
Efficient Weight-Space Laplace–Gaussian Filtering
and Smoothing for Sequential Deep Learning

Joanna Sliwa1, Frank Schneider1, Nathanael Bosch1, Agustinus Kristiadi2, Philipp Hennig1

1 Tübingen AI Center, University of Tübingen, Tübingen, Germany
2 Vector Institute, Toronto, Canada

Abstract

Efficiently learning a sequence of related tasks, such as in continual learning, poses
a significant challenge for neural nets due to the delicate trade-off between catas-
trophic forgetting and loss of plasticity. We address this challenge with a grounded
framework for sequentially learning related tasks based on Bayesian inference.
Specifically, we treat the model’s parameters as a nonlinear Gaussian state-space
model and perform efficient inference using Gaussian filtering and smoothing. This
general formalism subsumes existing continual learning approaches, while also
offering a clearer conceptual understanding of its components. Leveraging Laplace
approximations during filtering, we construct Gaussian posterior measures on the
weight space of a neural network for each task. We use it as an efficient regularizer
by exploiting the structure of the generalized Gauss-Newton matrix (GGN) to
construct diagonal plus low-rank approximations. The dynamics model allows
targeted control of the learning process and the incorporation of domain-specific
knowledge, such as modeling the type of shift between tasks. Additionally, using
Bayesian approximate smoothing can enhance the performance of task-specific
models without needing to re-access any data.

1 Introduction

As deep learning continues to advance, problems remain where retaining previously learned knowl-
edge is essential. An example is continual learning, where a model encounters new tasks but needs
to preserve knowledge on all previously learned tasks. Despite the model’s capacity to learn all tasks
simultaneously, learning new tasks sequentially often leads to partial “forgetting”. This divergence
between a sequentially & simultaneously learned model is referred to as catastrophic forgetting
[1]. A common approach to address this trade-off constrains the network to encourage changes that
maintain the performance on previous tasks, e.g. via weight-space regularization. However, doing so
evidently requires a meaningful and structured quantification of uncertainty—knowing what is still
relevant, and which parts can be flexible. Otherwise, models either cannot retain the performance on
previous tasks, or they become too stiff, unable to adapt to new tasks, also known as loss of plasticity
[2]. A number of recent works try to address this issue [3–5].

Building on these, here, we treat the weight space of the deep network as the state space of a
nonlinear Gaussian model. This allows us to apply established concepts from Bayesian filtering
and smoothing to sequentially learn tasks with neural nets. The main advantage of this approach is
that it maps the complex problem of continual learning to a well-understood formalism in Bayesian
inference, yielding both efficient computational methods and a clear conceptual understanding of
the components of the model, for instance, by providing clear ways to include domain knowledge
about the sequence of tasks. Existing approaches in continual learning, such as Elastic Weight

Correspondence to: Joanna Sliwa <joanna.sliwa@uni-tuebingen.de>.

Preprint.

θt´1 θt θt`1.

Dt´1 Dt Dt`1

Smoothing

Predict
ppθt`1 | θtq

“N pθt`1;θt,Qtq

Train & Update
ppθt | Dtq

«N pθt;θ
˚
t ,Ctq

Laplace
Approximation

θ˚
t trained with

diagonal plus low-rank
regularizer Ct´1

Figure 1: An efficient weight-space Laplace–Gaussian filter (,) and smoother () for
sequential deep learning. We treat the model’s parameters as a nonlinear Gaussian state-space model
and perform efficient inference using low-rank Laplace–Gaussian filtering and smoothing. During
the update step () we train the neural network on the current task using the parameter covariance
as a regularizer, then approximate the posterior distribution with a low-rank Laplace approximation.
The predict step () adds noise to the model parameters, where the noise covariance Q can be
used to model the type of shift between tasks. Smoothing () then allows for training task-specific
model parameters θt that are informed by all tasks, without additional training.

Consolidation (EWC) [6] or Online Structured Laplace Approximations (OSLA) [3] are then special
cases of our general formalism for specific choices, e.g. of the employed curvature approximation or
dynamics model.

Contributions: We propose a grounded framework for sequentially training neural nets on related
tasks, as in continual, transfer, or online learning, based on a Laplace–Gaussian filter and smoother:

1. We construct an algorithmically efficient and scalable way to deal with required curvature ap-
proximations. As part of the filter (Section 3), we employ a weight-space regularizer utilizing
the Laplace approximation [e.g. 7, 8] with the generalized Gauss-Newton (GGN) matrix [9]. By
exploiting the low-rank structure of the GGN, we construct diagonal plus low-rank approximations
of the precision matrices via truncated SVDs. All required operations of both the filter and the
smoother can then be computed efficiently. We provide an open-source JAX implementation of
this efficient diagonal plus low-rank Laplace–Gaussian filter.1 We showcase the competitiveness
of our approximation on standard continual learning tasks (Section 5.1).

2. Changes between tasks can be described with established concepts from Bayesian inference.
A Bayesian filter can incorporate domain knowledge about relationships between the tasks.
Specifically, we study how structured uncertainties can be integrated via the process noise matrix
Q. This matrix models (possible) stochastic drifts between tasks. We demonstrate that via this
matrix, one can integrate prior domain knowledge about how model parameters are likely to change
between related tasks (Section 5.2). For example, it is straightforward to include information
indicating that primarily the model’s upper (or lower) layers should change between tasks.

3. Previous tasks can be efficiently informed by knowledge of subsequent tasks. We examine the
benefits of Bayesian smoothing and sequentially train task-specific models that are informed by
all tasks, without requiring any renewed access to the data, and we demonstrate that smoothing
can significantly boost the performance (Section 5.3). Such an approach may be beneficial in the
low-data regime and extends our framework to fields outside of continual learning.

2 Background

Notation: We consider supervised learning with a dataset D“ tpxi,yiq|i“1, . . . , Nu containing
training inputs xi and outputs yi. The objective is to find parameters θ P RD of a deep network
fθ that minimize a given loss, i.e. θ˚ “ argminθ Lpy; fθpxqq “ argminθ Lpθ,Dq. The first

1A snippet available at https://github.com/a90952852/lr-lgf

2

https://github.com/a90952852/lr-lgf

and second derivatives of the loss with respect to the parameters are represented by the gradient
gpθq“∇θLpy; fθpxqqPRD and the Hessian Hpθq“∇2

θLpy; fθpxqqPRD̂ D.

Continual learning: Continual learning still lacks a unified definition (see Appendix A). For our
purposes, we describe it as sequentially learning a series of tasks while maintaining good performance
on all tasks simultaneously. Specifically, for a sequence of tasks tPtt1, . . . , tT u, each described by a
dataset Dt, we prioritize the average performance across all tasks so far, measured by the average
loss (or accuracy) 1

T

ř

t Lpθ,Dtq. Crucially, tasks are experienced sequentially, without access to
data from previous tasks. To achieve the required balance between model flexibility & rigidity, we
adopt a regularization-based approach (see Section 4), wherein we train the model on task t using a
non-isotropic ℓ2 regularizer. This regularizer represents prior knowledge and thus constrains from
previous tasks [see 3, 6]. It effectively encodes which weights should remain unchanged to maintain
performance on previous tasks and which can be adjusted to perform well on the new task. To
implement this, we utilize the Laplace approximation of the Bayesian posterior over the model’s
parameters such that the posterior of the previous task becomes the prior for the current one.

Laplace approximations: The Bayesian posterior over the model’s parameters, ppθ | Dq, describes
the belief over the specific values of each parameter and thus reflects (un)certainty about each param-
eter’s value and identifies which parameters still offer flexibility to learn new tasks. The Laplace ap-
proximation [e.g. 7, 8] provides a local Gaussian approximation to this typically intractable posterior.
It arises from a second-order Taylor expansion of the loss around the maximum a posteriori (MAP) es-
timate of the parameters, i.e. the trained θ˚, as Lpθ,Dq«Lpθ˚,Dq ` 1

2 pθ ´ θ˚q
J
Hpθ˚q pθ ´ θ˚q,

yielding a Gaussian distribution ppθ | Dq«N pθ;θ˚,H´1pθ˚qq called the Laplace approximation.
Using this approximation as a weight-space regularizer results in the regularized loss for task t as
Lregpθ,Dtq“Lpθ,Dtq` λ

2

`

θ ´ θ˚
t´1

˘J
Ht´1pθ˚

t´1q
`

θ ´ θ˚
t´1

˘

, with λ the regularization strength.
Intuitively this means that for task t, we prefer solutions close to the trained (MAP) parameters θ˚

t´1
of the previous task. We allow more flexibility in parameters with low loss curvature while aiming to
preserve those whose change would significantly increase the loss on previous tasks.

Generalized Gauss-Newton: Since the Hessian is the second derivative of a composition of two
functions, L and f , we can rewrite it with J PRDˆC and Ĥ PRCˆC as

Hpθq “
B2L
Bθ2

“
Bf

Bθ

B2L
Bf2

Bf

Bθ

J

`
B2f

Bθ2

BL
Bf

:“ JĤJJ `
B2f

Bθ2

BL
Bf

(1)

where C denotes the dimension of the neural network output. The generalized Gauss-Newton (GGN)
matrix is defined as the first term of this expression, JĤJJ [9]. Since typically C !D, the GGN
is low-rank, can be stored in OpDCq, and it is guaranteed to be positive semi-definite. In addition,
the GGN can be computed using mini-batches, i.e. JĤJJ “

řB
b“1 J

pbq

t Ĥ
pbq

t pJ
pbq

t qJ, where
J

pbq

t PRDˆC is the Jacobian of the neural network with respect to its parameters and Ĥ
pbq

t PRCˆC

is the Hessian of the loss with respect to the neural network outputs, for the b-th mini-batch.

3 A Bayesian Inference Framework for Sequential Learning

We consider a sequence of tasks t “ 1, 2, . . . , T with corresponding datasets Dt. The goal is to
compute a posterior distributions over neural net’s parameters, given the data of all prior tasks, i.e.
ppθt | D1:tq. We might additionally be interested in the posterior distribution for task t given all
available datasets, i.e. ppθt | D1:T q. In the following we formulate these distributions as the filtering
and smoothing distributions in a suitable Gaussian state-space model and develop an approximate
inference algorithm to efficiently approximate these distributions.

We formulate sequential training as a Bayesian state estimation problem, where the parameters of the
network are treated as the state of a state-space model of the form

Transition model: ppθt`1 | θtq “ N pθt`1;θt,Qq, (2a)

Likelihood: ppDt | θtq 9 exp

ˆ

´
1

λ
Lpθt,Dtq

˙

. (2b)

The un-normalized likelihood ppDt | θtq encodes the supervised learning task on the dataset Dt, de-
fined by the loss function L, scaled by a factor 1{λ P R` which controls the strength of regularization.

3

The prior transition density ppθt`1 | θtq describes a prior belief over the change of weights from task
t to task t`1, with diagonal Gaussian noise covariance QPRD̂ D. Then, computing the posterior
over the weights given the data up to task t, that is ppθt | D1:tq, is known as Bayesian filtering [10].

In state-space models, the posterior distribution ppθt | D1:tq can be computed recursively using the
so-called general Bayesian filtering equations [10]:

Predict step: ppθt | D1:t´1q “

ż

ppθt | θt´1qppθt´1 | D1:t´1q dθt´1, (3)

Update step: ppθt | D1:tq 9 ppDt | θtqppθt | D1:t´1q. (4)

These equations demonstrate the value of Bayesian filtering and smoothing for sequential learning as
they describe an exact, recursive procedure to learn from a sequence of datasets. However, the exact
Bayesian predict & update steps are intractable for all but the simplest state-space models. We will
show how to efficiently approximate them with a low-rank Laplace–Gaussian filtering algorithm.

3.1 Laplace–Gaussian Filtering

The Laplace–Gaussian filter (LGF) [11] approximates the posterior with Gaussian distributions
ppθt | D1:tq « N pθt;mt,Ctq, with mean mt and covariance Ct. This approach is commonly
known as Gaussian filtering, and includes many well-known algorithms such as the extended Kalman
filter or the unscented Kalman filter [10, 12, 13]. The predict an update steps of the LGF are as
follows.

Predict step: Since we assume ppθt´1 | D1:t´1q to be Gaussian with mean mt´1 and covariance
Ct´1, and since ppθt | θt´1q is Gaussian as given in Eq. (2a), the exact predictive distribution as in
Eq. (3) is also Gaussian, with mean m´

t “ mt´1 and covariance C´
t “ Ct´1 ` Q. This is exactly

equivalent to the predict step of a standard Kalman filter [14, 15].

Update step: The exact update of Eq. (4) is intractable as the likelihood model is not only non-
linear, but also non-Gaussian and un-normalized. Therefore, we Laplace-approximate the filtering
distribution with a Gaussian distribution ppθt | D1:tq«N pθt;mt,Ctq, where the mean mt is chosen
to be the mode of the filtering distribution, and where Ct is the inverse Hessian. This is known as
Laplace–Gaussian filtering [11]. More precisely, we define the regularized loss function Lreg

t pθtq by
taking the negative log of the un-normalized posterior and discarding constant terms, as

Lreg
t pθtq :“ Lpθt,Dtq ` λ

2

`

θt ´ m´
t

˘J`

C´
t

˘´1`

θt ´ m´
t

˘

9 ´ log ppθt | D1:tq. (5)

Then, the mean and covariance of the Laplace-approximated filtering distribution are given by
mt “argminθ L

reg
t pθq and Ct “

`

∇2Lreg
t pmtq

˘´1
. The first term is computed via optimization and

the second term can be further decomposed into the loss Hessian and the prior covariance C´
t , as

Ct “

´

∇2Lpθ,Dtq
ˇ

ˇ

θ“mt
`

`

C´
t

˘´1
¯´1

, (6)

which follows from the linearity of the Hessian operator. In summary, the update step essentially
consists of training the network on the new task using a regularized loss function which ensures
that the network does not forget the previous tasks, and then updating the covariance of the filtering
distribution based on the curvature of the un-regularized loss function and the prior covariance.

However, this does not scale to actual deep learning tasks yet, as the dense covariance matrices and
the Hessian are of prohibitive size. We resolve these issues next using low-rank approximations.

3.2 Efficient Low-Rank Laplace–Gaussian Filtering with the GGN

The main bottleneck of the previous algorithm in the context of deep learning lies in computing and
storing the dense covariance matrices Ct,C

´
t PRD̂ D and the exact Hessian. We resolve both issues

together by formulating the algorithm to track only diagonal plus low-rank matrices and by using the
GGN as a low-rank Hessian approximation, i.e. Ht «

řB
b“1 J

pbq

t Ĥ
pbq

t pJ
pbq

t qJ.

More precisely, we track diagonal plus low-rank approximations of the precision matrices, i.e. the
inverse covariance matrices Pt “C´1

t , of the form Pt “ Dt ` UtΣtU
J
t ,

4

where Dt PRD̂ D is diagonal, Ut PRD̂ k is a tall, and Σt PRk̂ k a dense matrix, with rank k !D.
This resolves the storage and computational issues related to the covariance matrices’ size: Storing
the diagonal and low-rank matrices requires only D ` Dk ` k2 !D2 parameters, and the cost of
matrix-vector products with the precision matrix is reduced from OpD2q to OpDkq.

What remains is to demonstrate how to preserve the diagonal plus low-rank structure in the predict
and update steps.

Diagonal plus low-rank predictive precision: Given a diagonal plus low-rank precision matrix
Pt´1 “Dt´1 ` Ut´1Σt´1U

J
t´1 and a diagonal process noise covariance Q, the predicted precision

matrix is also diagonal plus low-rank, with parameters
`

D´
t ,U

´
t ,Σ´

t

˘

given by

D´
t “

`

Q ` D´1
t´1

˘´1
, U´

t “
`

Q ` D´1
t´1

˘´1
D´1

t´1Ut´1, and (7a)

Σ´
t “

´

Σ´1
t´1 ` UJ

t´1D
´1
t´1Ut´1 ´ UJ

t´1D
´J
t´1

`

Qt´1 ` D´1
t´1

˘´1
D´1

t´1Ut´1

¯´1

(7b)

This follows from applying the Woodbury matrix identity twice; full derivation in Appendix C.2.

Diagonal plus low-rank filtering precision: The filtering precision matrix Pt is a sum of the
predicted precision matrix and the Hessian of the loss function for task t (Eq. (6)). By approximating
the full Hessian with the GGN matrix, we can write the filtering precision matrix as

Pt “ D´
t ` U´

t Σ´
t U

´J
t `

B
ÿ

b“1

J
pbq

t Ĥ
pbq

t

´

J
pbq

t

¯J

. (8)

To see that this is again a diagonal plus low-rank matrix, but with increased rank, we denote matrix
square-roots by A1{2, with A1{2pA1{2qJ “A, and define the matrix Wt PRD̂ pk`BCq as

Wt :“

„

U´
t

`

Σ´
t

˘1{2
J

p1q

t

´

Ĥ
p1q

t

¯1{2

¨ ¨ ¨ J
pBq

t

´

Ĥ
pBq

t

¯1{2
ȷ

. (9)

The filtering precision matrix can then be written as Pt “ D´
t ` WtW

J
t , but with increased rank

k`BC. To prevent the rank inflation, we compress the matrix Wt by performing a truncated singular
value decomposition (SVD) of rank k to obtain Wt « ŨtΣ̃tṼ

J
t , with Ũt PRD̂ k, Ṽt PRk̂ D, and

diagonal Σ̃t PRk̂ k. Then, the filtering precision matrix is

Pt “ D´
t ` ŨtΣ̃tṼ

J
t ṼtΣ̃tŨ

J
t “ D´

t ` ŨtΣ̃
2
t Ũ

J
t . “: Dt ` UtΣtU

J
t . (10)

We obtain an efficient, diagonal plus low-rank approximation of the filtering precision matrix, enabling
the Laplace–Gaussian filter from Section 3.1 to continual deep learning (see Algorithm 1).

Algorithm 1 Low-rank Laplace–Gaussian Filter (LR-LGF)

1 Input: Initial mean m0, initial precision P0 “ D0 ` U0Σ0U
J
0 , process noise covariance Q,

loss functions Lt for tasks t “ 1, 2, . . . , T , regularization strength λ, rank k.
2 for t “ 1, 2, . . . , T
3 Predict
4 Ź Compute the predicted mean m´

t and precision P´
t “ D´

t ` U´
t Σ´

t U
´J
t Ÿ

5 m´
t , D

´
t , U

´
t Ð mt´1,

`

Q ` D´1
t´1

˘´1
, D´1

t´1Ut´1

6 Update
7 Ź Train the neural network on task t using the regularized loss function Lreg

t Ÿ

8 θ˚
t Ð argminθ L

reg
t pθq

9 Ź Compute the GGN mini-batch-wise: Ht «
řB

b“1 J
pbq

t Ĥ
pbq

t pJ
pbq

t qJ Ÿ

10 J
pbq

t , Ĥ
pbq

t Ð p
Bf
Bθ qpbq, p B

2L
Bf2 qpbq for batch b “ 1, . . . , B.

11 Ź Perform a truncated SVD Ÿ

12 Ũt, Σ̃t, Ṽ
J
t Ð tSVDk

ˆ„

U´
t

`

Σ´
t

˘1{2
J

p1q

t

´

Ĥ
p1q

t

¯1{2

¨ ¨ ¨ J
pBq

t

´

Ĥ
pBq

t

¯1{2
ȷ˙

13 Ź Compute the filtering mean mt and precision Pt “ Dt ` UtΣtU
J
t Ÿ

14 mt, Dt, Ut, Σt Ð θ˚
t , D

´
t , Ũt, Σ̃

2
t

15 Output: Filtering means pmtq
T
t“1 and diagonal plus low-rank precisions pDt,Ut,Σtq

T
t“1.

5

3.3 Task-Specific Models via Backwards Smoothing

Until now, our focus has been on computing and storing a single model trained sequentially on tasks.
However, if the tasks differ, it may be beneficial to store task-specific models, that are informed by all
datasets—still with the restriction that the datasets are only observed sequentially. For state-space
models, this is known as smoothing [10, 16].

Since we consider Gaussian filtering distributions, and the transition model is linear and Gaussian
(Eq. (2a)), the smoothing distribution is also Gaussian, i.e. ppθt | D1:T q «N pθt;m

s
t ,C

s
t q, and its

mean and covariance can be computed recursively backwards in time: Starting with ms
T “mT and

Cs
T “CT , the smoothing equations are given by [16]

ms
t “ mt ` Gt

`

ms
t`1 ´ m´

t`1

˘

, and Cs
t “ Ct ` Gt

`

Cs
t`1 ´ C´

t`1

˘

GJ
t , (11)

where Gt “ Ct

`

C´
t`1

˘´1
is known as the smoothing gain. The smoothing equations can be

formulated in terms of precision matrices, and it can be shown that if the filtering precision matrix
is diagonal plus low-rank, then the smoothing precision matrix is also diagonal plus low-rank (full
derivation in Appendix C.3). Equation (11) also shows why the diagonal plus low-rank structure is
crucial for efficient computation of the smoothing means: If Gt PRD̂ D were dense, the matrix-vector
product would have a prohibitive computational cost of OpD2q, but if we use Gt “ pPtq

´1
P´

t`1
and implement the matrix vector product as a sequential product with two diagonal plus low-rank
matrices, then the computational cost is reduced to OpDkq and smoothing becomes feasible.

4 Related Work

Continual learning: There are several approaches to continual learning, which Wang et al. [17]
categorized as either regularization-, optimization-, representation-, architecture-, or replay-based
(Appendix A.1). In this paper, we use a (weight) regularization-based type of approach which tackle
catastrophic forgetting in neural nets by constraining the model’s weight space. They aim to identify
weights that are important for the previous tasks and constrain their changes in the next tasks. A
scalar hyperparameter λ, used on the regularizer, allows trading off performance on previous tasks
vs. the ability to learn new tasks. Elastic Weight Consolidation (EWC) [6] takes inspiration from
neuroscience and places a quadratic constraint on the model’s parameters through a regularized loss.
In each task, the regularizer consists of the sum of penalties of previous tasks where the importance
of the weights is captured by the diagonal Fisher information matrix. In contrast, Online Structured
Laplace Approximations (OSLA) [3] uses a block-diagonal K-FAC [18] Hessian approximation.
Their regularizer consists of a single penalty which recursively updates with the most recent log
likelihood scaled by λ. The authors observe improved performance over EWC, which they mostly
attribute to a more expressive Hessian approximation also capturing parameter interactions within a
layer. Other weight regularization-based methods try to find better ways to represent the importance
measure [19], refine the penalty [20, 21], use a expansion-renormalization approach [22, 23], or
target the network [24]. EWC and OSLA are closest to our approach since we update the precision of
our penalty and scale the regularizer similarly. However, the other methods use different Hessian
approximations and neither approach uses a Bayesian filter or smoother.

Gaussian Processes for CL: The state-space model that we consider in this work has a continuous-
time representation as a Gaussian process with a Wiener process kernel. The GP maps the task-id to
the neural network weights, that is pt ÞÑ θtq, but the actual model of interest which maps data inputs
to outputs, i.e. px ÞÑ yq, is the neural network inside the observation model. In the related works
[25, 26], the GP is used to learn the function of interest px ÞÑ yq. There is no fundamental distinction
between tasks and thus there is no prior which encodes how continuous or distinct weights between
those should be, which is precisely the role of the GP in our work. Titsias et al. [27] combines GPs
and NNs and considers GPs with deep kernel functions, but here again the GP is an integral part of
the function of interest as it outputs the quantity of interest y.

Bayesian filtering & smoothing: A well-established formalism for dealing with sequential data is
Bayesian filtering & smoothing [10], and learning the weights of neural networks with an extended
Kalman filter (EKF) has been proposed already in the '90s [28, 29]. But, the EKF and related methods
[10, 12, 13] suffer from quadratic memory and cubic computational costs in the state dimension,
which is prohibitive for modern deep learning tasks. Therefore, a number of approximations have
been proposed. Diagonal EKF approximations have been proposed for both training and online

6

1 2 3 4 5

Task t

0.6

0.8

1.0

A
cc

ur
ac

y

Permuted MNIST

1 2

Task t

Disjoint MNIST

Baseline (no regularizer)
Our Method
OSLA
EWC

Figure 2: Comparing our diagonal plus low-rank GGN approximation to other regularizers.
Mean performance of the current model on all previously encountered tasks (shaded areas are the
min/max across 8 seeds). For Permuted and Disjoint MNIST we observe that our diagonal plus
low-rank GGN approximation () leads to significantly lower rates of forgetting compared to no
regularization (). It also tends to be slightly better than EWC () and comparable to OSLA ().

learning of neural networks, but as they ignore interactions between the weights their quality is
often limited [4, 30]. Treating only the last layer of the network probabilistically also reduces the
problem size to make the Kalman filter tractable, but also comes with a loss of expressiveness [31].
Recently, diagonal plus low-rank approximations have been proposed as a more expressive alternative
and the resulting EKF variant, called LO-FI, has been shown to be effective for online learning
from streaming data [5]. In contrast, we consider the continual learning problem where the data
for each task Dt is observed in its entirety and we are concerned with the performance across past
tasks. Therefore, instead of using the EKF we build on the Laplace–Gaussian filter [11], compute
the MAP estimate in each filtering step via optimization, and compute the posterior with a diagonal
plus low-rank Laplace approximation. This differs strongly from the EKF update and relates more
closely to an iterated EKF (IEKF), which is known to be more accurate than the EKF [10, 32]. In
addition, to improve performance on past tasks, we also propose the use of a smoother to compute
task-specific models.

5 Experiments

We first demonstrate that our algorithmically efficient diagonal plus low-rank approximation of the
GGN can be competitive with other weight-space regularizers proposed in the literature (Section 5.1).
Next, we showcase the benefits of the filtering framework by studying how domain knowledge can
be integrated via the dynamics model, specifically, the process noise matrix Q (Section 5.2). Finally,
we examine the benefits of Bayesian smoothing and find that, among other things, it can boost the
performance of task-specific models learned “earlier”, without renewed access to data (Section 5.3).

5.1 Efficient Diagonal Plus Low-Rank Curvature Approximations

Setting: We compare our diagonal plus low-rank GGN approximation to both EWC and OSLA
on two well-established In Permuted MNIST, each task t P t1, . . . , 5u consist of classifying the
MNIST digits. However, each task uses a random (but for this task fixed) permutation of the image
pixels. The Disjoint MNIST setting, consists of 2 tasks, where task t “ 1 contains only images
of labels y P t0, 1, 2, 3, 4u, while task t “ 2 has the remaining labels y P t5, 6, 7, 8, 9u. For both
continual learning problems, we train a small 2-layer MLP with 400 hidden units in each layer
(see Appendix D.2 for full details) sequentially on all tasks. After each task, we record the current
model’s performance on all tasks encountered so far. For each problem and method, we tune the
regularization strength λ and other hyperparameters independently on a grid, maximizing the average
accuracy. We repeat each experiment with 8 different seeds and set the process noise matrix Q of
our method to zero, describing a scenario where all sub-tasks essentially belong to the same general
tasks, analogously to what EWC and OSLA implicitly do.

Results: Figure 2 compares EWC, OSLA, our method, and the baseline (no regularizer) on Permuted
and Disjoint MNIST, with Table 2 summarizing the results after the last task. First, regularizing
with a diagonal plus low-rank GGN approximation consistently leads to a significantly lower rate of

7

1 2 3 4 5

Task t

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

No Regularization

1 2 3 4 5

Task t

Regularization

1 2 3 4 5

Task t

Structured Q

Figure 3: The effect of Q on the average and current task’s performance. (Left) Without
regularization, we see a significant drop in the average performance across all seen tasks (), while
the performance on the current task (✖) is strong. (Center) Adding regularization, helps boost the
average performance across tasks, but to the detriment of the current task. However, older tasks ()
suffer much less from catastrophic forgetting. (Right) Additionally using a structured Q can boost
the current task performance, while keeping the same average performance across tasks. See Figure 7
in Appendix D.3 for a summary of the same experimental results across 8 random seeds.

forgetting in both settings compared to no regularization. Our method’s performance is slightly better
than EWC and comparable to that of OSLA. This may indicate that the diagonal approximation of
the Fisher used in EWC loses information. In contrast, information on the interactions between layers
seems less crucial on these popular toy problems, since OSLA (which uses a block diagonal K-FAC
approximation of the Hessian) and our method perform comparably. Overall, this indicates that our
diagonal plus low-rank GGN approximation is competitive with other weight-space regularizers.
Additionally, our approximation allows performing efficient filtering and smoothing operations on
the model’s parameters, which we will examine next.

5.2 Integrating Domain Knowledge via Q

We now examine the benefits of incorporating domain knowledge, i.e. how tasks are related, via the
dynamics model, specifically, the process noise matrix Q. Roughly speaking, Q adds uncertainty to
the next task’s model parameters (see Eq. (2a)), describes how related the tasks are, and thus controls
the model’s flexibility across tasks. For Q“0, we implicitly assume that all sub-tasks t belong to the
same task, or that the optimal model parameters do not change between tasks. By using a structured
Q we can incorporate how we believe the tasks and therefore the model parameters change, e.g.
indicating that mostly the lower layers of the network change.

Setting: We move to a more realistic dataset, CAMELYON [33], which consists of images of either
healthy or cancerous cells collected from different hospitals. To showcase the benefits of Q (and
later the smoother in Section 5.3), we create a continual learning task with an ordered series of
tasks that we term GRADUAL CAMELYON, by gradually change the brightness of the samples
(all from hospital 0) between tasks. Task t “ 1 has the darkest and the last task, t “ 5, has the
brightest pixels. We use a model with three convolutional layers followed by two dense layers (see
Appendix D.2 for full experimental details), and we compare two types of transition noise: An
isotropic, scalar-times-identity Q, and a structured Q with non-zero values only on the lowest layer
(including biases), motivated by the knowledge that brightness changes likely mostly affect the lower
convolutional layers.

Results: Figure 3 illustrates that while regularization helps boost the model’s average performance
across tasks this comes at the detriment of the current task’s performance. By additionally using
a non-zero transition noise Q, we can re-introduce some flexibility and prioritize performance on
the current task t (see also Figure 7 (right)) while maintaining the same average accuracy on all
tasks (Figure 7 (center)). We observe that for for the structured transition noise (Figure 3 (right)) we
can better prioritize the current’s task performance while keeping average accuracy high. See also
Appendix D for results of our GGN approximation on other continual learning tasks that we created
based on CAMELYON.

Since Qą 0 also indicates that task differs, in this case, it may be beneficial to store task-specific
models instead of a single model for all tasks, which we will explore via smoothing next.

8

1 2 3 4 5

Task t

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Filter
Smoother

1 2 3 4 5

Task t

0.0

0.1

0.2

0.3

A
cc

ur
ac

y
In

cr
ea

se Smoother Performance Boost

Figure 4: Applying a smoother can significantly boost the performance on earlier tasks. (Left)
The performance on each individual tasks after filtering () or smoothing () up until task t.
The shaded region shows one standard deviation across 15 random seeds. (Right) By incorporating
information from all tasks, the smoother generally boosts performance without accessing any data.
Thin lines show the accuracy increase on task t of smoothed vs. filtered model parameters on all 15
seeds individually. Although for a few seeds we observe a performance decrease on specific tasks, on
average (thick line) we see a clear performance boost associated with the smoother.

5.3 Going Back in Time via Smoothing

We now investigate the benefits of applying a smoother to imbue previous tasks with the knowledge
gained on later tasks. We return to the experimental setting of Section 5.2 and learn task-specific
models θt, for each task t“1, . . . , 5. As the filter computes posteriors ppθt | D1:tq, the model for the
last task θ5 has incorporated information from all previous tasks. However, the model for the first
task θ1 is still only informed by the first task. Using a Bayesian smoother (Section 3.3), we can also
update the first model with subsequent knowledge, without any additional access to any data. We
simply update earlier model parameters based on the later model parameters.

This approach has promising applications in privacy-sensitive settings. By maintaining separate
models for each task, the approach is particularly advantageous in scenarios where data and models
cannot be shared. This is especially relevant for ICU patients or within electronic health records
where hospitals often face restrictions on sharing patient data and may be required to store it only
for a limited period [25]. On-device learning is another significant application [26, 34], useful in
scenarios such as domestic robots or monitoring cameras.

Figure 4 illustrates the benefits of applying a smoother on GRADUAL CAMELYON. We use a similar
setting to Section 5.2 but store all task-specific models and train with less data points per task. First,
we observe that as more knowledge is incorporated via the filter, the performance increases (Figure 4
(left)). Thus, later models benefit from having been informed about earlier tasks. Then, we apply the
smoother to pass this information backwards and inform earlier models about the knowledge gained
on later tasks, and we observe an increased performance (Figure 4 (left)). In particular, we observe
that while smoothing can sometimes slightly decrease the performance for particular seeds (Figure 4
(right)), on average it provides a significant performance boost, e.g. the accuracy on the first task
increases from 61% to 70%. Employing a smoother may be particularly useful in settings where each
task has only little data—and thus transferring knowledge between tasks is required—and the tasks
are so different or challenging that a single model cannot accurately learn all tasks.

Bayesian smoothing also provides a grounded way to infer model parameters between two tasks, i.e.
infer parameters for tasks for which we never explicitly observed any data. In our experiments (see
Figure 8), we observe a performance increase of the smoothed model compared to the model obtain
from a predict step in the filter. However, more work is needed to identify scenarios where this could
be more beneficial than, e.g., using the model parameters of the most related tasks.

6 Conclusion

Limitations: Our diagonal plus low-rank GGN approximation stores matrices of size 1ˆD, DˆC,
CˆC, where C is the neural net’s output dimension. This is beneficial if C ! D, but imposes
constraints if the number of classes C is large. In such cases, other curvature approximations

9

like K-FAC, block-diagonal or last-layer could be chosen, but these further reduce expressivity, and
efficient filtering and smoothing is not straightforward. The method may be infeasible for models with
millions of parameters. Furthermore, low-rank approximations with truncated SVDs can lead to an
overestimated curvature, which can hurt performance. While incorporating task-specific knowledge
into the dynamics model is desirable, it can be challenging to set the associated parameters well in
practical applications. Finally, our experiments were designed to showcase specific classical scenarios
which served as a proxy for real-world continual learning challenges and to highlight the strengths of
our method.

Summary and discussion: We have presented an efficient low-rank Laplace–Gaussian filtering
framework for sequential deep learning across multiple related tasks. Our approach treats the
network’s weights as states and the individual tasks as likelihood models in a Bayesian state-space
model. To perform efficient approximate inference, we use a diagonal plus low-rank Gaussian
approximation, together with a low-rank Laplace approximation via the GGN matrix to compute
the filtering distributions, i.e. the posterior over the network’s weights given all past and present
tasks. We leverage this formalism to compute task-specific models via Bayesian smoothing, which
incorporates knowledge from subsequent tasks into earlier models without requiring renewed access
to the data, showing that this can enhance the performance on earlier tasks. Our methodology maps
the complex problems of sequential or continual learning to well-understood Bayesian filtering and
smoothing. This addresses two key challenges of continual learning from Verwimp et al. [34]: It
raises computational efficiency, and conceptually clarifies the method’s components, casting the
relations between datasets through the observation and dynamics models of Markov Chains.

Acknowledgments

The authors gratefully acknowledge co-funding by the Carl Zeiss Foundation, (project "Certification
and Foundations of Safe Machine Learning Systems in Healthcare") and the European Union (ERC,
ANUBIS, 101123955). Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the European Research Council. Neither
the European Union nor the granting authority can be held responsible for them. Philipp Hennig is a
member of the Machine Learning Cluster of Excellence, funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC number
2064/1 – Project number 390727645; he also gratefully acknowledges the German Federal Ministry
of Education and Research (BMBF) through the Tübingen AI Center (FKZ: 01IS18039A); and funds
from the Ministry of Science, Research and Arts of the State of Baden-Württemberg. Frank Schneider
is supported by funds from the Cyber Valley Research Fund. Joanna Sliwa and Nathanael Bosch are
grateful to the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for
support. Further, we are grateful to Marvin Pförtner for the helpful discussions and the members of
Methods of Machine Learning group for providing feedback to the manuscript.

References
[1] Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks:

The sequential learning problem. In Gordon H. Bower, editor, Psychology of Learning and
Motivation, volume 24, pages 109–165. Academic Press, 1989.

[2] Shibhansh Dohare, J. Fernando Hernandez-Garcia, Parash Rahman, A. Rupam Mahmood, and
Richard S. Sutton. Maintaining Plasticity in Deep Continual Learning, 2023.

[3] Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured Laplace approximations
for overcoming catastrophic forgetting. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, page 3742–3752, Red Hook, NY, USA,
2018. Curran Associates Inc.

[4] Peter G. Chang, Kevin Patrick Murphy, and Matt Jones. On diagonal approximations to the
extended Kalman filter for online training of Bayesian neural networks. In Continual Lifelong
Learning Workshop at ACML 2022, 2022. URL https://openreview.net/forum?
id=asgeEt25kk.

[5] Peter G. Chang, Gerardo Durán-Martín, Alex Shestopaloff, Matt Jones, and Kevin Patrick
Murphy. Low-rank extended Kalman filtering for online learning of neural networks from

10

https://openreview.net/forum?id=asgeEt25kk
https://openreview.net/forum?id=asgeEt25kk

streaming data. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi, and Doina Precup, editors,
Proceedings of The 2nd Conference on Lifelong Learning Agents, volume 232 of Proceedings
of Machine Learning Research, pages 1025–1071. PMLR, 22–25 Aug 2023. URL https:
//proceedings.mlr.press/v232/chang23a.html.

[6] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, 2017.

[7] David J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural
Computation, 4(3):448–472, 05 1992.

[8] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,
and Philipp Hennig. Laplace redux - effortless Bayesian deep learning. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Pro-
cessing Systems, 2021. URL https://openreview.net/forum?id=gDcaUj4Myhn.

[9] Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14(7):1723–1738, 2002. doi: 10.1162/08997660260028683.

[10] Simo Särkkä and Lennart Svensson. Bayesian Filtering and Smoothing. Institute of Mathemati-
cal Statistics Textbooks. Cambridge University Press, 2 edition, 2023.

[11] Shinsuke Koyama, Lucia Castellanos Pérez-Bolde, Cosma Rohilla Shalizi, and Robert E Kass.
Approximate methods for state-space models. Journal of the American Statistical Association,
105(489):170–180, 2010.

[12] Andrew H Jazwinski. Stochastic processes and filtering theory. Courier Corporation, 2007.

[13] S. Julier, J. Uhlmann, and H.F. Durrant-Whyte. A new method for the nonlinear transformation
of means and covariances in filters and estimators. IEEE Transactions on Automatic Control,
45(3):477–482, 2000. doi: 10.1109/9.847726.

[14] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL https:
//doi.org/10.1115/1.3662552.

[15] Rudolf E. Kalman and Richard S. Bucy. New results in linear filtering and prediction theory.
Journal of Basic Engineering, 83:95–108, 1961. URL https://api.semanticscholar.
org/CorpusID:8141345.

[16] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic
systems. AIAA Journal, 3(8):1445–1450, 1965. doi: 10.2514/3.3166. URL https://doi.
org/10.2514/3.3166.

[17] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–20, 2024. doi: 10.1109/TPAMI.2024.3367329.

[18] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, page 2408–2417. JMLR.org, 2015.

[19] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 3987–3995. JMLR.org, 2017.

[20] Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M. López, and Andrew D.
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting.
In 2018 24th International Conference on Pattern Recognition (ICPR), pages 2262–2268, 2018.
doi: 10.1109/ICPR.2018.8545895.

11

https://proceedings.mlr.press/v232/chang23a.html
https://proceedings.mlr.press/v232/chang23a.html
https://openreview.net/forum?id=gDcaUj4Myhn
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://api.semanticscholar.org/CorpusID:8141345
https://api.semanticscholar.org/CorpusID:8141345
https://doi.org/10.2514/3.3166
https://doi.org/10.2514/3.3166

[21] D. Park, S. Hong, B. Han, and K. Lee. Continual learning by asymmetric loss approximation
with single-side overestimation. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 3334–3343, Los Alamitos, CA, USA, nov 2019. IEEE Computer Society.
doi: 10.1109/ICCV.2019.00343. URL https://doi.ieeecomputersociety.org/
10.1109/ICCV.2019.00343.

[22] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Over-
coming catastrophic forgetting by incremental moment matching. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
f708f064faaf32a43e4d3c784e6af9ea-Paper.pdf.

[23] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 4528–4537. PMLR, 10–15 Jul 2018.

[24] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual
learning. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BkQqq0gRb.

[25] Pablo Moreno-Muñoz, Antonio Artés-Rodríguez, and Mauricio A. Álvarez. Continual multi-task
gaussian processes, 2019.

[26] Sanyam Kapoor, Theofanis Karaletsos, and Thang D Bui. Variational auto-regressive gaussian
processes for continual learning. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 5290–5300. PMLR, 18–24 Jul 2021. URL https://
proceedings.mlr.press/v139/kapoor21b.html.

[27] Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and
Yee Whye Teh. Functional regularisation for continual learning with gaussian processes. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
id=HkxCzeHFDB.

[28] Sharad Singhal and Lance Wu. Training multilayer perceptrons with the ex-
tended Kalman algorithm. In D. Touretzky, editor, Advances in Neural In-
formation Processing Systems, volume 1. Morgan-Kaufmann, 1988. URL
https://proceedings.neurips.cc/paper_files/paper/1988/file/
38b3eff8baf56627478ec76a704e9b52-Paper.pdf.

[29] Lee A Feldkamp, Danil V Prokhorov, Charles F Eagen, and Fumin Yuan. Enhanced multi-
stream kalman filter training for recurrent networks. Nonlinear modeling: advanced black-box
techniques, pages 29–53, 1998.

[30] G.V. Puskorius and L.A. Feldkamp. Decoupled extended Kalman filter training of feedforward
layered networks. In IJCNN-91-Seattle International Joint Conference on Neural Networks,
volume i, pages 771–777 vol.1, 1991. doi: 10.1109/IJCNN.1991.155276.

[31] Michalis Titsias, Alexandre Galashov, Amal Rannen-Triki, Razvan Pascanu, Yee Whye Teh, and
Jorg Bornschein. Kalman filter for online classification of non-stationary data. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=ZzmKEpze8e.

[32] B. M. Bell and F. W. Cathey. The iterated Kalman filter update as a Gauss–Newton method.
IEEE Transaction on Automatic Control, 38(2):294–297, 1993.

[33] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
Etienne David, Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery, Jure

12

https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00343
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00343
https://proceedings.neurips.cc/paper_files/paper/2017/file/f708f064faaf32a43e4d3c784e6af9ea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f708f064faaf32a43e4d3c784e6af9ea-Paper.pdf
https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=BkQqq0gRb
https://proceedings.mlr.press/v139/kapoor21b.html
https://proceedings.mlr.press/v139/kapoor21b.html
https://openreview.net/forum?id=HkxCzeHFDB
https://openreview.net/forum?id=HkxCzeHFDB
https://proceedings.neurips.cc/paper_files/paper/1988/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://openreview.net/forum?id=ZzmKEpze8e
https://openreview.net/forum?id=ZzmKEpze8e

Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
Wilds: A benchmark of in-the-wild distribution shifts, 2021.

[34] Eli Verwimp, Rahaf Aljundi, Shai Ben-David, Matthias Bethge, Andrea Cossu, Alexander
Gepperth, Tyler L. Hayes, Eyke Hüllermeier, Christopher Kanan, Dhireesha Kudithipudi,
Christoph H. Lampert, Martin Mundt, Razvan Pascanu, Adrian Popescu, Andreas S. Tolias,
Joost van de Weijer, Bing Liu, Vincenzo Lomonaco, Tinne Tuytelaars, and Gido M van de
Ven. Continual learning: Applications and the road forward. Transactions on Machine
Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?
id=axBIMcGZn9.

[35] Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and
Yee Whye Teh. Functional regularisation for continual learning with Gaussian processes. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HkxCzeHFDB.

[36] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning. Springer, 2018.

[37] Marcus Klasson, Hedvig Kjellstrom, and Cheng Zhang. Learn the time to learn: Replay
scheduling in continual learning. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=Q4aAITDgdP.

[38] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory
Wayne. Experience replay for continual learning. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf.

[39] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
Ghasemzadeh. Linear mode connectivity in multitask and continual learning, 2021. URL
https://arxiv.org/abs/2010.04495.

[40] Tameem Adel. Similarity-based adaptation for task-aware and task-free continual learning.
Journal of Artificial Intelligence Research, 80:377–417, 06 2024. doi: 10.1613/jair.1.15693.

[41] Rahul Ramesh and Pratik Chaudhari. Model zoo: A growing "brain" that learns continually,
2022. URL https://arxiv.org/abs/2106.03027.

[42] Liyuan Wang, Xingxing Zhang, Qian Li, Jun Zhu, and Yi Zhong. Coscl: Cooperation of small
continual learners is stronger than big one. In Computer Vision – ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVI, page 254–271.
Springer-Verlag, 2022. ISBN 978-3-031-19808-3. doi: 10.1007/978-3-031-19809-0_15.

[43] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[44] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

[45] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.
Dataset Shift in Machine Learning. The MIT Press, 2009. ISBN 0262170051.

13

https://openreview.net/forum?id=axBIMcGZn9
https://openreview.net/forum?id=axBIMcGZn9
https://openreview.net/forum?id=HkxCzeHFDB
https://openreview.net/forum?id=HkxCzeHFDB
https://openreview.net/forum?id=Q4aAITDgdP
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://arxiv.org/abs/2010.04495
https://arxiv.org/abs/2106.03027
http://github.com/google/jax

Appendix

A Continual Learning

Kirkpatrick et al. [6] define continual learning as an ability to learn tasks sequentially and maintain
knowledge for tasks from the past which are not experienced anymore. The aim is to have an
agent that performs well across multiple tasks and can incorporate new information [3]. Our goal
is to minimize the training loss summed over all tasks with the constraint that we can only access
the loss of the current tasks [19]. Titsias et al. [35] mention that we should not need an extensive
retraining on previous maintained data. Recent review on continual learning [17] summarizes it as
observing tasks sequentially but behaving as if seeing them simultaneously. We need to obtain a
balance between learning flexibility and memory stability and generalization within and between
tasks. The book of lifelong learning [36] thoroughly defines continual learning and its connections
to transfer, multi-task, online and reinforcement learning. The authors define that at a given point
in time, a model has learned a sequence of previous tasks t“ t1, t2, . . . , tT with corresponding data
D “ tD1,D2, . . . ,DT u. The tasks can be of the same or different type/domain. When the model
encounters a new task tT`1 with data DT`1 it can leverage the past knowledge and learn the new task.
Then it implements the new knowledge into the existing knowledge base. The main requirements are
that the learning is in a continuous fashion, the knowledge is accumulated and the knowledge from
the previous tasks can be used to learn new ones.

A.1 Additional Approaches to Continual Learning

In Section 4, we focus on regularization-based approaches to continual learning, as this is the approach
used in the paper. For completeness, we also briefly summarize alternative approaches to continual
learning below, following the taxonomy by Wang et al. [17].

Replay-based: Relay-based methods’ key idea, mainly of experience replay, is to store a small set of
training data points from the past tasks. Methods that use this approach are e.g. [37, 38]. One of the
challenges is selecting representative samples and ensuring the memory buffer storage is efficient.

Optimization-based: These methods are based on changing the optimization design, e.g. by allowing
gradient updates only in the orthogonal directions to previous tasks or finding only flat local minima.

Representation-based: These methods create and use representations for each tasks through self-
supervised learning or pre-training.

Architecture-based: Researchers have also tried parameter allocation, model decomposition or
modular networks. They either isolate some parameter subspace for a certain tasks, separate the
model into task-sharing and task-specific components, or divide the network into modules dedicated
to special tasks.

CL vs multi-task learning: Mirzadeh et al. [39] point out that when the model has access to all the
data, it learns different solutions than when learning continuously.

Task similarity: The similarity of tasks in continual learning was studied in previous works [40–42].
Importantly, the authors state that one may benefit from the knowledge of task relatedness. In such a
setting, we can employ an ensemble of small models that grows when competing (vs synergistic)
tasks appear. When dissimilar tasks are learnt by one model, the tasks compete for the fixed capacity
of the model. Additionally, evaluating the task similarity and initializing some components with the
most similar past task’ one may help with the training.

B Implementation Details

We implemented a class object has the following methods:

• __INIT__ – creating a diagonal identity matrix and a zero low-rank term,

• ADD_COMPUTE_INV_SUM – inverting the precision according to the Woodbury identity,
adding a diagonal matrix and final inverting

14

• ADD_LOW-RANK – adding the computed precision to the stored diagonal plus low-rank
term (uses square roots), and deflating down to a memory limit (which the user provides as
an optional argument, otherwise the deflation to C) via truncated SVD,

• UPDATE_MP – computing the vector matrix product of mean and the diagonal plus low rank
precision,

C Filtering and Smoothing with Diagonal plus Low-Rank Matrices

C.1 Mathematical operations on diagonal plus low-rank matrices

In the following we describe how to perform mathematical operations on diagonal plus low-rank
matrices P “ D ` UΣUJ, where D P RDˆD is a diagonal matrix, U P RDˆk is a tall matrix,
and Σ P Rkˆk is a dense matrix, with k ! D. And importantly, all of these operations should be
such that they maintain the low-rank structure of the matrix such that we never need to store the full
matrix in memory, and they should be computationally efficient and scale at most linearly in D.

• Addition with a diagonal matrix: Adding a diagonal matrix to a diagonal plus low-rank matrix
results in a diagonal plus low-rank matrix:

`

D ` UΣUJ
˘

` Λ “ pD ` Λq

D1

`UΣUJ (12)

• Matrix inversion: The inverse of a diagonal plus low-rank matrix can be computed efficiently
using the Woodbury matrix identity:

`

D ` UΣUJ
˘´1

“ D´1

D1

`D´1U
U 1

´

´
`

Σ´1 ´ UJD´1U
˘´1

¯

Σ1

UJD´1

pU 1qJ

(13)

• Addition of two low-rank matrices: Adding two diagonal plus low-rank matrices results in a
diagonal plus low-rank matrix, but with increased rank k1 “ k1 ` k2:

`

D1 ` U1Σ1U
J
1

˘

`
`

D2 ` U2Σ2U
J
2

˘

“ pD1 ` D2q ` rU1 U2s

„

Σ1 0
0 Σ2

ȷ „

UJ
1

UJ
2

ȷ

(14)

Alternatively, to keep the rank low we can perform a truncated singular value decomposition on the
matrix square-root:

ŨΣ̃Ṽ J “ tSVDk

´”

U1Σ
1{2
1 U2Σ

1{2
2

ı¯

(15)

and then approximate
`

D1 ` U1Σ1U
J
1

˘

`
`

D2 ` U2Σ2U
J
2

˘

« pD1 ` D2q

D1

` Ũ
U 1

Σ̃2

Σ1

ŨJ

pU 1qJ

(16)

C.2 Low-Rank Kalman Predict Step in Information Form

Given a precision matrix P and a transition noise covariance Q, the predict step in a Gaussian filter
computes the predictive precision as

P´ “
`

P´1 ` Q
˘´1

. (17)

Now if the precision is a diagonal plus low-rank matrix P “ D ` UΣUJ, and the transition noise
covariance Q is diagonal, we can show that the predictive precision is also diagonal plus low-rank.
First, we apply the Woodbury matrix identity to the precision matrix:

`

Q ` P´1
˘´1

“

´

Q `
`

D ` UΣUJ
˘´1

¯´1

(18)

“

´

Q ` D´1 ´ D´1U
`

Σ´1 ` UJD´1U
˘´1

UJD´1
¯´1

. (19)

15

Defining D1 :“ Q ` D´1, U 1 :“ D´1U , and Σ1 :“ ´
`

Σ´1 ` UJD´1U
˘´1

, and applying the
Woodbury matrix identity again, we get

`

Q ` P´1
˘´1

“ D1´1 ´ D1´1U 1
`

Σ1´1 ` U 1JD1´1U 1
˘´1

U 1JD1´1 (20)
This shows that the predictive precision is also diagonal plus low-rank:

P´ “ D´ ` U´Σ´pU´qJ, (21)
with

D´ :“ D1´1 (22)

“
`

Q ` D´1
˘´1

(23)

U´ :“ D1´1U 1 (24)

“
`

Q ` D´1
˘´1

D´1U , (25)

Σ´ :“ ´
`

Σ1´1 ` U 1JD1´1U 1
˘´1

(26)

“

´

Σ´1 ` UJD´1U ´ UJD´J
`

Q ` D´1
˘´1

D´1U
¯´1

(27)

This, to perform the Kalman predict step in information form with a diagonal plus low-rank precision
matrix, we compute and return the above quantities D´, U´, and Σ´.

C.3 Low-Rank Kalman Smoother Step in Information Form

The standard Kalman smoother, or Rauch–Tung–Striebel smoother [16], computes Gaussian posterior
distributions

ppθt | D1:T q “ N pθt;m
s
t ,C

s
t q (28)

by iterating the following backward recursion, starting with the filtering distribution ms
T “ mT and

Cs
T “ CT :

Gt “ Ct

`

C´
t

˘´1
, (29)

ms
t “ mt ` Gt

`

ms
t`1 ´ m´

t`1

˘

, (30)

Cs
t “ Ct ` Gt

`

Cs
t`1 ´ C´

t`1

˘

GJ
t . (31)

Now let us formulate the smoother step in terms of diagonal plus low-rank precision matrices. Let
the filtering precision at time t be Pt “ Dt ` UtΣtU

J
t , the smoothing precision at time t ` 1 be

P s
t`1 “ Ds

t`1 ` U s
t`1Σ

s
t`1pU s

t`1qJ, and let Q be diagonal. Recall that the predicted precision
satisfies P´

t`1 “
`

P´1
t ` Q

˘´1
. Then, the smoothing gain Gt is given by

Gt “ Ct

`

C´
t

˘´1
“ P´1

t P´
t`1 “ P´1

t

`

P´1
t ` Q

˘´1
“ pI ` QPtq

´1
. (32)

Plugging in the diagonal plus low-rank form of the precision matrices, we get

Gt “
`

I ` QDt

D1

`QUt

U 1

Σt

Σ1

UJ
t

V 1J

˘´1
(33)

Applying the Woodbury matrix identity, we get

Gt “ D1´1 ´ D1´1U 1
`

Σ1´1 ` V 1JD1´1U 1
˘´1

V 1JD1´1. (34)

Therefore, the smoothing gain is diagonal plus low-rank Gt “ DG
t ` UG

t ΣG
t pV G

t qJ, with
DG

t :“ D1´1 (35)

“ pI ` QDtq
´1

, (36)

UG
t :“ D1´1U 1 (37)

“ pI ` QDtq
´1

QUt, (38)

ΣG
t :“ ´

`

Σ1´1 ` V 1JD1´1U 1
˘´1

(39)

“ ´

´

Σ´1
t ` UJ

t pI ` QDtq
´1

QUt

¯´1

, (40)
`

V G
t

˘J
:“ V 1JD1´1 (41)

“ UJ
t pI ` QDtq

´1
. (42)

16

This concludes the first part: Computing the smoothed mean as in Equation (30) can be done
efficiently as Gt is diagonal plus low-rank.

The smoothing covariance/precision can again be approximated efficiently in a diagonal plus low-rank
manner. We first re-write the smoothing covariance in terms of precisions, and re-order some terms
to obtain an addition of two low-rank matrices:

pP s
t q

´1
“ pPtq

´1
` Gt

´

`

P s
t`1

˘´1
´

`

P´
t`1

˘´1
¯

GJ
t (43)

“ pPtq
´1

` Gt

´

`

P s
t`1

˘´1
´ pPtq

´1
´ Q

¯

GJ
t (44)

“ pPtq
´1

´ Gt pPtq
´1

GJ
t ` Gt

´

`

P s
t`1

˘´1
´ Q

¯

GJ
t (45)

“ pI ´ Gtq pPtq
´1

pI ´ Gtq
J

` Gt

´

`

P s
t`1

˘´1
´ Q

¯

GJ
t . (46)

Then, since Pt and P s
t`1 are diagonal plus low-rank, their inverse is also diagonal plus low-rank (see

Appendix C.1). Let pPtq
´1 “ Dt ` UtΣtU

J
t and pP s

t`1q´1 “ Ds
t`1 ` U s

t`1Σ
s
t`1pU s

t`1qJ. Then,
the smoothing precision can be written as

pP s
t q

´1
“ pI ´ Gtq

`

Dt ` UtΣtU
J
t

˘

pI ´ Gtq
J (47)

` Gt

`

Ds
t`1 ` U s

t`1Σ
s
t`1pU s

t`1qJ ´ Q
˘

GJ
t . (48)

Similarly to before in Appendix C.1, we can write the smoothing precision as a matrix product
pP s

t q
´1

“ WWJ, by defining W as

W :“
”

pI ´ GtqD
1{2
t pI ´ GtqUtΣ

1{2
t GtpD

s
t`1 ´ Qq1{2 GtU

s
t`1pΣs

t`1q1{2
ı

. (49)

Then, we can perform a truncated SVD on W « UΣV J to obtain a low-rank approximation of the
smoothing covariance

pP s
t q

´1
« UΣ2UJ. (50)

A low-rank approximation of the precision follows again with the Woodbury matrix identity (see
Appendix C.1).

D Experimental Details

D.1 Datasets

The datasets that we used are MNIST [43] and Camelyon [33]. Our implementation is in JAX [44].

In Section 5 we use permuted and disjoint MNIST. Next, we create three new settings within the
CAMELYON dataset from the WILDS benchmark, a collection of datasets designed to address dis-
tribution shifts commonly encountered in real-world scenarios. These include domain generalization,
where the objective is to generalize to unseen domains during training, and subpopulation shift, where
class proportions differ. We adapted CAMELYON for a continual learning setup, expanding it with
additional examples that are simple yet illustrative of dataset shifts, following as a guideline the work
by Quionero-Candela et al. [45]. We believe they capture realistic scenarios e.g. brightness shifts
due to different generations of machines, varying staining methods or imbalanced amount of data.
As the GRADUAL CAMELYON was already described in section 5.2, here we only offer extended
description and introduce the remaining two datasets.

GRADUAL CAMELYON: Apart from changing the brightness of the images, we apply normalization
but with the same mean and standard deviation for normalizing each dataset. Since each task uses
a different brightness shift, it is not negated by the shared normalization operation (in a real-world
application this could happen if the machine’s manufacturer has some default normalization, but each
hospital might have an individual shift, e.g. due to individual machine’s degradation, varying light
setup, etc.). In Figure 5 we show some exemplary images from each task.

SHIFT CAMELYON: Shift from hospital 0 to hospital 1, where in t “ 0 only samples from hospital
0 are present, in t “ 1 there is an equal amount of samples from hospitals 0 and 1 and in the last task
there are only samples from hospital 1,

IMBALANCED SHIFT CAMELYON: The same as Shift CAMELYON with the difference that the
number of samples in two hospitals is unbalanced.

17

Task 1 Task 2 Task 3 Task 4 Task 5

Figure 5: Examples of the input data from GRADUAL CAMELYON. (Top) To adjust the brightness,
we apply a shift xt “ x ` ∆t (bottom) next, we normalize pxt ´ µXq{σX .

1 2 3

Task t

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

Shift CAMELYON

λ = 0

λ = 500 + 1000 ∗ (t− 1)

1 2 3

Task t

Imbalanced Shift CAMELYON

λ = 0

λ = 2 + 200 ∗ (t− 1)

Figure 6: Results on additional continual learning tasks derived from the Camelyon dataset. We
compare our diagonal plus low-rank GGN approximation () to no regularization (). Note, that
we have seen improved performance from employing a non-constant regularization strength λ, which
instead scales with the task index t. The exact schedule for λ is described in the legend. Shaded areas
indicate min/max performance across 8 random seeds.

D.2 Experimental Setup

Table 1 reports the values of all hyperparameters for each result presented in the paper. The number
of seeds controlled all the variability i.e. initialization, data loaders, dataset splits, random operations
etc. All of the experiments were run on local desktop with one NVIDIA GeForce RTX 2080 Ti with
11 GB memory.

D.3 Experimental Results

We provide additional experimental results in Table 2 and Figs. 6 and 7.

18

Ta
bl

e
1:

Fu
ll

ex
pe

ri
m

en
ta

ls
et

up
of

al
lp

re
se

nt
ed

re
su

lts
.T

he
hy

pe
rp

ar
am

et
er

s
w

er
e

tu
ne

d
vi

a
an

in
de

pe
nd

en
ts

ea
rc

h
on

a
gr

id
.

Se
ct

io
n

5.
1

Se
ct

io
n

5.
2,

A
pp

en
di

x
D

.3
Se

ct
io

n
5.

3,
A

pp
en

di
x

D
.3

ex
pe

ri
m

en
t

Pe
rm

ut
ed

M
N

IS
T

D
is

jo
in

t
M

N
IS

T
G

ra
du

al
C

am
el

yo
n

Sh
ift

C
am

el
yo

n

Im
ba

la
nc

ed
Sh

ift
C

am
el

yo
n

G
ra

du
al

C
am

el
yo

n
st

ud
y

of
Q

G
ra

du
al

C
am

el
yo

n
sm

oo
th

er

G
ra

du
al

C
am

el
yo

n
in

fe
rr

ed
pa

ra
m

s

la
ye

rs
2

3
C

on
v

2
D

en
se

un
its

40
0

32
,(

3x
3)

16
,(

3x
3)

4,
(3

x3
)

8,
2

ep
oc

hs
10

5
po

in
ts

60
00

0
12

00
0

„
31

00
0

„
53

00
0,

„
31

00
0

20
00

10
00

λ
ou

rs
:0

.0
1

E
W

C
:1

00
O

SL
A

:1
e8

ou
rs

:1
.5

E
W

C
:0

.5
5

O
SL

A
:4

0
10

00
0-

10
00

t
5

+
10

00
*(

t-
1)

2
+

40
0*

(t
-1

)
10

00
00

-
10

00
0*

(t
-1

)
10

00
0-

10
00

*(
t-

1)

se
ed

s
8

15
5

Q
-

st
ru

ct
ur

ed
:0

.5
sc

al
ar

:0
.5

1e
10

10
0

ba
tc

h
si

ze
12

8
12

8
32

H
es

si
an

ba
tc

h
si

ze
4

12
8

32
le

ar
ni

ng
ra

te
0.

00
1-

0.
00

01
in

iti
al
λ

0.
00

01

19

Table 2: Comparison of our diagonal low-rank GGN approximation to other regularization
methods. For Permuted and Disjoint MNIST, we compare the final average accuracy (˘ one standard
deviation as measured across 8 seeds) on all sub-tasks after sequentially learning the individual tasks
using three different regularizers.

Permuted
MNIST

Disjoint
MNIST

Our Method (LR-LGF, Q“0) 0.936 ˘ 0.005 0.830 ˘ 0.007
EWC 0.892 ˘ 0.015 0.805 ˘ 0.017
OSLA 0.920 ˘ 0.031 0.838 ˘ 0.003

Baseline (no regularizer) 0.663 ˘ 0.020 0.492 ˘ 0.001

1 2 3 4 5

Task t

0.7

0.8

0.9

A
cc

ur
ac

y

Average Performance Across Tasks

1 2 3 4 5

Task t

Performance on Current Task

No Regularization
λ>0

λ>0, Scalar Q
λ>0, Structured Q

Figure 7: The effect of Q on the average and current task’s performance (across seeds). (Left)
Looking at the average performance across currently observed tasks, we see that without regularization
(), performance significantly drops. With regularization (and possibly Qą0) (e.g. , ,), we
can boost the average performance to roughly similar levels. (Right) Crucially, adding Qą0 allows
us to boost the performance on the current task, while maintaining the same average performance.
Adding a structured Q, that specifically targets the first convolutional layer (see Section 5.2), tends
too perform slightly stronger. Shaded areas show ˘ one standard deviation across 8 random seeds.

1 3 5

Task t

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Filter
Smoother
Previous (Smoother)
Next (Smoother)

Figure 8: Inferring model parameters “in-between” two observed tasks using Bayesian smooth-
ing. After filtering () and having seen tasks t“1, 3, 5, we apply the smoother (). We also infer
parameters for tasks t“2, 4 which were not observed so far. We compare this to simply using the
model parameter of the previous (✖), i.e. use θ1 for task t“2, or next (✖), i.e. use θ3 for task t“2,
observed task. Shaded areas and error bars show ˘ one standard deviation across 8 random seeds.

20

	Introduction
	Background
	A Bayesian Inference Framework for Sequential Learning
	Laplace–Gaussian Filtering
	Efficient Low-Rank Laplace–Gaussian Filtering with the GGN
	Task-Specific Models via Backwards Smoothing

	Related Work
	Experiments
	Efficient Diagonal Plus Low-Rank Curvature Approximations
	Integrating Domain Knowledge via Q
	Going Back in Time via Smoothing

	Conclusion
	Continual Learning
	Additional Approaches to Continual Learning

	Implementation Details
	Filtering and Smoothing with Diagonal plus Low-Rank Matrices
	Mathematical operations on diagonal plus low-rank matrices
	Low-Rank Kalman Predict Step in Information Form
	Low-Rank Kalman Smoother Step in Information Form

	Experimental Details
	Datasets
	Experimental Setup
	Experimental Results

