 28,099 14.40 0.018 2,208.79 22.84
MAN MAN 22,593 26.93 0.040 1,021.91 28.41
Metro MEO 26,215 34.85 0.041 874.59 24.47

Münchener Rück MUV2 70,932 96.68 0.061 592.03 9.05
RWE AG RWE 50,863 31.45 0.025 1,257.08 12.62
SAP AG SAP 62,821 136.05 0.094 514.39 10.22
Schering SCH 35,404 42.94 0.038 802.72 18.12
Siemens SIE 92,828 66.68 0.033 1,154.41 6.92

ThyssenKrupp TKA 27,415 16.77 0.024 1,782.51 23.39
TUI AG TUI1 25,880 18.87 0.030 1,494.57 24.80

Volkswagen VOW 54,461 41.81 0.030 1,003.62 11.79

Table 1: Overview: This table presents the number of transactions (N ) as well as the average prices, spreads,
volumes and durations in the period from January 2nd to January 30 2004. These are 21 trading days.
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B Day time dummy variables

From Until Dummy
09:00 a.m. 09:30 a.m. D1

09:30 a.m. 10:30 a.m. D2

10:30 a.m. 11:30 a.m. D3

11:30 a.m. 12:30 a.m. D4

12:30 a.m. 01:30 p.m. D5

01:30 p.m. 02:30 p.m. D6

02:30 p.m. 03:30 p.m. D7

03:30 p.m. 04:30 p.m. D8

04:30 p.m. 05:00 p.m. D9

05:00 p.m. 05:15 p.m. D10

05:15 p.m. 05:30 p.m. D11

Table 2: Definition Diurnal Variables: This table shows how the day is divided into 11 diurnal periods.
Note that the intervals are not equally large. The pattern of the intervals is taken similarly as in DU-
FOUR/ENGLE (2000, p. 2479f). Unlike NYSE, markets open at 9 a.m. and close at 5.30 p.m. We
compute interaction terms of these dummies with the trade sign. The corresponding coefficients are
denoted γx

i and γr
i .
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Stock D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Adidas 6% 13% 12% 10% 8% 8% 11% 14% 8% 4% 5%
Allianz 8% 14% 11% 10% 6% 7% 10% 17% 9% 4% 4%
Altana 5% 13% 13% 11% 9% 8% 11% 15% 8% 4% 4%
BASF AG 6% 12% 11% 11% 7% 8% 10% 17% 9% 4% 5%
Bayer 6% 12% 11% 10% 8% 8% 10% 17% 9% 5% 5%
BMW 7% 12% 11% 10% 7% 8% 10% 18% 8% 4% 4%
Commerzbank 7% 13% 12% 11% 7% 7% 10% 17% 8% 4% 5%
Continental 5% 12% 12% 11% 8% 9% 11% 16% 8% 4% 4%
DaimlerChrysler 7% 14% 11% 10% 7% 8% 10% 17% 8% 4% 5%
Deutsche Bank 8% 14% 10% 10% 7% 8% 11% 16% 8% 4% 5%
Deutsche Börse 6% 13% 12% 11% 8% 9% 11% 15% 7% 4% 4%
Deutsche Post 6% 12% 13% 10% 8% 8% 11% 16% 8% 4% 4%
Deutsche Telekom 8% 14% 12% 11% 8% 8% 10% 16% 7% 4% 4%
E.ON AG 6% 12% 11% 11% 8% 8% 10% 16% 8% 5% 5%
Fresenius M. C. 5% 12% 11% 8% 9% 10% 11% 17% 8% 4% 5%
Henkel Vz. 5% 9% 12% 11% 9% 9% 12% 16% 8% 4% 5%
Hypo Real Estate 7% 13% 13% 11% 7% 8% 11% 15% 7% 4% 5%
Infineon 11% 16% 12% 9% 6% 7% 10% 15% 7% 3% 4%
Linde 6% 13% 12% 11% 8% 9% 12% 15% 8% 3% 4%
Lufthansa 7% 13% 11% 10% 7% 8% 11% 16% 7% 4% 4%
MAN 5% 13% 13% 10% 9% 8% 11% 16% 8% 4% 4%
Metro 6% 12% 12% 11% 8% 8% 11% 15% 9% 4% 5%
Münchener Rück 6% 13% 12% 10% 8% 7% 10% 15% 8% 5% 5%
RWE AG 6% 13% 12% 10% 8% 8% 11% 15% 7% 4% 5%
SAP AG 6% 11% 11% 12% 8% 8% 10% 18% 8% 4% 4%
Schering 7% 12% 12% 11% 8% 7% 10% 15% 9% 4% 4%
Siemens 8% 13% 11% 10% 6% 7% 12% 17% 8% 4% 4%
ThyssenKrupp 7% 13% 13% 11% 8% 8% 10% 15% 7% 4% 4%
TUI AG 7% 13% 11% 11% 11% 8% 10% 15% 7% 3% 4%
Volkswagen 7% 13% 13% 10% 7% 8% 10% 16% 8% 5% 5%
Total 7% 13% 12% 10% 7% 8% 10% 16% 8% 4% 5%

Table 3: Trading intensity during the day: Since time is a central topic of this paper, day time patterns
need to be controlled for. This table presents the relative trading activities in a time–of–the–day period
compared to total transactions over the day. The exact day time periods that correspond to the dummy
variables are shown in Table 2. Note that not all dummies cover an interval of the same size.

22



C Estimation and Results

Price Revision Trade
Stock Wald Test p-value Wald Test p-value
Adidas 70.2484 0.0310 56.3747 0.2488
Allianz 47.9925 0.5543 91.1163 0.0003
Altana 59.0124 0.1793 69.3895 0.0361
BASF AG 54.5953 0.3042 85.3669 0.0014
Bayer 56.0716 0.2578 50.9238 0.4371
BMW 42.1372 0.7776 64.7178 0.0788
Commerzbank 47.1415 0.5888 82.2136 0.0028
Continental 35.2298 0.9436 48.8375 0.5201
DaimlerChrysler 50.1338 0.4681 55.6443 0.2707
Deutsche Bank 46.3266 0.6216 68.7886 0.0401
Deutsche Börse 51.4241 0.4178 42.6140 0.7614
Deutsche Post 79.6191 0.0049 69.1929 0.0374
Deutsche Telekom 50.1961 0.4656 125.9699 0.0000
E.ON AG 64.9501 0.0760 36.1176 0.9298
Fresenius M. C. 51.3038 0.4224 56.4084 0.2478
Henkel Vz. 79.6655 0.0048 69.3509 0.0363
Hypo Real Estate 52.2401 0.3870 49.1521 0.5074
Infineon 43.1892 0.7412 64.5770 0.0806
Linde 55.2772 0.2822 62.4132 0.1118
Lufthansa 31.1798 0.9830 74.5430 0.0138
MAN 73.4904 0.0169 66.7004 0.0572
Metro 67.8816 0.0469 58.2126 0.1988
Münchener Rück 79.6673 0.0048 52.8015 0.3664
RWE AG 50.9237 0.4371 45.8985 0.6386
SAP AG 45.7926 0.6428 82.6177 0.0025
Schering 66.8149 0.0561 59.1857 0.1753
Siemens 61.3722 0.1300 76.1588 0.0100
ThyssenKrupp 43.1076 0.7442 45.1705 0.6672
TUI AG 46.3681 0.6199 37.9940 0.8934
Volkswagen 46.3520 0.6206 62.4759 0.1108

Table 4: Wald test lagged dummy variables: Initially, the estimated equation contains 10 day
time dummy variables with 5 lags each. We use (see Equation (5)): rt =

∑5
i=1 airt−i +∑10

j=1

∑5
i=0 γr

i,jDt−i,jx
0
t−i +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t as the Price Revision equation and
xt =

∑5
i=1 cirt−i +

∑10
j=1

∑5
i=1 γx

i,jDt−i,jx
0
t−i +

∑5
i=1 (γx

i + δx
i ln(Tt−i))x0

t−i + υ2,t as the Trade
equation.
We perform a Wald–test with the null hypothesis that all lagged diurnal parameters γr

1...5,j and γx
1...5,j

are jointly equal to zero. The Wald–statistics and the p–values (computed with standard errors on the
basis of WHITE’s (1980) heteroskedasticity–robust variance matrix) are reported in this table. For the
Price Revision equation the null is rejected for 6 out of 30 stocks on a 5% significance level, for the
Trade equation, it is rejected for 11 stocks.
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Stock γr
0,1 γr

0,2 γr
0,3 γr

0,4 γr
0,5 γr

0,6 γr
0,7 γr

0,8 γr
0,9 γr

0,10

Adidas 0.0093 0.0027 -0.0002 0.0018 0.0026 0.0014 0.0020 0.0014 0.0003 0.0016
0.0043 0.3173 0.9492 0.5054 0.3439 0.6116 0.4467 0.6055 0.9161 0.5748

Allianz 0.0001 0.0003 -0.0003 -0.0006 -0.0009 -0.0010 -0.0001 0.0001 -0.0003 -0.0001
0.9073 0.7117 0.6773 0.4528 0.2879 0.2461 0.8597 0.9339 0.7143 0.9028

Altana 0.0057 0.0009 -0.0014 -0.0040 -0.0043 -0.0034 -0.0030 -0.0041 -0.0036 -0.0017
0.1681 0.7874 0.6917 0.2504 0.2196 0.3307 0.3828 0.2284 0.3001 0.6273

BASF AG 0.0030 0.0024 0.0013 0.0008 0.0007 0.0016 0.0019 0.0015 0.0011 0.0001
0.0173 0.0286 0.2338 0.4685 0.5054 0.1555 0.0827 0.1710 0.2976 0.9286

Bayer 0.0049 0.0020 0.0012 0.0006 0.0003 -0.0001 0.0010 0.0012 0.0004 -0.0004
0.0011 0.1169 0.3655 0.6525 0.8197 0.9276 0.4504 0.3407 0.7499 0.7910

BMW 0.0055 0.0034 0.0022 0.0021 0.0025 0.0033 0.0033 0.0028 0.0026 0.0025
0.0049 0.0621 0.2284 0.2452 0.1675 0.0756 0.0705 0.1177 0.1542 0.1801

Commerzbank 0.0031 0.0041 -0.0001 0.0008 -0.0005 0.0012 0.0017 0.0020 0.0022 0.0008
0.2477 0.0924 0.9691 0.7286 0.8328 0.6270 0.4910 0.4189 0.3742 0.7552

Continental 0.0175 0.0098 0.0060 0.0077 0.0095 0.0084 0.0069 0.0069 0.0080 0.0069
0.0000 0.0041 0.0723 0.0212 0.0058 0.0121 0.0372 0.0363 0.0182 0.0578

DaimlerChrysler 0.0029 0.0013 0.0014 0.0004 0.0010 0.0014 0.0014 0.0024 0.0016 -0.0001
0.0111 0.2176 0.2051 0.6942 0.3797 0.2178 0.1874 0.0271 0.1552 0.9309

Deutsche Bank 0.0037 0.0028 0.0022 0.0022 0.0015 0.0025 0.0022 0.0031 0.0026 0.0019
0.0021 0.0118 0.0539 0.0477 0.1746 0.0250 0.0521 0.0057 0.0244 0.1001

Deutsche Börse 0.0081 0.0040 0.0010 0.0026 0.0037 0.0000 0.0027 0.0004 0.0018 0.0025
0.1363 0.4286 0.8405 0.6108 0.4638 0.9934 0.5886 0.9332 0.7213 0.6391

Deutsche Post 0.0094 0.0029 0.0021 0.0006 -0.0001 0.0009 0.0032 0.0025 0.0015 0.0031
0.0029 0.3037 0.4422 0.8421 0.9720 0.7414 0.2520 0.3556 0.5877 0.2934

Deutsche Telekom 0.0014 0.0006 0.0001 0.0002 0.0004 0.0005 0.0007 0.0011 0.0008 0.0000
0.0607 0.3982 0.9104 0.7382 0.6185 0.5232 0.3007 0.1234 0.2942 0.9654

E.ON AG 0.0028 0.0013 0.0007 -0.0001 -0.0002 0.0009 0.0014 0.0008 0.0009 0.0000
0.0186 0.1918 0.4661 0.8919 0.8517 0.3681 0.1862 0.4132 0.4052 0.9999

Fresenius M. C. 0.0213 0.0098 0.0065 0.0095 0.0072 0.0088 0.0078 0.0087 0.0065 0.0092
0.0021 0.0364 0.1502 0.0386 0.1117 0.0512 0.0844 0.0490 0.1575 0.0540

Henkel Vz. 0.0235 0.0077 0.0060 0.0032 0.0010 -0.0001 0.0020 0.0021 0.0020 -0.0004
0.0000 0.0163 0.0478 0.2959 0.7431 0.9672 0.5124 0.4688 0.5186 0.9000

Hypo Real Estate 0.0092 0.0092 0.0079 0.0068 0.0061 0.0071 0.0076 0.0090 0.0086 0.0098
0.0015 0.0004 0.0021 0.0082 0.0201 0.0060 0.0031 0.0005 0.0011 0.0010

Infineon 0.0006 0.0001 0.0002 -0.0001 -0.0013 0.0001 0.0000 0.0013 -0.0001 -0.0002
0.8148 0.9680 0.9310 0.9670 0.6173 0.9807 0.9849 0.6175 0.9793 0.9464

Linde 0.0041 0.0006 -0.0028 -0.0050 -0.0042 -0.0024 -0.0019 -0.0036 -0.0007 -0.0003
0.3440 0.8597 0.4354 0.1622 0.2419 0.5088 0.6051 0.3147 0.8447 0.9450

Lufthansa -0.0024 -0.0037 -0.0037 -0.0056 -0.0056 -0.0033 -0.0049 -0.0044 -0.0039 -0.0034
0.4263 0.1599 0.1638 0.0335 0.0443 0.2202 0.0646 0.0921 0.1553 0.2462

MAN 0.0137 0.0041 -0.0003 0.0002 -0.0023 0.0006 -0.0002 0.0005 0.0025 0.0036
0.0014 0.2109 0.9273 0.9496 0.4780 0.8533 0.9593 0.8680 0.4528 0.3118

Metro -0.0017 -0.0036 -0.0049 -0.0062 -0.0066 -0.0057 -0.0033 -0.0046 -0.0046 -0.0080
0.6827 0.2824 0.1342 0.0604 0.0459 0.0871 0.3133 0.1606 0.1673 0.0203

Münchener Rück 0.0015 0.0001 -0.0007 -0.0008 -0.0003 -0.0010 -0.0006 -0.0001 -0.0001 -0.0004
0.1600 0.9445 0.4994 0.4434 0.7744 0.3052 0.5552 0.8919 0.9122 0.7002

RWE AG 0.0008 -0.0008 -0.0014 -0.0013 -0.0004 -0.0015 -0.0005 0.0011 0.0011 0.0006
0.5969 0.5742 0.2962 0.3211 0.7811 0.2550 0.7065 0.4233 0.4384 0.7051

SAP AG 0.0047 0.0021 0.0016 0.0020 0.0013 0.0013 0.0017 0.0009 0.0007 0.0011
0.0044 0.1755 0.3148 0.2168 0.3958 0.3970 0.2754 0.5801 0.6600 0.5071

Schering 0.0052 0.0010 0.0024 0.0006 0.0003 -0.0004 0.0004 0.0003 0.0003 0.0002
0.0653 0.7097 0.3653 0.8098 0.9197 0.8870 0.8921 0.8955 0.9090 0.9467

Siemens 0.0018 0.0019 0.0020 0.0013 0.0008 0.0020 0.0016 0.0017 0.0021 0.0024
0.0795 0.0610 0.0481 0.2179 0.4120 0.0481 0.1252 0.0971 0.0410 0.0239

ThyssenKrupp 0.0084 0.0045 0.0026 0.0044 0.0034 0.0032 0.0031 0.0031 0.0028 0.0046
0.0533 0.2746 0.5150 0.2835 0.4088 0.4350 0.4448 0.4403 0.4948 0.2878

TUI AG 0.0044 0.0036 0.0022 0.0069 0.0067 0.0069 0.0023 0.0056 0.0017 -0.0005
0.2592 0.2638 0.5007 0.0347 0.0481 0.0396 0.4729 0.0833 0.6093 0.8873

Volkswagen 0.0024 0.0006 0.0003 0.0001 -0.0008 0.0003 0.0007 0.0008 -0.0004 -0.0007
0.1382 0.6876 0.8314 0.9499 0.5746 0.8508 0.6439 0.5987 0.7592 0.6160

Table 5: Contemporaneous day time interaction terms in the Price Revision equation: We
use OLS to estimate the Price Revision equation from Equation (6) with all contemporaneous day time
dummy variables rt =

∑5
i=1 airt−i +

∑10
j=1 γr

0,jDt,jx
0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t. The
table reports the coefficients for day time effects only. The p–values (in italics below each coefficient)
are computed with heteroskedasticity–robust standard errors. Only the dummy for the opening period
γr
0,1 exhibits a substantial number (14) of significant estimates on a 5 % level. The opening period of

NYSE (γr
0,8) is only significantly different from zero for 5 stocks.
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Stock γx
1,1 γx

1,2 γx
1,3 γx

1,4 γx
1,5 γx

1,6 γx
1,7 γx

1,8 γx
1,9 γx

1,10

Adidas 0.0344 -0.0030 0.0141 -0.0150 -0.0163 0.0000 0.0067 0.0045 0.0424 0.0376
0.3948 0.9327 0.6980 0.6867 0.6772 0.9990 0.8549 0.9003 0.2744 0.3914

Allianz 0.0262 0.0048 0.0151 0.0209 0.0205 0.0777 0.0263 0.0258 0.0261 -0.0113
0.1771 0.7881 0.4106 0.2662 0.3059 0.0001 0.1604 0.1413 0.1670 0.5976

Altana 0.0766 0.0583 0.0434 0.0377 0.0686 0.0723 0.0758 0.0839 0.0682 -0.0095
0.0751 0.1141 0.2366 0.3073 0.0703 0.0607 0.0420 0.0192 0.0797 0.8327

BASF AG -0.0044 0.0176 0.0153 0.0166 0.0324 0.0647 -0.0027 0.0077 0.0340 -0.0260
0.8748 0.4628 0.5282 0.4971 0.2098 0.0115 0.9125 0.7403 0.1766 0.3634

Bayer 0.0084 0.0223 0.0052 0.0033 -0.0210 -0.0214 0.0205 0.0209 0.0048 0.0139
0.7577 0.3516 0.8301 0.8945 0.4156 0.4047 0.4080 0.3626 0.8493 0.6276

BMW 0.0469 0.0507 0.0487 0.0371 0.0433 0.0645 0.0552 0.0495 0.0254 0.0152
0.1236 0.0693 0.0844 0.1923 0.1477 0.0291 0.0527 0.0663 0.3874 0.6477

Commerzbank 0.0026 -0.0389 -0.0229 -0.0297 -0.0054 0.0072 0.0196 0.0328 0.0342 -0.0119
0.9385 0.2139 0.4677 0.3524 0.8745 0.8352 0.5382 0.2758 0.3056 0.7589

Continental 0.0800 0.0726 0.0126 0.0640 0.0263 0.0497 0.0418 0.0739 0.0510 0.0855
0.0683 0.0609 0.7469 0.1023 0.5187 0.2178 0.2866 0.0507 0.2169 0.0704

DaimlerChrysler 0.0158 0.0121 -0.0160 0.0287 0.0179 0.0212 0.0098 0.0022 -0.0022 0.0343
0.4797 0.5557 0.4518 0.1816 0.4361 0.3370 0.6497 0.9121 0.9199 0.1668

Deutsche Bank 0.0350 0.0423 0.0112 0.0417 0.0496 0.0304 0.0364 0.0255 0.0404 0.0207
0.1166 0.0384 0.5990 0.0524 0.0305 0.1697 0.0845 0.2061 0.0648 0.4017

Deutsche Börse -0.0512 -0.0275 -0.0409 -0.0386 -0.0333 -0.0080 -0.0210 -0.0504 -0.0222 -0.0874
0.2615 0.5082 0.3378 0.3680 0.4557 0.8579 0.6201 0.2292 0.6246 0.0931

Deutsche Post -0.0598 -0.0215 -0.0025 -0.0187 0.0485 0.0119 0.0185 0.0413 0.0200 0.0301
0.1282 0.5383 0.9413 0.5988 0.1839 0.7465 0.5966 0.2186 0.5877 0.4727

Deutsche Telekom -0.0109 0.0041 0.0008 -0.0075 0.0357 0.0476 0.0245 0.0376 0.0525 0.0388
0.5658 0.8149 0.9626 0.6810 0.0596 0.0122 0.1760 0.0300 0.0056 0.0679

E.ON AG 0.0222 0.0100 -0.0053 0.0157 0.0153 0.0186 0.0116 0.0170 0.0106 0.0180
0.3769 0.6495 0.8101 0.4790 0.5150 0.4303 0.6056 0.4232 0.6456 0.4766

Fresenius M. C. 0.0686 -0.0104 0.0068 0.0661 -0.0456 0.0656 -0.0014 0.0185 -0.0079 -0.0078
0.2315 0.8283 0.8877 0.1894 0.3645 0.1848 0.9764 0.6861 0.8758 0.8952

Henkel Vz. 0.1312 0.0122 0.0033 -0.0255 -0.0094 -0.0262 0.0223 0.0192 -0.0089 0.0047
0.0149 0.7950 0.9404 0.5760 0.8420 0.5774 0.6191 0.6571 0.8503 0.9317

Hypo Real Estate -0.0158 -0.0036 0.0154 -0.0193 -0.0220 0.0024 -0.0066 0.0123 -0.0220 -0.0248
0.6185 0.8986 0.5850 0.5060 0.4846 0.9365 0.8181 0.6571 0.4768 0.4995

Infineon 0.0263 0.0229 0.0254 0.0188 0.0357 0.0442 0.0375 0.0586 0.0653 0.0060
0.2605 0.3167 0.2792 0.4404 0.1768 0.0802 0.1192 0.0095 0.0091 0.8333

Linde -0.0645 -0.0153 -0.0181 -0.0208 0.0127 -0.0155 -0.0638 0.0359 -0.0409 0.0167
0.1549 0.6953 0.6475 0.6053 0.7622 0.7076 0.1083 0.3466 0.3275 0.7394

Lufthansa 0.0887 -0.0247 -0.0104 -0.0145 0.0145 0.0017 0.0157 0.0325 -0.0042 -0.0363
0.0126 0.4496 0.7550 0.6672 0.6838 0.9617 0.6403 0.3105 0.9064 0.3637

MAN 0.0423 0.0325 0.0079 -0.0253 -0.0023 0.0405 -0.0060 -0.0218 0.0114 -0.0550
0.3344 0.3906 0.8356 0.5160 0.9541 0.3125 0.8769 0.5562 0.7771 0.2373

Metro 0.0467 -0.0152 -0.0337 -0.0177 0.0082 0.0069 -0.0291 -0.0319 -0.0558 -0.0234
0.2153 0.6477 0.3075 0.5943 0.8166 0.8435 0.3828 0.3219 0.1069 0.5622

Münchener Rück -0.0142 -0.0012 -0.0446 -0.0330 -0.0166 0.0118 -0.0143 -0.0034 -0.0158 -0.0002
0.5449 0.9526 0.0316 0.1200 0.4594 0.6030 0.4996 0.8671 0.4688 0.9949

RWE AG 0.0373 0.0246 0.0339 0.0224 0.0121 0.0160 0.0129 0.0078 0.0193 0.0118
0.1551 0.2829 0.1431 0.3410 0.6254 0.5160 0.5809 0.7296 0.4392 0.6726

SAP AG 0.0572 0.0627 0.0289 0.0748 0.0291 0.0385 0.0310 0.0815 0.0350 0.0184
0.0315 0.0096 0.2339 0.0018 0.2531 0.1296 0.2061 0.0004 0.1630 0.5110

Schering 0.0342 0.0135 -0.0349 -0.0066 -0.0021 -0.0023 0.0178 0.0285 0.0225 0.0027
0.2980 0.6575 0.2552 0.8320 0.9477 0.9440 0.5729 0.3416 0.4803 0.9414

Siemens 0.0445 0.0393 0.0194 0.0171 0.0553 0.0587 0.0462 0.0315 0.0284 -0.0135
0.0301 0.0412 0.3209 0.3923 0.0098 0.0044 0.0178 0.0938 0.1634 0.5521

ThyssenKrupp -0.0193 0.0074 0.0327 0.0245 0.0104 -0.0114 0.0270 0.0122 0.0108 -0.0111
0.6045 0.8320 0.3509 0.4900 0.7828 0.7603 0.4562 0.7234 0.7770 0.7932

TUI AG 0.0216 -0.0028 0.0179 0.0249 0.0113 0.0342 0.0116 0.0130 -0.0118 0.0165
0.5710 0.9343 0.6083 0.4760 0.7474 0.3450 0.7427 0.6982 0.7511 0.7091

Volkswagen 0.0062 0.0012 -0.0081 -0.0008 -0.0105 0.0031 0.0014 -0.0006 -0.0099 0.0312
0.8134 0.9598 0.7300 0.9735 0.6784 0.9019 0.9532 0.9786 0.6911 0.2552

Table 6: Contemporaneous day time interaction terms in the Trade equation: We use OLS
to estimate the Trade equation from Equation (6) with the first lag of all day time dummy variables,
xt =

∑5
i=1 cirt−i +

∑10
j=1 γx

1,jDt−1,jx
0
t−1 +

∑5
i=1 (γx

i + δx
i ln(Tt−i))x0

t−i + υ2,t. The table reports
the coefficients for day time effects only. The p–values (in italics below each coefficient) are computed
with heteroskedasticity–robust standard errors. Most coefficients are insignificant on a 5% level.
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Price Revision Trade
Stock Wald Test p-value Wald Test p-value
Adidas 17.2292 0.0452 6.2962 0.7099
Allianz 37.3304 0.0000 36.8205 0.0000
Altana 34.2744 0.0001 14.4432 0.1074
BASF AG 26.0779 0.0020 20.8880 0.0132
Bayer 17.2659 0.0447 10.9452 0.2795
BMW 13.6888 0.1338 9.5051 0.3920
Commerzbank 26.7562 0.0015 23.0435 0.0061
Continental 18.4637 0.0302 12.7724 0.1732
DaimlerChrysler 50.7310 0.0000 13.7373 0.1320
Deutsche Bank 31.9892 0.0002 11.8318 0.2230
Deutsche Börse 25.3999 0.0026 6.0272 0.7372
Deutsche Post 18.4198 0.0306 15.8949 0.0691
Deutsche Telekom 23.6775 0.0048 47.7283 0.0000
E.ON AG 33.8642 0.0001 3.5308 0.9395
Fresenius M. C. 8.8824 0.4482 13.2114 0.1533
Henkel Vz. 43.4271 0.0000 4.4695 0.8779
Hypo Real Estate 25.4031 0.0026 6.8698 0.6507
Infineon 15.3176 0.0826 23.0095 0.0062
Linde 25.0708 0.0029 17.9243 0.0361
Lufthansa 9.8988 0.3587 12.1657 0.2041
MAN 24.6272 0.0034 13.8360 0.1283
Metro 21.6201 0.0102 8.5977 0.4752
Münchener Rück 13.8645 0.1272 19.7143 0.0198
RWE AG 53.8831 0.0000 4.3081 0.8900
SAP AG 20.6212 0.0144 37.0310 0.0000
Schering 15.7301 0.0727 13.5189 0.1405
Siemens 41.2459 0.0000 28.5854 0.0008
ThyssenKrupp 5.6689 0.7725 4.9669 0.8372
TUI AG 37.6680 0.0000 3.9846 0.9124
Volkswagen 18.8323 0.0267 4.3858 0.8842

Table 7: Wald test contemporaneous dummy variables: Equation (6) contains all contempora-
neous (for the Trade equation: first lag) interaction terms of day time effects. We consider rt =∑5

i=1 airt−i +
∑10

j=1 γr
0,jDt,jx

0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t as the Price Revision equa-
tion and xt =

∑5
i=1 cirt−i +

∑10
j=1 γx

1,jDt−1,jx
0
t−1 +

∑5
i=1 (γx

i + δx
i ln(Tt−i))x0

t−i +υ2,t as the Trade
equation.
We perform a Wald–test with the null hypothesis that all diurnal variables besides the interaction term
for the opening period γr

1 and γx
1 are jointly equal to zero. The Wald–statistics and the p–values (com-

puted with standard errors on the basis of WHITE’s (1980) heteroskedasticity–robust variance matrix)
are reported in this table. For the Price Revision equation the null is rejected for 22 out of 30 stocks on
a 5% significance level; for the Trade equation, it is rejected for 9 stocks.
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Stock rt−1 rt−2 rt−3 rt−4 rt−5 xt xt−1 xt−2 xt−3 xt−4 xt−5

Adidas -0.0150 0.0440 0.0009 0.0450 0.0299 0.0076 0.0022 -0.0005 0.0011 -0.0005 -0.0013
0.2863 0.0013 0.9401 0.0006 0.0353 0.0000 0.0007 0.4443 0.0760 0.4133 0.0411

Allianz -0.0432 -0.0017 0.0062 0.0126 0.0216 0.0031 0.0012 0.0002 0.0002 0.0000 -0.0004
0.0000 0.8479 0.3855 0.0334 0.0000 0.0000 0.0000 0.1313 0.1822 0.7869 0.0061

Altana -0.0713 0.0018 0.0123 0.0229 -0.0196 0.0094 0.0023 0.0002 0.0001 -0.0005 -0.0004
0.0000 0.8957 0.3112 0.0338 0.1760 0.0000 0.0010 0.8198 0.8724 0.5316 0.5310

BASF AG -0.0273 0.0252 0.0152 0.0098 0.0060 0.0063 0.0013 0.0003 0.0002 -0.0003 0.0000
0.0002 0.0006 0.0196 0.1347 0.3595 0.0000 0.0000 0.2013 0.4019 0.2733 0.9462

Bayer -0.0333 0.0073 0.0057 0.0093 0.0110 0.0075 0.0016 0.0005 0.0003 -0.0002 -0.0003
0.0000 0.3181 0.3928 0.2786 0.1169 0.0000 0.0000 0.1131 0.4299 0.5898 0.3553

BMW -0.0449 0.0110 0.0087 -0.0033 -0.0055 0.0055 0.0017 0.0002 -0.0004 0.0000 0.0005
0.0001 0.2311 0.3514 0.7728 0.4615 0.0000 0.0000 0.4880 0.2420 0.9628 0.1359

Commerzbank -0.0535 -0.0155 0.0004 0.0044 -0.0126 0.0096 0.0029 -0.0002 0.0001 0.0005 0.0002
0.0000 0.0557 0.9594 0.5677 0.1283 0.0000 0.0000 0.7007 0.8265 0.4065 0.7403

Continental -0.0611 -0.0209 0.0197 0.0025 -0.0118 0.0093 0.0016 0.0014 -0.0010 -0.0011 0.0006
0.0000 0.2191 0.1780 0.8412 0.3026 0.0000 0.0574 0.0811 0.2324 0.1287 0.4641

DaimlerChrysler -0.0389 0.0061 0.0050 0.0045 0.0103 0.0044 0.0016 0.0003 0.0004 0.0002 -0.0003
0.0000 0.3122 0.3218 0.4221 0.1406 0.0000 0.0000 0.1292 0.0433 0.4324 0.1860

Deutsche Bank -0.0359 -0.0179 0.0072 0.0054 0.0131 0.0041 0.0012 0.0008 0.0004 0.0003 0.0000
0.0057 0.0846 0.2015 0.2823 0.1983 0.0000 0.0000 0.0000 0.0442 0.0915 0.8965

Deutsche Börse 0.0176 0.0066 0.0155 0.0023 0.0066 0.0075 0.0000 -0.0002 -0.0017 0.0011 -0.0001
0.2473 0.5091 0.0804 0.8163 0.4767 0.0000 0.9993 0.7684 0.0274 0.2235 0.8780

Deutsche Post -0.0492 -0.0157 0.0031 -0.0062 0.0087 0.0072 0.0021 0.0017 -0.0006 0.0003 -0.0008
0.0000 0.1420 0.7094 0.5289 0.2727 0.0000 0.0022 0.0081 0.3176 0.6923 0.1952

Deutsche Telekom -0.1469 -0.0681 -0.0315 -0.0159 -0.0041 0.0035 0.0018 0.0013 0.0006 0.0005 0.0004
0.0000 0.0000 0.0000 0.0001 0.2625 0.0000 0.0000 0.0000 0.0000 0.0004 0.0032

E.ON AG -0.0441 0.0084 0.0371 -0.0045 -0.0174 0.0048 0.0016 0.0010 -0.0002 0.0000 0.0000
0.0001 0.3836 0.0020 0.7665 0.0726 0.0000 0.0000 0.0000 0.4477 0.9089 0.9107

Fresenius M. C. -0.0444 0.0165 0.0165 -0.0199 -0.0160 0.0113 0.0025 0.0005 -0.0003 0.0003 -0.0018
0.0796 0.4138 0.3375 0.3138 0.3295 0.0000 0.0563 0.6659 0.8445 0.7962 0.1277

Henkel Vz. -0.0215 0.0299 -0.0095 0.0180 0.0157 0.0077 0.0025 0.0000 -0.0014 -0.0005 -0.0012
0.1923 0.0786 0.5138 0.1902 0.3603 0.0000 0.0009 0.9517 0.0726 0.5554 0.1369

Hypo Real Estate -0.0714 0.0003 0.0199 0.0184 0.0175 0.0089 0.0026 0.0019 0.0006 0.0009 0.0000
0.0000 0.9744 0.0702 0.0394 0.0312 0.0000 0.0000 0.0036 0.3033 0.1562 0.9993

Infineon -0.0652 -0.0252 -0.0109 -0.0056 -0.0011 0.0057 0.0026 0.0005 0.0004 0.0008 -0.0001
0.0000 0.0000 0.0207 0.1630 0.7763 0.0000 0.0000 0.2157 0.2778 0.0520 0.6728

Linde -0.0136 0.0166 0.0166 -0.0108 0.0147 0.0100 0.0026 0.0009 -0.0001 -0.0003 -0.0001
0.2464 0.2529 0.0919 0.4544 0.2774 0.0000 0.0010 0.2168 0.8729 0.6993 0.8996

Lufthansa -0.0542 -0.0097 0.0198 0.0097 -0.0113 0.0085 0.0018 0.0008 0.0008 -0.0015 0.0006
0.0000 0.3469 0.0466 0.2907 0.1765 0.0000 0.0144 0.2499 0.2284 0.0311 0.3756

MAN -0.0540 0.0268 0.0220 0.0222 0.0030 0.0103 0.0014 -0.0002 0.0001 -0.0002 0.0006
0.0001 0.0231 0.0564 0.0602 0.7573 0.0000 0.0893 0.8031 0.9177 0.8435 0.4292

Metro -0.0291 0.0173 0.0178 0.0039 -0.0101 0.0104 0.0007 0.0000 0.0005 -0.0002 0.0000
0.3256 0.2818 0.2423 0.7674 0.3355 0.0000 0.3580 0.9946 0.5665 0.8153 0.9643

Münchener Rück -0.0341 0.0203 0.0088 0.0057 0.0100 0.0042 0.0013 0.0004 0.0000 0.0001 0.0001
0.0000 0.0003 0.1563 0.5342 0.1811 0.0000 0.0000 0.0343 0.9594 0.7017 0.6069

RWE AG -0.0281 0.0068 0.0135 0.0049 -0.0032 0.0054 0.0012 0.0002 -0.0004 0.0000 0.0003
0.0244 0.3707 0.0322 0.5184 0.7502 0.0000 0.0000 0.4249 0.1727 0.8879 0.3186

SAP AG -0.0451 -0.0053 0.0065 0.0252 0.0110 0.0049 0.0017 0.0006 0.0003 0.0001 -0.0001
0.0000 0.6694 0.2860 0.0086 0.1449 0.0000 0.0000 0.0249 0.2053 0.7072 0.5485

Schering -0.0414 0.0092 0.0057 0.0109 0.0029 0.0068 0.0023 0.0000 -0.0003 -0.0009 -0.0001
0.0009 0.3223 0.6582 0.3060 0.7564 0.0000 0.0000 0.9496 0.4499 0.0790 0.8772

Siemens -0.0337 0.0012 0.0115 0.0128 0.0053 0.0038 0.0011 0.0006 0.0005 0.0000 0.0000
0.0000 0.7464 0.0067 0.0143 0.1390 0.0000 0.0000 0.0001 0.0006 0.8731 0.8321

ThyssenKrupp -0.0786 -0.0159 0.0079 -0.0063 -0.0006 0.0090 0.0021 0.0007 -0.0008 -0.0012 0.0001
0.0000 0.0699 0.3498 0.3768 0.9433 0.0000 0.0032 0.3054 0.2626 0.1495 0.9165

TUI AG -0.0637 0.0127 0.0181 0.0187 0.0044 0.0111 0.0039 0.0007 0.0005 -0.0013 -0.0012
0.0000 0.2720 0.0481 0.0350 0.6945 0.0000 0.0000 0.4528 0.6091 0.1638 0.1826

Volkswagen -0.0442 0.0092 0.0193 0.0157 0.0076 0.0049 0.0013 0.0002 -0.0005 -0.0002 0.0001
0.0000 0.1739 0.0175 0.0788 0.2101 0.0000 0.0000 0.4181 0.0679 0.5460 0.7530

Table 8: Lagged Returns and Trade Signs in the Price Revision Equation: We use OLS to
estimate the Price Revision equation from Equation (7) which is rt =

∑5
i=1 airt−i + γr

0,1Dt,1x
0
t +∑5

i=0 (γr
i + δr

i ln(Tt−i))x0
t−i + υ1,t. The results are split on this table and on Table 10: The present

table reports the coefficients for the HASBROUCK (1991)–style variables (see Equation (1)), such as
returns and trade signs. Table 10 reports the time–related coefficients. The p–values (in italics below
each coefficient) are computed with heteroskedasticity–robust standard errors. Returns show significant
(on a 5% level) negative autocorrelation in the first lag in 24 cases. Higher–order autocorrelation is not
significant in most cases. For 30 (25) stocks, there is a positive effect from the contemporaneous (the
first–lag) Trade–sign.
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Stock rt−1 rt−2 rt−3 rt−4 rt−5 xt−1 xt−2 xt−3 xt−4 xt−5

Adidas -5.0747 0.7097 0.8238 0.5340 0.5180 0.1649 0.0659 0.0566 0.0333 0.0320
0.0000 0.0000 0.0000 0.0005 0.0012 0.0000 0.0000 0.0000 0.0140 0.0162

Allianz -9.5531 0.6399 1.0733 0.8291 1.1354 0.1744 0.1106 0.0874 0.0727 0.0618
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Altana -4.6670 -0.0621 0.4900 0.3680 0.4309 0.1541 0.0879 0.0338 0.0549 0.0444
0.0000 0.6376 0.0013 0.0050 0.0005 0.0000 0.0000 0.0087 0.0000 0.0004

BASF AG -8.8328 1.1124 1.3182 0.8013 0.5327 0.2170 0.1113 0.0780 0.0684 0.0416
0.0000 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000

Bayer -6.9518 0.7247 0.5056 0.3167 0.3227 0.2174 0.0875 0.0661 0.0501 0.0344
0.0000 0.0000 0.0001 0.0171 0.0116 0.0000 0.0000 0.0000 0.0000 0.0001

BMW -7.6903 0.4686 0.6708 0.6687 0.6273 0.2023 0.1126 0.0844 0.0737 0.0273
0.0000 0.0089 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018

Commerzbank -4.9819 -0.1554 0.2021 0.4385 0.2219 0.2144 0.1145 0.0670 0.0574 0.0501
0.0000 0.1879 0.0857 0.0001 0.0533 0.0000 0.0000 0.0000 0.0000 0.0000

Continental -5.2392 0.2951 0.5232 0.4899 0.5048 0.1966 0.0826 0.0692 0.0548 0.0225
0.0000 0.0268 0.0002 0.0005 0.0001 0.0000 0.0000 0.0000 0.0001 0.0919

DaimlerChrysler -8.8614 0.6366 1.1747 0.9776 0.7983 0.2245 0.1314 0.0859 0.0737 0.0502
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Deutsche Bank -8.4613 0.8948 0.9986 1.1490 0.4262 0.1812 0.0979 0.0777 0.0554 0.0605
0.0000 0.0000 0.0000 0.0000 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000

Deutsche Börse -3.5674 0.6442 0.3097 0.6308 0.3455 0.2188 0.1214 0.0713 0.0721 0.0480
0.0002 0.0180 0.1052 0.0000 0.1081 0.0000 0.0000 0.0000 0.0000 0.0010

Deutsche Post -5.0396 0.1995 0.6157 0.3274 0.3154 0.2297 0.1064 0.0650 0.0565 0.0403
0.0000 0.1408 0.0000 0.0126 0.0162 0.0000 0.0000 0.0000 0.0000 0.0012

Deutsche Telekom -11.1518 -2.1501 -0.6517 0.0277 0.5666 0.2358 0.1417 0.0920 0.0761 0.0667
0.0000 0.0000 0.0000 0.8311 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

E.ON AG -9.1133 1.3437 1.3704 1.1306 0.6262 0.2172 0.1083 0.0810 0.0640 0.0675
0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000

Fresenius M. C. -3.7268 0.6759 0.2176 0.3941 0.4179 0.2102 0.0547 0.0496 0.0527 0.0232
0.0000 0.0000 0.1424 0.0076 0.0048 0.0000 0.0026 0.0063 0.0039 0.1922

Henkel Vz. -4.6738 1.4635 0.3207 0.7630 0.3334 0.2106 0.0752 0.0700 0.0417 0.0441
0.0000 0.0000 0.1053 0.0001 0.0856 0.0000 0.0000 0.0000 0.0140 0.0076

Hypo Real Estate -4.0956 0.0751 0.3368 0.2107 0.1013 0.2019 0.0691 0.0698 0.0302 0.0309
0.0000 0.5026 0.0010 0.0463 0.3219 0.0000 0.0000 0.0000 0.0035 0.0023

Infineon -5.1358 -0.5882 0.0317 0.1915 0.1517 0.2369 0.1103 0.0791 0.0623 0.0735
0.0000 0.0007 0.6893 0.0035 0.0207 0.0000 0.0000 0.0000 0.0000 0.0000

Linde -4.4776 0.9921 0.6354 0.4303 0.1375 0.1942 0.1008 0.0683 0.0501 0.0561
0.0000 0.0000 0.0003 0.0026 0.3136 0.0000 0.0000 0.0000 0.0004 0.0001

Lufthansa -4.8510 0.1937 0.3560 0.4647 0.3412 0.2296 0.1235 0.0867 0.0411 0.0465
0.0000 0.0854 0.0020 0.0000 0.0025 0.0000 0.0000 0.0000 0.0006 0.0001

MAN -4.1140 0.3948 0.5524 0.4110 0.2139 0.2032 0.0905 0.0846 0.0645 0.0651
0.0000 0.0011 0.0000 0.0006 0.0692 0.0000 0.0000 0.0000 0.0000 0.0000

Metro -4.1077 0.6017 0.5309 0.4863 0.1942 0.1820 0.0937 0.0732 0.0549 0.0329
0.0000 0.0002 0.0004 0.0002 0.0730 0.0000 0.0000 0.0000 0.0000 0.0059

Münchener Rück -8.5286 0.7369 1.0744 0.9869 0.8777 0.1704 0.0921 0.0609 0.0651 0.0429
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RWE AG -7.0666 0.3794 0.6177 0.4929 0.2426 0.2148 0.1219 0.0909 0.0705 0.0519
0.0000 0.0117 0.0000 0.0004 0.0812 0.0000 0.0000 0.0000 0.0000 0.0000

SAP AG -6.7216 0.5361 0.4788 0.4907 0.3929 0.1678 0.0739 0.0719 0.0427 0.0455
0.0000 0.0000 0.0009 0.0020 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000

Schering -5.4472 0.7910 0.5213 0.4936 0.3623 0.1702 0.1100 0.0813 0.0593 0.0511
0.0000 0.0000 0.0006 0.0010 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000

Siemens -9.7384 0.6771 1.1369 1.0128 0.8802 0.1805 0.1044 0.0700 0.0639 0.0505
0.0000 0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000

ThyssenKrupp -3.4676 0.2089 0.4016 0.0014 0.0715 0.2183 0.0938 0.0687 0.0503 0.0492
0.0000 0.0823 0.0001 0.9896 0.4810 0.0000 0.0000 0.0000 0.0000 0.0001

TUI AG -3.5845 0.4479 0.4869 0.3130 0.2467 0.2165 0.0966 0.0451 0.0459 0.0302
0.0000 0.0000 0.0000 0.0010 0.0084 0.0000 0.0000 0.0003 0.0002 0.0117

Volkswagen -7.6658 0.3491 0.6147 0.4354 0.2494 0.2113 0.1169 0.0750 0.0693 0.0621
0.0000 0.0305 0.0004 0.0041 0.0902 0.0000 0.0000 0.0000 0.0000 0.0000

Table 9: Lagged Returns and Trade Signs in the Trade Equation: We use OLS to es-
timate the Trade equation from Equation (7) which is xt =

∑5
i=1 cirt−i + γx

1,1Dt−1,1x
0
t−1 +∑5

i=1 (γx
i + δx

i ln(Tt−i))x0
t−i + υ2,t. The results are split on this table and on Table 11: The present

table reports the coefficients for the HASBROUCK (1991)–style variables (see Equation (1)), such as
returns and trade signs. Table 11 reports the time–related coefficients. The p–values (in italics below
each coefficient) are computed with heteroskedasticity–robust standard errors. There is strong autocor-
relation of Trade–signs: 28 stocks have significant coefficients (on a 5% level) in all 5 lags. A negative
effect of returns on Trade–signs can be identified in all cases for the first lag. The second lag of returns
is significant for 25 stocks; most of the coefficients are positive.
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Stock δr
0 δr

1 δr
2 δr

3 δr
4 δr

5 γr
0,1 Wald- test

Adidas -0.0003 -0.0001 0.0003 -0.0003 0.0003 0.0002 0.0079 11.2189
0.1970 0.7384 0.1189 0.1109 0.1034 0.4178 0.0000 0.0818

Allianz 0.0000 0.0000 0.0002 0.0000 0.0001 0.0001 0.0003 13.3657
0.4983 0.9994 0.0056 0.7258 0.2114 0.0455 0.4143 0.0376

Altana -0.0006 -0.0001 0.0001 0.0003 -0.0001 0.0002 0.0082 9.0993
0.0124 0.5425 0.5447 0.1892 0.7296 0.3010 0.0004 0.1681

BASF AG -0.0005 0.0000 0.0001 -0.0001 0.0002 0.0000 0.0017 24.8573
0.0000 0.9430 0.5382 0.4621 0.0803 0.9179 0.0244 0.0004

Bayer -0.0006 0.0000 0.0001 0.0000 0.0001 0.0000 0.0041 17.3898
0.0000 0.9586 0.5829 0.8603 0.3544 0.9241 0.0000 0.0080

BMW -0.0003 -0.0002 0.0001 0.0001 0.0001 -0.0002 0.0029 14.6625
0.0059 0.1322 0.6195 0.5466 0.5449 0.1475 0.0009 0.0231

Commerzbank -0.0009 -0.0005 0.0004 -0.0001 -0.0002 -0.0001 0.0016 30.7347
0.0000 0.0185 0.0478 0.4979 0.4178 0.5873 0.2400 0.0000

Continental -0.0003 0.0001 -0.0001 0.0006 0.0003 0.0000 0.0101 8.0337
0.3345 0.6651 0.7946 0.0234 0.1601 0.9162 0.0000 0.2356

DaimlerChrysler 0.0000 0.0000 0.0000 -0.0001 -0.0001 0.0000 0.0016 7.7123
0.7331 0.9033 0.9616 0.2643 0.5783 0.5910 0.0012 0.2599

Deutsche Bank -0.0001 0.0000 -0.0001 0.0000 -0.0001 -0.0001 0.0013 7.7123
0.1665 0.8977 0.1150 0.8189 0.3699 0.4120 0.0042 0.2599

Deutsche Börse -0.0006 0.0004 -0.0001 0.0006 -0.0004 -0.0001 0.0061 23.8468
0.0063 0.1563 0.8677 0.0065 0.1881 0.6264 0.0027 0.0006

Deutsche Post -0.0004 -0.0002 -0.0003 0.0004 0.0001 0.0002 0.0076 10.5202
0.0896 0.3609 0.1208 0.0987 0.6854 0.4046 0.0000 0.1044

Deutsche Telekom -0.0005 -0.0002 -0.0002 0.0000 -0.0001 -0.0002 0.0009 82.5893
0.0000 0.0037 0.0016 0.9037 0.1325 0.0224 0.0066 0.0000

E.ON AG -0.0002 -0.0002 -0.0003 0.0002 0.0000 0.0000 0.0021 24.0331
0.0189 0.0129 0.0056 0.1044 0.7732 0.8113 0.0014 0.0005

Fresenius M. C. -0.0004 0.0002 0.0002 -0.0002 -0.0002 0.0002 0.0134 2.5515
0.3327 0.6324 0.6503 0.6085 0.6096 0.4925 0.0127 0.8627

Henkel Vz. 0.0005 0.0000 0.0002 0.0005 -0.0001 0.0003 0.0207 12.0390
0.0299 0.8331 0.3841 0.0555 0.7163 0.2631 0.0000 0.0611

Hypo Real Estate -0.0003 0.0000 0.0000 0.0001 -0.0002 0.0001 0.0016 3.0613
0.1623 0.9054 0.8478 0.6262 0.4202 0.6766 0.2963 0.8011

Infineon -0.0004 -0.0004 0.0000 0.0000 -0.0003 -0.0002 0.0004 15.2872
0.0115 0.0497 0.8347 0.9874 0.0753 0.2598 0.4984 0.0181

Linde 0.0000 -0.0002 0.0000 0.0000 0.0000 -0.0001 0.0063 0.7451
0.9056 0.4850 0.9460 0.8686 0.9383 0.7055 0.0131 0.9935

Lufthansa -0.0004 0.0000 0.0001 -0.0002 0.0004 -0.0002 0.0017 6.3438
0.0994 0.8573 0.7957 0.4997 0.1122 0.3101 0.3053 0.3858

MAN -0.0004 0.0002 0.0001 0.0001 -0.0001 -0.0004 0.0129 6.2123
0.1570 0.4295 0.5700 0.8256 0.6292 0.0859 0.0000 0.3998

Metro -0.0006 0.0005 0.0003 0.0000 -0.0001 0.0001 0.0030 9.6621
0.0498 0.0441 0.2383 0.9690 0.7000 0.7875 0.2400 0.1396

Münchener Rück -0.0001 0.0001 0.0001 0.0002 0.0000 -0.0001 0.0019 7.3343
0.1814 0.4984 0.5396 0.0522 0.5834 0.4182 0.0004 0.2910

RWE AG -0.0001 0.0000 0.0001 0.0002 -0.0001 -0.0001 0.0012 5.1674
0.6210 0.7928 0.2680 0.1898 0.4906 0.3251 0.1536 0.5225

SAP AG -0.0003 -0.0001 0.0000 0.0000 0.0000 0.0001 0.0034 9.5783
0.0078 0.2770 0.9755 0.6904 0.7640 0.5199 0.0000 0.1436

Schering -0.0004 -0.0002 0.0001 0.0003 0.0005 -0.0001 0.0046 18.5066
0.0082 0.1769 0.6697 0.0906 0.0120 0.7305 0.0002 0.0051

Siemens -0.0002 0.0000 -0.0001 -0.0002 0.0000 0.0000 0.0002 18.5349
0.0047 0.6813 0.2734 0.0415 0.6122 0.9172 0.5313 0.0050

ThyssenKrupp -0.0002 0.0001 -0.0001 0.0005 0.0004 0.0000 0.0050 8.6679
0.4011 0.8012 0.7579 0.0391 0.1147 0.9292 0.0022 0.1931

TUI AG -0.0005 -0.0006 0.0000 0.0001 0.0002 0.0002 0.0002 8.7214
0.0712 0.0405 0.8742 0.8349 0.5890 0.4732 0.9300 0.1899

Volkswagen -0.0001 0.0000 0.0001 0.0003 0.0000 -0.0001 0.0022 6.8623
0.3228 0.6921 0.6345 0.0202 0.9514 0.2257 0.0053 0.3338

Table 10: Time Effects in the Price Revision Equation: We use OLS to estimate the Price Revision
equation from Equation (7) which is rt =

∑5
i=1 airt−i+γr

0,1Dt,1x
0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i+
υ1,t. The results are split on this table and on Table 8: Table 8 reports the coefficients for the HAS-
BROUCK (1991)–style variables (see Equation (1)), such as returns and trade signs. This table reports
the time–related coefficients, such as contemporaneous and lagged interaction terms for durations be-
tween trades and an interaction term for the opening period dummy. The p–values are shown in italics
below each coefficient. The last column shows the Wald–statistic and the p–value for the null hy-
pothesis that the duration coefficients δr

0...5 are jointly equal to zero. Wald–statistics and p–values are
computed with heteroskedasticity–robust standard errors.
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Stock δx1 δx2 δx3 δx4 δx5 γx
0,1 Wald–test

Adidas -0.0060 -0.0027 -0.0070 0.0012 0.0003 0.0292 4.4652
0.2000 0.5609 0.1346 0.7975 0.9439 0.2782 0.4845

Allianz -0.0263 -0.0193 -0.0157 -0.0121 -0.0127 0.0050 218.8577
0.0000 0.0000 0.0000 0.0001 0.0000 0.6576 0.0000

Altana -0.0037 -0.0060 0.0014 -0.0108 -0.0105 0.0191 14.7973
0.4108 0.1894 0.7553 0.0169 0.0189 0.4917 0.0113

BASF AG -0.0236 -0.0177 -0.0164 -0.0142 -0.0067 -0.0215 128.6606
0.0000 0.0000 0.0000 0.0001 0.0564 0.2571 0.0000

Bayer -0.0252 -0.0100 -0.0089 -0.0083 -0.0036 0.0011 74.1747
0.0000 0.0068 0.0154 0.0239 0.3263 0.9529 0.0000

BMW -0.0181 -0.0114 -0.0100 -0.0140 0.0013 0.0032 61.6019
0.0000 0.0023 0.0073 0.0002 0.7283 0.8567 0.0000

Commerzbank -0.0136 -0.0129 -0.0038 -0.0089 -0.0054 0.0037 33.0036
0.0010 0.0021 0.3680 0.0322 0.1916 0.8620 0.0000

Continental -0.0138 -0.0075 -0.0046 -0.0036 0.0013 0.0300 14.2686
0.0029 0.1058 0.3226 0.4419 0.7710 0.3009 0.0140

DaimlerChrysler -0.0298 -0.0221 -0.0129 -0.0142 -0.0074 0.0069 211.9100
0.0000 0.0000 0.0001 0.0000 0.0219 0.6094 0.0000

Deutsche Bank -0.0205 -0.0099 -0.0107 -0.0099 -0.0112 0.0038 93.0279
0.0000 0.0027 0.0012 0.0023 0.0006 0.7800 0.0000

Deutsche Börse -0.0102 -0.0155 -0.0045 -0.0132 -0.0038 -0.0185 27.8075
0.0375 0.0018 0.3635 0.0068 0.4284 0.5283 0.0000

Deutsche Post -0.0206 -0.0084 -0.0052 -0.0028 -0.0020 -0.0720 30.0426
0.0000 0.0624 0.2401 0.5260 0.6458 0.0048 0.0000

Deutsche Telekom -0.0373 -0.0233 -0.0145 -0.0123 -0.0140 -0.0324 326.2710
0.0000 0.0000 0.0000 0.0001 0.0000 0.0032 0.0000

E.ON AG -0.0250 -0.0108 -0.0074 -0.0073 -0.0141 0.0109 108.4029
0.0000 0.0013 0.0289 0.0303 0.0000 0.5182 0.0000

Fresenius M. C. -0.0160 0.0016 -0.0055 -0.0052 0.0018 0.0587 11.1312
0.0030 0.7706 0.3123 0.3380 0.7372 0.1496 0.0488

Henkel Vz. -0.0036 -0.0011 -0.0045 0.0000 -0.0084 0.1304 4.2325
0.4875 0.8355 0.3795 0.9972 0.0995 0.0008 0.5164

Hypo Real Estate -0.0163 0.0053 -0.0058 0.0019 0.0025 -0.0124 20.6328
0.0000 0.1810 0.1459 0.6374 0.5355 0.5554 0.0010

Infineon -0.0243 -0.0049 -0.0012 0.0006 -0.0073 -0.0082 67.5501
0.0000 0.1414 0.7111 0.8551 0.0263 0.4588 0.0000

Linde -0.0062 -0.0127 -0.0071 -0.0029 -0.0085 -0.0524 16.5145
0.1919 0.0077 0.1358 0.5425 0.0731 0.0851 0.0055

Lufthansa -0.0183 -0.0145 -0.0118 -0.0003 -0.0077 0.0886 48.0252
0.0000 0.0008 0.0059 0.9419 0.0703 0.0000 0.0000

MAN -0.0099 -0.0029 -0.0090 -0.0066 -0.0101 0.0419 18.8708
0.0286 0.5207 0.0458 0.1422 0.0238 0.1463 0.0020

Metro -0.0124 -0.0063 -0.0054 -0.0043 -0.0031 0.0684 14.3385
0.0049 0.1494 0.2155 0.3227 0.4728 0.0080 0.0136

Münchener Rück -0.0192 -0.0100 -0.0084 -0.0121 -0.0057 -0.0006 73.9613
0.0000 0.0025 0.0117 0.0003 0.0826 0.9694 0.0000

RWE AG -0.0271 -0.0146 -0.0156 -0.0105 -0.0069 0.0201 130.5987
0.0000 0.0000 0.0000 0.0034 0.0527 0.2589 0.0000

SAP AG -0.0086 -0.0043 -0.0114 -0.0003 -0.0097 0.0085 30.5080
0.0117 0.2090 0.0009 0.9186 0.0041 0.5900 0.0000

Schering -0.0131 -0.0140 -0.0102 -0.0094 -0.0068 0.0289 43.1916
0.0012 0.0005 0.0119 0.0198 0.0899 0.1494 0.0000

Siemens -0.0207 -0.0172 -0.0134 -0.0105 -0.0081 0.0133 134.9336
0.0000 0.0000 0.0000 0.0007 0.0083 0.2575 0.0000

ThyssenKrupp -0.0239 -0.0048 -0.0043 -0.0086 -0.0036 -0.0329 38.3613
0.0000 0.2704 0.3261 0.0499 0.4069 0.1435 0.0000

TUI AG -0.0206 -0.0095 0.0000 -0.0003 0.0002 0.0098 29.2768
0.0000 0.0303 0.9915 0.9493 0.9572 0.6864 0.0000

Volkswagen -0.0217 -0.0138 -0.0091 -0.0149 -0.0097 0.0070 104.7124
0.0000 0.0001 0.0094 0.0000 0.0051 0.6632 0.0000

Table 11: Time Effects in the Trade Equation: We use OLS to estimate the Trade equation from
Equation (7) which is xt =

∑5
i=1 cirt−i + γx

1,1Dt−1,1x
0
t−1 +

∑5
i=1 (γx

i + δx
i ln(Tt−i))x0

t−i + υ2,t.
The results are split on this table and on Table 9: Table 9 reports the coefficients for the HASBROUCK
(1991)–style variables (see Equation (1)), such as returns and trade signs. This table reports the time–
related coefficients, such as lagged interaction terms for durations between trades and an interaction
term for the opening period dummy. The p–values are shown in italics below each coefficient. The last
column shows the Wald–statistic and the p–value for the null hypothesis that the duration coefficients
δx
1...5 are jointly equal to zero. Wald–statistics and p–values are computed with heteroskedasticity–

robust standard errors.
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C.1 Impulse Response Functions
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Figure 2: Effect of a Trade shock on Price Revisions: We use the estimated coefficients (see Tables
8,9,10,11) from Equation (7), (rt =

∑5
i=1 airt−i + γr

0,1Dt,1x
0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t

and xt =
∑5

i=1 cirt−i + γx
1,1Dt−1,1x

0
t−1 +

∑5
i=1 (γx

i + δx
i ln(Tt−i))x0

t−i + υ2,t) for the stock of
Deutsche Telekom to compute an Impulse Response Function. The effects are compared for two
different series of twenty durations following the shock: We take a series from a high–market–activity
period (the interval starting at 4:52:20 p.m. on January 28, 2004) and a series from a low–market–
activity period (12:58:41 p.m. on January 6, 2004).
This diagram shows the effect of a shock on υ2,t (Trade Shock) in a Price Revision/Event time– space.
The y–axis contains the price variation in percent.
The Price Revision equation and the Trade equation are in a stable equilibrium until t = 0. The
shock on Trade–Signs occurs in t = 1 and is immediately translated into the Price Revisions equation.
The size of the impulse is one standard deviation of the Trade–sign series (0.9799) of the data. A
large contemporaneous positive effect on Price Revision can be identified, followed by smaller positive
effects. (For the case of high (low) market activity, the immediate price change is 0.34 (0.18) basis
points.)
For high trading intensity after the shock (the shock is followed by a series of low duration), the impulse
has a larger and more persistent effect on the Price Revision equation than for low trading intensity.
In case of low trading intensity, the Price Revision equation has almost returned to its equilibrium at
t = 7, whereas this is the case for high trading activity only at t = 16.
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Figure 3: Effect of a Trade shock on Trade Signs We use the estimated coefficients (see Tables
8,9,10,11) from Equation (7), (rt =

∑5
i=1 airt−i + γr

0,1Dt,1x
0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t

and xt =
∑5

i=1 cirt−i + γx
1,1Dt−1,1x

0
t−1 +

∑5
i=1 (γx

i + δx
i ln(Tt−i))x0

t−i + υ2,t) for the stock of
Deutsche Telekom to compute an Impulse Response Function. The effects are compared for two
different series of twenty durations following the shock: We take a series from a high–market–activity
period (the interval starting at 4:52:20 p.m. on January 28, 2004) and a series from a low–market–
activity period (12:58:41 p.m. on January 6, 2004).
This diagram shows the effect of a shock on υ2,t (Trade Shock) in a Trade–sign/Event time– space.
The y–axis contains values from −1 (sale order) to +1 (purchase order).
The Price Revision equation and the Trade equation are in a stable equilibrium until t = 0. The shock
on Trade–Signs occurs in t = 1 and can be seen in the diagram. The size of the impulse is one standard
deviation of the Trade–sign series (0.9799) of the data. Note the positive autocorrelation in the follow-
ing lags, which is larger and more persistent in more active markets. The Trade-sign returns close to
its equilibrium in t = 7 for low trading intensity as opposed to t = 14 for high trading intensity.
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Figure 4: Long–term effect of a Trade shock on Cumulative Price Revisions: We use
the estimated coefficients (see Tables 8,9,10,11) from Equation (7), (rt =

∑5
i=1 airt−i +

γr
0,1Dt,1x

0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t and xt =
∑5

i=1 cirt−i + γx
1,1Dt−1,1x

0
t−1 +∑5

i=1 (γx
i + δx

i ln(Tt−i))x0
t−i + υ2,t) for the stock of Deutsche Telekom to compute an Impulse

Response Function. The effects are compared for two different series of twenty durations following
the shock: We take a series from a high–market–activity period (the interval starting at 4:52:20 p.m. on
January 28, 2004) and a series from a low–market–activity period (12:58:41 p.m. on January 6, 2004).
This diagram shows the effect of a shock on υ2,t (Trade Shock) in a Cumulative Price Revision/Event
time– space. The y–axis contains the cumulated price variation in percent.
The Price Revision equation and the Trade equation are in a stable equilibrium until t = 0. The shock
on Trade–Signs occurs in t = 1 and is immediately translated into the Price Revisions equation. The
size of the impulse is one standard deviation of the Trade–sign series (0.9799) of the data. A large
contemporaneous positive effect on Price Revision can be identified, followed by smaller positive ef-
fects. The curves in this diagram are therefore increasing and concave and converge in the long–run
to a new price level. The delta between the stock price before the shock and the stock price at the
end of the convergence process is given in percent; it can be interpreted as the long–run effect of a
Trade shock. If market activity is high, the shock has a larger short–term impact (in t = 1) and a
larger long–term impact. The long term impact for high market activity (low market activity) is 1.3
(0.4) basis points; if the original value of Deutsche Telekom has been EUR 15.00, it will be EUR
15.00195 (EUR 15.0006) when the shock is fully incorporated. Furthermore, prices converge faster in
a low–market–activity period. It takes 7 transactions after a shock until the new price level is reached
for low–intensity markets as opposed to 17 transactions for high–intensity markets.
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Figure 5: Effect of a Price shock on Price Revisions: We use the estimated coefficients (see Tables
8,9,10,11) from Equation (7), (rt =

∑5
i=1 airt−i + γr

0,1Dt,1x
0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t

and xt =
∑5

i=1 cirt−i + γx
1,1Dt−1,1x

0
t−1 +

∑5
i=1 (γx

i + δx
i ln(Tt−i))x0

t−i + υ2,t) for the stock of
Deutsche Telekom to compute an Impulse Response Function. The effects are compared for two
different series of twenty durations following the shock: We take a series from a high–market–activity
period (the interval starting at 4:52:20 p.m. on January 28, 2004) and a series from a low–market–
activity period (12:58:41 p.m. on January 6, 2004).
This diagram shows the effect of a shock on υ1,t (Price Shock) in a Price Revision/Event time– space.
The y–axis contains the price variation in percent.
The Price Revision equation and the Trade equation are in a stable equilibrium until t = 0. The shock
on prices occurs in t = 1 and can be seen in the diagram. The size of the impulse is one standard
deviation of the Price–Revision series (0.024025) in the data. A positive shock in Price Revisions
is followed by subsequent negative Price Revisions. In the long–run, Price Revisions return to their
equilibrium. Note that the effects are only slightly larger in high–intensity periods.
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Figure 6: Effect of a Price shock on Trade–signs: We use the estimated coefficients (see Tables
8,9,10,11) from Equation (7), (rt =

∑5
i=1 airt−i + γr

0,1Dt,1x
0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t

and xt =
∑5

i=1 cirt−i + γx
1,1Dt−1,1x

0
t−1 +

∑5
i=1 (γx

i + δx
i ln(Tt−i))x0

t−i + υ2,t) for the stock of
Deutsche Telekom to compute an Impulse Response Function. The effects are compared for two
different series of twenty durations following the shock: We take a series from a high–market–activity
period (the interval starting at 4:52:20 p.m. on January 28, 2004) and a series from a low–market–
activity period (12:58:41 p.m. on January 6, 2004).
This diagram shows the effect of a shock on υ1,t (Price Shock) in a Trade–sign/Event time– space.
The y–axis contains values from −1 (sale order) to +1 (purchase order). The Price Revision equation
and the Trade equation are in a stable equilibrium until t = 0. The shock on prices occurs in t = 1
and translates into the Trade–sign equation in t = 2. Time effects do not come into play until t = 3,
since their interaction terms require lagged Trade–Sign variables xt that are different from zero. Note
that Trade–signs converge faster to the equilibrium value 0 in periods with lower market activity after
a shock has occurred.
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Figure 7: Long–term effect of a Price shock on Cumulative Price Revisions: We use
the estimated coefficients (see Tables 8,9,10,11) from Equation (7), (rt =

∑5
i=1 airt−i +

γr
0,1Dt,1x

0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t and xt =
∑5

i=1 cirt−i + γx
1,1Dt−1,1x

0
t−1 +∑5

i=1 (γx
i + δx

i ln(Tt−i))x0
t−i + υ2,t) for the stock of Deutsche Telekom to compute an Impulse

Response Function. The effects are compared for two different series of twenty durations following
the shock: We take a series from a high–market–activity period (the interval starting at 4:52:20 p.m. on
January 28, 2004) and a series from a low–market–activity period (12:58:41 p.m. on January 6, 2004).
This diagram shows the effect of a shock on υ1,t (Price Shock) in a Cumulative Price Revision/Event
time–space. The y–axis contains the cumulated price variation in percent.
The Price Revision equation and the Trade equation are in a stable equilibrium until t = 0. The shock
on prices occurs in t = 1 and can be seen in the diagram. The size of the impulse is one standard
deviation of the Price–Revision series (0.024025) in the data.
It can be seen that prices converge to a new long–term price level, which is above the original price
level and below the short–term effect of the shock. Note that the correction takes longer and reaches
further if the shock happens in very active markets. In active markets, prices rise by 1.6 basis points
in the long run; in less active markets, they rise by 1.8 basis points. A sudden rise of the stock price
of Deutsche Telekom due to public information from EUR 15.00 to EUR 15.00375 leads therefore to a
long–term price of EUR 15.0024 (EUR 15.0027) in highly active (not so active) markets.
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Figure 8: Long–term effect of a Price shock on Trade–Signs: We use the esti-
mated coefficients (see Tables 8,9,10,11) from Equation (7), (rt =

∑5
i=1 airt−i +

γr
0,1Dt,1x

0
t +

∑5
i=0 (γr

i + δr
i ln(Tt−i))x0

t−i + υ1,t and xt =
∑5

i=1 cirt−i + γx
1,1Dt−1,1x

0
t−1 +∑5

i=1 (γx
i + δx

i ln(Tt−i))x0
t−i + υ2,t) for the stock of Deutsche Telekom to compute an Impulse

Response Function. The effects are compared for two different series of twenty durations following
the shock: We take a series from a high–market–activity period (the interval starting at 4:52:20 p.m. on
January 28, 2004) and a series from a low–market–activity period (12:58:41 p.m. on January 6, 2004).
This diagram shows the effect of a shock on υ1,t (Price Shock) in a Cumulative Trade–sign/Event time–
space. The Price Revision equation and the Trade equation are in a stable equilibrium until t = 0. The
shock on prices occurs in t = 1 and translates into the Trade–sign equation in t = 2. Time effects do
not come into play until t = 3, since their interaction terms require lagged Trade–Sign variables xt

that are different from zero. A sudden rise in prices triggers a series of sales. Note that in an active
environment, the number of transactions after the shock which are influenced by the impulse are larger
than in a less active environment.
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C.2 Variance decomposition

high activity low activitiy high activity low activitiy
t ãt

∑T
t=0 ãt ãt

∑I
t=0 ãt b̃t

∑T
t=0 b̃t b̃t

∑T
t=0 b̃t

0 1.000 1.000 1.000 1.000 0.00345 0.00345 0.00183 0.00183
1 -0.185 0.815 0.834 0.834 0.00195 0.00540 0.00093 0.00276
2 -0.070 0.745 0.777 0.777 0.00164 0.00704 0.00039 0.00314
3 -0.033 0.711 0.758 0.758 0.00112 0.00816 0.00066 0.00380
4 -0.018 0.694 0.746 0.746 0.00114 0.00930 0.00020 0.00400
5 -0.008 0.685 0.747 0.747 0.00112 0.01042 -0.00012 0.00388
6 -0.009 0.676 0.751 0.751 0.00058 0.01100 0.00008 0.00396
7 -0.005 0.671 0.750 0.750 0.00049 0.01149 0.00005 0.00400
8 -0.005 0.666 0.750 0.750 0.00040 0.01189 0.00005 0.00405
9 -0.004 0.662 0.749 0.749 0.00033 0.01222 0.00002 0.00408

10 -0.003 0.659 0.749 0.749 0.00026 0.01248 0.00000 0.00408
11 -0.003 0.657 0.749 0.749 0.00019 0.01267 0.00001 0.00409
12 -0.002 0.655 0.749 0.749 0.00015 0.01283 0.00001 0.00410
13 -0.001 0.654 0.748 0.748 0.00012 0.01295 0.00000 0.00410
14 -0.001 0.652 0.748 0.748 0.00010 0.01304 0.00000 0.00411
15 -0.001 0.652 0.748 0.748 0.00008 0.01312 0.00000 0.00411
16 -0.001 0.651 0.748 0.748 0.00006 0.01318 0.00000 0.00411
17 -0.001 0.650 0.748 0.748 0.00005 0.01322 0.00000 0.00411
18 0.000 0.650 0.748 0.748 0.00004 0.01326 0.00000 0.00411
19 0.000 0.649 0.748 0.748 0.00003 0.01329 0.00000 0.00411

..
∞ 0.649 0.748 0.01329 0.00400

Table 12: VMA and Variance Decomposition: The VAR from Equation (7) can be written in the form
of a vector moving average: rt = υ1,t + ã1υ1,t−1 + ã2υ1,t−2 + ... + b̃0υ2,t + b̃1υ2,t−1 + ... and
xt = c̃1υ1,t−1 + c̃2υ1,t−2 + ... + υ2,t + d̃1υ2,t−1 + d̃2υ2,t−2 + ... (HASBROUCK, 1991a, p.576)
This table presents the computed estimates ãt and b̃t for the stock of Deutsche Telekom for two
different series of durations between trades. We take a series from a high–market–activity period (the
interval starting at 4:52:20 p.m. on January 28, 2004) and a series from a low–market–activity period
(12:58:41 p.m. on January 6, 2004).
The columns can be interpreted as Impulse Response Functions: If there is a shock on prices of υ1,0 =
1, ãt represents the change of Price Revisions in t and

∑T
t=0 ãt the sum of Cumulative Price Revisions.

If there is a shock on trade–signs of υ2,0 = 1, b̃t represents the change of Price Revisions in t and∑T
t=0 ãt the sum of Cumulative Price Revisions.

∑∞
t=0 ãt is therefore the long–term price effect of a

shock equal to υ1,0 = 1, whereas
∑∞

t=0 b̃t is the long–term price effect of a shock equal to υ2,0 = 1.
These results can be used to compute a variance decomposition. The standard deviation of Price
Revision is σ2

υ1
= 0.024025 and the standard deviation of Trade–Signs is σ2

υ2
= 0.9799. The total

variance can be written as σ2
w = (

∑T
t=0 ãt)2σ2

υ1
+(

∑T
t=0 b̃t)2σ2

υ2
. The variance which is due to shocks

in the Trade equation is equal to σ2
w,x = (

∑T
t=0 b̃t)2σ2

υ2
. The relative contribution of the variance of

Trades to total variance can be expressed in σ2
w,x/σ2

x, which can be interpreted as the share of the
variance that is driven by private information and liquidity needs.
We find that this share is 41.09% in high–activity markets as opposed to 4.54% in low activity markets.
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