6th set assignments Introductory Econometrics

Task 1

Consider the following assumptions:

- 1. linearity
- 2. rank condition: $K \times K$ matrix $E(\mathbf{x}_i \mathbf{x}'_i) = \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}}$ is nonsingular
- 3. predetermined regressors: $E(\mathbf{g}_i) = 0$ where $\mathbf{g}_i = \mathbf{x}_i \cdot \varepsilon_i$
- 4. \mathbf{g}_i is a martingale difference sequence with finite second moments

i) Show, that under those assumptions, the OLS estimator is distributed asymptotically normal:

$$\sqrt{n}(\mathbf{b}-\boldsymbol{\beta}) \xrightarrow{d} N(0, \boldsymbol{\Sigma}_{\mathbf{xx}}^{-1} E(\varepsilon_i^2 \mathbf{x}_i \mathbf{x}_i') \boldsymbol{\Sigma}_{\mathbf{xx}}^{-1})$$

ii) Further, show that assumption 4 implies that the ε_i are serially uncorrelated or $E(\varepsilon_i \varepsilon_{i-j}) = 0$.

Task 2

Show, that the test statistic

$$t_k \equiv \frac{\sqrt{n}(b_k - \beta_k)}{\sqrt{[Avar(b_k)]}} \xrightarrow[d]{} N(0, 1)$$

converges in distribution to a standard normal distribution. Note, that b_k is the k-th element of **b** and $Avar(b_k)$ is the (k,k) element of the $K \times K$ matrix $Avar(\mathbf{b})$. Use the facts, that $\sqrt{n}(b_k - \beta_k) \xrightarrow[d]{} N(0, Avar(b_k))$ and $\widehat{Avar(b)} \xrightarrow[p]{} Avar(b)$. Use Lemma 2.4(c) for argumentation.

<u>Task 3</u>

Show, that the test statistic

$$W \equiv (\mathbf{R}\sqrt{n}\mathbf{b} - \mathbf{r})' [\mathbf{R}\widehat{Avar(\mathbf{b})}\mathbf{R}']^{-1} (\mathbf{R}\sqrt{n}\mathbf{b} - \mathbf{r}) \xrightarrow{d} \chi^2(\#\mathbf{r})$$

converges in distribution to a Chi-square with $\#\mathbf{r}$ degrees of freedom. As a hint, rewrite the equation above as $W \equiv \mathbf{c}'_n \mathbf{Q}_n^{-1} \mathbf{c}_n$. Use Lemma 2.4(d) and the footnote on page 41 for argumentation.