
Informed Equation Learning

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Matthias Werner, M. Sc.

aus Ochsenhausen

Tübingen
2024

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard
Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 10. Oktober 2024

Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr.Georg Martius
2. Berichterstatter: Prof. Dr. Jakob Macke

Disclaimer: this thesis uses Felix Dangel’s thesis-template that is based on Federico Marotta’s
kaobook template.

Acknowledgments

First of all, I would like to thank Prof.Dr. Philipp Hennig, Prof.Dr.Georg Martius and Dr.Andrej
Junginger for making my doctorate possible. Thank you for your guidance, support and trust
throughout my PhD.
Thank you Philipp for your always friendly, helpful and caring supervision and for allowing me to
work independently and pursue my own ideas. I greatly admire your outstanding expertise and
extensive experience in research, with which you have not only supported me, but also many other
doctoral students, and introduced them to the field of research.
Thank you Georg for your motivating and insightful supervision and for your always positive
support in completing this thesis. Your enthusiasm for the subject was throughout palpable.
Thank you Andrej for your guidance and endless efforts to connect my research with applications
whenever I needed support. You were there to help and advise me. I really appreciate your always
friendly, open and helpful manner.

I would like to thank Prof.Dr. Jakob Macke for his commitment as an examiner, who put a lot of
time and effort into the evaluation of this thesis.

MPI-IS, the University of Tübingen and ETAS (Bosch GmbH) have offered me a great working
environment in which I have been able to develop both academically and personally. I would like to
thank all my colleagues and friends for the inspiring academic but also private dialogs and the
open, humorous and collegial atmosphere, where I have been able to learn and work for the last few
years. I would not have made it this far without all of you.
I would also like to thank my colleagues from theMethods of Machine Learning group at University
of Tübingen for welcoming me in such an open and friendly way and for all the wonderful
moments spent playing table football and enjoying coffee, especially: Philipp Hennig, Filip de Roos,
Felix Dangel, Alexandra Gessner, Frank Schneider, Simon Bartels, Lukas Balles, Maren Mahsereci,
Motonobu Kanagawa, Hans Kersting and Agustinus Kristiadi.
It was a great pleasure to work with my colleagues from the Machine Learning Team at ETAS,
especially Andrej Junginger, Michael Öchsle, Damian Boborzi, Thilo Strauss, Markus Hanselmann,
Sebastian Boblest, Jens Buchner, Holger Ulmer and Michael Ungermann.

I really enjoyed our weekly rides from Stuttgart to the University of Tübingen with Filip de Roos,
Olga Lukashova-Sanz andMichael Öchsle, even though we always left way too early in the morning.
In this sense, also many thanks to Christian Benz for your free couch, which saved me several
times.

Thanks for proofreading parts of this manuscript Christian Rohwer, Felix Dangel, Filip de Roos,
Georg Martius, Michael Lohaus, Dorea Wink and Philipp Arras.

A special thanks to my friends, who I got to know and to cherish during my physics studies, Kai
Guther, Lukas Fischer, Jonas Heverhagen, Maximilian Mußotter, Matthias Pöhnl, Ruben Pöhnl and
Toni Peter. Without you and a good dose of nerd talk, I would never be where I am now.

Iwould like to thank allmy friends that helpedme to keep ahealthy balanceduringmyPhDespecially
all the musicians who enabled those amazing projects with the chamber choir Stuttgart Vokal, the
chamber orchestra Junge Kammerphilharmonie Rhein-Neckar, the chamber ensemble Schwäbisches

Salonensemble and several Jazz-formations.

I would also like to take this opportunity to express my deepest gratitude to my family, in particular
my mum Dorothea, my dad Hubert, my sister Julia, my brother David and my grandma Beate. You
have always supported me and offered me a safe and loving support. You have challenged me,
encouraged me to try new things and not shy away from challenges. I would like to thank you with
all my heart for all your help and advice. In times of lack of motivation, it is not always easy to
push ahead with research and complete a thesis. Thank you very much, for pushing me at the right
moment and having my back. The regular childcare provided by my mother-in-law, Carola Wink,
was an extraordinary help especially in the final phase of my thesis, thank you for that.

I would also like to thank my wife Dorea from the bottom of my heart. Without you, your daily
support, your words of encouragement and your loving affection, I would not be the person I am
today. Together with our children, Juna and Jaron, we have already experienced so many wonderful
moments of happiness and I look forward with confidence to the coming decades that we will
experience together.

Matthias Werner

Stuttgart 2024

vi

Abstract

Equations are not only key to describing phenomena and their underlying principles in the natural
sciences, but also play an important role in the engineering domain, e.g., in model-predictive control
or as components describing complex systems. The task of learning equation-based models in an
automated fashion is referred to as symbolic regression. Within the broader field of interpretability,
this approach is becoming increasingly important for machine learning, which mostly generates
black-box models. This thesis studies a differentiable relaxation to symbolic regression called
equation learning and proposes new deep learning algorithms for scaling it to realistic settings in
science and engineering. The thesis is structured in three conceptual parts.

The first part describes strategies to enhance expressivity and to stabilize training. Important
atomic functions such as logarithm and division have restricted domains and singularities that
lead to unstable training, making them difficult to discover. Our robust training method enables
networks to deal with such atomic functions with singularities, which is an important step towards
real-world applications. Normally, the computation of the Pareto front requires a search over network
architectures with different numbers of hidden layers. This extensive search can be avoided by
adding copy units. Together with a probabilistic !0 regularization scheme, these methods form the
basis for incorporating domain and expert knowledge into equation learning, which is considered
in more detail in the second conceptual part.

The second part focuses on incorporating expert knowledge into equation learning. Domain-
specific knowledge provided by experts can, in principle, guide and accelerate the search for better
equations. This is of particular interest for complex datasets with a huge search space of possible
equations. We call the resulting approach informed equation learning neural network (iEQL). Expert
knowledge is incorporated by prohibiting certain combinations of functions within the neural
network architecture. By utilizing a user-dependent weighting scheme that favors certain types of
functions, the search for equations during training can be guided. Its application to several artificial
and real-world experiments from the engineering domain is studied. The iEQL is shown to learn
plausible and interpretable models with high predictive power.

The third part deals with uncertainty quantification for equation learning. Inspired by the automatic
statistician, simple but effective forms of Bayesian deep learning are used to build structured and
interpretable uncertainty over a set of plausible equations. Thus, two components of uncertainty
have been identified: (i) global uncertainty, given by the differences in structure of each equation, and
(ii) local uncertainty, given by the parametric uncertainty within one equation structure. Specifically,
a mixture of Laplace approximations is used. Each mixture component captures a different equation
structure, and the local Laplace approximation captures the corresponding parametric uncertainty.
The approach is applied to toy examples and two real-world datasets.

These advances collectively contribute to the overarching objective of enhancing symbolic regression
methods to align with the demands of contemporary applications in industry and research.

Zusammenfassung

Gleichungen sind in den Naturwissenschaften unverzichtbar um Phänomene und deren zugrunde
liegende Prinzipien zu beschreiben. Auch im Ingenieurwesen, zum Beispiel bei der modellprä-
diktiven Kontrolle, sind sie essenziell zur Darstellung komplexer Systeme. Das Erlernen solcher
Modelle auf automatisierte Weise wird als Gleichungslernen bezeichnet. Im Forschungsbereich
des Machinellen Lernens werden meist undurchsichtige Modelle geliefert. Hier gewinnt Glei-
chungslernen für die Erklärbarkeit dieser Modelle immer mehr an Bedeutung. Diese Arbeit stellt
neue Deep-Learning-Algorithmen vor, um Gleichungslernen mit Neuronalen Netzen für reale
Anwendungen in Wissenschaft und Technik zu skalieren. Diese Dissertation gliedert sich in drei
konzeptionelle Teile.

Der erste umfasst Strategien zur Verbesserung der Ausdrucksfähigkeit und zur Stabilisierung des
Trainings. Funktionen mit eingeschränkten Bereichen und Singularitäten, wie Logarithmen und
Division, stellen beim Gleichungslernen eine Herausforderung dar, da diese zu instabilem Training
führen können. Unsere robuste Trainingsmethode ermöglicht es den Netzen mit solchen atomaren
Funktionen, die Singularitäten besitzen, umzugehen. Die Methode ist daher ein wichtiger Schritt in
Richtung realer Anwendungen. Normalerweise erfordert die Berechnung der Pareto-Front eine
Suche über Netzwerkarchitekturen mit unterschiedlicher Anzahl von versteckten Schichten. Durch
Hinzufügen von Kopiereinheiten kann diese umfangreiche Suche vermieden werden. Zusammen
mit einer probabilistischen !0 Regularisierung bilden diese Methoden die Basis zur Einbindung
von Fach- und Expertenwissen in das Gleichungslernen.

Der zweite Teil konzentriert sich auf die Einbindung von Fach- und Expertenwissen in das Glei-
chungslernen. Expertenwissen kann die Suche nach besseren Gleichungen leiten und beschleunigen,
was für komplexe Datensätze essenziell ist. Das von uns entwickelte gleichungslernende neu-
ronale Netz (iEQL) schließt bestimmte Kombinationen von Funktionen aus und verwendet ein
benutzerabhängiges Gewichtungsschema um bestimmte Funktionstypen während des Trainings
zu bevorzugen. Die Anwendung des Verfahrens wird anhand mehrerer künstlicher und realer
Datensätze aus dem Ingenieurwesen demonstriert, in denen der iEQL plausible und erklärbare
Modelle mit hoher Vorhersagekraft gelernt hat.

Der dritte Teil befasst sich mit Unsicherheitsquantifizierung für das Gleichungslernen. Inspiriert
durch den automatischen Statistiker, werden einfache, aber effektive Formen des Bayes’schen Deep
Learnings verwendet, um eine strukturierte und erklärbare Unsicherheit über eine Reihe plausibler
Gleichungen aufzubauen. Daherwerden zwei Komponenten der Unsicherheit identifiziert (i) globale
Unsicherheit, bedingt durch strukturelle Unterschiede der Gleichungen und (ii) lokale Unsicherheit,
bedingt durch parametrische Unsicherheit innerhalb einer Gleichungsstruktur. Die identifizierte
Unsicherheit wird mit einer Kombination aus Laplace-Approximationen modelliert, wobei jede
Komponente eine andere Gleichungsstruktur erfasst, und die lokale Laplace-Approximation erfasst
jeweils die parametrische Unsicherheit einer Gleichung. Seine Anwendung wird anhand von
künstlichen Beispielen und zwei realen Datensätzen demonstriert.

Diese Fortschritte tragen gemeinsam zu dem übergeordneten Ziel bei, symbolische Regression so
zu verbessern, dass sie den Anforderungen moderner Anwendungen in Industrie und Forschung
gerecht wird.

Table of Contents

Acknowledgments v

Abstract vii

Zusammenfassung ix

Table of Contents xi

Notation xiii

1 Overview 1
1.1 Introduction . 1
1.2 Outline . 4

I Background & Motivation 9

2 Machine Learning Components 11
2.1 Bayesian Inference . 11
2.2 Regularized Empirical Risk . 13
2.3 Bayesian Interpretation of Regularized Empirical Risk 13
2.4 Deep Neural Networks . 14

3 Symbolic Regression 17
3.1 Introduction . 17
3.2 Neural Network Approach to Equation Learning 22
3.3 Equation Learning Neural Networks . 23
3.4 Training Equation Learning Neural Networks . 25
3.5 Model Selection Criteria . 29

II Informed Equation Learning 33

4 Enhancing Expressivity and Training Stability of the Equation Learner 35
4.1 Motivation . 35
4.2 Related Work . 36
4.3 Atomic Functions with Singularities . 37
4.4 Feature Reuse with Copy Units . 40
4.5 Avoiding Parameter Shrinkage Through !0 Regularization 42
4.6 Conclusion . 43

5 Equation Learning with Expert Knowledge 45
5.1 Motivation . 45
5.2 Prohibited Combinations . 46

5.3 Domain Specific Complexity of Atomic Units . 47
5.4 Informed Equation Learning Neural Network . 48
5.5 Experiments . 50
5.6 Conclusion . 64

6 Structured Uncertainty in Equation Learning 67
6.1 Motivation . 67
6.2 Related work . 68
6.3 A Bayesian Perspective on Equation Learning . 69
6.4 Experiments . 74
6.5 Conclusion . 81

III Conclusion & Future Directions 83

7 Conclusion & Future Directions 85
7.1 Summary and Impact . 85
7.2 Outlook and Future Directions . 86

IV Appendix 89

A Additional Material for Chapter 4 91
A.1 Sparse Representations through !0 Regularization 91

B Additional Material for Chapter 5 95
B.1 Details on Training and Parameter Settings . 95

C Additional Material for Chapter 6 101
C.1 Details on Training and Parameter Settings . 101

Bibliography 103

xii

Notation

) Parameter vector
] ; Weight matrix of (hidden) layer ;
b; Bias vector of (hidden) layer ;
z ; Output of (hidden) layer ; before a non-linearity is applied
h ; Output of (hidden) layer ;
! Total number of layers
5) Function parameterized by set of parameters)
L Loss term
D Dataset
Dtrain Train dataset
Dvalid Validation dataset
Dvalid

int Validation dataset for interpolation
Dvalid

ex Validation dataset for extrapolation
Dtest Test dataset
Dtest

int Test dataset for interpolation
Dtest

ex Test dataset for extrapolation
Vint-S Selection criterion based on complexity and validation accuracy
Vint&ex Selection criterion based on extrapolation and validation accuracy
Vint Selection criterion solely based on validation accuracy
Ber(�) Bernoulli distribution with dropout rate 1 − �
U (0, 1) Uniform distribution over the interval (0, 1)
N (G | �, �2) Normal/Gaussian distribution of random variable G, with mean �, variance �2,

and density 1/�
√

2� exp((G−�)2/2�2)
N (x | -,Σ) Multi-variate normal/Gaussian distribution of random vector x with mean

vector -, covariancematrix Σ, and density 1/(
√

2�det Σ) exp(−1/2(x−-)>Σ−1(x−-))
BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm
CNN Convolutional neural network
EQL Equation learning neural network [62]
EQL÷ Equation learning neural network with final division layer [72]
GGN Generalized Gauss-Newton (matrix)
GP Gaussian process
iEQL Informed equation learning neural network [84]
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
MAP Maximum a posteriori (estimation)
MLP Multi-layer perceptron
MP Mean predictor on the train datatset
MSE Mean squared error
PySR Genetic algorithm by [14]
ReLU Rectified linear unit
RMSE Root mean squared error
MoLA Mixture of Laplace approximations

Overview 1
1.1 Introduction 1
1.2 Outline 4

1.1 Introduction

The natural sciences rely heavily on equations to describe phenom-
ena and their underlying principles. The search for equations that
describe and explain the underlying principles of new phenomena
that can not be explained with the current state of knowledge, is
part of the daily life of scientists. Physics, in particular, uses equa-
tions to build a coherent description of natural laws. For example,
Newton’s and Kepler’s laws or Schrödinger’s equation describe
and encode the phenomena of motion, celestial dynamics [23]

[23] Feynman, Leighton, and Sands
(1965), “The feynman lectures on
physics”, or

quantummechanics [2], respectively. Those equations are typically [2] Ballentine (1970), “The Statistical
Interpretation of Quantum Mechan-
ics”

derived from fundamental principles such as the conservation laws
or phenomenological approaches. Similarly, they are important in
the engineering domain, e.g., in model-predictive control [25]. The [25] García, Prett, and Morari (1989),

“Model predictive control: Theory
and practice—A survey”

designed equations then correspond to a hypothesis for the inner
system’s behavior and represent its relations and properties. In
industrial applications, e.g., for embedded controller, models have
to be minimal in computational power and memory demand due
to embedded hardware and latency constraints. Model predictions
given by equations can meet those requirements.

Due to a continuous increase of measurement data in science
and various engineering disciplines there is a growing demand
for automated equation discovery to model and understand the
underlying systems. Recent progress in machine learning, compu-
tational resources and data availability pushes the boundaries of
data-driven discovery of equations. Learning those equations in
an automated fashion from data is referred to as symbolic regression.
In contrast to traditional regression or supervised deep learning,
which only optimizes a set of parameters for prediction, symbolic
regression simultaneously discovers the structure of the equation
and its numerical coefficients. These equations can be defined by
combining and linking mathematical operators

1

1: mathematical operators: e.g. mul-
tiplication, division, partial deriva-
tives, integrals

, mathematical func-

tions
2 and numerical constants. Common requirements for symbolic 2: mathematical functions: e.g. ex-

ponential, sine, cosine, logarithmregression are

I Interpretability: The structure and complexity associated with
the equation should be as simple as possible, given the ability
of an expert in the field to interpret the equation.

I Generalization: The equation must capture the underlying
properties of the system, such that it can generalize and
extrapolate to unseen data.

2 Chapter 1 Overview

Algorithms for symbolic regression aim to optimize for both inter-
pretability and generalization. This enables handling numerically
similar expressions on a bounded set of datapoints3, as well as3: similar expressions e.g. Taylor-

Series

sinh G = G +
G3

3!
+
G5

5!
+ O

(
G7

7!

)
eG = 1 + G +

G2

2!
+
G3

3!
+ O

(
G5

5!

)
incorporating mathematical identities4. To identify the underlying

4: mathematical identities e.g.:

sin2(G) + cos2(G) = 1
sinh G = (eG + e−G)/2

mathematical expression of a system, it is not sufficient to opti-
mize solely for accuracy of the predictions. Therefore, symbolic
regression commonly obeys the principle of Occam’s razor5 and

5: William of Occam 1285-1349:
“plurality should not be assumed
without necessity”

must trade-off model complexity against accuracy. This approach
leads to a multi-objective optimization challenge for accuracy and
simplicity. Symbolic regression algorithms must calculate Pareto
optimal expressions that cannot improve an objective without
sacrificing performance on another objective.

The conventional approach to symbolic regression tasks typically
involves discrete searchmethods such as genetic programming [13]

[13] Cramer (1985), “A Representa-
tion for the Adaptive Generation of
Simple Sequential Programs”

and evolutionary algorithms [41, 48]. These methods are powerful

[41] Koza (1992), “On the program-
ming of computers bymeans of natu-
ral selection, Genetic Programming,
vol. 1”
[48] Langdon, Poli, McPhee, and
Koza (2008), “Genetic program-
ming: An introduction and tutorial,
with a survey of techniques and ap-
plications”

for small-scale problems and mimic natural biological evolution
by generating a series of computer programs, evaluating their
effectiveness, andevolving themost promisingprograms.Anotable
example of success is the automated discovery of natural laws by
Schmidt and Lipson [73]. But with advances in machine learning

[73] Schmidt and Lipson (2009),
“Distilling Free-Form Natural Laws
from Experimental Data”

and in particular deep learning, it has become possible to tackle
more complex challenges in robotics and industry where these
traditional methods reach their limits. For instance, Biggio et al. [3]

[3] Biggio, Bendinelli, Neitz, Lucchi,
and Parascandolo (2021), “Neural
Symbolic Regression that scales”

utilized set-transformers trained on numerous equation-dataset
pairs to refine the search for optimal equations.

Further innovations include the use of gradient information during
training. This concept was explored in a reinforcement learning
context by Petersen et al. [67] using risk-seeking policy gradients.

[67] Petersen, Larma, Mundhenk,
Santiago, Kim, and Kim (2021),
“Deep symbolic regression: Recover-
ing mathematical expressions from
data via risk-seeking policy gradi-
ents”

A particularly effective approach utilizing gradient information
are equation learning neural networks (EQL) introduced by Martius
and Lampert [62] . They encode complex equations within their

[62] Martius and Lampert (2016),
“Extrapolation and learning equa-
tions”

architecture, employing various activation functions like sine, co-
sine, multiplication and division, across hidden layers. Throughout
training, the EQL gradually omits irrelevant components, converg-
ing on a sparse representation that effectively captures the desired
equation. This design not only enables seamless integration into
larger deep learning architectures for comprehensive end-to-end
training but also adapts well to large datasets, leveraging recent
advancements in machine learning. This scalability and integra-
tion capability enhance the utility of EQL in tackling complex
equations and broadening the scope of applications across various
fields such as the discovery of partial differential equations [53]
and integration with convolutional networks for digit extraction in
arithmetic tasks [38]. Additionally, Lin et al. [51] demonstrate the ef-
fectiveness of EQL inmodeling energy functions based on dynamic
observations within the field of density functional theory.

1.1 Introduction 3

Exploring the equation learning framework is particularly com-
pelling for tackling real-world problems characterized by high-
dimensional data and complex, nonlinear relationships. Unlike
traditional methods that might struggle with the scale and diver-
sity of modern datasets. This thesis builds on equation learning
neural networks introduced by Martius and Lampert [62]. [62] Martius and Lampert (2016),

“Extrapolation and learning equa-
tions”The present work proposes new deep learning algorithms to scale

equation learning neural networks to realistic settings in science
and engineering. To tackle this challenge, this thesis addresses
three related research questions:

Q1 How to broaden the expressivity of equation learning neural
networks and train them efficiently?

Q2 How to utilize domain knowledge to guide the search for
better equations?

Q3 How to quantify uncertainty of a set of equations that was
discovered by an equation learning neural network?

In general, a large expressivity of the equation learner is desired to research question 1
learn complex equations. Yet, common functions like logarithm,
square root or division are hard to discover with equation learning
neural networks. Their restricted domains and singularities lead
to highly unstable training. This motivates the research question
“How to broaden the expressivity of equation learning neural networks

and train them efficiently?” Our scientific contribution to address
this question is presented in chapter 4. It includes a stable training
procedure based on a learnable relaxation of the singularities as
well as a specific !0 regularization scheme.

As a result of the great expressive power of the equation learner, research question 2
an exhaustive search in the hypothesis space is required. Prior
knowledge in form of domain specific knowledge provided by
experts is an important source of information to scale equation
learning to realistic settings in science and engineering. Yet, its
application to equation neural network is challenging and has not
been extensively explored. This leads to the research question “How

to utilize domain knowledge to guide the search for better equations?”. In
order to address this question we introduce an informed equation
learning neural network (iEQL) in chapter 5. It incorporates ex-
pert knowledge about what are permitted or prohibited equation
components, as well as a domain dependent structured sparsity
prior to improve the search for accurate and simple equations.
We demonstrate applications of this equation learner to several
artificial and real-world experiments.

Equation learners discover a set of plausible equations with differ- research question 3
ent structure and varying complexity. Their differences in structure
can lead to a rich variety of predictions. Choosing one equation out
of the others by chance might lead to overconfident predictions. In

4 Chapter 1 Overview

order to apply equations to safety critical systems like health care
and automated driving it is crucial to know about their uncertainty.
This challenge is tackled by exploring the research question “How

to quantify uncertainty of a set of equations that was discovered by an

equation learning neural network?”. As a means of addressing this
question two components of uncertainty are identified in chap-
ter 6 (i) global uncertainty given by the differences in structure of
each equation and (ii) local uncertainty given by the parametric
uncertainty within one family of equations. We propose a mixture
of Laplace approximations to capture both types of uncertainty
within one model and demonstrate its applications to artificial and
real-world experiments.

1.2 Outline

This thesis is structured into three main parts: Part I describes
relevant principles and concepts necessary to understanding this
thesis. Part II explores and elaborates on the scientific contributions.
Part III examines the implications of these findings and suggests
directions for future research.

The first part I deals with important machine learning components
in chapter 2 and symbolic regression in chapter 3.

There is a brief introduction to Bayesian inference in section 2.1. Sec-
tion 2.2 discusses regularized empirical risk and in section 2.3 both
concepts are compared. At the end of the first chapter section 2.4
briefly introduces deep neural networks.

Chapter 3 refers to symbolic regression in general and specifically
to equation learning neural networks. Section 3.1 gives a detailed
introduction to symbolic regression and different approaches to
this problem. Section 3.2 introduces equation learning as a differ-
entiable relaxation of symbolic regression that allows applying
continuous search methods in contrast to the classical discrete
search algorithms that are usually used for symbolic regression.
Section 3.3 presents the general architecture of equation learning
neural networks,which form the basis of this thesis. Special features
and important properties of the training of such neural networks
are discussed in section 3.4. And the last section 3.5 discusses
different model selection criteria used in Equation Learning.

Part II discusses andpresents our contributions to the three research
questions Q1, Q2 and Q3 in chapter 4, chapter 5 and chapter 6
respectively.

Chapter 4 deals with the extension of the expressive power of equa-
tion learning neural networks and training stability. Section 4.1

1.2 Outline 5

provides an introduction to the topic and section 4.2 gives a com-
prehensive overview of the related literature. Section 4.3 presents
an extension of the expressive power of equation learning neural
networks to atomic functions with singularities, such as division
or logarithm. An extension of the Equation Learner architecture
with copying units is proposed in section 4.4. This approach elimi-
nates the need for an exhaustive search for the optimal number of
hidden layers. Section 4.5 discusses a probabilistic, differentiable
!0 regularization scheme that does not cause parameter shrinkage
during the training process. Section 4.6 summarizes the presented
methods and establishes the link to chapter 5.

Chapter 5 deals with the inclusion of expert- and domain knowl-
edge in equation learning. Strategies for integrating expert knowl-
edge into both the training process and the architecture of the
equation learner are investigated. Section 4.1 motivates the consid-
ered challenges. Section 5.2 presents a method that can incorporate
expert knowledge about allowed or disallowed equation compo-
nents into the neural network architecture. Section 5.3 explores
domain-specific structured sparsity priors, aimed at refining the
search for accurate and straightforward equations. Both methods
are combined in section 5.4 in the informed Equation Learner
(iEQL) to adapt the application to realistic conditions in science
and engineering. Section 5.5 presents several artificial and real-
world engineering experiments in which our system develops
interpretable models with high prediction accuracy. The chapter
ends with a summary of the main results and contributions in
section 5.6.

Chapter 6 is dedicated to quantifying the uncertainty in equation
learning. Inspired by the approach of the automatic statistician,
we use simple yet effective methods of Bayesian deep learning to
develop structured and interpretable uncertainty across various
plausible equations. Section 6.1 focuses on two main aspects of
uncertainty: (i) global uncertainty, which arises from structural
differences between individual equations, and (ii) local uncer-
tainty, which stems from parametric uncertainty within a family
of equations. Section 6.2 provides an overview of related research
in the area of uncertainty quantification and equation learning.
Section 6.3 presents two approaches from a Bayesian perspective
to capture both global and local uncertainty in equation learn-
ing. Section 6.4 demonstrates the application of our method to
two artificially generated ambiguous datasets and two real-world
datasets. The main results and key contributions are summarized
in section 6.5.

Part III provides a summary, conclusion, and an outlook on future
research directions. Section 7.1 delivers a detailed summary of the
thesis’s main contributions, linking them to the initial research

6 Chapter 1 Overview

questions Q1, Q2, and Q3 introduced in section 1.2. The section
concludes by outlining future research directions in section 7.2.

Disclaimer 1.1 Chapter 4 and chapter 5 are based on a preprint
with the following co-author contributions:

M. Werner, A. Junginger, P. Hennig, and G. Martius. “Informed
Equation Learning”. arXiv: 2105.06331 (2021) [84]

Ideas Experiments Analysis Writing
M.Werner 60% 75% 60% 60%
A. Junginger 10% 10% 10% 10%
P.Hennig 5% 5% 10% 10%
G.Martius 25% 10% 20% 20%

Disclaimer 1.2 Chapter 6 is based on the peer-reviewed work-
shop paper with the following co-author contributions:

M. Werner, A. Junginger, P. Hennig, and G. Martius. “Uncer-
tainty in equation learning”.Genetic andEvolutionaryComputation

Conference Companion, GECCO, Workshop Proceedings. 2022 [85]

Ideas Experiments Analysis Writing
M.Werner 65% 80% 75% 70%
A. Junginger 5% 5% 5% 5%
P.Hennig 20% 5% 10% 10%
G.Martius 10% 10% 10% 15%

1.2 Outline 7

List of Publications

Below you will find a list of all publications and patents that I
co-authored during my PhD, whether they are relevant to this
thesis or not.

M. Werner, P. Margaretti, and A. Maciołek. “Drag Force for Asym-
metrically Grafted Colloids in Polymer Solutions”. Frontiers in

Physics (2019) [87]

F.Groß,M.Zelent,A.Gangwar, S.Mamica, P.Gruszecki,M.Werner,
G. Schütz, M. Weigand, E. J. Goering, C. H. Back, M. Krawczyk,
and J. Gräfe. “Phase resolved observation of spin wave modes in
antidot lattices”. Applied Physics Letters (2021) [28]

M. Werner, A. Junginger, P. Hennig, and G. Martius. “Informed
Equation Learning”. arXiv: 2105.06331 (2021) [84]

F. Groß, M. Weigand, A. Gangwar, M. Werner, G. Schütz, E. J.
Goering, C. H. Back, and J. Gräfe. “Imaging magnonic frequency
multiplication in nanostructured antidot lattices”. Phys. Rev. B (1
2022) [27]

M.Werner,A. Junginger, P.Hennig, andG.Martius. “Uncertainty in
equation learning”.Genetic and Evolutionary Computation Conference

Companion, GECCO, Workshop Proceedings. 2022 [85]

Patents:

T. Strauss, M. Werner, A. Junginger, M. Hanselmann, H. Ulmer,
and K. Dormann. “Method and device for training and producing
an artificial neural network”. PatentWO2020193481A1. 2020 [76]

M. Werner, A. Junginger, P. Hennig, G. Martius, and M. Hein.
“Apparatus and method for estimating uncertainties”. Patent
DE102021124928A1. 2023 [86]

Part I

Background & Motivation

Machine Learning Components 2
2.1 Bayesian Inference . . . 11
2.2 Regularized Empirical

Risk 13
2.3 Bayesian Interpretation

of Regularized Empirical
Risk 13

2.4 Deep Neural Networks 14

This chapter provides the theoretical basics of necessary ma-
chine learning components for this thesis. A short introduction to
Bayesian inference is given in section 2.1. Section 2.2 introduces
regularized empirical risk and its Bayesian interpretation is dis-
cussed in section 2.3. An overview of deep neural networks is
given in section 2.4

2.1 Bayesian Inference

This section gives a brief and thus also incomplete introduction to
probabilistic machine learning. It focuses on the necessary concepts
relevant to this work. For a complete treatment of probability
theory and Bayesian statistics please refer to Jaynes [36]

[36] Jaynes (2003), “Probability the-
ory: The logic of science”

and
MacKay [57] [57] MacKay, Mac Kay, et al. (2003),

“Information theory, inference and
learning algorithms”

.

Following the argument of Cox [12]
[12] Cox (1946), “Probability, fre-
quency and reasonable expectation”

, degrees of belief about states
in the world can be mapped onto probabilities if they satisfy
certain consistency rules. Thus, in the context of Bayesian statistics,
probabilities are used to determine degrees of belief of such states
as well as of inferences that are based on such states.

In the context of machine learning, typically, a probabilistic model
describes the relation between observations, here called data (D) ,
and unknown quantities such as model parameters, model struc-
ture, latent variables or predictions at unobserved locations, here
called hypothesis in short ℎ. In general, with the help of Bayes’ rule Bayes’ rule
(e.g. MacKay [57]) the conditional probability given the observa-
tions can be calculated as

?(hypothesis | data)=
?(data | hypothesis)×?(hypothesis)∑

ℎ ?(data | ℎ)?(ℎ)
(2.1)

The initial distribution of the hypothesis is called prior and describes prior
the initial state of believe about the hypotheses before the obser-
vations. The likelihood describes how likely the observations are likelihood
given a particular hypothesis. The conditional probability of equa-
tion (2.1) on the left-hand side is called posterior and is not known posterior
in advance. It describes the state of believe about the hypotheses
after the observations. It can be calculated from known quantities
with the right-hand side of equation (2.1). The evidence, also called evidence
marginal-likelihood, normalizes the posterior. It does not depend
on a specific hypotheses and is thus not relevant to determine the

12 Chapter 2 Machine Learning Components

relative probabilities of different hypotheses. Knowing all those
terms, equation (2.1) can be generally described as

posterior =
likelihood × prior

evidence
.

In the domain of machine learning, hypothesis abstraction is typi-
cally tiered in to two levels, with the model (<) being instantiated
through its parameters (�). Within this framework, Bayesian infer-
ence serves as a fundamental mechanism for updating our belief
about the parameters given new data. The posterior distribution
?(� | D, <) is computed by applying Bayes’ theorem, which re-
lates the posterior to the likelihood ?(D | �, <) and the prior
?(� | <) over the parameters, normalized by the evidence ?(D |<)
as follows

?(� | D, <) =
?(D | �, <) × ?(� | <)

?(D | <)
. (2.2)

This formulation asserts that the updated belief about the parame-
ters (posterior) is proportional to our prior belief adjusted by the
information provided by the observed data (likelihood).

In many practical scenarios, the interest lies in the predictive distri-
bution that is evaluating the posterior distribution of a model < atpredictive distribution
a new set of locations D∗. It is an average of all possible parameter
values, which are weighted by the probability of their posterior

?(D∗ | D, <) =
∫
?(D∗ | �, <)?(� | D, <) d� . (2.3)

Furthermore, the integral of the likelihood of the data given the
parameters, weighted by the prior over the parameters, yields
the model evidence ?(D |<). This model evidence is pivotal for
Bayesian model comparison, as it inherently integrates out the
parameter uncertainty

?(D | <) =
∫
?(D | �, <)?(� | <) d� . (2.4)

When Bayesian inference is employed for model selection ratherBayesian model selection
than parameter estimation, Bayes’ rule is applied to models as
a whole. The posterior probability of a model given the data is
proportional to the product of the likelihood of the data under the
model and the prior probability of the model, normalized by the
evidence of the data

?(< | D) =
?(D | <) × ?(<)

?(D)

The evidence of the data ?(D) is obtained by summing over the
model space, which involves calculating the model evidence for

2.2 Regularized Empirical Risk 13

each model weighted by its prior probability

?(D) =
∑
<
?(D | <)?(<)

In the case of Bayesian model selection it is sufficient to compare
relative posterior probabilities and thus the evidence ?(D) is not
necessary.

2.2 Regularized Empirical Risk

In the domain of machine learning, the performance of a model
is often defined in terms of a loss or risk function and a regular-
ization of the parameters. The regularization typically arises due
to additional constraints or penalties on the model parameters to
prevent overfitting or improve generalization of the model to new,
unseen data. The expected loss, denoted as L, quantifies the cost
associated with the predictions made by the model and the true
data distribution. Machine learning models strive to minimize the
regularized expected loss as part of their learning process. It can be expected loss
expressed as an expectation over the data distributionQ, with the
risk function ; and a regularization 6

L = 6(�) + E3∼Q [;(3, <�)] . (2.5)

However, in practice, the true data distribution is rarely available
due to computational constraints or the impossibility of accessing
the entire data distribution. Thus, computing the expectation
directly is not feasible. As a practical workaround, the expected
loss is approximated by regularized empirical risk, which is the regularized empirical risk
average loss over a dataset D of size |D | with regularization 6

L = 6(�) +
1
|D |

∑
38∈D

;(38 , <�) . (2.6)

The dataset D consists of samples assumed to be independent
and identically distributed (iid.) from the data distribution Q.
The empirical risk is a surrogate for the expected loss, and its
minimization corresponds to training the model to fit the data.

2.3 Bayesian Interpretation of Regularized
Empirical Risk

The Bayesian framework offers an insightful interpretation of
regularized empirical risk through maximum a posteriori (MAP) maximum a posteriori

14 Chapter 2 Machine Learning Components

estimation. Under the assumption of conditionally independent
data samples given the model parameters �. The MAP estimation
aligns closelywith the concept of regularized empirical risk. Taking
the negative logarithm of the posterior distribution a clear corre-
spondence between prior and regularization as well as likelihood
and loss function becomes apparent

L = − ln ?(�) − ln ?(D | �, <) + const. . (2.7)

The term const. represents a constant that ensures normalization
but does not affect the parameter estimation process. In this expres-
sion, the negative log prior, − ln ?(�), serves as the regularization
term1. It incorporates prior knowledge into the model and typi-1: A Gaussian (Laplace) prior on

the parameters corresponds to a !2
(!1) regularization.

cally penalizes complexity, ensuring that the estimates of model
parameters � do not stray too far from the initial beliefs. On the
other hand, the negative log likelihood, − ln ?(D | �, <), relates
to the loss function, quantifying how well the model explains the
observed data.

However, not all loss functions and regularizations can be framed
within this Bayesian interpretation. The negative logarithm of a
probability distribution imposes constraints; for instance, the inte-
gral of the distribution must converge to ensure that it normalizes
to a probability measure. This requirement may not hold for all
forms of loss functions and regularizations. For example the hinge
loss used in support vector machines can not be represented with
a negative log likelihood [68].[68] Rasmussen, Williams, et al.

(2006), “Gaussian processes for ma-
chine learning”

2.4 Deep Neural Networks

Deep Neural Networks, also known as feedforward neural net-
works, constitute a fundamental building block in the field of deep
learning. These networks serve as universal function approxima-
tors 5� : G → H to map a given input x ∈ X ⊆ ℝ3 to a predicted
output y ∈ Y ⊆ ℝ3′ . They are parameterized by a set of parameters
� ∈ ℝ, .

A typical architecture of deep neural networks is a composition of
multiple layers, where each layer consists of a linear transformation
defined by a weight matrix] and a bias vector b. This transfor-
mation is followed by an element-wise non-linear function �. The
combination of a linear mapping and the subsequent non-linear
activation is called hidden layer and is expressed mathematically ashidden layer
follows

h ; = �;(] ;h ;−1 + b;) . (2.8)

2.4 Deep Neural Networks 15

In this context, h ;−1 represents the output of the previous layer or
the input for ; = 1 where ; indexes the layers within the network
or the output for ; = !, where ! is the total number of layers.

The output of these hidden layers can be interpreted as feature
vectors or hidden representations. The non-linear function � is
typically referred to as activation function2

2: typical activation functions e.g.:
sigmoid, ReLU, tanh

.

The design and architecture of neural networks is an area of active
research and is often tailored to specific tasks. The architecture
varies from traditional multi-layer perceptrons [71]

[71] Rosenblatt (1963), “Principles of
neurodynamics. Percetrons and the
theory of brain mchanisms”

(MLP) to more
sophisticated designs such as transformers [82]

[82] Vaswani, Shazeer, Parmar,
Uszkoreit, Jones, Gomez, Kaiser,
and Polosukhin (2017), “Attention
is All you Need”

. Other notable
architectures include convolutional neural networks [49] (CNNs), [49] LeCun, Haffner, Bottou, and

Bengio (1999), “Object Recognition
with Gradient-Based Learning”

which are predominantly utilized in image classification tasks, and
recurrent neural networks [30, 32] (RNNs), which are frequently

[30] Hochreiter and Schmidhuber
(1997), “Long Short-Term Memory”
[32] Hopfield (1982), “Neural net-
works and physical systems with
emergent collective computational
abilities.”

employed for their temporal data processing capabilities. A com-
prehensive exploration of the latest advancements in deep learning
is available in the book “Deep Learning” [26]

[26] Goodfellow, Bengio, and
Courville (2016), “Deep Learning”

.

Symbolic Regression 3
3.1 Introduction 17
3.2 Neural Network Ap-

proach to Equation
Learning 22

3.3 Equation Learning
Neural Networks 23

3.4 Training Equation Learn-
ing Neural Networks . 25

3.5 Model Selection Criteria 29

This chapter introduces symbolic regression and respectively equa-
tion learning in the field of machine learning. Section 3.1 presents
the basics of symbolic regression and section 3.2 summarizes a
differentiable relaxation to symbolic regression called equation
learning that is relevant for this thesis. Section 3.3 then presents
a special neural network architecture that was developed for this
task. Section 3.4 addresses specific training challenges. The chapter
concludes with section 3.5, which outlines the criteria for model
selection.

3.1 Introduction

Learning the governing equations from empirical data in an au-
tomated fashion, is referred to as symbolic regression. As the com-
plexity of the system under consideration increases, the number
of atomic units required to describe it also increases. This leads to
an exponentially growing number of possible equation structures.
Symbolic regression therefore requires efficient search algorithms
to find “good” equations. The definition of a “good” equation is
not well-defined and typically results in a Pareto optimal solution
that trades off accuracy with complexity. As a thread within the
wider area of interpretable AI, it is of increasing importance to ma-
chine learning, whichmostly produces black boxmodels. Symbolic
regression can be divided into three different approaches [9]: [9] Camps-Valls, Gerhardus, Ni-

nad, Varando, Martius, Balaguer-
Ballester, Vinuesa, Diaz, Zanna, and
Runge (2023), “Discovering causal
relations and equations from data”

I Discrete search methods such as genetic algorithms,
I Continuous search methods that deal with a differentiable

relaxation of the discrete problem and
I Inverse mapping of data to plausible equations.

The following discussion is meant to provide a coherent overview
of symbolic regression that has been recently summarized in an
extensive review provided by Camps-Valls et al. [9].

Discrete Search Methods for Symbolic Regression

Discrete search methods for symbolic regression are commonly ad-
dressed with genetic programming [13]

[13] Cramer (1985), “A Representa-
tion for the Adaptive Generation of
Simple Sequential Programs”

, like evolutionary algo-
rithms [41, 48]

[41] Koza (1992), “On the program-
ming of computers bymeans of natu-
ral selection, Genetic Programming,
vol. 1”
[48] Langdon, Poli, McPhee, and
Koza (2008), “Genetic program-
ming: An introduction and tutorial,
with a survey of techniques and ap-
plications”

or other discrete search algorithms. The concept
is based on the use of a search algorithm to identify computer
programs that can solve specific problems. To do this, numerous

18 Chapter 3 Symbolic Regression

random programs are generated iteratively, their performance
evaluated and the most effective ones selected. These selected
programs are then recombined and randomly modified to form a
new pool of candidates. This approach is based on the biological
evolutionary process observed in nature, which shapes the genetic
composition of living organisms. In symbolic regression, the equa-
tions or functions can be formed from combinations and links of
input variables, mathematical operators, elementary functions and
numerical constants. Amajor success was the automated discovery
of natural laws by Schmidt and Lipson [73]. Their method is avail-[73] Schmidt and Lipson (2009),

“Distilling Free-Form Natural Laws
from Experimental Data”

able as online service [16] formerly implemented in a tool called

[16] DataRobot Inc (2024), “Eureqa
as part of DataRobot’s service”

Eureqa [19].

[19] Dubčáková (2011), “Eureqa: soft-
ware review”

Another promising approach that is based on discrete search,
called Feynman AI [80, 81], utilizes domain knowledge in form of

[80] Udrescu, Tan, Feng, Neto, Wu,
and Tegmark (2020), “AI Feynman
2.0: Pareto-optimal symbolic regres-
sion exploiting graph modularity”
[81] Udrescu and Tegmark (2020),
“AI Feynman: A physics-inspired
method for symbolic regression”

proven physical methods, including unit calculations, symmetries
and separability within the dataset. It outperformed Eureqa in a
benchmark involving 100 equations from the Feynman lectures by
successfully recovering all 100 equations, while Eureqa was only
able to recover 71 equations.

Using a unique approach, Deep Symbolic Regression (DSR) [67] em-
[67] Petersen, Larma, Mundhenk,
Santiago, Kim, and Kim (2021),
“Deep symbolic regression: Recover-
ing mathematical expressions from
data via risk-seeking policy gradi-
ents”

ploys deep reinforcement learning to address symbolic regression
as an exploration challenge. The method uses a recurrent neural
network to generate expressions represented as depth graph traver-
sal sequences, where the numerical constants of the expressions are
optimized using the BFGS algorithm. DSR proposes a risk-seeking
policy gradient to target best-case expressions instead of good
expressions on average.

Continuous Space Search as Differentiable Relaxation of
Symbolic Regression

In order to use efficient continuous optimization algorithms, a
dense set of possible functions is searched. This can be achieved by
using a very complex, parameterized function that can represent all
structures of the functions in question. The goal is to find a sparse
representation of this complex function that best fulfills the trade-
off between complexity and accuracy. Thus, both the equation
structure and the values of the parameters can be optimized using
sparsity-inducing methods in continuous space.

If the function of interest can be represented as a sparse linear com-
bination of known building blocks, a method known as SINDy [7][7] Brunton, Proctor, andKutz (2016),

“Discovering governing equations
from data by sparse identification of
nonlinear dynamical systems”

(Sparse Identification of Dynamical Systems) can be applied. It is
an efficient method for analyzing dynamical systems using sparse
linear regression. This approach identifies differential equations
from observed data. A similar concept was previously introduced

3.1 Introduction 19

in the FFX method by McConaghy [63] for the general symbolic [63] McConaghy (2011), “FFX: Fast,
Scalable, Deterministic Symbolic Re-
gression Technology”

regression problem. In SINDy, the input data is processed through
a given library of basis functions and interaction terms to gener-
ate potential features. The linear combination of those features
represents a complex function, which is then refined to a sparse
representation using sparse linear regression techniques on the
observed data, such as !1 regularization (Lasso [78]). [78] Tibshirani (1996), “Regression

shrinkage and selection via the
lasso”The extension of the idea of sparse linear regression to nested

building blocks can be achieved with the help of neural networks.
A notable early example is the Equation Learner (EQL), which was
introduced by Martius and Lampert [62] and extended with the [62] Martius and Lampert (2016),

“Extrapolation and learning equa-
tions”

division operation in the final layer by Sahoo et al. [72]. Thismethod

[72] Sahoo, Lampert, and Martius
(2018), “Learning Equations for Ex-
trapolation and Control”

uses a neural network and replaces its activation functions with
atomic units such as elementary functions. The neural network
itself represents a very complex function. A special regularization
scheme is used to find the sparse equation based on the data.
This method is called equation learning and is the main topic of equation learning
this thesis. More detailed information on the Equation Learner is
provided in the following sections 3.2 – 3.5.

Inverse Mapping of Data to Plausible Equations

The most recent and highly sophisticated and promising approach
to tackle symbolic regression is to learn the inversemapping of data
to plausible equations directly. This is a rather new perspective,
strongly influenced by deep learning and the concept of pre-
training. In contrast to the previous approaches, which treated
each dataset independently, this approach utilizes accumulated
data from various instances of symbolic regression problems. Once
trained, the pre-trained model can quickly solve specific symbolic
regression cases. A first attempt to exploit this concept was the
“Dreamcoder” by Ellis et al. [21]. The Dreamcoder aims to learn a [21] Ellis, Wong, Nye, Sablé-

Meyer, Morales, Hewitt, Cary, Solar-
Lezama, and Tenenbaum (2021),
“DreamCoder: bootstrapping induc-
tive program synthesis with wake-
sleep library learning”

probabilistic mapping of data to mathematical expressions. It has a
simulation program to generate synthetic datasets. The mapping is
learned by combining two kinds of domain knowledge. (1) Explicit
declarative knowledge is built using a library of relevant equation
building blocks and (2) implicit procedural knowledge is learned
as a domain-specific search strategy by a neural network. With
the help of these two kinds of expertise, the system can quickly
suggest potential solutions for new datasets.

A rigorous implementation to solve the inverse mapping using
pre-trained models has been presented by Biggio et al. [3], called [3] Biggio, Bendinelli, Neitz, Lucchi,

and Parascandolo (2021), “Neural
Symbolic Regression that scales”

NeSymReS. The approach is motivated by previous achievements
of large pre-trained neural networks such as [6, 18, 47] based on
the transformer architecture and large datasets. By combining a
set-transformer [50] as encoder and a regular transformer [82] as

20 Chapter 3 Symbolic Regression

Table 3.1: Comparative overview of various symbolic regression methods highlighting their features and constraints.
This table is adapted from Camps-Valls et al. [9] and summarizes the embeddability, scalability, speed, restrictions, and
the required domain knowledge for each method.

Method Embeddable Scaling Speed Restriction Domain Knowledge

Genetic Programming [73] × × Slow For small systems Elementary-functions,
complexity of terms

Feynman AI [80] × × Slow For physical systems in
canonical form

Physics: units,
symmetries

DSR [67] × × Medium Small input dim Training domain

FFX [63], SINDy [7] X X∗ Blazing Needs known library Training domain

EQL [72] X X Slow base functions limited,
sometimes less concise

Elementary-functions,
complexities

NeSymReS [3] × × Fast Small input dim Training set

∗ It scales well to large output sizes; for high-dimensional input strong structural assumptions are required.

decoder, a pre-trained model could be learned from a very large
set of synthetic equation-dataset pairs. It can process an entire
dataset as input and directly outputs possible equation structures.
The constant placeholders are then optimized with BFGS. Neither
a search strategy nor a library of building blocks is necessary. Only
a set of tokens, including input variables, elementary functions,
mathematical operators, and constant placeholders, is required for
this process.

3.1.1 Challenges in Symbolic Regression

This section discusses key aspects such as scaling, embeddability,
speed, and domain knowledge that symbolic regression and its
various methods encounter. A summary of the main aspects for
the methods discussed previously is presented in table 3.1.

Scaling Symbolic regression is usually applied to small-scale
problems. Here we discuss its applicability to more intricate sys-
tems that require larger or more complex equations. This includes
the challenge of efficiently navigating the hypothesis space of
equation structures, which grows exponentially with increasing
equation size. Genetic algorithms are generally suitable for small-
scale problems, where the target function is relatively simple.
Although they are basically designed for exponentially growing
hypothesis spaces, their effectiveness decreases when applied to
complex systems. Methods such as FFX/SINDy require a compre-
hensive library of building blocks.Without additional assumptions
and restrictions, the number of potential building blocks increases
exponentially with system complexity, as these building blocks

3.1 Introduction 21

are also derived combinatorially from atomic units. In contrast,
the EQL method utilizes advances in machine learning, which
enables effective scaling to a large number of parameters and large
amounts of data. It uses gradient descent and can therefore process
all equation components simultaneously.
In chapter 4 we extend the expressivity of the Equation Learner to
atomic functions with singularities, such as logarithm or division,
and introduce methods to stabilize training and improve sparsity
inducing optimization [84]. [84]Werner, Junginger, Hennig, and

Martius (2021), “Informed Equation
Learning”

Embeddability It is intriguing to embed symbolic regression
into larger computational frameworks or deep learning systems
to address the lack of interpretability often associated with these
models. Especially for deep learning systems, differentiability
is crucial for end-to-end system training. Therefore, methods
such as FFX/SINDy and EQL are particularly well suited for
integration into more comprehensive frameworks. For example,
Champion et al. [10], have shown how SINDy can be combinedwith [10] Champion, Lusch, Kutz, and

Brunton (2019), “Data-driven discov-
ery of coordinates and governing
equations”

a deep autoencoder to effectively learn both an effective coordinate
system and the corresponding sparse governing equations of a
system. Furthermore, the Equation Learner (EQL) model proves
to be highly adaptable for integration into larger deep learning
architectures. This adaptability is beneficial for applications such
as the discovery of partial differential equations (PDEs) [53], or [53] Long, Lu, and Dong (2019),

“PDE-Net 2.0: Learning PDEs from
data with a numeric-symbolic hy-
brid deep network”

for integration with convolutional networks to extract and process
digits for arithmetic tasks onMNIST [38]. In addition, Lin et al. [51]

[38] Kim, Lu, Mukherjee, Gilbert,
Jing, Čeperić, and Soljačić (2020),
“Integration of neural network-
based symbolic regression in deep
learning for scientific discovery”
[51] Lin, Martius, and Oettel (2020),
“Analytical classical density func-
tionals from an equation learning
network”

highlights the integration of EQL for modeling energy functions
based on dynamic observations in the field of density functional
theory.

Speed The speed comparison in this paragraph refers to the
performance per computing time and is based on the results of
Biggio et al. [3]. This is a relevant quantity for the practitioner.
Symbolic regression is an NP-hard problem [83]. We therefore

[83] Virgolin and Pissis (2022),
“Symbolic Regression is NP-hard”refrain from comparing the time needed to find the global opti-

mum. NeSymReS is very fast in finding suitable equations. The
model can learn a suitable prior through pre-training and apply
it during test time. Classical genetic programming and DSR are
considerably slower, but approach the speed of NeSymReS with
longer computing times. In contrast, EQL is expected to be the
slowest method on small-scale problems due to extended training
periods. SINDy/FFX is excluded from this comparison because it
relies on a library of predefined building blocks. However, if this
condition is met, these kinds of methods are typically the fastest.

22 Chapter 3 Symbolic Regression

Domain Knowledge Expert knowledge is essential for symbolic
regression, as it is readily available across various domains of
application. The selection of equation structures often depends
on the domain, with certain structures being more plausible than
others. As such, integrating domain knowledge into symbolic
regression is a rapidly growing field of interest. This integration
typically involves choosing relevant atomic units and tailoring
their frequency or domain-specific complexity. Genetic algorithms
offer the flexibility to select and modify these properties intu-
itively. More advanced types of domain knowledge might include
specific functional forms and their derivatives [44] or axiomatic[44] Kronberger, Franca, Burlacu,

Haider, and Kommenda (2021),
“Shape-Constrained Symbolic Re-
gression—Improving Extrapolation
with Prior Knowledge”

constraints [11]. In the FFX/SINDy framework, domain knowledge

[11] Cornelio, Dash, Austel, Joseph-
son, Goncalves, Clarkson, Megiddo,
Khadir, and Horesh (2023), “Com-
bining data and theory for deriv-
able scientific discovery with AI-
Descartes”

can be integrated by defining the building blocks within the library
and adjusting the optimization through weighted sparsity regu-
larization. NeSymReS allows for the customization of the training
dataset to implement domain knowledge, though this method has
not been extensively explored or developed.

Incorporating expert knowledge into Equation Learning presents
several challenges, notably maintaining differentiability for
gradient-based methods and ensuring convergence in sparse
optimization. In chapter 5, we propose methods for integrating
expert knowledge effectively within the EQL framework. To this
end, in section 4.3 we extend the expressivity of the EQL with
a suitable relaxation for functions with divergences, which ex-
pands the selection of potential elementary functions available
for domain-specific applications. Additionally, in section 5.2, we
illustrate how the “copy units” introduced in section 4.4 serve
to exclude domain-specific combinations of functions from the
EQL architecture. Section 5.3 discusses how the application of a
user-defined weighted !0 regularization can influence the relative
frequency of atomic unit utilization.

3.2 Neural Network Approach to Equation
Learning

This thesis focuses on the EQL approach as a differentiable relax-
ation of symbolic regression, called equation learning. It is supposed
to infer a parametric, differentiable function f) , which maps 3-
dimensional input x to 3′-dimensional output y, represented as

y8 = f)(x 8) + & . (3.1)

The desired mathematical expressions are compositions of atomic
units consisting of a set of atomic functions { 58}8≤� and a set of
atomic operations that connect the single functions. The former
can be, e.g., functions like {sin, sqrt, log, . . . } and they can be

3.3 Equation Learning Neural Networks 23

connected by operations such as {±, ∗, /, ◦, . . . }. The space of all
possible equation structures given a set of atomic units is called
hypothesis space. The complexity and size of this hypothesis space hypothesis space
grows exponentially with each additional atomic unit introduced
into an equation. Distinct from traditional symbolic regression, the
structure of f) and its parameters are inferred through sparsity
inducing, gradient-based optimization within a neural network.

Conventional symbolic regression frameworks typically presup-
pose the absence of noise in their datasets. However, in practical noisy measurements
settings, the presence of noise (&) is an inevitable aspect of data
collection. To address this, the proposed framework incorporates
an explicit noise term &, which acknowledges the stochastic na-
ture of real-world data. The dataset D = (^ ,_) is assumed to be
independent and identically distributed (iid.), and it contains |D |
datapoints.

Furthermore, from a Bayesian point of view, an accuracy measure
can be derived from the noise distribution. For example, with
isotropic Gaussian noise & ∼ N (0, �2), with variance �2. The log-
likelihood corresponds to an isotropic Gaussian distribution. Thus,
the negative log-likelihood leads to the mean squared error (MSE) as
an accuracy measure

LD =
1

2�2 |D |
∑

(x 8 ,y8)∈D
‖y8 − f)(x 8)‖22 . (3.2)

The following section examines how to construct such equation
learning neural networks.

3.3 Equation Learning Neural Networks

This section introduces a generic method using deep neural
networks, named Equation Learner EQL [62, 72], to tackle equa- [62] Martius and Lampert (2016),

“Extrapolation and learning equa-
tions”
[72] Sahoo, Lampert, and Martius
(2018), “Learning Equations for Ex-
trapolation and Control”

tion learning. They replace standard activation functions in
a multi-layer feed-forward neural network with atomic units
(sin, cos, identity, ∗) and a Lasso regularization [78]. In principle,

[78] Tibshirani (1996), “Regression
shrinkage and selection via the
lasso”

this approach can be extended to all continuously differentiable
functions with unbounded domains. The neural network itself rep-

continuously differentiable func-
tions

resents the set of all considered equations of the hypothesis space
within its architecture. During training irrelevant parts are omitted,
leading to the convergence towards a sparse representation that
represents the learned equation itself. This design allows seamless
integration into larger neural network frameworks enabling full
end-to-end training.

24 Chapter 3 Symbolic Regression

Figure 3.1: This figure shows the
architecture of EQL÷ with three
hidden layers h. It has a three-
dimensional input ℝ3 and a two-
dimensional output ℝ2. The first
two layers apply trigonometric func-
tions (sin, cos), muliplication (∗) and
the identity operation (83)with three
nodes per atomic unit. The last hid-
den layer h3 applies two division
units. This is a generic framework
and its number of layers !, the num-
ber of atomic units as well as the
choice of atomic units can be ad-
justed accordingly.

G1

G2

G3

H1

H2

b1 b2 b3

id

sin

cos

∗

id

sin

cos

∗

/

H1

H2

input outputh1 h2 h3] 1] 2] 3

The architecture consists of ! layers, which is also the maximum
number of possible function compositions. Each hidden layer
applies a non-linear transformation, which consists of D unary
atomic units 58≤D : ℝ→ ℝ and E binary atomic units 69≤E : ℝ2 →
ℝ. The latter can be, e.g. division 0/1 or multiplication 0 · 1. These
hidden layers can be similarly expressed as equation (2.8)

z ; =] ;h ;−1 + b; (3.3)

h ; = (51(I ;1), .., 5D(I ;D), 61(ID+1 , ID+2), . . .). (3.4)

The atomic unit 83 is of particular importance. It enables theidentity units
network to pass on learned features from previous layers to in-
termediate layers. Without these units, each hidden layer adds a
nesting to the equation. This property is discussed in more detail
in the context of copy units in section 4.4. The EQL architecture by
Martius and Lampert considered ! − 1 hidden layers with atomic
units. The last layer ! is a linear combination of all learned features
(output = z! =] !h!−1 + b!). and the input is represented by the
zeroth layer (input = h0 . This approach does not include common
atomic units, such as division or logarithms, which are charac-
terized by a half-bounded domain or by a singularity. This is adivision units
significant limitation of the original EQL framework. The addition
of division units to the equation learning neural network intro-
duced by Sahoo et al. [72] is a significant enhancement designed
to model equations with division operations and is crucial for ac-
curately representing physical systems that often include division
units. The proposed architecture is called EQL÷. It modifies the
traditional EQL network structure by incorporating division units
in the output layer. In this case the last layer ! is given by division
units

output = h! =
(
I!1/I!2 , I

!
1/I!2 , . . .

)
. (3.5)

The proposed algorithm uses a hard-coded curriculum, which
depends on the number of epochs itself outlined in equation (3.7).
This poses a significant challenge when adapting to new datasets

3.4 Training Equation Learning Neural Networks 25

with different sample sizes fromdifferent systems. Figure 3.1 shows
a possible architecture of the EQL÷ with three hidden layers. The
network has a three-dimensional input ℝ3 and a two-dimensional
output ℝ2. The first two layers apply trigonometric functions
(sin, cos), multiplication (∗) and the identity operation (83) with
three nodes per atomic unit. The last hidden layer h3 applies two
division units to map onto the correct output dimension. Identity
mappings enable the network to learn equations that posses fewer
nonlinear units than the network’s overall depth. As discussed, the
number of layers !, the number of atomic units and the choice of
atomic units can be adjusted according to the dataset.

3.4 Training Equation Learning Neural Networks

Continuous, gradient based optimization of an equation learning
neural network with division units is not trivial. It can break down
due to two primary issues: First, the cascading transformation of
intermediate results within a deep architecture may map values
outside of the restricted input domains1. Second, singularities 1: Applying domain-limiting map-

ping functions, suchas softplus,may
seam feasible to address this issue,
but it is suboptimal since it can sig-
nificantly alter the final symbolic
equation.

present in the atomic units or their derivative can induce exces-
sively large gradient values, thereby rendering optimization highly
unstable.

This section gives a brief introduction of the necessary methods
to train EQL÷ with division units introduced by Sahoo et al. For a
detailed discussion please read “Learning Equations for Extrapo-
lation and Control” [72]. [72] Sahoo, Lampert, and Martius

(2018), “Learning Equations for Ex-
trapolation and Control”

3.4.1 Regularized Division

The architecture’s primary challenge is handling potential discon-
tinuities and infinite values when the divisor approaches zero.
Therefor a regularized division-activation function div)(0, 1) is
defined as

div)(0, 1) B

{
0
1 if 1 >)

0 otherwise
(3.6)

The parameter) > 0 is a predefined threshold that progressively
relaxes the regularization of the division operation during training.
If the denominator is smaller than the threshold value, the gradient
is also zero. Initially, a high threshold) is used to avoid steep
gradients and to ensure numerical stability. As training progresses,
) is gradually decreased according to a predefined curriculum curriculum

)(C) =
1√
C + 1

. (3.7)

26 Chapter 3 Symbolic Regression

This approach allows the network to start with a simpler, more
regularized version of division, and gradually moves towards the
true division operation as it learns the underlying structure of
the data. This curriculum facilitates stable learning and helps the
network to converge to meaningful solutions that can generalize
well beyond the training set.

3.4.2 Penalty Term

To discourage the network from producing negative or very small
denominators, a domain penalty term is introduced. This term
penalizes prohibited inputs to each division unit, which diverts
the optimization process from undesirable regions. The penalty
term for a denominator 1 is defined as

?)(1) B max() − 1, 0) . (3.8)

All denominator values (1) that are smaller than) are penalized.
Aggregating these penalties across all division units in the network
forms a global domain penalty term L).

3.4.3 Penalty Epochs

Penalty epochs are a specific training phase that is introduced at
regular intervals to further enforce constraints on the network’s
output in the final test domain. During a penalty epoch, # in-
put datapoints are randomly sampled within the anticipated test
range2, but are not associated with output labels. To ensure that2: the test range can include unseen

extrapolation regions the network’s predictions do not deviate significantly from ob-
served magnitudes, a bound penalty term Lbound is introduced. Itbound penalty
penalizes overly large output values of the network, thus reduces
the risk of overfitting to the training data33: e.g. learning a polynomial of too

high degree

Lbound =
#∑
8=1
‖max(| f)(x 8)| − �, 0)‖1 . (3.9)

The upper limit of acceptable output magnitudes � is typically
set based on the observed data. All predicted values that are
outside of the 3′ dimensional cube of range � are penalized. The
network is then trained using a specific penalty loss term that is a
superposition of the penalty term L) to avoid generating negative
denominators in the test domain and the bound penalty term
Lbound given by

Lpenalty = �L) + �Lbound . (3.10)

3.4 Training Equation Learning Neural Networks 27

? = 1
2

? = 1 ? = 2 ? = ∞

Figure 3.2: The figure illustrates contours of the regularization term given in equation (3.11), for the parameter values
? ∈ {1/2, 1, 2,∞} from left to right.

The weighting parameters �, � are hyperparameters that can be
adjusted accordingly to the dataset.

3.4.4 Regression with Sparsity Regularization

The goal of the equation learning neural network is to achieve
a sparse representation that is the desired, simple and accurate
equation. Common regularization techniques employed to attain
sparsity include !2 (ridge), !1 (lasso) and !0 regularization given
by

L?c = ‖)‖?? =
|) |∑
8=1
|�8 |? . (3.11)

Here, Lc, refers to complexity loss function. The total number of
parameters in the network is given by |) |. Figure 3.2 illustrates
contours for different parameters ? for equation (3.11). The !0
regularization is particularlynotable, as it provides adirectmeasure
of model complexity by counting the non-zero parameters. It is
not directly applicable in gradient-based optimization since it is
not differentiable. This issue is discussed in section 4.5. A simple
sketch outlined in figure 3.3 illustrates a mean squared error
optimization under !2 , !1 and !0 regularization. Readers can refer
to the work by Bishop ([4], chapter 3) for more information on [4] Bishop (2006), “Pattern recogni-

tion and machine learning”regularized least squares. It emerges that the !2 regularization
leads to overall small parameters, but does not induce sparsity.
Conversely, !1 regularization encourages sparsity, which can be
particularly beneficial for model interpretability and efficiency of
the retrieved equation. Nevertheless, the sparse lasso optimization
results in a consistent underestimation of the parameter values
due to its inherent compromise between minimizing the accuracy
loss and the regularization term. The equation for regression with
a mean squared error as data loss LD and sparsity regularization
L?c is expressed as

L =
1
|D |

∑
(x 8 ,y8)∈D

‖y8 − f)(x 8)‖22 + �‖)‖?? . (3.12)

28 Chapter 3 Symbolic Regression

�1

�2 data loss!2
�∗

(a) !2 regularization

�1

�2 data loss!1 �∗

(b) !1 regularization

�1

�2 data loss!0 �∗

(c) !0 regularization

Figure 3.3: The figure illustrates the contours of the sparsity inducing loss function given in equation (3.12) for three
different sparsity regularizations {!2 , !1 , !0} from left to right. It is a linear combination of the quadratic data loss and a
sparsity regularization !? .

Contour plots for different sparsity regularizations are shown
in figure 3.3. In this equation � represents the regularization
strength, balancing the trade-off between the model’s accuracy
and its complexity. Larger values of � prioritize sparsity at the
potential expense of model accuracy. This balance is crucial for
achieving optimal solutions that are both accurate and simple and
facilitate interpretation and generalization.

3.4.5 Trainingphases

The objective to train an equation learning neural network is split
in three relevant loss components, namely data lossLD, complexity
loss Lc and penalty loss L) given by

L = LD + �Lc + �L) . (3.13)

The strength of the complexity loss � is an important parameter
to control the sparsity of the retrieved equations. The weighting
of the penalty term � depends on the network’s architecture itself
and is an important hyperparameter to reduce instabilities related
to the division units.

The training procedure is split in three training phases as pro-
posed by Martius and Lampert [62] to address the challenges in
sparse optimization of equation learning networks like a consistent
underestimation of the parameter values and local minima.

In the initial training phase (C < C1), complexity regularization isinitial training phase
not applied (� = 0), so that the network parameters can adjust
freely and settle at appropriate initial values. This lack of con-
straints is essential to avoid early convergence towards suboptimal
solutions.

This is followed by a intermediate training phase (C1 < C < C2)intermediate training phase
with regularization (� > 0) to promote sparse network structures.

3.5 Model Selection Criteria 29

This step is crucial to reduce the risk of overfitting and lead the
model to simpler, more interpretable solutions while preserving
the necessary details.

In the final training phase (C > C2), the focus shifts to optimizing final training phase
the identified sparse representation, but without regularization
(� = 0). This approach addresses the challenges of underestimated
parameter values and minor fluctuations of parameter values
around zero. It explicitly masks all parameters with negligible
magnitude to zero4 and excludes them from further optimization 4: for instance,

setting � = 0 if |� |< 0.001in subsequent epochs. This decision is designed to maintain the
network’s focus on the most relevant features identified during
the previous phase, thereby reinforcing a sparse yet effective
representation.

3.5 Model Selection Criteria

In machine learning, models are typically selected based on the
validation error that is evaluated on an interpolation datasetDvalid

int
from the same data domain as the training dataset Dtrain. The
interpolation error for the root mean squared error RMSE is thus interpolation error
given by

�int
[
f)

]
=
√

1
"

∑
(x 8 ,y8)∈Dvalid

int

‖y8 − f)(x 8)‖2 , "= |Dvalid
int | (3.14)

It has the draw back, that while effective in fitting data, it can lead
to overfitted models that are difficult to interpret and generalize
poorly to new data. This selection criterion Vint is defined as
follows

Vint = arg min
f ∗)∈{ f)}

[
�int[f ∗)]

]
. (3.15)

In the context of equation learning the model selection must en-
sure both accuracy and generalizability of the equation. Especially
when extending the prediction to unseen areas, the equation must
extrapolate reliably. Traditionally, in equation learning, models are
selected based on a balance between validation error and model
complexity, guided by the principle of Occam’s razor. Where op-
timal models maintain simplicity while ensuring an adequate
accuracy. This leads to Pareto optimal solutions. They form the
Pareto front that is a central tool in understanding the trade-offs
between different objectives, here accuracy and simplicity. Simplic-
ity is commonly quantified by the number of active parameters
B[f)] = ‖)‖0. In this context, the simplicity is described by the
!0 regularization5

5: The interpretation of complex-
ity in the field of equation learning
is not well-defined; it ranges from
the simple counting of atomic units
to the application of more sophisti-
cated complexity measures.. A model’s position on the Pareto front indicates

that no other model can outperform it in one objective without

30 Chapter 3 Symbolic Regression

degrading performance in another. This embodies the essence of
multi-objective optimization. Sahoo et al. [72] propose a novel
selection criterion Vint-S based on a normalized interpolation
validation error �̃int[5)] and a normalized sparsity measure B̃[5)],
given by

Vint-S = arg min
f ∗)∈{ f)}

[
 �̃2

int[f
∗
)] + � B̃2[f ∗)]

]
, (3.16)

where and � are coefficients that weight the relative impor-
tance of accuracy and simplicity6. Here, both validation error �int6: Sahoo et al. [72] demonstrate that

equal coefficients = � yield favor-
able results.

and sparsity measure B are normalized to [0, 1] across all found
equations { f)}.

In the event that some extrapolationdatapointsDvalid
ex are accessible,

the extrapolation error can be calculated, defined here as an exampleextrapolation error
for the RMSE as

�ex
[
f)

]
=
√

1
"

∑
(x 8 ,y8)∈Dvalid

ex

‖y8 − f)(x 8)‖2 , "= |Dvalid
ex | . (3.17)

Sahoo et al. [72] empirically show that the complexity measure
in equation (3.16) can be replaced by a normalized extrapolation
error due to the additional data from the extrapolation domain

Vint&ex = arg min
f ∗)∈{ f)}

[
 �̃2

int[f
∗
)] + � �̃2

ex[f
∗
)]

]
. (3.18)

In this framework, the coefficients and � balance the significance
of accuracy within the domains of interpolation and extrapolation7.7: Sahoo et al. [72] demonstrate that

equal values for the parameters =
� yield favorable results.

This approach ensures that the selected models are both simple
and accurate in the domain of interpolation, while maintaining
their predictive capabilities in the area of extrapolation.

To obtain a Pareto front that reflects the spectrum of optimal equa-
tions representing the trade-off between complexity and accuracy,
Martius and Lampert [62] recommends training equation learning
neural networks by changing the strength of regularization and
the number of hidden layers.

To provide a concrete understanding, an example of an equationexample selection process
selection process with the Vint&ex selection criterion is shown
in figure 3.4. Figure 3.4(a) shows the RMSE in relation to the
complexity of different equations. The groundtruth equation is

H = (1 − G2
2)/(sin(2� G1) + 1.5) . (3.19)

The Pareto front in figure 3.4(a) shows an optimal validation
error of 0.01, which corresponds to the noise level of the data8

8: The training dataset consists of
104 randomly sampled datapoints
from [−1, 1]4. For the validation
dataset 10% of the training dataset is
used. The datapoints are corrupted
with standard normal noise of stan-
dard deviation 0.01.

.
To underscore the importance of the equation selection process,

3.5 Model Selection Criteria 31

10 30 100
10−2

10−1

complexity

RM
SE

validation

(a) pareto front

−2 −1 0 1 2
−2

−1

0

1

2

G1 = G2 = G3 = G4 = G

H

gt eq-1
s.eq eq-2

(b) equations

Figure 3.4: The left panel shows a pareto front of equations. Each point corresponds to an independent run of the iEQL
with a different complexity regularization. The right panel displays a slice through the input space of equation (3.19). The
blue shading indicates the train domain [−1, 1]4. The thick line is the ground truth (gt) given by equation (3.19). The
selected equation (dotted line, s.eq) was determined with the Vint&ex selection criterion. Additionally, a too simple
(dashdotted line, eq-1) and a too complex equation (dashed line, eq-2) are plotted for comparison.

the selected equation is compared with less complex and more
complex alternatives on the test domain [−2, 2]4 in figure 3.4(b). It
demonstrates the potential pitfalls of improper model selection:
overly simplistic equations are tempting for their clarity. However,
they may fall short in validation and extrapolation performance.
Conversely, too complex equations might align with the noise level
of the validation data, but fail to extrapolate. In this example, the
selection criterionVint&ex successfully identified an equationwith
sufficient complexity that extrapolates. It highlights the critical
balance between complexity of the equation and the accuracy of
the predictions.

Part II

Informed Equation Learning

Enhancing Expressivity and
Training Stability of the Equation

Learner 4
4.1 Motivation 35
4.2 Related Work 36
4.3 Atomic Functions with

Singularities 37
4.4 Feature Reuse with

Copy Units 40
4.5 Avoiding Parameter

Shrinkage Through !0
Regularization 42

4.6 Conclusion 43

A large expressivity of an equation learner is desirable to apply it
to a broad variety of datasets and scale it to real-world applications.
This chapter addresses the research question “How to broaden the

expressivity of equation learning neural networks and train them effi-

ciently?”. Section 4.2 provides a comprehensive overview of related
literature. In section 4.3, we introduce a robust framework to train
equation learning neural networks with atomic units that exhibit
singularities or operate on a restricted domain. Section 4.4 proposes
copy units, an approach to avoid scanning different numbers of
hidden layers when retrieving the Pareto front. Finally, section 4.5
discusses the adoption of an !0 regularization scheme that does not
cause parameter shrinkage during the training process. Section 4.6
provides the conclusion of the methods introduced and connects
them to the subsequent chapter, which explores the integration of
domain and expert knowledge within our framework of equation
learning.

4.1 Motivation

The equation learner (EQL) is well-suited for handling large-scale atomic units with singularities
problems. However, it faces challenges when dealing with equa-
tions that involve standard mathematical operations, such as log-
arithms, square roots or divisions. The singularities associated
with these operations induce instabilities during training due to
unbounded gradient values. These instabilities are further com-
pounded in deep architectures, as cascading transformations can
render certain functions, such as logarithms and square roots,
inapplicable due to their restricted domains, which can lead to
training collapse. Moreover, successful training on the training
domain does not guarantee the avoidance of singularities in rel-
evant extrapolation domains. Singularities may only be shifted
to regions that are not covered by the training data. A common
method in deep learning to solve the first issue is to applying
domain-limiting mapping functions, such as softplus1. This is not 1: softplus = log(1 + eG)
a suitable solution for equation learning, since it compromises the
final symbolic equation with additional expressions. It enforces
to use singular functions alongside the domain-limiting mapping
function2. 2: e.g. log(softplus(G))

Previous attempts to integrate division into the equation learner
framework, such as the EQL÷ by Sahoo et al. [72], have been limited

36 Chapter 4 Enhancing Expressivity and Training Stability of the Equation Learner

to including division units only in the final layer and require a
predefined training sequence. In contrast, our work introduces a
comprehensive and robust training method for handling atomic
units with singularities in all layers. This approach not only takes
into account the constraints associated with different datasets, but
also replaces the predefined training sequence with a learnable
parameter to facilitate the application.

In order to obtain a Pareto front that reflects the spectrumof optimal
equations, it is common to train multiple equation learning neural
networks with differing numbers of hidden layers. Each network
configuration typically requires auniquenumber of training epochs
to ensure convergence. Section 4.4 introduces the concept of copy
units, which simplifies this training process. Copy units allow forcopy units
the simultaneous training of various network architectures using
the same number of epochs and removing the need for extensive
grid searches over the number of hidden layers. This method favors
simpler and more efficient network architectures.

The traditional EQL architecture suffers from parameter shrinkage
due to the !1 sparsity regularization. To address this challenge, an
additional final training phase is necessary without regularization
and a masked structure to avoid the shrinkage. In section 4.5 we
propose to use !0 regularization, which does not shrink theweights!0 regularization
during training and allows to naturally align a domain specific
complexity measure with the regularization. This approach differs
from the usual !1 regularization in that no final training phase
of the identified sparse representation is necessary. However, a
probabilistic optimization scheme is required for this approach.

4.2 Related Work

This section summarizes previous research and developments.

Equation learning is commonly addressed in the context of sym-
bolic regression with genetic programming and evolutionary algo-
rithms [41, 48, 64, 75]. Amajor successwas the automated discovery
of natural laws by Schmidt and Lipson [19, 73]

[19] Dubčáková (2011), “Eureqa: soft-
ware review”
[73] Schmidt and Lipson (2009),
“Distilling Free-Form Natural Laws
from Experimental Data”

. Such transparent
models are becoming increasingly important as a complement to
the predominant black-box models in the field of machine learn-
ing Zaremba et.al. [89] show how to apply n-gram models and
recurrent neural networks to guide a tree search for efficient math-
ematical identities. Kusner et.al. [45]

[45] Kusner, Paige, and Hernández-
Lobato (2017), “Grammar varia-
tional autoencoder”

use Bayesian optimization to
search for equations in the latent space of a variational autoencoder
with a prior on mathematical constraints. Lample et.al. [47]

[47] Lample and Charton (2020),
“Deep Learning For Symbolic Math-
ematics”

use
seq2seq transformers to solve mathematical integration and ODEs.
Biggio et.al. [3]

[3] Biggio, Bendinelli, Neitz, Lucchi,
and Parascandolo (2021), “Neural
Symbolic Regression that scales” apply set-transformers trained on an unbounded set

4.3 Atomic Functions with Singularities 37

of equation-dataset pairs to guide the search. Inspired by Physics,
Udrescu et.al. [80, 81] exploit symmetries and separability in the [80] Udrescu, Tan, Feng, Neto, Wu,

and Tegmark (2020), “AI Feynman
2.0: Pareto-optimal symbolic regres-
sion exploiting graph modularity”
[81] Udrescu and Tegmark (2020),
“AI Feynman: A physics-inspired
method for symbolic regression”

dataset to enhance the search. Other approaches use gradient
information about the learned expression during training. This
was addressed in a reinforcement learning formulation by Petersen
et.al. [67] via risk-seeking policy gradients. Adifferent, yet powerful

[67] Petersen, Larma, Mundhenk,
Santiago, Kim, and Kim (2021),
“Deep symbolic regression: Recover-
ing mathematical expressions from
data via risk-seeking policy gradi-
ents”

approach that exploits gradient information are equation learning
neural networks (EQL) first introduced by GeorgMartius et.al. [62]

[62] Martius and Lampert (2016),
“Extrapolation and learning equa-
tions”

and extended to division by Sahoo et.al. [72]

[72] Sahoo, Lampert, and Martius
(2018), “Learning Equations for Ex-
trapolation and Control”

. They represent a
complex equation within their architecture, with different kinds of
activation functions (e.g. {cos, sin, ∗, /, . . . }) in each hidden layer.
During training, irrelevant parts are omitted and neural network
converges to a sparse representation that is the wanted equation
itself. Its design allows to integrate the EQL within larger neural
network architectures and train them end-to-end. Kim et.al. [38]
integrate it within other deep learning frameworks for scientific
discovery. Long et.al. [53] apply it to solve differential equations
and Lin et.al. [51] obtain analytical expressions of classical free [51] Lin, Martius, and Oettel (2020),

“Analytical classical density func-
tionals from an equation learning
network”

energy functionals.

4.3 Atomic Functions with Singularities

We present a robust framework designed to train equation learning
neural networkswith atomic units that have singularities or operate
within a half-bounded domain. Our algorithm is designed for
atomic function with singularities 5 : D → ℝ. Typically, such
singular functions have support on a half-bounded domain D ≡
(0,∞) exhibiting a singularity at 03. It also applies to division 3: e.g. log : (0,∞)→ ℝ with a sin-

gularity at 0 = 02/3 under the assumption that real systems do not diverge in the
domain of application. It is sufficient to only consider the positive
branch of the hyperbola 1/3 and let 2 choose the sign.

4.3.1 Learnable Relaxation

Cascading transformations of intermediate results in the deep
architecture of theEQL canproject values outside of the constrained
input domains of singular functions. Therefore, the domain D of
singular functions is continuously extended toℝ to avoid forbidden
inputs during training. Formally, we redefine the singular function
5 (I) as follows

5̂ (I) =

{
5 (I), for I > 0,

0, for I ≤ 0 . (4.1)

This reformulation extends equation (3.6) to functions with singu-
larities. Still, training can be corrupted by unconstrained values

38 Chapter 4 Enhancing Expressivity and Training Stability of the Equation Learner

−1 0 1 2 3 4 5
0
2
4
6
8

I

5 = 1/I
 = 0.10
 = 0.36
 = 0.56
 = 1.00

(a) 5 (I) = 1/I

−1 0 1 2 3 4 5
−4

−2

0

2

I

5 = log I
 = 0.10
 = 0.36
 = 0.56
 = 1.00

(b) 5 (I) = log I

−1 0 1 2 3 4 5
0

1

2

3

I

%I 5 =%I
√
I

 = 0.10
 = 0.36
 = 1.00
 = 5.00

(c) 5 (I) = %I
√
I

Figure 4.1: The left figure (a) shows the relaxation of the division operation. The middle figure (b) shows the relaxation of
the logarithm function and the left figure (c) shows the relaxation of the derivative of the squareroot function for different
values of from equation (4.2).

and exploding gradients in the neighborhood of the singularities.
Therefore, we propose a learnable relaxation of the singular units
that does not compromise the final symbolic equation. To counter-
act these issues, we propose a learnable relaxation of the singular
functions that does not compromise the final symbolic equation. It
is shown in figure 4.1 for the logarithm, division and the derivative
of the square root function. It involves a shift in the input Î = I + ,
where > 0 is a learnable positive relaxation-parameter4 that4: The choice of reparametrization

is not unique. Choices like =
log(1 + 4 ̂) or = 4 ̂ are possible.

can be optimized alongside all other network parameters using
gradient-based methods. Thus, the function with the proposed
relaxation is

5̂ (Î) =

{
5 (I +), for I > 0,

0, for I ≤ 0 . (4.2)

This adjustment ensures that the affine transformation, I = , ℎ+1,
incorporates the relaxation parameter within its bias 1without al-
tering the fundamental structure of the final equation. This method
assures a bounded maximum � ≥ 0 of the absolute function and
gradient values in the neighborhoodod of the singularity. It sig-
nificantly reduces the risk of training instability and in contrast to
Sahoo et al. [72] does not rely on a predefined threshold).

4.3.2 Domain Penalty

During training, an additional domain penalty lossLsf is necessary
to constrain the solution space of the EQL to networks that respect
the domain D of all its singular functions { 5D(ID)} B SF , within
the network.
For each singular function a structured penalty term ensures that
during training, the network configurations remain within the
bounds of the function domain, thereby avoiding inputs that could
lead to undefined behavior in singular functions. It aligns with

4.3 Atomic Functions with Singularities 39

equation (3.8) and is given by

Lu
sf(I

D
8) =

{
0, for ID8 > 0,

|0 − ID8 |, for ID8 ≤ 0 .

The domain penalty loss is the sum over all structured penalty
terms and given by

Lsf =
1
#

#∑
8=1

∑
D∈SF

Lu
sf(I

D
8) . (4.3)

The number of datapoints is denoted by # .

4.3.3 Penalty Epochs

In order to ensure that the domain constraints for singular functions
also apply in the extrapolation domain and that the order of
magnitude does not change drastically, intrinsic penalty epochs
are necessary as proposed by Sahoo et.al. [72] and discussed in
section 3.4.3. Penalty epochs consist of two contributions. The
domain penalty loss Lsf assures that the domain constraints are
not violated within the test domain. The second contribution
Lbound (see equation (3.9)) assures that the order of magnitude
does not change drastically on the test domain. During an intrinsic
penalty epoch, #? datapoints from the expected test domain are
randomly sampled. These samples are not linked to any output
labels. The loss function for the intrinsic penalty epoch is therefore
defined as

Lpenalty = �Lsf + �Lbound . (4.4)

The weighting parameters �, � determine the ratio of domain
penalty Lsf to bound penalty Lbound.

4.3.4 Objective Function for Training

The main objective function used for regularized training includes
data loss LD, complexity loss Lc, and domain penalty Lsf, each
weighted by their respective coefficients, � for the domain penalty
and � for the complexity

L = LD + �Lsf + �Lc . (4.5)

In this formulation, the magnitude of the complexity loss � is
important to control the sparsity level of the resulting equation.
The strength of the domain penalty, influenced by the network’s

40 Chapter 4 Enhancing Expressivity and Training Stability of the Equation Learner

design, is an essential hyperparameter to minimize instability
during training.

4.4 Feature Reuse with Copy Units

Equation learning neural networks require identity units to pass
features from previous to intermediate layers. Without them, the
network is limited to nested equations, each nesting adding an
atomic unit. To obtain a representative Pareto front, many networks
with different numbers of hidden layers are typically trained.
We propose copying units that simplify training by enabling the
simultaneous training of different network architectures.

Copy units allow an affine transformation to be applied to the
outputs of all previous layers. This also applies to the inputs x = h0.
Mathematically, this can be represented as follows

z ; =] ; h̃
;−1

+ b; , with: h̃
;−1

= (h0 , . . . , h ;−1) (4.6)

h ; = (51(I ;1), .., 5D(I ;D), 61(ID+1 , ID+2), . . .). (4.7)

This implies that the outputs from each previous layer, denoted as
h ;<;

′
, are reused as inputs for every subsequent layer ;′, which is

visually represented in figure 4.2 for a simple architecture. This
approach draws inspiration from an existing concept that incor-
porated skip connections into densely connected convolutional
networks to strengthen the propagation and reuse of features,
as proposed by Huang et.al. [33]. Those skip connections allow[33] Huang, Liu, Maaten, and Wein-

berger (2016), “Densely Connected
Convolutional Networks”

identified sub-solutions (terms in the equation) to be available
with no additional cost to all subsequent layers.

The following example studies the characteristics of identity units

Figure 4.2: Simple equation learn-
ingneural network architecturewith
copy units in green. The green edges
highlight a minimal representation
of equation (4.8)with copy units and
four hidden layers.

G1

G2

H1

b1 b2 b3 b4

cos
sin

cos
sin

cos
sin

id
G1,2 G1,2

cos1

sin1

G1,2

cos1

sin1

cos2

sin2

H1

copy units

input outputh1 h2 h3 h4] 1] 2] 3] 4

4.4 Feature Reuse with Copy Units 41

G1

G2

H1

b1 b2 b3 b4

id

sin

cos

id

sin

cos

id

sin

cos

/ H1

input outputh1 h2 h3 h4] 1] 2] 3] 4

Figure 4.3: Simple equation learn-
ingneural network architecturewith
identity units in green. The green
edges highlight a minimal represen-
tation of equation (4.8) with identity
units and four hidden layers.

and copy units in neural networks using the equation

H = 01 cos(02G1) + 03G2 , (4.8)

with coefficients 08 . Identity units accumulate all features of the
previous hidden layer in a linear combination and forward this
combined input to the next layer. The number of necessary weights
to represent a certain equation depends on the number of hid-
den layers. Traditional EQL-architectures with identity units as
described in section 3.3 with ! hidden layers must identify at least
(2 + !) coefficients to represent equation (4.8). For any unused
hidden layer an additional connection is required, since the ar-
chitecture does not support to skip hidden layers as illustrated
in figure 4.3 for a simple architecture with four hidden layers. In
this case the identified equation has six coefficients. Even with the
simplest architecture (! = 2) the EQL requires more constants than
the original equation.

In contrast, copy units ensure by design that the requiredminimum
number of coefficients is independent of the number of hidden
layers, provided that the architecture can represent the equation.
Consequently, it eliminates the need for a grid search across
different numbers of hidden layers. Therefore, figure 4.2 illustrates
that equation (4.8) can be modeled using just three coefficients, as
intended. Naturally, the copy units favor less nested expressions
and allow unnecessary layers to be ignored. Moreover, the search
for appropriate hyperparameters is simplified as the initial network
can be chosen larger and more complex.

Copyunits are of particular interest in section 5.2. They are essential
for an architecture that allows combinations of atomic units to be
prohibited, a feature that cannot be achieved with identity units.

42 Chapter 4 Enhancing Expressivity and Training Stability of the Equation Learner

4.5 Avoiding Parameter Shrinkage Through !0
Regularization

An equation learner seeks sparse5 and accurate representations5: For equation learning neural net-
works, sparsity is only sought for
the weight matrices rather than the
biases, as this only involves a shift
in the respective feature input and
does not directly contribute to the
complexity of the equation. In addi-
tion, in certain systems, biases are
related to the calibration of measure-
ment instruments.

of its internal structure for equation. Current equation learning
frameworks like EQL or EQL÷ suffer from parameter shrinkage due
to the lasso sparsity regularization. To avoid this issue, we propose
to use !0 regularization, which does not shrink the weights during
training, like !1 regularization. The corresponding regularization
loss is provided by

L0
c = ‖W ‖0 =

∑
8≤,
|F8 |0 ,with |F8 |0 = I[F8 6= 0] . (4.9)

The set of all weight matrices is defined as W = {] ;};≤!. The total
count of weight parameters within the network is denoted by,B∑
;≤! |] ; |. The !0-norm quantifies the count of non-zero weights.

However, due to its lack of differentiability, it is incompatible with
conventional gradient-based optimization methods. To address
this, we propose to utilize a stochastic gradient-based optimization
method for objectives with !0 regularization. It is based on the
findings of Louizos et.al. [55]. Minor adjustments are necessary to[55] Louizos, Welling, and Kingma

(2017), “Learning SparseNeural Net-
works through !0 Regularization”

adapt the original algorithm to equation learning neural networks
that require sparsity in the weights rather than the nodes. The
objective loss function is given by

L =
1
#

#∑
8=1
‖y8 − f)(x 8)‖22 + �‖W ‖0 . (4.10)

Specific choices of the scale parameter� refer to well-knownmodel
selection criteria as the Bayesian Information Criterion (BIC, [74])[74] Schwarz et al. (1978), “Estimat-

ing the dimension of a model” and the Akaike Information Criterion (AIC, [1]). Louizos et.al. sug-
[1] Akaike (1998), “Information the-
ory and an extension of the maxi-
mum likelihood principle”

gest a set of non-negative stochastic gates to collectively determine
which weights to set to zero. Therefore, each weight F8 of the
neural network is multiplied by a non-negative stochastic Bernoulli
distributed gate 6

F8 = F̃8 · 69 @(69 | � 9) = Ber(� 9) . (4.11)

The dropout rate of each weight is thus 1 − � 9 . The expectation of
a weight being non-zero is � 9 . Those gates collectively learn which
weights are relevant. This is illustrated in figure 4.4, which shows
a simple EQL architecture and indicates the Bernoulli random
variables by a simple coin toss symbol. The equation learner infers
the optimal parameters and the dropout rates of each weight.
Decreasing dropout rates correspond to an augmented network
capacity, while increasing dropout rates are associated with a

4.6 Conclusion 43

G1

G2

H1

b1 b2 b3 b4

H1

input outputh1 h2 h3 h4] 1] 2] 3] 4

Figure 4.4: This simple EQL archi-
tecture indicates the Bernoulli gates
of equation (4.12)with coin toss sym-
bols. The equation learners infers the
weights and the dropoutrates of the
Bernoulli gates.

reduction in network capacity. The expected objective is then

L = E@(g |�)

[
1
#

#∑
8=1
‖y8 − f (x 8 ,]̃ � g)‖22

]
+ �

∑
9≤,

� 9 (4.12)

with the element-wise product �. The last term penalizes the
expected count of non-zero weights. The expected data loss given
by the first term is hard to minimize due to the binary Bernoulli
distribution of the gates 6. Appendix section A.1 outlines the
smooth surrogate objective derived by Louizos et.al. [55] to apply
efficient gradient based optimization. The gates are approximated
withhard-sigmoid rectifications of a continuous randomvariable as
shown in figure A.1. Therefore, they exploit the reparametrization
trick [40, 69]

[40] Kingma and Welling (2013),
“Auto-Encoding Variational Bayes”
[69] Rezende, Mohamed, and Wier-
stra (2014), “Stochastic backpropaga-
tion and approximate inference in
deep generative models”

and concrete random variables [58]

[58] Maddison, Mnih, and Teh
(2016), “The concrete distribution:
A continuous relaxation of discrete
random variables”

. This objective is
a special case of a variational bound over weights with spike and
slab [65]

[65] Mitchell and Beauchamp (1988),
“Bayesian variable selection in linear
regression”

priors and approximate posteriors6. 6: Further details are provided in
appendix A of Louizos et.al. [55].

4.6 Conclusion

In conclusion, this section presented three approaches to improve
the expressivity and training stability of equation learning neural
networks. First, we introduced a robust training method that ex-
tends the hypothesis space of the network by considering atomic
functions with singularities, which is a crucial step for applying
these models to real-world scenarios. Secondly, we proposed the
use of copy units which enable the simultaneous training of multi-
ple architectures, significantly reducing the computational cost and
encouraging simpler network designs. It is particularly relevant
for the discussions in the subsequent chapter (section 5.2) on the
avoidance of prohibited atomic unit combinations. Lastly, we out-
lined an optimization scheme to optimize !0 regularization directly
without shrinking the parameter values. This renders the final
training phase, which is found in methods such as EQL and EQL÷,
unnecessary. The three contributions are part of the experimental
evaluation in section 5.5. Collectively, they set a solid foundation
for incorporating domain and expert knowledge into equation
learning networks, which will be explored in the following chapter
together with an experimental evaluation.

Equation Learning with Expert
Knowledge 5

5.1 Motivation 45
5.2 Prohibited Combina-

tions 46
5.3 Domain Specific Com-

plexity of Atomic Units 47
5.4 Informed Equation

Learning Neural Net-
work 48

5.5 Experiments 50
5.6 Conclusion 64

The great expressivity of the equation learner renders the hypothe-
sis search space huge. This chapter addresses the research question
“How to utilize domain knowledge to guide the search for better equations?”

We explore strategies for integrating expert knowledge into both
the training process and the structure of equation learning neural
networks. Section 5.2 introduces methods to incorporate expert
knowledge about permitted or prohibited equation components.
Subsequently, section 5.3 discusses domain-dependent structured
sparsity priors to improve the search for accurate yet simple equa-
tions. To adapt to realistic conditions in science and engineering,
we propose the informed equation learning neural network in
section 5.4. Section 5.5 demonstrates several artificial and real-
world experiments from the engineering domain, in which our
system learns interpretable models with high predictive power.
The chapter concludes with a summary of the most important
results and contributions in section 5.6.

5.1 Motivation

This section aims to provide a clear rationale for the integration
of expert knowledge into the EQL architecture and describes how
this approach significantly improves the selection and retrieval of
symbolic expressions in various application areas.

Equation learners face challenges when dealing with an increasing
variety of types of atomic units, which increases the number of
hypotheses polynomially. As a result, multiple suitable equations
are often found for ambiguous datasets. Our approach emphasises
the integration of expert knowledge into the EQL framework to
identify the true underlying equation.

Essentially, the selection of atomic unit types used by equations
is guided by expert knowledge. This choice is critical and varies
depending on the application domain and the characteristics
of the dataset. Section 5.2 introduces constraints against certain
combinations of atomic units, ensuring the system aligns with
practical engineering principles and domain-specific knowledge.
By allowing experts to disable certain combinations of atomic units,
our system goes beyond conventional methods that only consider a
fixed set of atomic unit types, and instead tailors the selection to the
domain of application. This method was developed in cooperation
with applied engineers to ensure relevance and applicability.

46 Chapter 5 Equation Learning with Expert Knowledge

The concept of “complexity” of an equation —not the computa-
tional complexity per se, but the subjectively percieved complexity
by an expert as “basic” or “involved”— depends both on the
number of terms and a domain specific complexity cost of each
atomic unit. To capture this aspect, typically, a weighted sum of
the number of parameters is used to measure complexity. This
is a commonly accepted way to introduce domain knowledge in
symbolic regression, e.g. in evolutionary search [19]. Technically,[19] Dubčáková (2011), “Eureqa: soft-

ware review” this goal can be achieved through the design of a generalized spar-
sity regularization as we demonstrate in section 5.3. This method
enables the implementation of a user-dependent weighting scheme
for the complexity of atomic unit types.

In this chapter, we contribute to the advancement of symbolic re-
gression by introducing an informed equation learning framework,
denoted as iEQL. This framework allows for a large complexity of
equations, which is further enhanced by the inclusion of atomic
units with singularities. Additionally, it facilitates the integration
of expert knowledge into the equation formulation process. We
demonstrate that this enhanced approach enables the extraction
of interpretable expressions from real-world datasets within the
engineering domain.

5.2 Prohibited Combinations

In specific applications certain combinations of atomic units such as
cos(cos(·)), cos(exp(·)), exp(exp(·)) and log(log(·)), with respective
arguments can be undesirable1, or might not make sense. Expert1: i.e. they should only be chosen

rarely
knowledge can provide such information on possible equation
structures. Therefore, all forbidden connections are removed from
the architecture bymasking the correspondingweights, as shown in
figure 5.1. That way, a domain expert decides which combinations

Figure 5.1: Illustration of a sim-
ple neural network architecture
for learning equations with copy
units. Forbidden equation compo-
nents cos(cos(·)) and cos(exp(·)) are
marked in red. The copy units con-
tain the atomic units from all previ-
ous layers, which are also taken into
account.

G1

G2

H1

b1 b2 b3 b4

cos

exp

cos

exp

cos

exp

id
G1,2 G1,2

cos1

exp1

G1,2

cos1

exp1

cos2

exp2

H1

copy units

input outputh1 h2 h3 h4] 1] 2] 3] 4

5.3 Domain Specific Complexity of Atomic Units 47

to use and which to exclude. Such information could not be
utilized in previous frameworks with equation learning neural
networks such as EQL and EQL÷ [62, 72], which depend on [62] Martius and Lampert (2016),

“Extrapolation and learning equa-
tions”
[72] Sahoo, Lampert, and Martius
(2018), “Learning Equations for Ex-
trapolation and Control”

identity units that accumulate outputs of previous layers in an
affine transformation, which makes it impossible to omit certain
combinations of functions.Our current approach,which is basedon
copy units, allows for the explicit exclusion of certain combinations
in the iEQL.

5.3 Domain Specific Complexity of Atomic
Units

An expert defines domain-specific complexity factors 2D for each
atomic unit of type D. The complexity factors can depend on
subjective criteria, like domain or personal experience, but also
quite objective ones like computational cost. A specific choice of
the complexity factors 2D for industrial real-world applications is
shown in table 5.1. Ideally, we favor a generalized !0 complexity
measure with domain specific complexity factors

Lc =
*∑
D=1

2D ‖,D ‖0 , (5.1)

where,D represents all weights which correspond to an atomic
unit type D. The !0 norm ‖·‖0 counts the number of none-zero
weights. Optimally, the iEQL is optimized for a Pareto optimal
solution w.r.t. to data accuracy and the complexity loss Lc. This
complexity measure is not differentiable and can not be used out
of the box to train an EQL. Section 4.5 proposes a method to
overcome this challenge through non-negative stochastic Bernoulli
distributed gates based on the differentiable !0 regularization
method of Louizos et.al. [55]. Consequently, equation (4.10) can
be extended to an objective loss with domain-specific complexity
factors

L =
1
#

#∑
8=1
‖y8 − f (x 8 ,])‖22 + �

*∑
D=1

2D ‖,D ‖0 . (5.2)

∗ / G2 log
√

exp cos

plain 1 1 1 1 1 1 1
motor 2 5 2 5 3 5 10

Table 5.1: Domain specific complex-
ity factors 2D for different atomic
units. No preference is denoted as
plain. For the real-world applications
(power loss of an electric machine
(section 5.5.3) and torque model of
a combustion engine (section 5.5.4)).
We use values suggested by domain
experts denoted as motor.

48 Chapter 5 Equation Learning with Expert Knowledge

The regularization strength � controls the relation between accu-
racy and complexity. Different values of � lead to different Pareto
optimal solutions. Larger values of � trade accuracy in exchange
for simplicity. Multiplying each weight by a non-negative stochas-
tic Bernoulli distribution 6 with dropout rate 1 − �8 leads to the
following expected objective

L = E@(g |�)

[
1
#

#∑
8=1
‖y8 − f (x 8 ,]̃ � g)‖22

]
+ �

*∑
D=1

2D
|,D |∑
9=1

�D9 .

(5.3)

The overall training loss is a superposition of data loss LD, com-
plexity loss L� and domain penalty loss Lsf as described in equa-
tion (4.5). Necessary training phases as described in section 3.4
are an initial training without regularization, and the intermediate
training phase with regularization. A final training phase to opti-
mize the identified sparse representation without regularization is
not necessary with the proposed !0 regularization.

5.4 Informed Equation Learning Neural
Network

Figure 5.2 presents the architecture of the informed equation learn-
ing neural network (iEQL) used for the experiments in section 5.5.
The iEQL architecture is characterized by five hidden layers , five
types of unary atomic units {cos, exp , log, √ , G2} and two types
of binary atomic units {∗, /} per layer. Each atomic unit is repre-
sented four times in a layer. The final layer applies the identity
operation 83. The focus of this framework is on improving equation
learning by incorporating expert knowledge and atomic units with
singularities.

This design enables a robust representation of mathematical re-
lationships and patterns. It includes copy units to reuse features
across multiple layers and a method to incorporate expert knowl-
edge into the training process to overcome the usual limitations of
conventional equation learning neural networks. Of particular note
is the model’s ability to avoid forbidden combinations, thereby
improving model validity and interpretability. We prohibit the
following combinations:

cos(cos(·)) cos(exp(·)) exp(exp(·)) log(log(·) . (5.4)

This is complemented by the use of Bernoulli gates for effective
!0 regularization, which helps to avoid parameter shrinkage and
provides intuitive access to a domain-specific complexity measure

5.4 Informed Equation Learning Neural Network 49

G1

G2

G3

G4

H1

H2

b1 b2 b3 b4 b5

cos

exp

log
√

G2

∗
/

copy

cos

exp

log
√

G2

∗
/

copy

cos

exp

log
√

G2

∗
/

copy

cos

exp

log
√

G2

∗
/

copy

id

input outputh1 h2 h3 h4 h5

Figure 5.2: Architecture of the iEQL with five hidden layers, five types of unary atomic units {cos, exp, log, √ , G2} and
two types of binary atomic units {∗, /} per layer. The copy units (see equation (4.6)) are indicated by green blocks and
contain the outputs of all previous layers. The red arrows mark forbidden connections (see equation (5.4)) which are
removed. The Bernoulli gates for !0 regularization on the weights are denoted with coin toss symbols. After successful
training, the iEQL represents the desired equation. The green connections visualize an exemplary model for the equation
H2 = 0 and H1 = (G2 ∗ G1)/(cos(G1) + 1.5).

for experts. In particular, we differentiate between a uniform
weighting scheme and a motor-specific weighting, which is used
for the real-world applications in our experiments, see table 5.1.

50 Chapter 5 Equation Learning with Expert Knowledge

5.5 Experiments

We demonstrate the application of the iEQL to four different use
cases. The first one is to learn complex equations on simulated
data of several equations. The second use case is a simulated am-
biguity dataset, with which we demonstrate how to incorporate
expert knowledge to influence the outcome of the equation learner.
Additionally, we study the relative frequency of selected atomic
units in the set of plausible equations with and without expert
knowledge on a simulated dataset and a real-world dataset. Use
cases three and four both address real-world applications in in-
dustry, related to determining expressions for the power loss of an
electric machine and a torque model of a combustion engine. We
compare the iEQL to five different algorithms:

I EQL÷, a state-of-the-art method from Sahoo et.al. [72] with[72] Sahoo, Lampert, and Martius
(2018), “Learning Equations for Ex-
trapolation and Control”

atomic unit types {sin, cos, ∗, identity} in each hidden layer
and division in the final layer,

I a multi-layer perceptron (MLP) with tanh activation func-
tions and five hidden layers with 50 neurons each,

I a genetic algorithm (PySR,[14]) with two different configura-[14] Cranmer (2023), “Interpretable
Machine Learning for Science with
PySR and SymbolicRegression.jl”

tions GA1 and GA2,
I a Gaussian Process (GP) for the real-world datasets, calcu-

lated with ASCMO [31], which is a standard tool from the[31] Hoffmann, Schrott, Huber, and
Kruse (2015), “Modellbasierte Meth-
oden zur Applikationmoderner Ver-
brennungsmotoren”

engineering domain,
I the mean predictor (MP) on the train set.

Further details on training and parameter settings are outlined
in appendix section B.1. All experiments are executed five times,
and we report median, minimum and maximum (in sub- and
superscript) of root mean squared error on test datasets.

5.5.1 Learning Complex Equations

We evaluate the performance of all five algorithms alongside the
iEQL using two distinct sets of benchmark equations as outlined inbenchmark equations
table 5.2. The first set comprises equations (S0–S6), in which opera-
tions such as {±, sin, cos, ∗, /} are used. The second set comprises
equations (S7–S10), which also contain {log, exp} operations. A
two-dimensional contour plot illustrating all datasets is shown in
figure 5.3. Most of these functions were compiled from various
studies in the field of symbolic regression [37, 72, 79].[37] Jin, Fu, Kang, Guo, and Guo

(2019), “Bayesian symbolic regres-
sion”
[72] Sahoo, Lampert, and Martius
(2018), “Learning Equations for Ex-
trapolation and Control”
[79] Trujillo, Muñoz, Galván-López,
and Silva (2016), “neat Genetic Pro-
gramming: Controlling bloat natu-
rally”

Similar to the experimental setup of Sahoo et al. [72], train datasets
consist of 104 randomly sampled datapoints in the train domain
and outputs are corrupted with standard normal noise of standard
deviation � = 0.01. For validation 10% of the train dataset is used.
Test datasets Dtest consist of 103 randomly sampled datapoints

5.5 Experiments 51

Table 5.2: Complex equations on which the iEQL is evaluated. Most functions are gathered from different papers on
symbolic regression. A star (∗) indicates that input and output were scaled and shifted.

Data- Ground truth motivated Domain
set equation from train test

S0 H = (1 − G2
2)/(sin(2� G1) + 1.5) [−1, 1]4 [−2, 2]4

S1 H = [sin(�G1) + sin(2�G2 + �/8) + G2 − G3G4] /3 [72] [−1, 1]4 [−2, 2]4

S2 H =
[
sin(�G1)+G2cos(2�G1 + �/4)+G3−G2

4
]
/3 [72] [−1, 1]4 [−2, 2]4

S3 H = [(1 + G2) sin(�G1) + G2G3G4] /3 [72] [−1, 1]4 [−2, 2]4

S4∗ H = (3.0375 G1G2 + 5.5 sin (9/4 (G1 − 2/3)(G2 − 2/3)))/5 [37] [−1, 1]4 [−2, 2]4

S5∗ H = (5G1)4
(5G1)4+1 + (5G2)4

(5G2)4+1 [79] [−1, 1]4 [−2, 2]4

S6∗
H = ((1 − G1)2 + (1 − G3)2 + 100(G2 − G2

1)2

4D-Rosenbrock [−1, 1]4 [−2, 2]4

+100(G4 − G2
3)2)/1500

S7∗ H = (1.5e1.5G1 + 5 cos (3 G2))/10 [37] [−1, 1]4 [−2, 2]4

S8∗ H = log(2G2 + 1) − log(4G2
1 + 1) [79] [0, 1]2 [0, 2]2

S9∗ H = exp(−(4G1−0.7)2)
1.2+(4G2−2.2)2 [79] [0, 1]2 [0, 2]2

S10∗ H = G3+1
3�2

(5G1+1)3

exp
(

(G3+1)(5G1+1)
(G4+1)(0.5G2+1)

)
−1

[80] [0, 1]4 [0, 2]4

from the test domain (see table 5.2). Interpolation test datasets
Dtest

int and extrapolation test datasets Dtest
ex consist of 5000 randomly

sampled datapoints from the train domain (see table 5.2). Note
that for the equations S0–S6 and S7 with their four dimensional
input, the extrapolation area of the test dataset is 15 times larger
than its interpolation area. The included extrapolation domain is a
good indicator for whether or not the ground truth has been found.

Our evaluation strategy strictly follows the strategy outlined by evaluation strategy
Sahoo et al. [72] and in particular adheres to their model selection
criteria Vint-S and Vint&ex, the latter involving the use of 40
extrapolation points. These criteria are described in equation (3.16)
and equation (3.18) respectively.

The Pareto plots for datasets (S0–S10) are depicted in figure 5.4,
facilitating a comparison of Vint-S and Vint&ex. Each subfigure
contains a classic Pareto analysis that compares the validation
RMSE (�int, equation (3.14)) and complexity, as well as the valida-
tion RMSE and extrapolation RMSE (�exp, equation (3.17)). This
dual comparison shows that the optimal extrapolation perfor-
mance usually exhibits a validation RMSE at noise level, which is
0.01. The analysis highlights that the two selection criteria often
identify different optimal equations.

52 Chapter 5 Equation Learning with Expert Knowledge

Table 5.3: Comparative analysis of root mean squared error (RMSE) of discovered equations for (S0–S10) with selection
criterion Vint-S. The evaluation is divided into three different types of test datasets Dtest, Dtest

int , D
test
ex . The table contains

median, minimum and maximum values (in sub- and superscript) of the RMSE for each model and dataset combination.
The baseline models compared include the EQL÷ [72], a genetic algorithm (GA) [14], a multi-layer perceptron (MLP) and
the mean predictor (MP) applied to the train dataset.

Vint-S S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

dataset Dtest

MP 1.57 0.66 0.75 0.64 1.17 0.44 0.82 0.88 1.09 0.19 0.66
MLP 1.11 1.17

1.04 0.45 0.54
0.35 0.41 0.42

0.39 0.36 0.37
0.34 0.65 0.70

0.57 0.07 0.15
0.02 0.65 0.66

0.65 0.67 0.70
0.64 0.24 0.25

0.22 0.01 0.02
0.01 0.39 0.40

0.37

GA1 1.58 2.45
1.21 0.91 0.91

0.91 0.71 449.47
0.33 0.79 1.24

0.79 1.34 1.46
1.18 0.44 0.44

0.44 0.82 0.82
0.82 0.82 1.11

0.49 0.62 1.19
0.31 0.19 0.48

0.14 0.66 0.66
0.59

GA2 1.22 3.57
0.72 0.66 1.35

0.57 0.60 0.72
0.58 0.62 1.40

0.59 0.96 0.98
0.96 0.34 0.39

0.12 1.72 27989.31
0.67 0.82 1.02

0.57 0.24 1.21
0.24 1.46 3.63

0.12 0.42 0.65
0.28

EQL÷ 0.01 0.02
0.01 0.01 0.01

0.01 0.02 0.09
0.01 0.01 0.02

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.02
0.01 2.15 11.23

0.55 0.14 0.36
0.07 0.03 0.05

0.01 0.28 1.75
0.23

iEQL 0.01 0.02
0.01 0.01 0.01

0.01 0.01 0.39
0.01 0.01 0.01

0.01 0.02 0.03
0.01 0.01 0.95

0.01 0.01 0.01
0.01 0.37 0.37

0.37 0.88 0.94
0.86 0.13 0.13

0.13 0.24 0.64
0.20

dataset Dtest
int

MP 0.46 0.36 0.35 0.28 0.62 0.48 0.06 0.38 0.60 0.22 0.12
MLP 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01

GA1 1.63 2.35
1.24 0.91 0.91

0.91 0.72 414.26
0.33 0.80 1.24

0.80 1.39 1.50
1.20 0.44 0.44

0.44 0.83 0.83
0.83 0.81 1.11

0.49 0.69 1.32
0.33 0.17 0.53

0.12 0.70 0.70
0.63

GA2 1.25 3.98
0.73 0.70 1.41

0.58 0.62 0.74
0.60 0.63 1.37

0.60 0.99 1.01
0.99 0.34 0.42

0.12 1.79 105589.11
0.80 0.81 1.01

0.57 0.27 1.34
0.27 1.64 3.96

0.12 0.46 0.78
0.30

EQL÷ 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

iEQL 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.02 0.02

0.02 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.02
0.01

dataset Dtest
ex

MP 1.62 0.67 0.76 0.65 1.19 0.43 0.83 0.86 1.21 0.18 0.70
MLP 1.13 1.19

1.06 0.46 0.56
0.36 0.43 0.44

0.41 0.36 0.37
0.34 0.70 0.75

0.60 0.06 0.15
0.02 0.66 0.67

0.65 0.67 0.69
0.64 0.26 0.27

0.23 0.02 0.02
0.01 0.43 0.44

0.42

GA1 1.56 2.26
1.19 0.89 0.89

0.89 0.70 27.57
0.37 0.80 1.34

0.80 1.21 1.31
1.05 0.40 0.40

0.40 0.78 0.78
0.78 0.89 1.18

0.51 0.67 1.36
0.31 0.17 0.52

0.11 0.94 0.94
0.85

GA2 1.23 3.13
0.75 0.73 1.35

0.55 0.57 0.72
0.55 0.58 1.40

0.57 0.89 0.91
0.89 0.31 0.44

0.08 0.75 38e3
0.64 0.89 1.12

0.59 0.26 1.38
0.26 1.52 4.21

0.13 0.56 0.75
0.35

EQL÷ 0.01 0.02
0.01 0.01 0.01

0.01 0.02 0.08
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.02
0.01 0.26 0.26

0.26 0.12 4.36
0.08 0.06 0.15

0.02 8.95 72.55
0.36

iEQL 0.01 0.02
0.01 0.01 0.01

0.01 0.01 0.40
0.01 0.01 0.01

0.01 0.01 0.02
0.01 0.01 1.00

0.01 0.01 0.01
0.01 0.36 0.36

0.36 0.97 1.03
0.95 0.15 0.15

0.15 0.24 0.71
0.20

A similar analysis for EQL÷ is given in figure 5.5. The complexity
measure used in EQL÷ counts the number of active atomic units
as described by Martius and Lampert [62]. It differs from the
complexity measure in iEQL as defined in equation (5.1), which
is the count of all non-zero weights weighted by domain specific
complexity factors.

The experimental evaluation on the test dataset Dtest, Dtest
int and

Dtest
ex is presented in table 5.3 with the selection criterion Vint-S and

table 5.4 with the selection criterion Vint&ex. The interpolation
dataset Dtest

int highlights the interpolation performance and the ex-
trapolation dataset Dtest

ex emphasizes the differences in predictions
of the selected equations in the extrapolation domain.
Neural network-based models (MLP, EQL÷, iEQL) are in principle
able to represent the train data perfectly with training and vali-
dation error at noise level for all datasets. This is also reflected
in the RMSE of the interpolation test datasets Dtest

int . Unsurpris-
ingly, the MLP is not able to capture the data-generating equation
(ground truth) by any means on the overall test datasets Dtest.
Therefore, it does not perform well on the test domains except for
equation S9, which is mainly zero in the extrapolation domain.

5.5 Experiments 53

Table 5.4: Comparative analysis of root mean squared error (RMSE) of discovered equations for (S0–S10) with selection
criterion Vint&ex. The evaluation is divided into three different types of test datasets: Dtest, Dtest

int , and Dtest
ex . The table

contains median, minimum and maximum values (in sub- and superscript) of the RMSE for each model and dataset
combination. The baseline models compared include the EQL÷ [72], a genetic algorithm (GA) [14], a multi-layer perceptron
(MLP) and the mean predictor (MP) applied to the train dataset.

Vint&ex S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

dataset Dtest

MP 1.57 0.66 0.75 0.64 1.17 0.44 0.82 0.88 1.09 0.19 0.66
MLP 1.11 1.17

1.04 0.45 0.54
0.35 0.41 0.42

0.39 0.36 0.37
0.34 0.65 0.70

0.57 0.07 0.15
0.02 0.65 0.66

0.65 0.67 0.70
0.64 0.24 0.25

0.22 0.01 0.02
0.01 0.39 0.40

0.37

GA1 1.07 1.58
0.91 0.77 0.77

0.77 0.33 0.35
0.01 0.01 0.47

0.01 1.20 1.23
1.07 0.29 0.29

0.29 0.82 0.82
0.82 0.82 1.11

0.28 0.35 0.62
0.26 0.14 0.19

0.14 0.60 0.66
0.56

GA2 0.39 1.47
0.01 0.66 0.77

0.01 0.37 0.77
0.01 0.60 1.78

0.58 0.01 0.01
0.01 0.08 0.42

0.01 4.26 8= 5
0.74 0.28 0.45

0.04 0.10 0.51
0.06 0.10 0.77

0.04 0.35 0.60
0.28

EQL÷ 0.01 0.12
0.01 0.01 0.17

0.01 0.01 0.05
0.01 0.01 0.01

0.01 0.01 1.38
0.01 0.01 0.01

0.01 0.01 0.02
0.01 0.09 0.11

0.09 0.09 0.19
0.06 0.02 0.33

0.01 0.36 1.89
0.22

iEQL 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.02 0.06

0.01 0.03 0.05
0.02 0.01 0.02

0.01 0.07 0.13
0.07

dataset Dtest
int

MP 0.46 0.36 0.35 0.28 0.62 0.48 0.06 0.38 0.60 0.22 0.12
MLP 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01

GA1 1.09 1.63
0.91 0.79 0.79

0.79 0.33 0.36
0.01 0.01 0.46

0.01 1.24 1.29
1.08 0.31 0.31

0.31 0.83 0.83
0.83 0.81 1.11

0.27 0.39 0.69
0.29 0.14 0.17

0.12 0.64 0.70
0.59

GA2 0.39 1.52
0.01 0.70 0.79

0.01 0.37 0.79
0.01 0.61 1.75

0.59 0.01 0.01
0.01 0.08 0.42

0.01 5.70 8= 5
0.75 0.27 0.44

0.04 0.11 0.68
0.06 0.13 0.83

0.04 0.35 0.66
0.30

EQL÷ 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

iEQL 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

dataset Dtest
ex

MP 1.62 0.67 0.76 0.65 1.19 0.43 0.83 0.86 1.21 0.18 0.70
MLP 1.13 1.19

1.06 0.46 0.56
0.36 0.43 0.44

0.41 0.36 0.37
0.34 0.70 0.75

0.60 0.06 0.15
0.02 0.66 0.67

0.65 0.67 0.69
0.64 0.26 0.27

0.23 0.02 0.02
0.01 0.43 0.44

0.42

GA1 1.08 1.56
0.94 0.78 0.78

0.78 0.27 0.38
0.01 0.01 0.52

0.01 1.09 1.14
0.87 0.26 0.26

0.26 0.78 0.78
0.78 0.89 1.18

0.35 0.39 0.67
0.29 0.14 0.17

0.11 0.87 0.94
0.83

GA2 0.44 1.43
0.01 0.70 0.78

0.01 0.40 0.72
0.01 0.59 2.29

0.55 0.01 0.01
0.01 0.06 0.38

0.01 0.69 inf
0.68 0.35 0.57

0.06 0.11 0.45
0.07 0.11 0.69

0.04 0.40 0.66
0.31

EQL÷ 0.01 0.12
0.01 0.01 0.18

0.01 0.01 0.06
0.01 0.01 0.01

0.01 0.01 3.27
0.01 0.01 0.01

0.01 0.01 0.02
0.01 0.09 0.10

0.09 0.06 0.08
0.03 0.01 0.02

0.01 0.27 0.47
0.17

iEQL 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.02 0.06

0.01 0.04 0.06
0.03 0.01 0.02

0.01 0.08 0.13
0.07

The extrapolation dataset Dtest
ex emphasizes this effect.

In contrast, GA, EQL÷, and iEQL learn meaningful equations,
which extrapolate. If the correct equation has been identified, the
test RMSE is expected to be at noise level. The genetic algorithm
(GA1) captures the data generating function on the datasets S2
and S3 at least in one experiment and GA2 on the datasets S0, S1,
S2, S4 and S5.
On datasets S0–S6 the iEQL captures the data generating func-
tion reliably for all five runs. Despite its larger expressivity, with
{cos, exp , log,

√
, G2 , ∗, /} atomic units, it even outperforms

the EQL÷ architecture, which uses just the necessary atomic units
{cos, sin, ∗, /}. Equations S7–S10 are more difficult to learn. iEQL
outperforms all baselines with Vint&ex, but with the complexity
based selection criterion Vint-S it does not consistently select the
optimal equation.

Both criteria Vint&ex and Vint-S perform similarly on equations
(S0–S6), but the Vint&ex method performs better on the more
sophisticated equations (S7–S10). However, it requires additional
extrapolation datapoints, which might not be available in real-
world datasets. Therefore, we apply the Vint-S method on the two
real-world datasets.

54 Chapter 5 Equation Learning with Expert Knowledge

Table 5.5: Comparative analysis of
root mean squared error (RMSE)
of discovered equations for (S0–S4)
with selection criteria Vint-S and
Vint&ex on test datasets Dtest. The
compared models are EQL÷ [72],
iEQL and iEQL0.2 cos. The latter
model has a reduced complexity
factor of 0.2 for the cosine atomic
units. The table contains median,
minimum and maximum values (in
sub and superscript) of the root
mean squared error (RMSE) for each
model and dataset combination.

Vint-S S0 S1 S2 S3 S4

EQL÷ 0.01 0.02
0.01 0.01 0.01

0.01 0.02 0.09
0.01 0.01 0.02

0.01 0.01 0.01
0.01

iEQL 0.01 0.02
0.01 0.01 0.01

0.01 0.01 0.39
0.01 0.01 0.01

0.01 0.02 0.03
0.01

iEQL0.2 cos 0.07 0.28
0.02 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.02
0.01

Vint&ex
EQL÷ 0.01 0.12

0.01 0.01 0.17
0.01 0.01 0.05

0.01 0.01 0.01
0.01 0.01 1.38

0.01

iEQL 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

iEQL0.2 cos 0.07 0.28
0.02 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.02
0.01

Additional Studies with Complexity Factors

This section analyzes the influence of different complexity factors
on variants of the iEQL. The models compared include EQL÷, the
iEQL and customized versions iEQL0.2 cos, iEQL5 cos, iEQL0.2 log and
iEQL0.2 exp. These variants of iEQL introduce modified complexity
factors 2D , which are mentioned in the subscript, to evaluate
the impact of reducing or enhancing the complexity assigned to
certain atomic units on the overall performance of the model. This
comparative approach provides insights into how variations in
parametrization affect the accuracy reflected in the RMSE.

Table 5.5 presents a comparative analysis that focuses on the per-
formance of iEQL0.2 cos on the datasets (S0–S4). All those equations
contain cosine functions as can be seen in table 5.2. This iEQL
variant introduces a modified complexity factor of 0.2 for cosine
atomic units in order to favor cosine atomic units. A more detailed
study of the complexity factor strength and its relation to the
relative frequency of atomic units is provided in section 5.5.2. The
evaluation is based on two different selection criteria for Vint-S
and Vint&ex. The complexity based criterion is of higher interest,
since it requires a “good” interpretation of complexity, where
the extrapolation based criterion ignores complexity. The cosine
preference leads to better results for equations S2 and S3 when
applying the selection criterion Vint-S. However, for equation S0,
the results are less favorable.

Equation S5, which contains no periodic functions, equation S7,
which contains an exponential function, and equation S8, which
contains a logarithmic function, are of particular interest. In this
context, variants of iEQL (iEQL5 cos and iEQL0.2 exp for S5 and S7
respectively; iEQL0.2 log for S8) are evaluated against the iEQL and
the EQL÷ standard configurations in table 5.6, which lists various
complexity factors together with the equations to be analyzed.

For equation S5, the penalty on periodic functions leads to a sig-
nificant improvement in the maximum RMSE under the Vint-S

5.5 Experiments 55

Vint-S Vint&ex
dataset Dtest

int Dtest
ex Dtest Dtest

int Dtest
ex Dtest

equation S5

EQL÷ 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01

iEQL 0.01 0.01
0.01 0.01 1.00

0.01 0.01 0.95
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01

iEQL5 cos 0.03 0.04
0.01 0.02 0.35

0.01 0.02 0.35
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01

equation S7

EQL÷ 0.01 0.01
0.01 0.26 0.26

0.26 2.15 11.23
0.55 0.01 0.01

0.01 0.09 0.10
0.09 0.09 0.11

0.09

iEQL 0.02 0.02
0.02 0.36 0.36

0.36 0.37 0.37
0.37 0.01 0.01

0.01 0.02 0.06
0.01 0.02 0.06

0.01

iEQL0.2 exp 0.02 0.02
0.01 0.36 0.36

0.01 0.37 0.37
0.01 0.01 0.01

0.01 0.03 0.08
0.01 0.03 0.08

0.01

equation S8

EQL÷ 0.01 0.01
0.01 0.12 4.36

0.08 0.14 0.36
0.07 0.01 0.01

0.01 0.06 0.08
0.03 0.09 0.19

0.06

iEQL 0.01 0.01
0.01 0.97 1.03

0.95 0.88 0.94
0.86 0.01 0.01

0.01 0.04 0.06
0.03 0.03 0.05

0.02

iEQL0.2 log 0.01 0.01
0.01 1.03 1.45

0.64 0.94 1.34
0.58 0.01 0.01

0.01 0.03 0.03
0.02 0.03 0.03

0.02

Table 5.6: This table presents a com-
parative analysis of RMSE for equa-
tions S5, S7 and S8, applying two
different types of selection criteria,
Vint-S and Vint&ex. The table con-
tains median, minimum and maxi-
mum RMSE values (in sub- and su-
perscript) of different test datasets,
Dtest

int , D
test
ex and Dtest, which repre-

sent the interpolation, extrapolation
and overall performance, respec-
tively. The evaluatedmodels include
the EQL÷, iEQL and iEQL variants
with adjusted complexity factors for
cosine, exponential and logarithmic
units (iEQL5 cos and iEQL0.2 exp for
S5 and S7 respectively; iEQL0.2 log

for S8).

selection criterion compared to uniform complexity factors. How-
ever, it can be observed that the median RMSE performance does
not exceed that of the baseline models. In the case of equation S7,
by favoring exponential atomic units, the corresponding iEQL0.2 exp

model successfully identifies equations that perform well at the
noise level under both the Vint-S and Vint&ex selection criterion.
This performance is not achieved by the standard iEQL model
under Vint&ex.

The analysis of equation S8 shows improvement in performance
using the selection criterion Vint&ex over Vint-S. None of the eval-
uatedmethodswere able to identify an optimal equation. The EQL÷

showed the best performance with the selection criterion Vint-S
and less favorable results with the selection criterion Vint&ex.
Whereas iEQL0.2 log showed less favorable results with selection
criterion Vint-S and the best performance with the selection crite-
rion Vint&ex. This highlights the subtle effects of domain specific
complexity factors on equation learning.

56 Chapter 5 Equation Learning with Expert Knowledge

2 0 2
x1 = x3

2

0

2

x 2
=

x 4

8

4

0

(a) S0

2 0 2
x1 = x3

2

0

2

x 2
=

x 4
2

0

2

(b) S1

2 0 2
x1 = x3

2

0

2

x 2
=

x 4

3.0

1.5

0.0

(c) S2

2 0 2
x1 = x3

2

0

2

x 2
=

x 4

3

0

3

(d) S3

2 0 2
x1 = x3

2

0

2

x 2
=

x 4

2.5

0.0

2.5

(e) S4

2 0 2
x1 = x3

2

0

2

x 2
=

x 4
0.0

0.8

1.6

(f) S5

2 0 2
x1 = x3

2

0

2

x 2
=

x 4

0.0

2.5

5.0

(g) S6

2 0 2
x1 = x3

2

0

2

x 2
=

x 4

0

2

4

(h) S7

0 1 2
x1

0

1

2

x 2

2

0

(i) S8

0 1 2
x1

0

1

2

x 2

0.0

0.3

0.6

(j) S9

0 1 2
x1 = x3

0

1

2

x 2
=

x 4

0.0

1.5

3.0

(k) S10

Figure 5.3: Two dimensional slices through the input space of simulated equations S0–S10 from table 5.2. The black
rectangle indicates the train domain.

5.5 Experiments 57

5 10 20 40 80 160
0.01

0.03

0.1

complexity

� i
nt

Vint-S
Vint&ex

0.01 0.1 0.3 1
0.01

0.03

0.1

�ex

Vint-S
Vint&ex

(a) S0

5 10 20 40
0.01

0.03

0.1

complexity

Vint-S
Vint&ex

0.01 0.1 0.3 1
0.01

0.03

0.1

�ex

Vint-S
Vint&ex

(b) S1

5 10 20 40 80 160
0.01

0.03

0.1

complexity

� i
nt

Vint-S
Vint&ex

0.01 0.1 0.3 1
0.01

0.03

0.1

�ex

Vint-S
Vint&ex

(c) S2

5 10 20
0.01

0.03

0.1

complexity

Vint-S
Vint&ex

0.01 0.1 0.3
0.01

0.03

0.1

�ex

Vint-S
Vint&ex

(d) S3

10 20 40 80
0.01

0.02

complexity

� i
nt

Vint-S
Vint&ex

0.01 0.1 0.3 1
0.01

0.02

�ex

Vint-S
Vint&ex

(e) S4

10 20 40 80
0.01

0.03

0.1

complexity

Vint-S
Vint&ex

0.01 0.1 0.3 1 3
0.01

0.03

0.1

�ex

Vint-S
Vint&ex

(f) S5

5 10 20
0.01

0.03

complexity

� i
nt

Vint-S
Vint&ex

0.01 0.1 0.3
0.01

0.03

�ex

Vint-S
Vint&ex

(g) S6

5 10 20 40
0.01

0.03

0.1

complexity

Vint-S
Vint&ex

0.1 0.3 1
0.01

0.03

0.1

�ex

Vint-S
Vint&ex

(h) S7

5 10 20 40 80
0.01

0.03

complexity

� i
nt

Vint-S
Vint&ex

0.1 0.3 1 3
0.01

0.03

�ex

Vint-S
Vint&ex

(i) S8

1 5 10 20 40 80
0.01

0.03

0.1

complexity

Vint-S
Vint&ex

0.01 0.1 0.3
0.01

0.03

0.1

�ex

Vint-S
Vint&ex

(j) S9

1 5 10 20 40 80
0.01

0.03

0.1

complexity

� i
nt

Vint-S
Vint&ex

0.3 1
0.01

0.03

0.1

�ex

Vint-S
Vint&ex

(k) S10

Figure 5.4: Pareto plots of iEQL representing datasets (S0–S10) for two different selection criteria: Vint-S and Vint&ex.
Vertical grey lines indicate the selected equations by each criterion, distinguished by dotted lines for Vint-S and dashed
lines for Vint&ex. Each subfigure contains two figures. The left figure compares validation RMSE against complexity,
while the right figure illustrates the relationship between validation RMSE and extrapolation RMSE.

58 Chapter 5 Equation Learning with Expert Knowledge

5
0.01

complexity

� i
nt

Vint-S
Vint&ex

0.01 0.1 0.3 1 3
0.01

�ex

Vint-S
Vint&ex

(a) S0

5
0.01

complexity

Vint-S
Vint&ex

0.01 0.1 0.3 1 3
0.01

�ex

Vint-S
Vint&ex

(b) S1

5 10
0.01

complexity

� i
nt

Vint-S
Vint&ex

0.01 0.1 0.3 1 3
0.01

�ex

Vint-S
Vint&ex

(c) S2

5
0.01

complexity

Vint-S
Vint&ex

0.01 0.10.3 1 3
0.01

�ex

Vint-S
Vint&ex

(d) S3

5 10
0.01

complexity

� i
nt

Vint-S
Vint&ex

0.01 0.10.3 1 3
0.01

�ex

Vint-S
Vint&ex

(e) S4

5 10
0.01

0.02

0.03

complexity

Vint-S
Vint&ex

0.01 0.1 0.3 1 3
0.01

0.02

0.03

�ex

Vint-S
Vint&ex

(f) S5

5
0.01

0.02

0.03

complexity

� i
nt

Vint-S
Vint&ex

0.01 0.1 0.3 1
0.01

0.02

0.03

�ex

Vint-S
Vint&ex

(g) S6

5
0.01

complexity

Vint-S
Vint&ex

0.10.3 1 3
0.01

�ex

Vint-S
Vint&ex

(h) S7

1 5
0.01

complexity

� i
nt

Vint-S
Vint&ex

0.1 0.3 1 3
0.01

�ex

Vint-S
Vint&ex

(i) S8

5
0.01

0.02

complexity

Vint-S
Vint&ex

0.01 0.1 0.3
0.01

0.02

�ex

Vint-S
Vint&ex

(j) S9

1 5
0.01

0.02

complexity

� i
nt

Vint-S
Vint&ex

0.1 0.3 1 3
0.01

0.02

�ex

Vint-S
Vint&ex

(k) S10

Figure 5.5: Pareto plots of EQL÷ representing datasets (S0–S10) for two different selection criteria: Vint-S and Vint&ex.
Vertical grey lines indicate the selected equations by each criterion, distinguished by dotted lines for Vint-S and dashed
lines for Vint&ex, respectively. Each subfigure contains two figures. The left figure compares validation RMSE against
complexity, while the right figure illustrates the relationship between validation RMSE and extrapolation RMSE. The
complexity measure used in EQL÷ counts the number of active atomic units as described by Martius and Lampert [62]. It
differs from the complexity measure in iEQL as defined in equation (5.1).

5.5 Experiments 59

5.5.2 Expert Knowledge for Ambiguous Data

Expert knowledge is especially important if there are several
possible equations for an ambiguous dataset. Incorporating this
knowledge into the complexity measure as well as the regulariza-
tion can decide whether the right equation is found. The following
experiment studies how different sets of complexity factors af-
fect the relative frequency of atomic units in the set of plausible
equations as well as the importance of complexity factors for the
selection criterion Vint-S, which is applied to the set of plausible
equations. The selection criterion Vint&ex is not suited for this
experiment, since it ignores the model complexity. In order to
construct an ambiguous dataset, we choose the ground truth

H = 8 cos(0.5 G) − 7.5 + & , & ∼ N (0, 0.012) (5.5)

−2 −1 0 1 2
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0

G1

H

gt
cos
G2

Figure 5.6: This figure illustrates the
ground truth function (thick line)
for the ambiguous dataset as de-
scribed in equation (5.5). Also de-
picted are two potential solutions: a
cosine function (dotted line) and a
second-degree polynomial equation
(dash-dotted line). The blue shading
indicates the train domain.

which, close to G = 0, can bemodeled equivalently by a cos function
or a polynomial of degree 2 as shown in figure 5.6). The output
is corrupted with Gaussian noise N (0, 0.012). The train dataset
consists of 104 randomly sampled datapoints.

We study nine configurations that prefer a periodic structure
2cos ∈ {1/2, 1/3, . . . , 1/10} and nine configurations that favor a poly-
nomial structure 2G2 ∈ {1/2, 1/3, . . . , 1/10} as well as the uniform
configuration. For each configuration, 78 equations with varying
levels of regularization strength are calculated, as stated in the
train details in appendix section B.1. The relative frequency of cos
and G2 units for each equation is calculated for each complexity
cost ratio A = 2cos/2G2 . Figure 5.7 displays the corresponding aver-
age relative frequencies. The relative frequencies follow the prior.
Ratios with A < 1 prefer cos units and ratios with A > 1 prefer
G2 units. A polynomial solution seems very plausible without

0.
10

0.
11

0.
12

0.
14

0.
17

0.
20

0.
25

0.
33

0.
50

1.
00

2.
00

3.
00

4.
00

5.
00

6.
00

7.
00

8.
00

9.
00

10
.0

0

0

20

40

60

80

100

ratio A = 2cos/2G2

[%
]

G2

cos

Figure 5.7: This figure illustrates the impact of expert knowledge on an ambiguous dataset, with the ground truth defined
by equation (5.5). It displays the average relative frequencies of the atomic units cos and G2 for various complexity cost
ratios A = 2cos/2G2 . These frequencies are calculated for each found equation.

60 Chapter 5 Equation Learning with Expert Knowledge

0.1 0.3 1.0 3.0 10
0

1

2

ratio A = 2cos/2G2

#
un

its
cos
G2

(a) with complexity factors

0.1 0.3 1.0 3.0 10
0

1

2

ratio A = 2cos/2G2

#
un

its

cos
G2

(b) without complexity factors

Figure 5.8: This figure illustrates the impact of the selection criterion Vint-S with expert knowledge on an ambiguous
dataset. The left panel shows the number of cos and G2 units that appear in the selected equation of each complexity cost
ratio. Here, the left panel is selected with Vint-S with complexity factors and the right panel illustrates the same quantity
without complexity factors in Vint-S.

any further information (A = 1). It turns out that iEQL does not
converge to all kinds of simple ambiguous solutions with equal
probability. Certain solutions are more likely to converge than
others. In this experiment, for instance, iEQL predominantly uses
G2 units without a biased preference (A = 1).

In the next part, the selection criterion is applied to the 78 found
equations for each complexity cost ratio. Figure 5.8 shows the
absolute frequency of cos and G2 units that appear in the selected
equation. For ratios with A < 1 a periodic equation is preferred and
for ratios with A > 1 a polynomial equation is preferred. As desired,
the prior is followed in the case of such a strong ambiguity.Without
complexity factors, a polynomial solution is usually selected as
shown in figure 5.8(a). Therefore, complexity factors are crucial to
select the correct equation with respect to the prior. Since in this
case both types of plausible equations have the same complexity,
we found that the Adam optimizer converges better for G2 atomic
units. This leads to a preference for polynomial solutions.

Figure 5.9(a) shows the impact of motor specific complexity factors
(see table 5.1) on the relative frequencies of atomic units evaluated
on the set of plausible equations2 on the real-world dataset ‘torque2: drawing from five experiments,

eachwith 78 different regularization
strength, see appendix section B.1)

of an internal combustion engine‘.The motor specific complexity
factors clearly reduce the relative frequency of {exp, cos, /} atomic
units and enhances polynomial structures with {G2 , ∗} units. This
coincides with the expected behavior. The unit

√
was hardly

chosen, which indicates that this atomic function does not seem
to be relevant for the description of the dataset. Figure 5.9(b)
shows the impact of penalizing cos units with (2cos = 5) on a more
sophisticated synthetic dataset (S5). The relative frequency of the
cosine units is reduced and the relative frequency of the G2 units is
enhanced.

5.5 Experiments 61

log sqrt exp cos div G2 mul
0

10

20

30

[%
]

plain
motor

5 3 5 10 5 2 2
2D

(a) combustion engine

log sqrt exp cos div G2 mul
0

10

20

30

40

[%
]

plain
2cos = 5

1 1 1 5 1 1 1
2D

(b) S5 dataset

Figure 5.9: Relative frequency of atomic units with and without domain specific factors over the set of plausible equations
(five experiemnts, each with 78 different regularization strength, see appendix section B.1) of the combustion engine
experiments in (a) and of the S5 dataset experiments in (b). Domain specific complexity factors 2D are shown in the upper
x-axis.

5.5.3 Power Loss of an Electric Machine

In this section, we address with the power loss of an electric ma-
chine – a relevant problem in the industrial domain [8]. Increasing [8] Buchner, Boblest, Engel, Jungin-

ger, andUlmer (2020), “AnArtificial-
Intelligence-Based Method to Auto-
matically Create Interpretable Mod-
els from Data Targeting Embedded
Control Applications”

requirements on control of electric machines in automotive power
trains lead to the necessity of more and more sophisticated and
complex models to describe the system. Those models have to be
able to capture non-linear effects for different components in the
system, as in the dataset for the power loss of an electric machine.
Further, those models have to be minimal in computational effort
and memory demand due to embedded hardware and latency
constraints in the range of micro-seconds.

In this industrial dataset, the power loss of a winding head is
measured depending on the direct current �D, quadratic current
�Q, rotor temperature)rot, and motor speed =mtr. The data was
measured at stationary operation points. It contains 24684 data-
points recorded at equidistant variations of the quantities listed in
table 5.7 within their range of operation. The test dataset contains
unseen data from the entire domain and train dataset contains
data only from 80% of its range of operation. Further details on
data preparation are given in appendix 1.

Quantity Test Domain Train Domain Description Type

�D[A] [1, 525] [76, 451] direct current input
�Q[A] [1, 525] [76, 451] quadratic current input
)rot[◦C] [−20, 150] [−20, 150] rotor temperature input
=mtr[rpm] [1, 16000] [2001, 14001] motor speed input

%mod[W] [0, 4558] [95, 3364] power loss output

Table 5.7: Data properties for the
power loss of an electric machine.
The train domain covers just 80% of
the range of operation, except for ro-
tor temperature)rot, which has only
three different operation points.

62 Chapter 5 Equation Learning with Expert Knowledge

Table 5.8: Results on real-world datasets. Reported here are median, minimum and maximum (in sub and superscript) of
root mean squared error (RMSE) on the real-world test datasets. Domain knowledge is used for iEQL motor as given in
table 5.1. We use the model selection criterion Vint-S and state the number of active parameters. For the combustion
engine dataset we also present the best validation models selected with Vint.

electric machine [W] combustion engine [Nm]
Vint-S #param. Vint-S #param. Vint #param.

MP 1042.70 60.17 60.17
GP 0.92 1.79 1.79
GA1 188.40 347.93

155.84 9 9
3 16.79 22.37

13.35 7 11
5 5.91 7.66

5.00 33 40
23

GA2 230.23 230.23
230.23 8 8

8 22.37 22.37
16.79 5 7

5 5.33 6.29
4.86 35 39

34

EQL÷ 0.03 0.04
0.03 10 14

7 1.75 1.96
1.55 95 129

70 1.46 1.61
1.35 382 427

225

iEQL 0.03 0.03
0.02 6 6

6 2.48 3.04
2.18 65 79

42 1.44 1.71
1.40 448 470

395

iEQLmotor 0.02 0.02
0.02 6 6

6 3.17 6.16
2.90 32 48

15 1.60 1.79
1.39 339 386

170

We use the model selection criterion Vint-S on the set of plausible
equations of iEQL, EQL÷ and GA. Results are shown in table 5.8.
iEQL and EQL÷ outperform the genetic algorithm (GA) and the
Gaussian Process (GP) even on the train data, and provide very
accurate predictions on the test set. The GP does not capture the
underlying relationship, as can be seen at the large test RMSE. A
closer look at the results of the genetic algorithm revealed that the
internal selection criterion of GA led to competitive results: GA1
with 0.47 159.11

0.02 W and 19 23
9 parameters and GA2 with 0.02 0.16

0.02W and
17 19

15parameters. iEQL needs even fewer parameters than EQL÷.
This is due to the use of copy units, which allow the reuse of
features from previous layers directly. We emphasize that, out
of the large set of possible functions, the iEQL reliably extracted
a simple quadratic equation that suitably describes the dataset.
To highlight the simplicity of the iEQL’s result, we state in the
following the structure of the selected equation, which is the same
for all 5 experiments:

H =F1�& + F2�� + F5(F3�� + 11)2 + F6(F4�& + 12)2 + 13 . (5.6)

Weights are indicatedwithF andbiaswith 1. All selected equations
can be simplified to the same equation

H = 0.4�2� − 1.12�� + 0.41�2& + 1.13�& − 0.31 .

Numbers were rounded to three figures and input and output
dimensions were anonymized. In addition, we emphasize that the
algorithm learned that only two of the input variables, namely
[�� , �&], are relevant to the output value, while the others have
negligible influence.

5.5 Experiments 63

Quantity Unit Min. Max. Description Type

)ex
◦Crank −20 20 exhaust camshaft input

)in
◦Crank −4 36 intake camshaft input

Al % 13 86 relative load input
)ign

◦Crank −27 61 ignition angle input
=eng rpm 597 6000 engine speed input

"eng Nm −38 261 engine torque output

Table 5.9: Data properties for the
torque model of an internal combus-
tion engine.

5.5.4 Torque Model of an Internal Combustion Engine

A second task from the industrial domain is the modeling of the
torque of a combustion engine in dependence of the control param-
eters. Ongoing improvements in power train technologies require
increasingly precisemodels for control strategies. This is commonly
correlated with a complex structure of the models as well as the
large number of calibration parameters. For utilization of those
models in embedded systems it is essential to have fast develop-
ment cycles, i.e. an automated adaptation to a new system, and
low production costs. The unit costs grow with the computational
needs on an embedded controller, thus computational efficiency
at evaluation time is important. In practice, this often leads to a
trade-off between accuracy of the model and its complexity.

In this dataset the engine torque ismeasured depending on exhaust
camshaft)ex, intake camshaft)in, relative load Al, ignition angle
)ign and engine speed =eng. The data was measured at stationary
operation points. It contains 1775 datapoints recorded at variations
of the quantities listed in table 5.9 within their range of operation.
The dataset is split into 80% training and 20% testing data, and
10% of the train dataset is used for validation.

Instance selection can be done with the Vint-S criterion or solely
based on validation performance as long as the equation is compu-
tationally efficient at evaluation time. We present both solutions in
table 5.8 alongside with the number of active parameters. The GP
is supposed to perform best on this dataset, but the EQL-networks,
selected with Vint, perform similar or even better. With about
170-470 parameters they are fast to compute and small enough
to fit on embedded systems. The EQL÷ finds the best test RMSE
results. This might indicate that for this dataset it is sufficient to
deal with {sin, cos, ∗, identity} units. Despite its larger expressive
power, iEQL can compete with the EQL÷ architecture. GA is not
able to learn equations that compete on the performance level, but
it can identify simple equations with about 33 parameters. Yet,
iEQLmotor also finds equations of similar complexity, but with a
twice as good median test RMSE. Table 5.8 shows a noticeable rela-
tion between the performance of the models and their complexity

64 Chapter 5 Equation Learning with Expert Knowledge

101 102 103

2

4

10

complexity

RM
SE

[N
m

]
validation
s.eq
eq-1

(a) Pareto plot

−10 −5 0 5 10
residuals [Nm]

s.eq
eq-1

(b) histogram of residuals

Figure 5.10: Equation learning with iEQL-motor on a real-world dataset for torque of a combustion engine. Here, we show
the run with median performance with the Vint-S criterion. Panel (a) shows the Pareto plot of the iEQL and (b) shows the
histogram of residuals of the equation (s.eq) selected with the Vint-S criterion and a more complex equation (eq-1).

for iEQL, iEQLmotor and EQL÷. The more complex the model, the
better its test RMSE. This effect occurs also in figure 5.10(a), which
shows the Pareto plot for the iEQLmotor experiment (median
performance and Vint-S criterion). The histograms of residuals
of the selected equation alongside the best performing equation
show no significant distribution shifts, see figure 5.10(b).

We analyze the equations ofmedian performance and the equations
with the smallest number of parameters selected with the Vint-S
criterion for iEQL and iEQLmotor in appendix B.1.1. Their test
RMSE is not as good as a GP, but their structure is interpretable.
The motor specific complexity factors lead to equations of mainly
polynomial structure with higher degree than without motor
specific complexity factors. The latter combine polynomials with
nonlinear units like cos, exp, log or division units. Using more
nonlinear units reduces the degree of the used polynomials. This
is in agreement with the analysis of relative frequencies of atomic
units shown in figure 5.9(a), which clearly shows that the use of
motor specific complexity factors leads to a reduction of the use
of {log, cos, exp} and division units and an increase of G2 and
multiplication units.

5.6 Conclusion

We have introduced the informed equation learner iEQL. It aims to
learn compact and interpretable models in form of concise mathe-
matical equations from data. Our method differs from previous
work in two key aspects: First, it is able to handle functional units
with singularities in all hidden layers. Second, it can incorporate
expert knowledge about the underlying system. To do so, prior
knowledge is encoded in a complexity cost for individual atomic

5.6 Conclusion 65

units. We evaluated our method by finding compact functional
expressions for four different use cases: The iEQL performs well
on established reference datasets. Customized priors can be ap-
plied to prefer certain functional terms in an ambiguous dataset
supporting several possible explanations. Finally, we evaluated the
algorithm on two real industrial problems. In both settings, the
underlying relations of the system were unknown a priori, and the
iEQL was able to extract simple, interpretable models describing
the respective output variable. Depending on the needs, it also
provides a high-performance solution with low computational
cost.

Structured Uncertainty in
Equation Learning 6

6.1 Motivation 67
6.2 Related work 68
6.3 A Bayesian Perspective

on Equation Learning . 69
6.4 Experiments 74
6.5 Conclusion 81

Equation learners typically do not capture uncertainty about the
model or its predictions, although uncertainty is often highly struc-
tured and particularly relevant for applications in engineering and
the natural sciences. This chapter addresses the research question
“How to quantify uncertainty of a set of equations that was discovered by

an equation learning neural network?”. It explores the application of
simple, but effective Bayesian deep learning techniques to build
structured and interpretable uncertainty over a set of plausible
equations. Section 6.2 describes recent advances in the field of
uncertainty quantification and equation learning and provides
an overview of current methods and their limitations. Section 6.3
presents a novel approach to capturing structured uncertainty
in equation learning from a Bayesian perspective, including a
discussion of the relevant theoretical background, such as Gaus-
sian regression and Laplace approximation. In section 6.4, we
demonstrate applications of our method to two artificial, ambigu-
ous datasets as well as two real-world datasets. Key findings and
important contributions are summarized in section 6.5.

6.1 Motivation

In active learning, safe reinforcement learning and extrapolation
tasks as well as safety critical systems like health care or auto-
mated driving, it is crucial to know about the uncertainty of the
model, but, equation learners do not capture uncertainty about
the model output. An equation learner discovers a set of plausible
equations with different structure and varying complexity. Those
equations correspond to different minima in the loss landscape.
Their differences in structure can lead to a rich variety of predic-
tions. Motivated by Occam’s Razor [56]

[56] MacKay (1992), “A practical
Bayesian framework for backpropa-
gation networks”

to prefer simple solutions,
conventional equation learners select one equation, ignoring all
others. However, if the dataset is ambiguous then there exist several
similarly plausible candidate equations. Selecting one equation
out of the others by chance means a loss of information about the
data. This leads to overconfidence in favor of the selected equation.
State-of-the-art in uncertainty quantification in deep learning are
ensemble methods [22, 35, 46, 59, 66]

[22] Eschenhagen, Daxberger, Hen-
nig, and Kristiadi (2021), “Mix-
tures of Laplace Approximations for
Improved Post-Hoc Uncertainty in
Deep Learning”
[35] Izmailov, Podoprikhin, Garipov,
Vetrov, and Wilson (2018), “Averag-
ing weights leads to wider optima
and better generalization”
[46] Lakshminarayanan, Pritzel, and
Blundell (2016), “Simple and scal-
able predictive uncertainty estima-
tion using deep ensembles”
[59] Maddox, Izmailov, Garipov,
Vetrov, andWilson (2019), “A simple
baseline for bayesian uncertainty in
deep learning”
[66] Pearce, Leibfried, and Brintrup
(2020), “Uncertainty in neural net-
works: Approximately bayesian en-
sembling”

, especially to capture global
uncertainty about the models predictions. Thus, the question arises
whether we can use the set of plausible equations retrieved by an
equation learner to construct an ensemble of equations for quan-
tifying uncertainty in equation learning. Due to their differences

68 Chapter 6 Structured Uncertainty in Equation Learning

in structure, the predictions of the equations strongly differ in
regions that are not sufficiently covered by measurements. This
is of special interest in extrapolation tasks, where no train data is
available. Indeed, incorporating equations of different complex-
ity and structure leads to sophisticated, structured uncertainty
estimates. We apply a Laplace approximation to each equation
in order to capture local uncertainty about the parameters within
each equation structure. Recent successes have been shown in
quantifying uncertainty in deep learning [17, 24, 34, 42, 43, 70]

[17] Daxberger, Nalisnick, Alling-
ham, Antoran, and Hernandez-
Lobato (2021), “Bayesian Deep
Learning via Subnetwork Infer-
ence”
[24] Foong, Li, Hernández-
Lobato, and Turner (2019),
“’In-Between’Uncertainty in
Bayesian Neural Networks”
[34] Immer, Korzepa, and Bauer
(2021), “Improving predictions
of Bayesian neural nets via local
linearization”
[42] Kristiadi, Hein, and Hennig
(2020), “Being Bayesian, Even Just a
Bit, Fixes Overconfidence in ReLU
Networks”
[43] Kristiadi, Hein, and Hennig
(2020), “Learnable Uncertainty
under Laplace Approximations”
[70] Ritter, Botev, and Barber (2018),
“A scalable Laplace approximation
for neural networks”

.

This work shows the application of uncertainty quantification on
a set of equations that was discovered by deep equation learning.
In principle, it can be applied to any set of equations found by
an equation learning algorithm. We demonstrate that simple but
effective forms of Bayesian deep learning can be used to build such
structured and interpretable uncertainty over a set of plausible
equations. In particular, we use a mixture of Laplace approxima-
tions, where eachmixture component captures a different equation
structure, and the local Laplace approximations capture parametric
uncertainty within one family of equations.

6.2 Related work

The following section addresses the intersection of uncertainty
quantification and equation learning, highlighting recent ad-
vances.

Section 4.2 gives a comprehensive overview of existing methods
related to equation learning techniques. These approaches gener-
ate various plausible equations covering a range of complexities
from which an optimal solution is typically selected based on
predefined criteria or at the user’s discretion. However, a com-
mon limitation of these methods is that they do not incorporate
structured uncertainty across the set of potential equations.

Automatic statistician: Structured and interpretable uncertainty
has been studied with Gaussian processes in the context of kernel
learning [20, 52, 77, 88]

[20] Duvenaud, Lloyd, Grosse,
Tenenbaum, and Zoubin (2013),
“Structure Discovery in Non-
parametric Regression through
Compositional Kernel Search”
[52] Lloyd, Duvenaud, Grosse,
Tenenbaum, and Ghahramani
(2014), “Automatic Construction
and Natural-Language Description
of Nonparametric Regression
Models”
[77] Sun, Zhang, Wang, Zeng, Li,
and Grosse (2018), “Differentiable
compositional kernel learning for
Gaussian processes”
[88] Wilson, Gilboa, Nehorai, and
Cunningham (2014), “Fast Kernel
Learning for Multidimensional
Pattern Extrapolation”

. Especially, the automatic statistician aims to
learn an interpretable structure of base kernels to describe high-
level properties like smoothness, trends, periodicity and change
points. Learning such structural forms of the kernel also enables for
long-range extrapolation.Weachieve similar statistical descriptions,
yet with interpretable equations instead of non-parametric, black
box Gaussian processes.

6.3 A Bayesian Perspective on Equation Learning 69

Uncertainty estimation for equations: Recent insights in uncer-
tainty estimationwith Laplace approximations for neural networks
can also be applied to uncertainty estimation for equations, with-
out the disadvantage of huge parameter spaces. The Laplace
approximation for neural networks has been first introduced by
MacKay [56]. It requires to invert the full Hessian, which is huge
for modern neural networks. With recent developments in Hes-
sian approximation [5, 60, 61] the Laplace approximation became [5] Botev, Ritter, and Barber (2017),

“Practical Gauss-Newton optimisa-
tion for deep learning”
[60] Martens (2020), “New Insights
and Perspectives on the Natural Gra-
dient Method”
[61] Martens and Grosse (2015),
“Optimizing Neural Networks with
Kronecker-factored Approximate
Curvature”

accessible to modern neural networks [17, 43, 70]. Foong et al. [24]
empirically show that the linearized Laplace approximation leads
to better calibrated uncertainty estimates of simple neural networks
than without linearization. We experienced similar effects with
equations instead of neural networks. Immer et al. [34] propose to
apply the Laplace approximation to the local linearization of the
neural network justifying theGGNapproximation. But, the Laplace
approximation is prone to underestimate the uncertainty.

Lakshminarayanan et al. [46] present a simple, yet state-of-the-art, [46] Lakshminarayanan, Pritzel, and
Blundell (2016), “Simple and scal-
able predictive uncertainty estima-
tion using deep ensembles”

method for uncertainty estimation in deep learning combining
several independently trained neural networks in a deep ensemble.
Motivated by their results we propose to use a mixture of Laplace
approximations (MoLA,[22]) for a set of plausible equations. [22] Eschenhagen, Daxberger, Hen-

nig, and Kristiadi (2021), “Mix-
tures of Laplace Approximations for
Improved Post-Hoc Uncertainty in
Deep Learning”

6.3 A Bayesian Perspective on Equation
Learning

An equation learner finds several plausible equations of varying
structure and complexity. They correspond to different modes of
the likelihood and lead to a variety in predictions, particularly in
data-sparse extrapolation regions. We identify this aspect as global
uncertainty that we capture with a mixture of local Laplace ap-
proximations (MoLA [22]

[22] Eschenhagen, Daxberger, Hen-
nig, and Kristiadi (2021), “Mix-
tures of Laplace Approximations for
Improved Post-Hoc Uncertainty in
Deep Learning”). We capture the parametric uncertainty

within one equation with a local Laplace approximation and refer
to it as local uncertainty. Therefore, we consider equation learning
with a Gaussian regression setting with a parameterized analytical Gaussian regression
equation f) , to map a 3-dimensional input x to a 3′-dimensional
output y given by

y8 = f)(x 8) + & , & ∼ N (0, �2) . (6.1)

The dataset (x 8 , y8) ∈ D is assumed to be sampled iid., and it
contains # datapoints each of which has Gaussian noise with
variance �2. Assuming a zero-mean isotropic Gaussian prior ?())
on the parameters) leads to the posterior distribution posterior distribution

70 Chapter 6 Structured Uncertainty in Equation Learning

Figure 6.1: Illustration of the
Laplace approximation @(I) for a dis-
tribution ?(I) and its log-curvature
of ln(?).

−1.0 −0.5 0.0 0.5 1.0
−3

−2

−1

0

I

curvature

ln(?)
Taylor

−4 −2 0 2 4
0

0.2

0.4

0.6

I

Laplace approximation

p(z)
q(z)

?() | D) ∝ ?(D | f))?())

∝
#∏
8=1

N (y8 | f)(x 8), �2)N () | 0,�−1�) . (6.2)

The prior N () | 0,�−1) is related to a !2 regularization on the pa-
rameters with a scalar precision hyperparameter � that modulates
the regularization strength. As discussed in section 2.3, the regular-
ized empirical risk can be related to the maximum a posteriori (MAP)regularized empirical risk
estimation and is thus determined by the negative log-posterior

L(D, f)) =
�
2
‖)‖22 +

"
2

log (2��−1)

+
1

2�2

#∑
8=1
‖y8 − f)(x 8)‖22 +

#
2

log(2��2). (6.3)

The negative log-posterior is partitioned in several distinct terms.
The initial line showcases the negative log-prior with the total
number of parameters". It is scaled by the precision parameter �
and depends on the !2 norm of the parameters. The second line
corresponds to the negative log-likelihood that is scaled by the
data variance �2 and determined by the !2 norm of the residuals
between observed and predicted values. In particular, the equation
contains two logarithmic terms that are independent of both
the parameter values and the residuals. The evidence has been
neglected since it is not relevant to determine the MAP.

6.3.1 Estimating Local Uncertainty via Linearized Laplace
Approximation

This section outlines the application of the Laplace approximation11: For a detailed derivation of the
Laplace approximation, readers are
directed to Chapter 4.4 of “Pattern
recognition and machine learning”
by Bishop[4]

post-hoc to pre-trained models, such as learned equations denoted
by 5) , to capture its local uncertainty as illustrated in figure 6.2.
In general, it approximates a probability distribution ?() | D) at its
mode by matching a multivariate Gaussian @() | D) as illustrated
in figure 6.1 and given by

?() | D) ≈ @() | D) = N () |)̃,G−1) . (6.4)

6.3 A Bayesian Perspective on Equation Learning 71

In this case, the posterior distribution is approximated at its mode
)̃ by a multivariate Gaussian with covariance G. Therefore, a
second order Taylor series at mode)̃ is applied to the unnormalized second order Taylor series
log-posterior from equation (6.3)

−L(D, 5)) ≈ − L(D, 5)̃) − 1
2

() −)̃)ᵀG() −)̃) . (6.5)

-0.6 -0.3 -0.0 0.3 0.6

x

0.1

0.2

0.3

0.4

0.5

y

Figure 6.2: Illustration of local uncer-
tainty given by measurement noise
and uncertainty in parameter values
of a plausible equation structure for
the toy example from equation (E2).
The dashed lines are possible sam-
ples of weight combinations within
the same equation structure as the
red line. The blue points represent
the synthetic dataset. The shaded
area reflects the local Laplace ap-
proximation.

Its covariance is defined by the inverse curvature of the negative
log-posterior

G = ∇∇ᵀL(D, 5)) |)̃
= −∇∇ᵀ ln(?(D |))) |)̃ −∇∇ᵀ ln(?())) |)̃ . (6.6)

The first term in equation (6.6) is the Hessian of the negative
log-likelihood N . The second term corresponds to the prior. Equa-
tion (6.4) follows from taking the exponential of equation (6.5)
and the corresponding Gaussian normalization. The predictive
distribution of 5 ∗

)
at any test point x∗ is given by integration over

the weights as described in equation (2.3)

?(y∗ |x∗ ,D) =
∫
?(y∗ | 5)(x∗))N () |)̃,G−1)d) . (6.7)

The integration is typically intractable. It can be approximated
either by Monte-Carlo integration from parameter distribution
?() | D) or with a linearization at its mode)̃

5)(x∗) ≈ 5)̃(x∗) + P∗ᵀ() −)̃) (6.8)

with Jacobian P∗ = ∇) 5)(x∗)|)̃. This leads to a tractable predictive
Gaussian distribution whose mean is given by equation 5)̃ with linearized Laplace approximation

parameters set to its mode)̃

?(y∗ | x∗ ,D) ≈ N (y∗ | 5)̃(x∗),Σ∗) (6.9)

Σ∗ = P∗ᵀG−1P∗ + �2O . (6.10)

The first term of the covariance Σ∗ depends on the value of test
point x∗ due to the Jacobian P∗ and describes the uncertainty of
the equation structure that is represented by)̃. The second term is
determined by measurement uncertainty.

72 Chapter 6 Structured Uncertainty in Equation Learning

6.3.2 Estimating Global Uncertainty via Mixture of Laplace
Approximations

We capture the global uncertainty of plausible equations 5 :
)̃

with a mixture of Laplace approximations (MoLA) as described by
Eschenhagen et al. [22] and illustrated in figure 6.3[22] Eschenhagen, Daxberger, Hen-

nig, and Kristiadi (2021), “Mix-
tures of Laplace Approximations for
Improved Post-Hoc Uncertainty in
Deep Learning”

?(y∗ | x∗ ,D) =
 ∑
:=1

�: N (y∗ | 5 :
)̃

(x∗),Σ∗:) (6.11)

The mixture coefficients �: are chosen such that they reflect how
plausible each equation is w.r.t. to the data. From a Bayesian
perspective, the natural choice is themarginal likelihood, balancing
accuracy and model complexity of the equation. It is expressed as

?(D | 5 :) =
∫

e−L(D, 5 :
)

)d) , (6.12)

with the empirical risk L as detailed in equation (6.3). This integral
is approximated using the results of equation (6.5) and depends onapproximation of marginal likeli-

hood the negative log-posterior value at its mode)̃ and the determinant
of the curvature matrix

?(D | 5 :) ≈ e−L(D, 5)̃)
∫

e−
1
2 ()−)̃)ᵀG()−)̃)d)

= e
−L(D, 5 :

)̃
)

√
(2�)"
detG:

. (6.13)

-0.6 -0.3 -0.0 0.3 0.6

x

0.1

0.2

0.3

0.4

0.5

y

-0.6 -0.3 -0.0 0.3 0.6

x

0.1

0.2

0.3

0.4

0.5

y

Figure 6.3: The two plots contrast
three plausible equation structures
(top plot) with their local Laplace
approximations (bottom plot), illus-
trating the combination of global un-
certainty and local uncertainty for
the toy example from equation (E2).

Here,": represents the number of model parameters and G: is
the curvature matrix, with its determinant reflecting the width of
the posterior landscape at its mode)̃: . Small Eigenvalues of G
increase themarginal likelihood. They indicate directions inweight
space that are not identified by data and thus represent flexibility
of the equation in parameter space. The marginal likelihood can be
decomposed in twocontributions, the empirical loss favors accurate,
yet simple equations and the determinant of the curvature favors
flexible equations in parameter space.

The marginal likelihood is a central measure in Bayesian model
selection and serves as a comparison criterion for different models.
Usually, the hyperparameters are fine-tuned to maximize this
marginal likelihood and thus control the selection of optimal
models. Therefore, we choose the mixture coefficients �: to be
proportional to the respective normalized marginal likelihood

�: =
(
?(D | 5 :)

) 1/#
// , / =

 ∑
:=1

(
?(D | 5 :)

) 1/#
(6.14)

6.3 A Bayesian Perspective on Equation Learning 73

This formulation deviates from traditional equation learning meth-
ods, which usually select a single specific equation. Instead, our
multimodal mixture model captures several plausible equations,
thereby accounting for local parametric uncertainties.

For fast evaluation we approximate the predictive distribution of fast evaluation
the mixture of Laplace approximations with its first two moments
similar to Lakshminarayanan et al. [46] [46] Lakshminarayanan, Pritzel, and

Blundell (2016), “Simple and scal-
able predictive uncertainty estima-
tion using deep ensembles”m∗ =

 ∑
:=0

�: 5 :
)̃

(x∗) (6.15)

diag Σ∗ =
 ∑
:=0

�:(diag Σ∗: + 5 :
)̃

(x∗)2) −m∗2 . (6.16)

The first moment, denoted as m∗, is calculated as the weighted
sum of the equations 5 :

)̃
(x∗), according to equation (6.15). The

second moment, denoted as diag Σ∗8 , builds upon the first moment.
It is determined by the weighted sum of the diagonal elements
of the covariance, plus a weighted sum of the squared equations,
as shown in equation (6.16). This leads to the following Gaussian
distribution

?(y∗ | x∗ ,D) = N (y∗ | m∗ , diag Σ∗) . (6.17)

We want to stress that the computational overhead is still small
compared to neural networks, since just one forward pass and one
backward pass of each equation is required to calculate the approx-
imation. A visualization is shown in right panel of figure 6.4.

-0.6 -0.3 -0.0 0.3 0.6

x

0.1

0.2

0.3

0.5

0.6

y

fast evaluation

Figure 6.4: Illustration of the fast
evaluation approximation for the toy
example from equation (E2). The
shaded area indicates 2� standard
deviation.

Remarks: The conditional mean of multimodal distribution can
give a poor representation of the data. Especially, in extrapola-
tion regions where the predictions of the underlying equation
components strongly deviate. Depending on the application the
conditional mode may be more meaningful. It would require
numerical iteration since it has no analytic solution.

Our mixture of Laplace approximations strongly depends on the
set of plausible equations by an equation learner. It inherits a bias
towards structures of equations that occur more frequently. This
might be wanted in the sense that the equation learner introduces
a bias upon the equation structure.

74 Chapter 6 Structured Uncertainty in Equation Learning

6.4 Experiments

In this section, we investigate the predictive distribution of the
MoLA with its local Laplace approximations. We highlight the
importance of considering several plausible equations instead
of one equation on the basis of two ambiguous toy datasets in
section 6.4.1. In section 6.4.2 we study two real-world time series,
whichhavebeen investigated in the course of structureduncertainty
estimates by the automatic statistician [52].[52] Lloyd, Duvenaud, Grosse,

Tenenbaum, and Ghahramani
(2014), “Automatic Construction
and Natural-Language Description
of Nonparametric Regression
Models”

Training: We normalize input and output of the real-world
datasets for training. We use the equation learner iEQL to re-
trieve plausible functions, which describe the datasets. As archi-
tecture, we use four hidden layers for the real-world datasets and
three hidden layers for the toy datasets. Each hidden layer has
{cos, exp , G2 , ∗} as atomic units. Each atomic unit is applied
four times in each layer. To account for the high frequency in the
real-world datasets we use ten cos∗ units with initial frequency22: This corresponds to a period of

about one year in theMauna dataset
and about 100 days in the Airline
dataset.

5 = 80 on the normalized data instead of four cos units in each
hidden layer. This mainly affects the initialization of the iEQL
leading to a larger spectrum of frequencies due to the random
initialization of the weight matrices. We prohibit combinations
of cos(cos), exp(exp). The iEQL architecture for the real-world
applications is illustrated in figure 6.5 More technical details are
given in appendix section C.1.

We refer to complexity in the framework of the iEQL. It measures
the complexity of an equation by counting all active weights that
are necessary to represent the equation.

Hyperparameters: We follow common practice to optimize the
precision � by maximizing the marginal likelihood. Therefore, we
apply a grid search with � = 10: where : is in the range from

Figure 6.5: Illustration of the iEQL
architecture for the real-world appli-
cations. Forbidden equation compo-
nents cos(cos(·)) and exp(exp(·)) are
marked in red.

G1 H1

b1 b2 b3 b4

cos∗

exp

G2

∗
copy

cos∗

exp

G2

∗
copy

cos∗

exp

G2

∗
copy

id

input outputh1 h2 h3 h4

6.4 Experiments 75

-1.1 -0.6 -0.0 0.5 1.0

x

0.4

0.5

0.6

0.8

0.9
y

dataset

-3.0 -1.5 -0.1 1.4 2.8

x

-2.0

-1.0

-0.1

0.9

1.9

y

Laplace approximations

0.0 2.5 5.0 7.5

complexity

0.00

0.05

0.10

rm
se

Pareto plot

0.00

0.02

0.04

0.06

0.08

π
k

(a) toy example equation (E1)

-0.6 -0.3 -0.0 0.3 0.6

x

0.2

0.3

0.3

0.4

0.5

y

dataset

-3.0 -1.5 -0.1 1.4 2.8

x

-2.0

-1.0

-0.1

0.9

1.9

y

Laplace approximations

0.0 2.5 5.0 7.5

complexity

−0.025

0.000

0.025

0.050

0.075

rm
se

Pareto plot

0.02

0.03

0.04

0.05

π
k

(b) toy example equation (E2)

Figure 6.6: Illustration of local uncertainty for the two toy examples from equation (E1) and (E2). The corresponding
dataset is shown in the left panel. The middle panel shows the local Laplace approximations for four hand-picked
equations from table 6.1. The shaded area indicates 2� standard deviation. The color indicates the weighting of the
mixture coefficients given by their normalized marginal likelihood. The color scheme is chosen such that it is aligned with
the Pareto plot in the right panel, which shows root mean squared error (RMSE) on the train dataset over the complexity
of each equation.

−2 to 2 with 100 equally spaced steps. The scale of the likelihood
�2 is a model of measurement error. In technical applications,
this parameter is usually known as part of the calibration of
the measurement process and should then not be estimated. In
situations where it is not known it can be estimated post-hoc

empirically as �2 =
∑#
8 (5)(x 8) − y8)

2/# , with the usual risk of
model-overfitting.

Remarks: During our experiments we discovered that for deep
neural networks and also for the considered equations the Hes-
sian is not guaranteed to be positive-semi-definite (psd.) after
convergence of the optimizer. This might be due to the use of
the Adam [39] optimizer, which can converge to a saddle point [39] Kingma and Ba (2014), “Adam:

A method for stochastic optimiza-
tion”

with some directions with negative curvatures. Therefore, we ap-
proximate the Hessian with the generalized Gauss-Newton (GGN)
matrix with backpack for pytorch [15], which is positive-semi- [15] Dangel, Kunstner, and Hennig

(2020), “BackPACK: Packing more
into Backprop”

definite by construction. The use of a GGN approximated Hessian
is motivated by the findings of Immer et al. [34], since we are using

[34] Immer, Korzepa, and Bauer
(2021), “Improving predictions of
Bayesian neural nets via local lin-
earization”

a linearized Laplace approximation.

76 Chapter 6 Structured Uncertainty in Equation Learning

-1.6 -0.8 -0.0 0.7 1.5

x

0.0

0.2

0.4

0.7

0.9
y

MoLA density

-3.0 -1.5 -0.1 1.4 2.8

x

-2.0

-1.0

-0.1

0.9

1.9

y

MoLA density

-3.0 -1.5 -0.1 1.4 2.8

x

-2.0

-1.0

-0.1

0.9

1.9

y

fast evaluation

(a) toy example equation (E1)

-0.7 -0.4 -0.0 0.3 0.7

x

0.0

0.2

0.3

0.5

0.6

y

MoLA density

-3.0 -1.5 -0.1 1.4 2.8

x

-2.0

-1.0

-0.1

0.9

1.9

y

MoLA density

-3.0 -1.5 -0.1 1.4 2.8

x

-2.0

-1.0

-0.1

0.9

1.9

y

fast evaluation

(b) toy example equation (E2)

Figure 6.7: Illustration of global uncertainty for the two toy examples from equation (E1) and (E2). The density distributions
of themixture of Laplace approximations are shown in the left andmiddle panel. The right panel shows the approximation
for fast evaluation given by equation (6.17).

6.4.1 Illustrative toy examples

In order tohighlight the importance of considering several plausible
equations insteadof one single equation as in conventional equation
learning, we construct two ambiguous datasets in which , without
further knowledge, polynomial andperiodic equations are similarly
plausible. Selecting one equation out of the others by chancemeans
a loss of information about the data. The ground truth functions are
chosen such, that they resemble a second order polynomial despite
having a cosine structure with different measurement noise

H = 0.8 cos G + & , & ∼ N (0, 0.012) (E1)
H = 0.8 cos G − 0.4 + & , & ∼ N (0, 0.032) . (E2)

For each dataset six input values were uniformly sampled from
[−1, 1]. The datasets are shown in the left panel of figure 6.6. We
calculated 31 plausible equations for each dataset with different
complexities with the iEQL. The right panel of figure 6.6 shows
the corresponding Pareto plot. The iEQL found equations with
complexities in the range of [0, 8] for both toy examples. Their
color indicates the weighting by the mixture coefficients �: . Yellow
indicates a small weighting and red indicates a strong weighting.
Analytic expressions for four hand-picked equations are listed in
table 6.1 along with their mixture coefficients �: , root mean square
error (RMSE) and complexity. Their local Laplace approximations
are shown in the middle panel of figure 6.6.

6.4 Experiments 77

Table 6.1:Hand-picked equations of different complexity for toy example E1 and E2 with root mean squared error (RMSE)
and mixture coefficients �: on the train dataset. Their local Laplace approximations are shown in the middle panel of
figure 6.6.

dataset �: rmse complexity equation

E1

0.095 0.0098 2 H0 = 0.79 − 0.34 (1.05G1 + 0.03)2
0.063 0.0088 2 H0 = 0.56 − 0.24 cos (2.02G1 + 3.16)
0.041 0.0043 4 H0 = −0.45 (−0.98G1 − 0.04)2 + 0.02 cos (3.92G1 − 2.2) + 0.81

0.012 0.00021 8 H0 = −0.15 (0.85G1 − 0.04)2 − 0.02 cos (2.54G1 + 3.08)
−0.04 cos (2.62G1 − 3.2) − 0.07 cos

(
7.78 (0.85G1 − 0.04)2 − 3.64

)
+ 0.67

E2

0.057 0.0088 3 H0 = 0.44 − 0.7
(
0.3 − 1.24 (1.88G1 + 0.06)2

)2

0.051 0.0084 3 H0 = 0.45 − 0.45 (0.5 − 0.98 cos (4.03G1 + 0.13))2
0.049 0.038 2 H0 = 0.43 − 0.52 (−1.15G1 − 0.05)2
0.014 7.8e-06 4 H0 = 0.82 − 0.6 (−0.01G1 + 1.16 cos (7.54G1 + 0.26) + 0.2)2

The first two equations of toy example (E1) are the two dominant
modes given by a cos and a parabola equation. They can be clearly
identified in the density distribution in the left and middle panel
of figure 6.7. The two other equations are more accurate, but also
more complex. Their weighting coefficient is smaller and thus they
are hard to identify in the density plot, but their local Laplace
approximation is shown in the middle panel.

The first three equations of toy example (E2) are themost dominant
modes given by a fourth order polynomial, a squared cos and a
parabola equation in descending order. The last hand-picked equa-
tion is orders ofmagnitudemore accurate yet its mixture coefficient
is four times smaller compared to the dominant modes. This can
be related to larger Eigenvalues of its curvature matrix, meaning
less flexibility in parameter space. Its local Laplace approximation
is the yellow, high frequency line shown in the middle panel of
figure 6.6.

6.4.2 Real-world time series

In the following section, we investigate two real-world time series
datasets3

3: The datasets are downloaded
from https://github.com/ssyda

sheng/Neural-Kernel-Network

, which have been studied in the course of structured
uncertainty estimates by the automatic statistician [20, 52, 77]

[20] Duvenaud, Lloyd, Grosse,
Tenenbaum, and Zoubin (2013),
“Structure Discovery in Non-
parametric Regression through
Compositional Kernel Search”
[52] Lloyd, Duvenaud, Grosse,
Tenenbaum, and Ghahramani
(2014), “Automatic Construction
and Natural-Language Description
of Nonparametric Regression
Models”
[77] Sun, Zhang, Wang, Zeng, Li,
and Grosse (2018), “Differentiable
compositional kernel learning for
Gaussian processes”

. We
present similar structured uncertainty estimates and provide inter-
pretable, analytic expressions instead of non-parametric Gaussian
processes for

Mauna Loa atmospheric CO2 concentration (Mauna) recorded at
the Mauna Loa observatory with 545 datapoints

Airline passenger data (Airline) of monthly totals of international
airline passengers with 144 datapoints.

https://github.com/ssydasheng/Neural-Kernel-Network
https://github.com/ssydasheng/Neural-Kernel-Network

78 Chapter 6 Structured Uncertainty in Equation Learning

Table 6.2: Hand-picked equations for real-world datasets Mauna and Airline with root means squared error (RMSE) and
mixture coefficients �: on the train dataset. Their local Laplace approximations are shown in the left and middle panel of
figure 6.9.

dataset �: rmse equation

Mauna

0.029 0.4
H0 = 0.89G1 + 0.42 (0.52G1 + 0.22)2 − 0.15 cos (82.73G1 − 3.49)

+0.23
(
−0.35G1 + 0.85 (−0.27G1 + 0.66 cos (3.39G1 + 5.09) − 0.28)2 − 0.49

)2

−0.140.41 cos (165.39G1−5.67) − 0.07

0.024 0.51 H0 = 0.8G1 − 0.36 (0.32 − 0.49 cos (82.69G1 + 0.31))2 + 0.09 cos (82.8G1 − 1.18)
+0.0142.42G1 − 0.434−1.9(−0.56G1−0.43)2 + 0.28

0.017 0.73 H0 = 0.83G1 + 0.66 (−0.41G1 − 0.29)2 + 0.29 (0.69 cos (82.73G1 − 14.03) + 0.08)2
+0.134−0.99 cos (82.71G1+2.99) − 0.4

Airline
0.039 8.7

H0 = 0.41G1 (0.23G1 + 0.28) + 0.61G1
+0.4 (0.86 (−0.47 cos (65.09G1 − 1.95) − 0.52) (0.77 cos (65.09G1 − 1.95) + 0.09)
+0.98) · (1.53 cos (21.78G1 − 0.58) + 0.74 cos (22.06G1 + 3.28) + 0.04)
+0.2140.38G1−1.92 cos (21.78G1−0.58) + 0.184−2.6(1.02−1.92G1)2 − 0.63

0.027 18 H0 = 0.75G1 + 0.140.64G1−2.0 cos (21.75G1−6.67) − 0.28

1955 1968 1980 1993 2006

year

-37

-17

3

22

42

C
O

2
m

ol
e

fr
ac

ti
on

[p
p

m
]

Mauna dataset

1948 1952 1955 1959 1963

year

41

201

360

520

679

#
p

as
se

n
ge

rs
/m

on
th

Airline dataset

Figure 6.8: Real-world time series datasets: Mauna Loa atmosperic CO2 concentration on the left hand side and on the
right hand side Airline passenger data of monthly totals of international airline passengers.

We focus on extrapolation to examine our method’s ability to
discover the underlying structured uncertainty. We calculated 51
plausible equations for each dataset with the iEQL, which is shown
in figure 6.5. The equations capture the underlying structure
of the two datasets, which is illustrated in the left and middle
panels of figures 6.9 and 6.10. Their complexity lies within [1 −
235] parameters. The mixture coefficients reliably prefer accurate
and simple equations as shown in the Pareto plots in figure 6.9.
Figure 6.10 shows the predictive distribution of the MoLa in the
left panel and the middle panel shows a cutout area. The predictive
distribution clearly indicates that the predictions of the equations
diverge in the extrapolation area, as expected. The right panel
shows the approximation of the predictive distribution for fast
evaluation. It captures the underlying structure of the dataset and
provides calibrated uncertainty estimates.

This is in contrast to the local Laplace approximations, which are

6.4 Experiments 79

1955 1971 1987 2003 2019

year

-37

0

38

75

112

C
O

2
m

ol
e

fr
a
ct

io
n

[p
p

m
]

Laplace approximations

2001 2006 2011 2015 2020

year

26

40

53

66

79

C
O

2
m

ol
e

fr
a
ct

io
n

[p
p

m
]

Laplace approximations

0 100 200

complexity

0

1

2

rm
se

Pareto plot

0.01

0.02

0.03

π
k

(a) Mauna dataset

1948 1952 1956 1961 1965

year

41

273

505

737

969

#
p

as
se

n
ge

rs
/m

on
th

Laplace approximations

1958 1960 1961 1962 1963

year

280

425

570

715

860

#
p

as
se

n
ge

rs
/m

on
th

Laplace approximations

0 100 200

complexity

0

20

40

rm
se

Pareto plot

0.00

0.01

0.02

0.03

π
k

(b) Airline dataset

Figure 6.9: Illustration of local uncertainty for the Mauna and Airline dataset. The left andmiddle panel show the local
Laplace approximations for hand-picked equations from table 6.2. The shaded area indicates 2� standard deviation. The
color indicates the weighting of the mixture coefficients given by their normalized marginal likelihood. The color scheme
is chosen such that it is aligned with the Pareto plot in the right panel, which shows root mean squared error (RMSE) on
the train dataset over the complexity of each equation.

known to underestimate the uncertainty as shown in the left and
middle panel of figure 6.9 for three hand-picked equations for
the Mauna dataset and two hand-picked equations for the Airline
dataset. Their corresponding mathematical expressions are shown
in table 6.2.

We found that our method estimates the correct dominating fre-
quency in all selected equations.
In the Mauna dataset the predictions deviate in the extrapolation
region due to their differences in structure, which is an important
motivation to capture global uncertainty with a mixture model.
Especially, the second equation models the growth of the data
with an exponentially growing contribution e0G1 , whereas the first
equation uses a fourth order polynomial and the third equation
uses a parabola.
In the Airline dataset the structure of the second equation is very
simple and does not capture higher frequencies. This leads to a
larger uncertainty of its local Laplace approximation.

Figure 6.11, which shows Pareto plots of the root mean square error
(RMSE) for the test dataset rather than the training dataset, pro-
vides a valuable insight into the Bayesian model selection process.
The normalized marginal likelihood seems to be a promising mea-
sure to achieve a balance betweenmodel complexity and prediction
accuracy. Moreover, the data confirm that the above-mentioned

80 Chapter 6 Structured Uncertainty in Equation Learning

1955 1971 1987 2003 2019

year

-37

25

86

148

209

C
O

2
m

ol
e

fr
a
ct

io
n

[p
p

m
]

MoLA density

2001 2004 2007 2011 2014

year

21

31

41

51

61

C
O

2
m

ol
e

fr
a
ct

io
n

[p
p

m
]

MoLA density

2001 2006 2011 2015 2020

year

26

40

53

66

79

C
O

2
m

ol
e

fr
a
ct

io
n

[p
p

m
]

fast evaluation

(a) Mauna dataset

1948 1952 1956 1961 1965

year

41

273

505

737

969

#
p

as
se

n
ge

rs
/m

on
th

MoLA density

1958 1960 1961 1962 1963

year

280

425

570

715

860

#
p

as
se

n
ge

rs
/m

on
th

MoLA density

1958 1960 1961 1962 1963

year

280

425

570

715

860

#
p

as
se

n
ge

rs
/m

on
th

fast evaluation

(b) Airline dataset

Figure 6.10: Illustration of global uncertainty for the Mauna and Airline dataset. The density distributions of the mixture
of Laplace approximations are shown in the left and middle panel. The right panel shows the approximation for fast
evaluation given by equation (6.17).

balance is maintained even when considering the RMSE on a test
dataset that is not included in the normalized marginal likelihood
calculation. These results suggest that normalized marginal likeli-
hood could serve as a robust criterion for model selection in the
context of equation learning.

In this section, we showed that ourmethod captures the underlying
structure of the datasets and provides structured uncertainty esti-
mates. The individual local Laplace approximations underestimate
the global uncertainty. Our approximation for fast evaluation pro-
vides reliable structured uncertainty, yet this has to be appliedwith
caution since the conditional mean of a multimodal distributions
can lead to a poor representation of the data.

6.5 Conclusion 81

0 100 200

complexity

1

2

3

rm
se

Mauna: Pareto plot

0.01

0.02

0.03

π
k

0 100 200

complexity

10

20

30

40

rm
se

Airline: Pareto plot

0.00

0.01

0.02

0.03

π
k

Figure 6.11: Pareto plots of Mauna (left) and the Airline (right) datasets. Instead of the RMSE on the train dataset, it
displays the RMSE on the test dataset over complexity. The color indicates the weighting of the mixture coefficients given
by their normalized marginal likelihood.

6.5 Conclusion

We introduced uncertainty in equation learning for any set of
plausible equations found with an equation learner. We identi-
fied two components of uncertainty: global uncertainty given by
the differences in structure of each equation and local uncertainty

given by parametric uncertainty within one family of equations.
We introduced a mixture of Laplace approximations to capture
global uncertainty of several plausible equations. Each mixture com-
ponent captures a different equation structure and the Laplace
approximations capture local, parametric uncertainty within one
family of equations. For computationally fast evaluation we pro-
posed to match the first two moments of the mixture of Laplace
approximations.

Part III

Conclusion & Future Directions

Conclusion & Future Directions 7
7.1 Summary and Impact . 85
7.2 Outlook and Future

Directions 86

The first section of this chapter provides a summary of the main
contributions of this thesis. Subsequently, we present a perspec-
tive on potential future research topics that could broaden the
application of equation learning neural networks.

7.1 Summary and Impact

This work contributed to the field of equation learning with neural
networks by introducing new structures and methods to improve
model expressivity and training stability. One of the main motiva-
tions was to scale equation learning neural networks to realistic
conditions in science and engineering. Novel architectures and
training techniques were developed to overcome the challenges
of learning with functions that exhibit singularities, integrating
expert knowledge into the learning process and using probabilis-
tic optimization. The introduction of uncertainty quantification
methods marked a significant step towards robust predictions in
complex scientific and engineering tasks. The research demon-
strated the improved ability of these networks to produce accurate
and interpretable equations, with the added benefit of being able to
quantify uncertainty within and across several plausible equations.
This work provided critical insights to the three research questions
Q1, Q2 and Q3 outlined in section 1.2.

“How to broaden the expressivity of equation learning neural
networks and train them efficiently?” Three approaches were research question 1
presented in chapter 4 to improve the expressivity and stabilizing
training of equation learning neural networks. Atomic functions
with singularities, like logarithms and division, were incorporated
across all layers, which posed a challenge in previous work due to
instabilities during training. This incorporation broadened the net-
work’s ability to model complex equations. The integration of copy
units enabled a unified computation of the Pareto-front avoiding
extensive scans over network architectures with different numbers
of hidden layers. Additionally, a probabilistic !0 regularization
method was employed to improve the overall training process.
These developments collectively form a foundation for advancing
equation learning to scale to real-world scenarios.

86 Chapter 7 Conclusion & Future Directions

“How to utilize domain knowledge to guide the search for better
equations?” High expressivity inevitably requires an extensiveresearch question 2
search in the hypothesis space. Strategies to integrate domain and
expert knowledge into both the trainingprocess and the structure of
equation learning neural networks were explored in chapter 5. For
this purpose, an informed equation learner iEQL was developed,
whichmakes it possible to exclude combinations of functions and to
prefer or reduce certain function types with the help of a domain-
specific weighting scheme. The iEQL demonstrated success in
identifying plausible and interpretable equations with strong
predictive power across both artificial and real-world engineering
datasets.

“How to quantify uncertainty of a set of equations that was
discovered by an equation learning neural network?” In chap-
ter 6 we separated uncertainty into two contributions (i) globalresearch question 3
uncertainty, derived from structural differences between equa-
tions, and (ii) local uncertainty, related to parametric variability
within an equation structure. It was possible to approximate these
uncertainties using a mixture of Laplace approximations. Each
mixture component captured a different equation structure, while
the local Laplace approximation accounted for the corresponding
parametric uncertainty. Its application was demonstrated using
toy examples and two real-world datasets.

7.2 Outlook and Future Directions

This section describes possible research directions to extend the
scope of equation-learning neural networks. The following ideas
can be used to inspire new research projects.

Speed up Equation Learning: Equation learning neural net-
works are computationally intensive during training. As is common
in deep learning, first-order optimization methods are used to op-
timize the parameters. Due to sparsity regularization and the
diverse activation functions, training is computationally intensive
compared to a fully connected neural network. However, in order
to establish equation learning neural networks as an everyday
tool for engineers and researchers, the calculation time must be
significantly reduced. This section lists possible approaches to
tackle this challenge.

Second order optimization Given the size of equation learning neu-
ral networks, the application of second-order optimization
methods could speed up training. Current advances in deep

7.2 Outlook and Future Directions 87

learning provide tools and methods for second-order opti-
mization. However, it will be challenging to combine these
with an effective sparsity regularization.

Step-wise regularization In order to obtain a diverse Pareto front sev-
eral networks with different regularization strengths must be
trained. By gradually increasing the sparsity regularization,
the number of individual trainings required can potentially
be reduced to a minimum of one training run. In this way,
equations of different sparsity and accuracy can be achieved
within one training run. However, it is to be expected that
the equations obtained will have a similar overall structure
despite varying complexity. In order to obtain a diverse
Pareto front within a training run, the optimization must
offer the possibility of breaking out of an equation structure
and explore other plausible structures.

Modeling heteroscedastic uncertainty Aleatoric uncertainty re-
flects the degree of noise present in observations. It can be cate-
gorized into homoscedastic (uniform noise across all inputs) and
heteroscedastic (input-dependent noise) uncertainty. Chapter 6
presents an approach to capture structured uncertainty in equa-
tion learning based on the assumption of homoscedastic aleatoric
uncertainty, characterized by a constant variance. Recent devel-
opments in Deep Learning explore methods for estimating both
the variance and the mean in case of heteroscedastic uncertainty.
Applying these techniques to equation learning could lead to more
accurate and reliable predictions. These advances are promising for
areas that require robust and reliable uncertainty estimates, such
as active learning, safe reinforcement learning, and safety-critical
systems.

Promoting interdisciplinary collaboration betweenmathemati-
cians, computer scientists, engineers, anddomain-specific scientists
from other disciplines is crucial for the further development of
equation learning. These collaborations ensure that the models are
not only technically robust, but also practically relevant and geared
to the requirements of real world applications. In order to fully
utilize the strengths of equation learning neural networks, the fo-
cus should be on high-dimensional datasets containing numerous
datapoints, where a non-trivial underlying equation is expected.

Part IV

Appendix

Additional Material for Chapter 4 A
A.1 Sparse Representations

through !0 Regulariza-
tion 91

A.1 Sparse Representations through !0
Regularization

This section contains additional material on the differentiable
!0 regularization scheme of Louizos et al. [54]. It is applied [54] Louizos, Ullrich, and Welling

(2017), “Bayesian Compression for
Deep Learning”

in section 4.5 to optimize the objective loss function given by
equation (4.10). Section A.1.1 describes the application of the
reparametrization trick to the Bernoulli gates 6. This method facil-
itates gradient backpropagation through stochastic variables. Sec-
tion A.1.2 discusses the hard concrete distribution for the gates.

A.1.1 Reparametrization Trick

With the help of the reparametrization trick [40, 69] , gradient- [40] Kingma and Welling (2013),
“Auto-Encoding Variational Bayes”
[69] Rezende, Mohamed, and Wier-
stra (2014), “Stochastic backpropaga-
tion and approximate inference in
deep generative models”

based optimization can be applied to equation (4.12). Therefore,
the gates I are hard-sigmoid rectifications 1(·) of a continuous
random variable B with variables)

B ∼ @(B |)) , 6 = 1(B) , with: 1(·) = min(1,max(0, ·)). (A.1)

The expected loss is then

L =E@(B |))

[1
#

#∑
8=1
‖y8 − f (x 8 ;] � b(B)‖22

]
+ �

∑
9≤|, |

(1 −&(B 9 ≤ 0 |) 9)) (A.2)

with the cumulative distribution &(·) of B. This penalizes the
probability of a gate being non-zero. By selecting an appropri-
ate continuous distribution @(B), the reparametrization trick with
parameter free noise distribution ?(&) and a differentiable transfor-
mation 5 (·) can be applied

L =E?(&)

[1
#

#∑
8=1
‖y8 − f (x 8 ;] � b(5 (), &))‖22

]
+ �

∑
9≤|, |

(1 −&(B 9 ≤ 0 |) 9)) (A.3)

The expectation can be calculatedwithMonte Carlo approximation
over the noise distribution ?(&). The final reparametrization is given
by the hard concrete distribution outlined in the following.

92 Appendix A Additional Material for Chapter 4

−10 −5 0 5 10
0.0

0.25

0.5

0.75

1.0

log

I
concrete
hard concrete
E?(&)[concrete]
E?(&)[hard concrete]

(a) differentiable transformation

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

I

?(
I)

concrete
hard concrete

(b) density plot

Figure A.1: The differentiable transformation of the binary concrete and hard binary concrete relaxation without noise
as well as their expectations (equation (A.5) and equation (A.7) respectively) for 10000 samples are shown in (a).
The probability density function for the concrete gate (equation (A.9)) and hard concrete gate (equation (A.11)). The
delta-functions � of the hard concrete distribution is indicated by the orange bars. All plots are produced with the
hyperparameters mentioned in equation (A.16).

A.1.2 Hard Concrete Distribution

By choice, B is a binary concrete randomvariable [29, 58] distributed[29] He, Zhang, Ren, and Sun (2016),
“Identity Mappings in Deep Resid-
ual Networks”
[58] Maddison, Mnih, and Teh
(2016), “The concrete distribution:
A continuous relaxation of discrete
random variables”

over (0, 1) with probability density @(B |)) and cumulative density
&�(B |)). Thedistributionhas twoparameters (log , �). Its location
is denoted by log and the degree of approximation is controlled
by �. A samplingmethod for the stretched version fromaparameter
free uniform distribution for the interval (�, �)1is given by

1: In order to ensure a "stretch" it is
necessary that � < 0 and � > 1. D ∼ U(0, 1) (A.4)

B = Sigmoid((log D − log(1 − D) + log)/�) (A.5)
B̄ = B(� − �) + � (A.6)
6 = 1(B̄) . (A.7)

The differentiable transformation B is provided by a sigmoid. Fig-
ure A.1 shows both differentiable transformations, the concrete and
the hard concrete relaxation without noise as well as their expec-
tations for 10000 samples on the left side and the corresponding
probability distributions on the right side. The degree of approxi-
mation is determined by the temperature �. As the temperature
approaches zero, the transformation converges towards the original
Bernoulli distribution. However, this convergence is accompanied
by a loss of differentiability. Further important properties of the
binary concrete and the hard binary concrete random variables

A.1 Sparse Representations through !0 Regularization 93

are given by

@B(B |)) =
�B−�−1(1 − B)−�−1

(B−� + (1 − B)−�/2)2
(A.8)

&B(B |)) = Sigmoid
(
(log B − log(1 − B))� − log

)
(A.9)

@ B̄(B̄ |)) =
1

|� − � | @B
(
B̄ − �
� − � |)

)
(A.10)

& B̄(B̄ |)) = &B

(
B̄ − �
� − � |)

)
. (A.11)

In the case, where 0 < � < 1, the resulting probability density
function concentrates its mass near the end points, which leads to
a pronounced behavior of the distribution characteristics as shown
in figure A.1(b). Finally, we obtain the probability distribution for
the hard concrete sigmoid 6

@(I |)) =& B̄(0 |))�(I) + (1 −& B̄(1 |)))�(I − 1)
+ (& B̄(1 |)) −& B̄(0 |))) @ B̄(I | B̄ ∈ (0, 1),)) (A.12)

The probability distribution of the hard concrete sigmoid (6)
assigns weighted delta-peaks to its boundaries {0, 1} because of
the rectification. Thus, the complexity loss is defined by 1−& B̄(0,))
given by

LC = Sigmoid(log − � log
−�
�
) . (A.13)

The corresponding expected dropout rate for � = 0 is given by

& B̄(0,)) =
1

1 +
(A.14)

During the evaluation phase, the subsequent estimator masks the
non-essential parameters using a hard concrete gate

Î = min
(
1,max

(
0, Sigmoid

(
log

)
(� − �) + �

))
. (A.15)

In our implementation we use the same hyperparameters as
Louizos et.al. [55]

� = 1.1, � = −0.1, � = 2/3 . (A.16)

Additional Material for Chapter 5 B
B.1 Details on Training and

Parameter Settings . . 95
B.1 Details on Training and Parameter Settings

All experiments are performed using an iEQL with four hidden lay-
ers. Each hidden layer has {cos, exp , log,

√
, G2 , ∗, /} as atomic

units, and each atomic unit is applied four times in each layer. We
prohibit the combinations cos(cos), cos(exp), exp(exp), log(log).
The iEQL has thus 6405 learnable weights. Training is executed
in two phases. In phase 1 we train for)1 = 2000 epochs without
regularization. This phase avoids bad initialization and assures
that themodel is close to aminimumwhen pruning starts. In phase
2 we train for)2 = 10000 epochs with regularization strength �.
Just for the combustion engine dataset, which has about 5 to 6 times
fewer datapoints, we increased the number of epochs by a factor
of 8. We skipped train phase 1 for the ambiguous dataset since
the iEQL is already sufficiently close to a minimum. After each
epoch, an intrinsic penalty epoch is calculated with 100 randomly
sampled datapoints from the test domain (without labels). The
maximum desired output value is set to � = 10 with � = 1. We use
the Adam optimizer [39] with learning rate 0.001, moving average [39] Kingma and Ba (2014), “Adam:

A method for stochastic optimiza-
tion”

�1 = 0.4 and & = 10−8 for numerical stability. The initial dropout
rate1 of the Bernoulli gates is set to 0.5 and the domain/bound

1: With the applied hard concrete
approximation the dropout rate is
1/(1 +) (see equation (A.14))

penalty strength is set to � = 1. Further information on dropout
rate is given in equation (A.14). Since the optimal regularization
scale parameter � is not known in advance, we train several models
with different regularization strengths � = 10: , where : is in the
range from −5.0 to 0.0 with 78 equally spaced steps. This results
in 78 equations with different complexities and root mean squared
errors (RMSE).

Baselines

We calculate the mean predictor (MP) on the train set and a multi-
layer perceptron (MLP) with tanh activation functions and five
hidden layers with 50 neurons each. It is trained with batch size
100 for 5000 epochs and the Adam optimizer with a learning rate
of 0.001 and �1 = 0.9. A grid search on the learning rate revealed
that it is pretty robust in the range [0.001, 0.0001]. We select the
best validation model to avoid overfitting.

We compare to EQL÷, a state-of-the-art method from [72] with
atomic unit types {sin, cos, ∗, identity} and division in the final

96 Appendix B Additional Material for Chapter 5

layer. It is sufficient to use the hyperparameters proposed in [72]
since the datasets on which we compare have similar properties
to the ones in [72]. So we applied Adam optimizer with learning
rate 0.001 and & = 10−4, mini-batch size 20, domain penalty � = 10
with � = 10, and 10 atomic units per type in each layer. The
number of total epochs is given by) = (! − 1) · 10000, where !
is the number of hidden layers. Just for the combustion engine
dataset, which has about 5 to 6 times fewer datapoints, we had
to increase the number of total epochs to) = (! − 1) · 80000.
We perform model selection amongst the following parameters:
regularization strengths � = 10: where : is in the range from −6.0
to −3.5 with 26 equally spaced steps and ! ∈ {2, 3, 4}. This results
in 78 equations with different complexities and root mean squared
errors (RMSE).

Another baseline is (PySR, [14]) a genetic algorithm for symbolic re-[14] Cranmer (2023), “Interpretable
Machine Learning for Science with
PySR and SymbolicRegression.jl”

gression with hyperparameters shown in table B.1 for two different
configurations (GA1, GA2). Both settings turned out to perform
well on different datasets. We had to restrict the size of the datasets
to 1000 datapoints in order to avoid exploding memory size. We
do not compare to Eureqa, the current state-of-the-art tool for
symbolic regression [19], since it has become proprietary and was[19] Dubčáková (2011), “Eureqa: soft-

ware review” merged into an online service.

Table B.1: Tuned hyperparameters
for the genetic algorithm [14]. GA1 GA2

niterations 40 10
npop 1000 1000

populations 60 30
binary operators {±, ∗, /} {±, ∗, /}
unary operators {cos, exp, log} {cos, G2 , exp, log}

maxsize 40 40
parsimony 0 0

warmupMaxsizeBy 0.5 0
useFrequency False True
annealing False False

optimizer algorithm BFGS BFGS
optimizer iterations 100 100

procs 30 30

For the real-world datasets a Gaussian Process (GP) is calculated
with ASCMO [31], a standard tool from the engineering domain.[31] Hoffmann, Schrott, Huber, and

Kruse (2015), “Modellbasierte Meth-
oden zur Applikationmoderner Ver-
brennungsmotoren” Power Loss of an Electric Machine Here, we present details

on the preparation of training and test dataset. First, 20% of the
whole dataset is used for testing and excluded from training. Then,
the train domain is restricted to 80% of its range of operation
([0, 1]→ [0.80, 0.81] for each dimension). Rotor temperature)rot

B.1 Details on Training and Parameter Settings 97

is not restricted, since it consists just of three different operation
points. Further, 10% of the train dataset is used for validation.
Restricting the train domain assures that the test dataset contains
samples from an extrapolation domain as well as samples from
the train domain.

B.1.1 A Closer Look at the Set of Plausible Equations of
the Combustion Engine Dataset

Wepresent the equations ofmedian performance and the equations
with the smallest number of parameters selected with the Vint-S
criterion for iEQL and iEQLmotor.Anoverviewof all four analyzed
equations on the combustion engine dataset is shown in table B.2.
Numbers were rounded to three figures and input and output

iEQL RMSE [Nm] #parameters equation

motor simple 6.16 15 (B.1)
motor median 3.17 32 (B.2)
plain simple 3.04 42 (B.3)
plain median 2.48 79 (B.4)

Table B.2: Overview of analysed
iEQL expressions on the combus-
tion engine dataset. The RMSE on
the test dataset with the number of
active parameters is shown.

dimensions were anonymized. The motor specific complexity
factors lead to equations of mainly polynomial structure with
higher degree than without motor specific complexity factors.
The latter combine polynomials with simple nonlinear units like
cos, exp, log or division units. Using more nonlinear units reduces
the degree of the used polynomials.

Four analyzed equations on the combustion engine dataset

In this section, the equations from table B.2 are listed and their
properties are commented on in bullet points.

iEQLmotor simple:

I compact notation of a polynomial of degree 8

H = 2.48G2 +0.66 (0.3G2 +0.79) (−0.8G1 +1.86G3−0.08)−0.52
(
−2.13G3 +0.57 (0.05−1.19G3)2

− 0.62 (−0.89G1 + 0.85 (0.46G1 − 0.32) (1.28G3 + 0.34G5 + 0.71) + 0.42)2 + 0.56
)2

+ 0.94

(B.1)

98 Appendix B Additional Material for Chapter 5

iEQLmotor median:

I compact notation of a polynomial of degree 7
I cos units in final layer with previous polynomial terms as

arguments.

H = −0.3G1 +2.32G2 +0.27G3 +0.622 +0.323 +0.35 cos (1.12G3 + 1.4222 + 0.5923 − 0.23)+0.51

(B.2)

substitutions:

21 = (0.05 − 0.69G1) (1.0G1 + 0.64)
22 = (−0.95G2 − 0.69)

(
−1.06G3 + 0.96 (−0.21G1 + 0.66G3 − 1.01)2 − 1.2

)
23 =

(
−0.74G3 − 0.76

(
0.6G1 + 0.7321 + 0.47 (0.76G2 + 0.19G4 − 0.19G5 − 0.6)2 − 0.9

)2
+ 1.36

)
(2.0G3 + 0.88 (−0.73G1 − 1.1721 + 0.26) (0.6G4 − 0.72G5 − 0.46) − 0.31)

iEQL simple:

I polynomial of degree 4 with simple cos and exp units
I cos units with previous polynomial terms as arguments.

H = 1.49G2 + 0.53 (0.94G2 + 0.8) (1.89G3 − 0.29 cos (4.79G3 + 2.83) + 0.46)

+ 0.814−0.27G1+0.18G2 + 0.944−0.32G1+0.25G2+0.55G3 − 0.0521

+ 0.22 cos (1.45G3 − 1.0222 + 0.07) − 0.29 cos (0.66G2 − 1.1322 − 0.7423 + 2.73)

− 0.23 cos (−1.21G1 + 1.99G3 − 2.26 (−0.94G2 − 0.52) (0.97G3 + 0.02) − 0.9723 + 3.71)

− 1.71

(B.3)

substitutions:

21 = cos (4.0G1 + 2.38)

22 =
(
−0.49G1 + 1.1G3 + 0.76 (1.02G1 − 0.02)2 − 0.85

)2

23 = (−0.41G2 − 0.53G3 − 0.29G4 + 0.34G5 + 0.59 (0.07 − 0.97G1) (0.28 − 1.02G2) + 0.2321 + 0.6)2

iEQL median:

I polynomial of degree 4 with simple cos, log and division
units

I division units occur also in intermediate layers
I cos units with previous polynomial terms as arguments

B.1 Details on Training and Parameter Settings 99

H = 2.0G2 + 0.6G3 + 0.06G4 − 0.05G5 − 0.49 (0.83G2 + 0.58) (−0.81G3 − 0.42)

+
0.39 (0.99G2 + 0.79)

6.75 (1.7721 − 0.75)2 + 1.96
− 0.24 (−0.77G2 − 0.3621 − 0.42)

(
1.11G3 + 0.3222

− 0.89 (−1.1G3 + 0.7321 + 0.41)2 − 0.47 cos (5.98G3 + 3.27) + 0.09
)

− 0.29
(
−0.78G2 + 0.35 (1.7721 − 0.75)2 + 0.35 cos (1.72G2 − 2.6) − 0.67

)2
− 0.2823

+ 0.18 log (1.08 − 0.88G1) − 0.2 cos (−1.21G2 + 1.2823 + 4.61)

− 0.15 cos (1.95G2 + 1.58G3 + 1.024 + 3.51)

+ 0.18 cos (0.77G1 − 1.71G2 − 0.7624 + 0.7123 + 1.51) + 0.74 − 0.39 (0.85G1 − 0.58)
3.29 − 2.85G2

(B.4)

substitutions:

21 = cos (2.07G1 + 0.21G2 − 0.02)
22 = (0.33G1 + 1.0921 + 0.51) (−0.74G4 + 0.61G5 + 1.0221 − 0.62)

23 =
(
0.29G1 − 1.65G3 − 0.09G4 + 0.09G5 − 0.27 (−0.69G1 − 0.14)2 + 0.35 (0.68G1 − 1.27G3 + 0.3)2 + 0.4

)2

24 =
(
−0.43G4 + 0.36G5 + 0.8 +

0.86 (−1.22G2 − 0.94G3 − 0.66)
2.11G1 + 2.35

)
(0.6G2 + 1.28G3 + 0.89G4 − 1.18G5 + 0.7722 − 0.05)

Additional Material for Chapter 6 C
C.1 Details on Training and

Parameter Settings . 101
C.1 Details on Training and Parameter Settings

All experiments are performed using an iEQL architecture with
three hidden layers for the real-world datasets and two hidden
layers for the toy datasets. Each hidden layer has {cos, exp , G2 , ∗}
as atomic units and each atomic unit is applied four times in
each layer. To account for the high frequency in the real-world
datasets we use ten cos∗ units with initial frequency1 5 = 80 on the 1: This corresponds to a period of

about one year in theMauna dataset
and about 100 days in the Airline
dataset.

normalized data instead of four cos units in each hidden layer.

Weprohibit the combinations cos(cos), exp(exp).Wedonot provide
any domain expert knowledge and choose the domain specific
complexity factors uniformly. For the given datasets penalty epochs
are not necessary. We use the proposed optimizer setting with
Adam and a learning rate = 0.001 without minibatches because
of the high frequency of the data. The toy examples are trained for
)1 = 60000 iterations without regularization and for)2 = 100000
iteration with regularization. The real-world dataset are trained for
)1 = 200000 iterations without regularization and for)2 = 600000
iteration with regularization.

After convergence, we fine-tune the found equation with 40 steps
using an L-BFGS optimizer with = 1 and a strong wolfe line search,
since Adam is not guaranteed to converge.

In order to capture plausible equations of different complexity and
accuracy, we train the iEQL with different regularization strengths
� = 10: where : is in the range from −3.0 to 0.0 with 31 equally
spaced steps for the toy examples and the range from −5 to 0.0
with 51 equally spaced steps for the real-world datasets.

Each training for a single regularization strength was executed on
a single CPU. A training lasts 9096 ± 2295 s for the Airline dataset,
11406±1301 s for theMauna dataset, 1578±288 s for the toy dataset
E1 and 1645 ± 180 s for the toy dataset E2.

Real-world dataset preparation: Wenormalize input and output
of the real-world datasets for training. The datasets are split into
90% training and 10% testing.

Bibliography

[1] H. Akaike. “Information theory and an extension of the maximum likelihood principle”.
Selected papers of hirotugu akaike. Springer, 1998.

[2] L. E. Ballentine. “The Statistical Interpretation of QuantumMechanics”. Reviews of Modern

Physics (1970).

[3] L. Biggio, T. Bendinelli, A.Neitz, A. Lucchi, andG. Parascandolo. “Neural Symbolic Regression
that scales”. International Conference on Machine Learning, ICML. PMLR, 2021.

[4] C. M. Bishop. “Pattern recognition and machine learning”. Springer, 2006.

[5] A. Botev, H. Ritter, and D. Barber. “Practical Gauss-Newton optimisation for deep learning”.
International Conference on Machine Learning, ICML. PMLR. 2017.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A.
Ramesh, D. Ziegler, J. Wu, C.Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. “Language
Models are Few-Shot Learners”. Advances in Neural Information Processing Systems, Neurips.
Curran Associates, Inc., 2020.

[7] S. L. Brunton, J. L. Proctor, and J. N. Kutz. “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems”. Proceedings of the National Academy of

Sciences (2016).

[8] J. S. Buchner, S. Boblest, P. Engel, A. Junginger, and H. Ulmer. “An Artificial-Intelligence-
Based Method to Automatically Create Interpretable Models from Data Targeting Embedded
Control Applications”. IFAC (2020). 21th IFACWorld Congress.

[9] G. Camps-Valls, A. Gerhardus, U. Ninad, G. Varando, G. Martius, E. Balaguer-Ballester,
R. Vinuesa, E. Diaz, L. Zanna, and J. Runge. “Discovering causal relations and equations from
data”. Physics Reports (2023).

[10] K. P. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. “Data-driven discovery of coordinates
and governing equations”. Proceedings of the National Academy of Sciences of the United States of

America (2019).

[11] C. Cornelio, S. Dash, V. Austel, T. R. Josephson, J. Goncalves, K. L. Clarkson, N. Megiddo,
B. E. Khadir, and L. Horesh. “Combining data and theory for derivable scientific discovery
with AI-Descartes”. Nature Communications (2023).

[12] R. T. Cox. “Probability, frequency and reasonable expectation”. American journal of physics

(1946).

[13] N. L. Cramer. “A Representation for the Adaptive Generation of Simple Sequential Programs”.
International Conference on Genetic Algorithms. L. Erlbaum Associates Inc., 1985.

[14] M. Cranmer. “Interpretable Machine Learning for Science with PySR and SymbolicRegres-
sion.jl”. 2023. arXiv: 2305.01582 [astro-ph.IM].

[15] F. Dangel, F. Kunstner, and P. Hennig. “BackPACK: Packingmore into Backprop”. International
Conference on Learning Representations, ICLR. 2020.

https://arxiv.org/abs/2305.01582

[16] DataRobot Inc. “Eureqa as part of DataRobot’s service”. 2024. url: https://www.datarobot
.com/nutonian/.

[17] E. Daxberger, E. Nalisnick, J. U. Allingham, J. Antoran, and J.M.Hernandez-Lobato. “Bayesian
Deep Learning via Subnetwork Inference”. International Conference on Machine Learning, ICML.
PMLR, 2021.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”. Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologie. Association for

Computational Linguistics, 2019.

[19] R. Dubčáková. “Eureqa: software review”. Genetic Programming and Evolvable Machines (2011).

[20] D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum, and G. Zoubin. “Structure Discovery in
Nonparametric Regression through Compositional Kernel Search”. International Conference on
Machine Learning, ICML. PMLR, 2013.

[21] K. Ellis, C.Wong,M.Nye,M. Sablé-Meyer, L.Morales, L.Hewitt, L. Cary,A. Solar-Lezama, and
J. B. Tenenbaum. “DreamCoder: bootstrapping inductive program synthesis with wake-sleep
library learning”. International Conference on Programming Language Design and Implementation,

SIGPLAN. 2021.

[22] R. Eschenhagen, E. Daxberger, P. Hennig, and A. Kristiadi. “Mixtures of Laplace Approxima-
tions for Improved Post-Hoc Uncertainty in Deep Learning”. CoRR (2021).

[23] R. P. Feynman, R. B. Leighton, and M. Sands. “The feynman lectures on physics”. American

Journal of Physics (1965).

[24] A. Y. Foong, Y. Li, J. M. Hernández-Lobato, and R. E. Turner. “’In-Between’Uncertainty in
Bayesian Neural Networks”. arXiv:1906.11537 (2019).

[25] C. E. García, D. M. Prett, and M. Morari. “Model predictive control: Theory and practice—A
survey”. Automatica (1989).

[26] I. Goodfellow, Y. Bengio, and A. Courville. “Deep Learning”. http://www.deeplearningbo
ok.org. MIT Press, 2016.

[27] F. Groß, M. Weigand, A. Gangwar, M. Werner, G. Schütz, E. J. Goering, C. H. Back, and
J. Gräfe. “Imaging magnonic frequency multiplication in nanostructured antidot lattices”.
Phys. Rev. B (1 2022).

[28] F. Groß, M. Zelent, A. Gangwar, S. Mamica, P. Gruszecki, M. Werner, G. Schütz, M. Weigand,
E. J. Goering, C. H. Back, M. Krawczyk, and J. Gräfe. “Phase resolved observation of spin
wave modes in antidot lattices”. Applied Physics Letters (2021).

[29] K. He, X. Zhang, S. Ren, and J. Sun. “IdentityMappings in Deep Residual Networks”. European
Conference on Computer Vision (ECCV 2016). Springer International Publishing, 2016.

[30] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. Neural Computation (1997).

[31] S. Hoffmann, M. Schrott, T. Huber, and T. Kruse. “Modellbasierte Methoden zur Applikation
moderner Verbrennungsmotoren”. MTZ (2015).

[32] J. J. Hopfield. “Neural networks and physical systems with emergent collective computational
abilities.” Proceedings of the National Academy of Sciences (1982).

[33] G.Huang, Z. Liu, L. vanderMaaten, andK.Q.Weinberger. “DenselyConnectedConvolutional
Networks”. IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2016).

https://www.datarobot.com/nutonian/
https://www.datarobot.com/nutonian/
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[34] A. Immer, M. Korzepa, and M. Bauer. “Improving predictions of Bayesian neural nets via
local linearization”. International Conference on Artificial Intelligence and Statistics. PMLR. 2021.

[35] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. “Averaging weights
leads to wider optima and better generalization”. arXiv (2018).

[36] E. T. Jaynes. “Probability theory: The logic of science”. Cambridge university press, 2003.

[37] Y. Jin, W. Fu, J. Kang, J. Guo, and J. Guo. “Bayesian symbolic regression”. arXiv:1910.08892
(2019).

[38] S. Kim, P. Y. Lu, S. Mukherjee, M. Gilbert, L. Jing, V. Čeperić, and M. Soljačić. “Integration of
neural network-based symbolic regression in deep learning for scientific discovery”. IEEE
Transactions on Neural Networks and Learning Systems (2020).

[39] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. arXiv:1412.6980 (2014).

[40] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. CoRR (2013).

[41] J. Koza. “On the programming of computers by means of natural selection, Genetic Program-
ming, vol. 1”. 1992.

[42] A. Kristiadi, M. Hein, and P. Hennig. “Being Bayesian, Even Just a Bit, Fixes Overconfidence
in ReLU Networks”. International Conference on Machine Learning, ICML. PMLR, 2020.

[43] A. Kristiadi, M. Hein, and P. Hennig. “Learnable Uncertainty under Laplace Approximations”.
arXiv (2020).

[44] G. Kronberger, F. O. de Franca, B. Burlacu, C. Haider, andM. Kommenda. “Shape-Constrained
Symbolic Regression—Improving Extrapolation with Prior Knowledge”. Evolutionary Compu-

tation (2021).

[45] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. “Grammar variational autoencoder”.
International Conference on Machine Learning, ICML. JMLR. org. 2017.

[46] B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and scalable predictive uncertainty
estimation using deep ensembles”. arXiv:1612.01474 (2016).

[47] G. Lample andF.Charton. “DeepLearningFor SymbolicMathematics”. International Conference
on Learning Representations, ICLR. 2020.

[48] W. B. Langdon, R. Poli, N. F. McPhee, and J. R. Koza. “Genetic programming: An introduction
and tutorial, with a survey of techniques and applications”. Computational intelligence: A

compendium. Springer, 2008.

[49] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. “Object Recognition with Gradient-Based
Learning”. Shape, Contour and Grouping in Computer Vision. Springer Berlin Heidelberg, 1999.

[50] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. “Set Transformer: A Framework for
Attention-based Permutation-Invariant Neural Networks”. International Conference on Machine

Learning, ICML. PMLR, 2019.

[51] S.-C. Lin, G. Martius, andM. Oettel. “Analytical classical density functionals from an equation
learning network”. The Journal of Chemical Physics (2020).

[52] J. Lloyd,D.Duvenaud, R. Grosse, J. Tenenbaum, andZ.Ghahramani. “Automatic Construction
and Natural-Language Description of Nonparametric Regression Models”. Proceedings of the
AAAI Conference on Artificial Intelligence (2014).

[53] Z. Long, Y. Lu, and B. Dong. “PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic
hybrid deep network”. Journal of Comp. Physics (2019).

[54] C. Louizos, K. Ullrich, and M. Welling. “Bayesian Compression for Deep Learning”. Advances
in Neural Information Processing Systems, Neurips. 2017.

[55] C. Louizos, M. Welling, and D. P. Kingma. “Learning Sparse Neural Networks through !0
Regularization”. arXiv (2017).

[56] D. J. MacKay. “A practical Bayesian framework for backpropagation networks”. Neural

computation (1992).

[57] D. J. MacKay, D. J. Mac Kay, et al. “Information theory, inference and learning algorithms”.
Cambridge university press, 2003.

[58] C. J. Maddison, A. Mnih, and Y. W. Teh. “The concrete distribution: A continuous relaxation
of discrete random variables”. arXiv:1611.00712 (2016).

[59] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson. “A simple baseline
for bayesian uncertainty in deep learning”. Advances in Neural Information Processing Systems,

Neurips (2019).

[60] J. Martens. “New Insights and Perspectives on the Natural Gradient Method”. Journal of
Machine Learning Research (2020).

[61] J. Martens and R. Grosse. “Optimizing Neural Networks with Kronecker-factored Approxi-
mate Curvature”. International Conference on Machine Learning, ICML. PMLR, 2015.

[62] G. Martius and C. H. Lampert. “Extrapolation and learning equations”. arXiv (2016).

[63] T. McConaghy. “FFX: Fast, Scalable, Deterministic Symbolic Regression Technology”. Genetic
Programming Theory and Practice IX. Springer New York, 2011.

[64] R. K. McRee. “Symbolic Regression Using Nearest Neighbor Indexing”. Annual Conference
Companion on Genetic and Evolutionary Computation. GECCO. ACM, 2010.

[65] T. J. Mitchell and J. J. Beauchamp. “Bayesian variable selection in linear regression”. Journal of
the American Statistical Association (1988).

[66] T. Pearce, F. Leibfried, and A. Brintrup. “Uncertainty in neural networks: Approximately
bayesian ensembling”. International conference on artificial intelligence and statistics. PMLR. 2020.

[67] B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and J. T. Kim. “Deep
symbolic regression: Recovering mathematical expressions from data via risk-seeking policy
gradients”. International Conference on Learning Representations, ICLR. 2021.

[68] C. E. Rasmussen, C. K. Williams, et al. “Gaussian processes for machine learning”. Springer,
2006.

[69] D. J. Rezende, S. Mohamed, and D. Wierstra. “Stochastic backpropagation and approximate
inference in deep generative models”. International Conference on Machine Learning, ICML.
JMLR.org, 2014.

[70] H. Ritter, A. Botev, and D. Barber. “A scalable Laplace approximation for neural networks”.
International Conference on Learning Representations, ICLR. 2018.

[71] F. Rosenblatt. “Principles of neurodynamics. Percetrons and the theory of brain mchanisms”.
American Journal of Psychology (1963).

[72] S. S. Sahoo, C. H. Lampert, and G. Martius. “Learning Equations for Extrapolation and
Control”. International Conference on Machine Learning, ICML. PMLR, 2018.

[73] M. Schmidt and H. Lipson. “Distilling Free-Form Natural Laws from Experimental Data”.
Science (2009).

[74] G. Schwarz et al. “Estimating the dimension of a model”. The annals of statistics (1978).

[75] D. P. Searson, D. E. Leahy, and M. J. Willis. “GPTIPS: an open source genetic programming
toolbox for multigene symbolic regression”. International Multiconference of Engineers and

Computer scientists. IMECS. 2010.

[76] T. Strauss, M. Werner, A. Junginger, M. Hanselmann, H. Ulmer, and K. Dormann. “Method
and device for training and producing an artificial neural network”. Patent WO2020193481A1.
2020.

[77] S. Sun, G. Zhang, C. Wang, W. Zeng, J. Li, and R. Grosse. “Differentiable compositional kernel
learning for Gaussian processes”. International Conference on Machine Learning, ICML. PMLR.
2018.

[78] R. Tibshirani. “Regression shrinkage and selection via the lasso”. Journal of the Royal Statistical
Society: Series B (Methodological) (1996).

[79] L. Trujillo, L. Muñoz, E. Galván-López, and S. Silva. “neat Genetic Programming: Controlling
bloat naturally”. Information Sciences (2016).

[80] S.-M. Udrescu, A. Tan, J. Feng, O. Neto, T. Wu, and M. Tegmark. “AI Feynman 2.0: Pareto-
optimal symbolic regression exploiting graph modularity”. Advances in Neural Information

Processing Systems, Neurips. Curran Associates, Inc., 2020.

[81] S.-M. Udrescu and M. Tegmark. “AI Feynman: A physics-inspired method for symbolic
regression”. Science Advances (2020).

[82] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. “Attention is All you Need”. Advances in Neural Information Processing Systems,

Neurips. Curran Associates, Inc., 2017.

[83] M. Virgolin and S. P. Pissis. “Symbolic Regression is NP-hard”. Trans. Mach. Learn. Res. (2022).

[84] M. Werner, A. Junginger, P. Hennig, and G. Martius. “Informed Equation Learning”. arXiv:
2105.06331 (2021).

[85] M. Werner, A. Junginger, P. Hennig, and G. Martius. “Uncertainty in equation learning”.
Genetic and Evolutionary Computation Conference Companion, GECCO, Workshop Proceedings.
2022.

[86] M. Werner, A. Junginger, P. Hennig, G. Martius, and M. Hein. “Apparatus and method for
estimating uncertainties”. Patent DE102021124928A1. 2023.

[87] M. Werner, P. Margaretti, and A. Maciołek. “Drag Force for Asymmetrically Grafted Colloids
in Polymer Solutions”. Frontiers in Physics (2019).

[88] A. G. Wilson, E. Gilboa, A. Nehorai, and J. P. Cunningham. “Fast Kernel Learning for
Multidimensional Pattern Extrapolation”. Advances in Neural Information Processing Systems,

Neurips. 2014.

[89] W. Zaremba, K. Kurach, andR. Fergus. “Learning to discover efficientmathematical identities”.
Advances in Neural Information Processing Systems, Neurips. 2014.

	Acknowledgments
	Abstract
	Zusammenfassung
	Table of Contents
	Notation
	Overview
	Introduction
	Outline

	Background & Motivation
	Machine Learning Components
	Bayesian Inference
	Regularized Empirical Risk
	Bayesian Interpretation of Regularized Empirical Risk
	Deep Neural Networks

	Symbolic Regression
	Introduction
	Neural Network Approach to Equation Learning
	Equation Learning Neural Networks
	Training Equation Learning Neural Networks
	Model Selection Criteria

	Informed Equation Learning
	Enhancing Expressivity and Training Stability of the Equation Learner
	Motivation
	Related Work
	Atomic Functions with Singularities
	Feature Reuse with Copy Units
	Avoiding Parameter Shrinkage Through L_0 Regularization
	Conclusion

	Equation Learning with Expert Knowledge
	Motivation
	Prohibited Combinations
	Domain Specific Complexity of Atomic Units
	Informed Equation Learning Neural Network
	Experiments
	Conclusion

	Structured Uncertainty in Equation Learning
	Motivation
	Related work
	A Bayesian Perspective on Equation Learning
	Experiments
	Conclusion

	Conclusion & Future Directions
	Conclusion & Future Directions
	Summary and Impact
	Outlook and Future Directions

	Appendix
	Additional Material for Chapter 4
	Sparse Representations through L_0 Regularization

	Additional Material for Chapter 5
	Details on Training and Parameter Settings

	Additional Material for Chapter 6
	Details on Training and Parameter Settings

	Bibliography

