Learnable Uncertainty under Laplace Approximations

Agustinus Kristiadi*'

Matthias Hein'

Philipp Hennig'*

!'University of Tiibingen, Tiibingen, Germany
2Max Planck Institute for Intelligent Systems, Tiibingen, Germany

Abstract

Laplace approximations are classic, computation-
ally lightweight means for constructing Bayesian
neural networks (BNNSs). As in other approximate
BNNSs, one cannot necessarily expect the induced
predictive uncertainty to be calibrated. Here we
develop a formalism to explicitly “train” the un-
certainty in a decoupled way to the prediction it-
self. To this end, we introduce uncertainty units
for Laplace-approximated networks: Hidden units
associated with a particular weight structure that
can be added to any pre-trained, point-estimated
network. Due to their weights, these units are
inactive—they do not affect the predictions. But
their presence changes the geometry (in partic-
ular the Hessian) of the loss landscape, thereby
affecting the network’s uncertainty estimates un-
der a Laplace approximation. We show that such
units can be trained via an uncertainty-aware objec-
tive, improving standard Laplace approximations’
performance in various uncertainty quantification
tasks.

1 INTRODUCTION

The point estimates of neural networks (NNs)—constructed
as maximum a posteriori (MAP) estimates via regularized
empirical risk minimization—empirically achieve high pre-
dictive performance. However, they tend to underestimate
the uncertainty of their predictions and thus be overconfi-
dent [Nguyen et al., 2015, Guo et al., 2017], which could be
disastrous in safety-critical applications such as autonomous
driving. Bayesian inference offers a principled path to over-
come this issue. The goal is to turn “vanilla” NNs into
Bayesian neural networks (BNNs), i.e. equipping a NN with
the posterior over its weights, inferred by Bayes’ theorem

*Correspondence to: agustinus.kristiadi @uni-tuebingen.de

and subsequently taken into account when making predic-
tions [MacKay, 1992b, Neal, 1995].

Since the cost of exact posterior inference in a BNN is often
prohibitive, approximate Bayesian methods are commonly
employed instead. Laplace approximations (LAs) are classic
methods for such a purpose [MacKay, 1992b]. Intuitively,
the key idea is to obtain an approximate posterior by “sur-
rounding” a MAP estimate of a network with a Gaussian,
based on the loss landscape’s geometry around it. More
formally, they form a Gaussian approximation to the exact
posterior, whose mean equals the network’s MAP estimate
and whose covariance equals the negative inverse Hessian
(or approximations thereof) of the loss function, evaluated
at the MAP estimate. LAs can thus be applied to any pre-
trained, point-estimated network in a cost-efficient, post-hoc
manner, especially thanks to recent advances in software
toolkits for second-order optimization [Yao et al., 2019,
Dangel et al., 2020]. This is in contrast to alternative approx-
imate Bayesian methods such as variational Bayes [Hinton
and Van Camp, 1993, Graves, 2011, Blundell et al., 2015]
and Markov Chain Monte Carlo [Neal, 1993, Welling and
Teh, 2011] which require either costly network re-training
or posterior sampling.

A standard practice in contemporary LAs is to tune a sin-
gle hyperparameter—the prior precision—to calibrate their
predictive uncertainty [Ritter et al., 2018b]. However, this
scalar parametrization allows only for a very limited form of
uncertainty calibration. Below, we propose a more flexible
framework to tune the uncertainty of Laplace-approximated
BNNs without changing their point estimates. The idea is
to introduce additional hidden units, associated with partly
zero weights, to the hidden layers of any MAP-trained net-
work. Because of their weight structure, they are partly
inactive and do not affect the prediction of the underlying
network. However, they can still contribute to the Hessian
of the loss with respect to the parameters, and hence in-
duce additional structure to the posterior covariance un-
der a Laplace approximation—these units are thus uncer-
tainty units under Laplace approximations. Furthermore,

Accepted for the 37" Conference on Uncertainty in Artificial Intelligence (UAI 2021).

S

LA =—>

Ours =9

Prediction

Prediction

Prediction

Figure 1: A schematic of our method. Top row: blue and green curves represent the true and the Laplace-approximated
posteriors over the parameter space, respectively—the point estimates are in red. Bottom row: predictions induced by the
respective Laplace approximation—Tlines and shades are predictive means and 95% confidence intervals, respectively. Our
method adds further degrees of freedom to the parameter space—as induced by additional hidden units with a particular
weight structure—and finds a point in the augmented space that induces the same predictions but with better-calibrated
uncertainty estimates (esp. w.r.t. outliers), under a Laplace approximation.

the non-zero weights associated with these units can then
be trained via an uncertainty-aware objective [Lee et al.,
2018, Hendrycks et al., 2019, etc.], such that they improve
the predictive uncertainty quantification performance of the
Laplace-approximated BNN. Figure 1 provides intuition.

In summary, we

(i) introduce uncertainty units: hidden units with a partic-
ular structure in their associated weights that can be
applied to any MAP-trained network,

(i) show that these units maintain the output of the net-
work, while non-trivially affecting the loss landscape’s
curvature (the Hessian), thus also affecting predictive
uncertainty under Laplace approximations, and

(iii) present a training method for the non-zero weights
associated with these units via an uncertainty-aware
objective so that they improve the uncertainty calibra-
tion of Laplace approximations.

2 BACKGROUND
2.1 BAYESIAN NEURAL NETWORKS

Let f : R x R? — R* defined by (z,0) — f(z;0) be
an L-layer neural network. Here, 6 is the vector of all the
parameters of f. Suppose that the size of each layer of f
is given by the sequence of (n; € Z>0)f:1. Then, for each
l=1,...,L, the I-th layer of f is defined by

a® = wORE=1) L O (1)

with

B0 oa®) ifl< L
" a® ifl =L,

where W) ¢ R™*™-1 and b() € R™ are the weight
matrix and bias vector of the layer, and ¢ is a component-
wise activation function. We call the vector h(!) € R™ the

[-th hidden units of f. Note that by convention, we consider
ng :=nand ny, := k, while h(®) := z and h(5) := f(z;6).

From the Bayesian perspective, the ubiquitous training for-
malism of neural networks amounts to MAP estimation: The
empirical risk and the regularizer are interpretable as the neg-
ative log-likelihood under an i.i.d. dataset D := {z;, y; }1",
and the negative log-prior, respectively. That is, the loss
function is interpreted as

L) = *Zlogp(yi | f(z:;0)) — logp(0) @

= —logp(0 | D).

In this view, the de facto weight decay regularizer amounts
to a zero-mean isotropic Gaussian prior p(6) = N (0, \~11)
with a scalar precision hyperparameter A\. Meanwhile, the
usual softmax and quadratic output losses correspond to the
Categorical and Gaussian distributions over y; in the case
of classification and regression, respectively.

MAP-trained neural networks have been shown to be over-
confident [Hein et al., 2019] and BNNs can mitigate this
issue [Kristiadi et al., 2020]. BNNs quantify epistemic un-
certainty by inferring the full posterior distribution of the
parameters 6, instead of just a single point estimate in MAP
training. Given that p(f | D) is the posterior, then the pre-
diction for any test point z € R" is obtained via marginal-

ization
p@|%D>:/5@|f@w»pW|wa, 3)

which captures the uncertainty encoded in the posterior.

2.2 LAPLACE APPROXIMATIONS

In deep learning, since the exact Bayesian posterior is in-
tractable, approximate Bayesian inference methods are used.
Laplace approximations (LAs) are an important family of
such methods. Let fyap be the minimizer of (2), which
corresponds to a mode of the posterior distribution. A LA
locally approximates the posterior using a Gaussian

p(0 | D) = N (bmap, X),

where X := (V2L|g,,,) ' is the inverse Hessian of the
loss function, evaluated at the MAP estimate 6yap. Thus,
LAs construct an approximate Gaussian posterior around
Omap, Whose precision equals to the Hessian of the loss at
Ovap—the “curvature” of the loss landscape at fyap, cf.
Fig. 1 (top) for an illustration.

While the covariance of a LA is tied to the weight decay
of the loss, a common practice in LAs is to tune the prior
precision under some objective in a post-hoc manner [Ritter
et al., 2018b, Kristiadi et al., 2020]. In other words, the
MAP estimation and the covariance inference are thought
of as separate, independent processes. For example, given a
fixed MAP estimate, one can maximize the log-likelihood
of a LA w.r.t. the prior precision to obtain the covariance.
This hyperparameter tuning can thus be thought of as an
uncertainty tuning.

A recent example of LAs is the Kronecker-factored Laplace
(KFL) [Ritter et al., 2018b]. The key idea is to approx-
imate the Hessian matrix with the layer-wise Kronecker
factorization scheme proposed by Heskes [2000], Martens
and Grosse [2015]. That is, for each layer [= 1,...,L,
KFL assumes that the Hessian corresponding to the [-th
weight matrix W) € R™*™~1 can be written as the Kro-
necker product G @ A® for some G() € R™*™ and
AW ¢ R™m-1*m-1_ This assumption brings the inversion
cost of the Hessian down to ©(n} + n}_,), instead of the
usual ©(nfn?) cost. Note that the approximate Hessian
can easily be computed via tools such as BackPACK [Dan-
gel et al., 2020].

Even in the case when a closed-form Laplace-approximated
posterior can be obtained, the integral (3) in general does not
have an analytic solution since f is nonlinear. To alleviate
this, one can simply employ Monte-Carlo (MC) integration
by sampling from the Gaussian:

S
p(y |z, D)~ %Zp(y | f(;05))

with 05 ~ N (Omap, X)),

for S number of samples.

Alternatively, a closed-form approximation to the predictive
distribution—useful for analysis but has also been shown
to be better than MC integration in practice [Foong et al.,
2019, Immer et al., 2021]—can be obtained by lineariz-
ing the network w.r.t. its parameter at the MAP estimate.!
That is, given any input x € R"™ and the Jacobian matrix
J(x) == Vo f(2;0)|oye € R¥F, we Taylor-approximate
the network as

f(;0) = fx;0map) + J(2) T (0 — Onap) . (D

Under this approximation, since @ is a posteriori distributed
as Gaussian A (Ouap, X), it follows that the marginal dis-
tribution over the network output f(z) is also a Gaussian
[Bishop, 2006, Sec. 5.7.3], given by

p(f(x) | 2,D) ~ N(f(x; 0map), J ()T X T (2)). (5)

For classification, one can then use the so-called probit
approximation [Spiegelhalter and Lauritzen, 1990, MacKay,
1992a] or its generalization [Gibbs, 1997] to obtain the
predictive distribution. In the binary classification case, this
is

pw=1MJn=/dﬂmmuuH%mew»

~c f(x; Omap)
1+n/8v(x))’

(6)
where v(x) := J(z) " X J(x) is the variance of f(x) under
(5). Using this approximation, we can clearly see the con-
nection between output variance and predictive uncertainty:

As v(z) increases, the predictive probability becomes closer
0.5 and therefore the predictive entropy increases.

3 LEARNABLE UNCERTAINTY UNITS
UNDER LAPLACE APPROXIMATIONS

In this section, we introduce uncertainty units, which can
be added to the layers of any MAP-trained network (Sec-
tion 3.1) and trained via an uncertainty-aware loss (Sec-
tion 3.2) to improve uncertainty calibration under Laplace
approximations. All proofs are in Appendix A.

3.1 CONSTRUCTION

Let f : R® x R? — R* be a MAP-trained L-layer neural
network with parameters fyap = (Wl\(,[l/lP7 bl(vllzxp)le. The
premise of our method is simple: At each hidden layer
l=1,...,L —1, we add m; € Zx>(additional hidden
units (under the original activation function) to h()—as a

!The resulting network is still non-linear in its input, but linear
in its parameters.

consequence, the [-th weight matrix and bias vector need to
be extended to accommodate them. Our method augments
these parameters in such a way that for any input z € RY,
the original network output f(x; Oyap) is preserved, as fol-
lows.

Foreachlayer! =1, ..., L—1 of the network f, we expand

the MAP-estimated weight matrix WI\%P € R™m>™-1 and

the bias vector bl(vl&\P € R™ to obtain the following block
matrix and vector:

@)
w® .— (WMAP 0) c R("H’ml)x(”l—l“'ml—l),

T T
w W
B0
0 .= [MAPY) o it ,
30

7
to take into account the additional m; hidden units. We
do not add additional units to the input layer, so mg = 0.
Furthermore, for [= L, we define

W) = (Wi, 0) € REX(ra—1tmi—)
N ®)
b = b\, € RF

so that the output dimensionality is also unchanged.
For brevity, we denote by 0 the non-zero additional
parameters in (7), i.e. we define 00 to be the tuple
(Wl(l), ﬁ/\él),g(l)). Altogether, considering all layers [=
1,...,L — 1, we denote

b=(0")5",

to be the tuple of all non-zero additional parameters of the
network f. Furthermore, we write the resulting augmented
network as fand the resulting overall parameter vector—
consisting of (W(l)7g(l))f:1—a5 gMAp € RY, where d is the
resulting number of parameters. Refer to Fig. 2 for an illus-
tration and Algorithm 2 in Appendix B for a step-by-step
summary. Note that we can easily extend this construction
to convolutional networks by expanding the “channel” of
hidden convolution layers.”

Let us inspect the implication of this construction. Here for
each! = 1,...,L — 1, the sub-matrices /V[71(l), /V[72(l) and
the sub-vector 5 contain parameters for the additional m;
hidden units in the [-th layer. We are free to choose the
values of these parameters since the upper-right quadrant of
W(l), i.e. the zero part of the additional weights, deactivates
the m;_1 additional hidden units in the previous layer, hence
they do not contribute to the original hidden units in the /-th
layer. Part (a) of the following proposition thus guarantees
that the additional hidden units will not change the output
of the network.

2E.g. if the hidden units are a 3D array of (channel x height
X width), then we expand the first dimension.

T A h2

Figure 2: An illustration of the proposed construction.
Rectangles represent layers, solid lines represent connec-
tion between layers, given by the original weight matrices
WI\(,&P, ce W]\(,[i)P. The additional units are represented by
the additional block at the bottom of each layer. Dashed
lines correspond to the free parameters 5, while dotted lines

to the zero weights.

Proposition 1 (Properties). Let f : R” x R? — R* be
a MAP-trained L-layer network under dataset D, and let
Omap be the MAP estimate. Suppose f: R” x R* — R and
§~MAP € R? are obtained via the previous construction, and
L is the resulting loss function under f.

(a) For an arbitrary input x € R™, we have f(x, 5MAp) =
f(x; Omap).

(b) The gradient of C: w.r.t. the additional weights in W@
is non-linear in 6.

Proof Sketch. Part (a) is straightforward. For part (b), we
can show that the gradient of the network output w.r.t. the
additional zero weight in (8) is given by the additional hid-
den units of the previous layer. Note that these hidden units
are nonlinear in the additional weights induced by LULA,
due to the structure (7). The result then follows immediately
by the chain rule. The full proof is in Appendix A. O

Part (b) of the last proposition tells us that the additional
non-zero weights 0 affect the loss landscape in a non-trivial
way, and they, in general, induce non-trivial curvatures along
the additional dimensions in the last-layer weight matrix
(8) of the network. Therefore this construction non-trivially
affects the covariance matrix in a LA. The implication of
this insight to predictive uncertainty can be seen clearly in
real-valued networks with diagonal LA posteriors, as the
following proposition shows. (The usage of the network
linearization below is necessary for analytical tractability.)

Proposition 2 (Predictive Uncertainty). Suppose f :
R® x R?* — R is a real-valued network and f
is as constructed above. Suppose further that diago-
nal Laplace-approximated posteriors N (Oyap, diag(c)),

N(ﬁMAp, diag(c)) are employed for f and f. respectively.
Under the linearization (4), for any input x € R", the vari-
ance over the output f(x;0) is at least that of f(x;0).

In summary, the construction along with Propositions 1
and 2 imply that the additional hidden units we have added
to the original network are uncertainty units under Laplace
approximations, i.e. hidden units that only contribute to the
Laplace-approximated uncertainty and not the predictions.
Furthermore, by part (b) of Proposition 1, the values of
6—which can be set freely without affecting the output—
influence the loss-landscape Hessian in a non-trivial way.
They are thus learnable and so we call these units Learnable
Uncertainty under Laplace Approximations (LULA) units.

3.2 TRAINING

In this section, we discuss a way to train LULA units to im-
prove predictive uncertainty under Laplace approximations.
We follow a contemporary technique from the non-Bayesian
robust learning literature which has been shown to be effec-
tive in improving uncertainty calibration of non-Bayesian
networks [Lee et al., 2018, Hendrycks et al., 2019, Bitter-
wolf et al., 2020, etc.].

Let f : R x R? — RF be an L-layer neural network with
a MAP-trained parameters Oyap and let f : R x RY — RF
along with GMAP be obtained by adding LULA units. Let
q(@) =N (GMAP,) be the Laplace-approximated poste-
rior and p(y | 2, D; Byap) be the (approximate) predictive
distribution under the LA. Furthermore, let us denote the
dataset sampled i.i.d. from the data distribution as Dj, and
that from some outlier distribution as Dy, and let H be the
entropy functional. We construct the following loss function
to induce high uncertainty on outliers while maintaining
high confidence over the data (inliers):

1 ~
T~ | H iny D7
Dr m%; [P(Y | Zin, D; Omap)]
1 e)

Z Hp(y | Zou, D; 9MAP)]

Zout € Dout

LruLa (gMAP) =

[Dou|

and minimize it w.r.t. the free parameters 9. This objective
is task agnostic—it can be used in regression and classi-
fication networks alike. Furthermore, the first term of this
objective can alternatively be replaced with the standard neg-
ative log-likelihood loss. In our case, since by Proposition 1,
predictions do not change under LULA, using the negative
log-likelihood yields the same result as predictive entropy:
they both only affect uncertainty and keep predictions over
D, confident. In any case, without this term, £y s poten-
tially assigns the trivial solution of maximum uncertainty
prediction everywhere in the input space.

The intuition of LULA training is as follows. By adding
LULA units, we obtain a non-trivially augmented version of

Algorithm 1 Training LULA units.

Input:
MAP-trained network f. Dataset D;,, OOD dataset Dyy;.
Learning rate . Number of epochs F.

Construct ffrom f by following Section 3.1.
fori=1,...,Fdo
q(0) = N(QMAPa S (Ouar)) N
Compute ELULA(HMAP) via (9) with ¢(6), D, Doy
9 = VLruLa(Omar)
g = mask_gradient(g)

Omap = Ovap — @G

end for B o
p(0 | D) = N(Ouap, X (Omar))

return f and p(0 | D)

R e A o e

_.
e

the network’s loss landscape (Proposition 1(b)). The goal of
LULA training is then to exploit the weight-space symmetry
(i.e. different parameters that induce the same output) arising
from the construction as shown by Proposition 1(a), and pick
a point in the extended parameter space that is symmetric
to the original parameters but has “better” curvatures, in
the sense that they induce lower loss (9). These parameters,
then, when used in a LA, improve the predictive uncertainty
of standard non-LULA-augmented LAs.

3.2.1 Practical Matters

Datasets We can simply set Dy, to be the validation set of
the dataset D. Meanwhile, D, can be chosen depending
on the task at hand, e.g. noise and large-scale natural image
datasets can be used for regression and image classification
tasks, respectively [Hendrycks et al., 2019].

Maintaining Weight Structures Since our aim is to im-
prove predictive uncertainty by exploiting weight-space
symmetries given by the structure of LULA weights, we
must maintain the structure of all weights and biases in
gMAP, in accordance to (7) and (8). This can be enforced by
gradient masking Foralll =1,...,L—1, set the gradients
of the blocks of W and () not correspondlng to W(l)

W2(l), and b(l), to zero. Under this scheme, Proposition 1(a)
will still hold for trained LULA units.

Laplace Approximations During Training Since the co-
variance matrix ' of the Laplace-approximated posterior
depends on Ouap, it needs to be updated at every iteration
during the optimization of Ly yp . This can be expensive
for large networks depending on the Laplace approximation
used, not to mention that one must use the entire dataset D;,
to obtain this matrix. As a simple and much cheaper proxy
to the true covariance, we employ a simple diagonal Fisher
information matrix [Amari, 1998, Martens, 2014], obtained

from a single minibatch, irrespective of the Laplace approxi-
mation variant employed at test time—we show in Section 5
that this training scheme is both effective and efficient.’
Finally, we note that backpropagation through this diagonal
matrix, which is fully determined by the network’s gradi-
ent, does not pose a difficulty since modern deep learning
libraries such as PyTorch and TensorFlow support “dou-
ble backprop” efficiently. Algorithm 1 provides a summary
of LULA training in pseudocode. Code can be found in
https://github.com/wiseodd/1lula.

4 RELATED WORK

While traditionally hyperparameter optimization in LAs
requires re-training the network (under type-II maximum
likelihood or the evidence framework [MacKay, 1992b]
or empirical Bayes [Robbins, 1956]), tuning it in a post-
hoc manner has become increasingly common. Ritter et al.
[2018a,b] tune the prior precision of a LA by maximizing
the predictive log-likelihood. Kristiadi et al. [2020] extend
this procedure by also using outliers to better calibrate the
uncertainty. However, they are limited in terms of flexibility
since the prior precision of the LAs constitutes a single
scalar parameter. LULA can be seen as an extension of these
approaches with greater flexibility and is complementary to
them since it does not modify the prior precision used.

Confidence calibration via outliers has achieved state-
of-the-art performance in non-Bayesian outlier detection.
Hendrycks et al. [2019], Hein et al. [2019], Meinke and Hein
[2020] use outliers to regularize the standard maximum-
likelihood training. Malinin and Gales [2018, 2019] use
outliers to train probabilistic models based on the Dirichlet
distribution. In contrast to our approach, all these methods
are neither Bayesian nor post-hoc.

5 EXPERIMENTS

We empirically validate that LULA does improve vanilla
LAs via toy and image classification experiments—results
on UCI regression tasks are in the appendix. We expand the
image classification experiment into dataset shift robustness
and out-of-distribution (OOD) experiments to show LULA’s
performance over standard benchmark suites.

5.1 SETUP

Toy experiments We use the “cubic” [Hernandez-Lobato
and Adams, 2015] and “two moons” datasets for regression
and classification, respectively. For classification, we use
a full Laplace with generalized Gauss-Newton Hessian ap-
proximation on a three-layer FC network. For regression, we

3The actual Laplace approximations used in all experiments
are non-diagonal.

apply the Kronecker-factored Laplace (KFL) [Ritter et al.,
2018b] on a two-layer fully-connected network. In this par-
ticular case, we directly use the predictive variance instead
of (differential) entropy for Eq. (9). The two are closely
related, but in the case of regression with continuous output,
the variance is easier to work with since it is lower-bounded
by zero. Finally, the corresponding numbers of additional
LULA units are 30 and 50, respectively.

Image classification We use the following standard
datasets: MNIST, SVHN, CIFAR-10, and CIFAR-100. For
each dataset, we split its test set to obtain a validation set
of size 2000. On all datasets and all methods, we use the
WideResNet-16-4 architecture [Zagoruyko and Komodakis,
2016] and optimize the network with Nesterov-SGD with
weight decay 5 x 10~* and initial learning rate 0.1 for 100
epochs. We anneal the learning rate with the cosine decay
method [Loshchilov and Hutter, 2017].

Baselines We use the vanilla MAP-trained network (ab-
breviated as MAP), a last-layer KFL (LLA), and Deep En-
semble (DE) [Lakshminarayanan et al., 2017] as baselines.
For MAP and DE, we additionally use the temperature scal-
ing post-processing scheme to improve their calibration
(Temp) [Guo et al., 2017]. Specifically for DE, a single
temperature hyperparameter is used for all ensemble mem-
bers [Rahaman and Thiery, 2020]. Note that DE is used
to represent the state-of-the-art uncertainty-quantification
methods [Ovadia et al., 2019]. For the Bayesian baseline
(LA), we use a last-layer Laplace since it has been shown
to be competitive to its all-layer counterpart while being
much cheaper and thus more suitable for large networks
[Kristiadi et al., 2020]. We do not tune the prior variance
of LA—it is obtained from the weight decay used during
MAP training. Nevertheless, to show that LULA is also ap-
plicable to and can improve methods which their uncertainty
is already explicitly tuned, we additionally use two OOD-
trained/tuned baselines for the OOD-detection benchmark:
(i) the last-layer Laplace where the prior variance is tuned
via an OOD validation set (LLLA) [Kristiadi et al., 2020],
and (ii) the outlier exposure method (OE) [Hendrycks et al.,
2019] where OOD data is used during the MAP training
itself. For the latter, we apply a standard last-layer KFL
post-training (see [Kristiadi et al., 2020, Appendix D.6]).

LULA For the toy experiments, we use uniform noise as
Dout- We add 50 and 30 LULA units to each layer of the toy
regression and classification networks, respectively. Mean-
while, we use the downscaled ImageNet dataset [Chrabaszcz
et al., 2017] as Dy, for the image classification experiments.
We do not use the 80 Million Tiny Images dataset [Torralba
et al., 2008] as used by Hendrycks et al. [2019], Meinke and
Hein [2020], Bitterwolf et al. [2020] since it is not avail-
able anymore. We use the aforementioned ImageNet dataset
as the OOD dataset for training/tuning the LLLA and OE

https://github.com/wiseodd/lula

1.0
0.9
0.8
0.7
0.6
0.5

(a) MAP

(b) LA

(c) LA-LULA

Figure 3: Predictive uncertainty estimates of a standard LA and the LULA-augmented LA. Black curves and shades are

decision boundaries and confidence estimates, respectively.

baselines. We put LULA units on top of the pre-trained LA
baseline and optimize them using Adam for 10 epochs using
the validation set. To pick the number of additional (last-
layer) LULA units, we employ a grid search over the set
{32,64,128,256,512,1024} and pick the one minimizing
validation LULA loss £y ypa under the LA. Finally, note
that we implement LULA on top of the KFL discussed
above, thus by doing so, we show that LULA is generally
applicable even though it is specifically trained via a proxy
diagonal LA.

Benchmark For the dataset shift robustness experiment,
we use the standard rotated-MNIST (MNIST-R) and
corrupted-CIFAR-10 (CIFAR-10-C) datasets, which contain
corrupted MNIST and CIFAR-10 test images with varying
severity levels, respectively. Meanwhile, for the OOD ex-
periment, we use 6 OOD datasets for each in-distribution
dataset (i.e. the dataset the model is trained on).

Metrics First, we denote with “|” next to the name of
a metric to indicate that lower values are better, and vice
versa for “1”’. We use the standard uncertainty metrics: ex-
pected calibration error (ECE |) [Naeini et al., 2015], Brier
score (]) [Brier, 1950], test log-likelihood (1), and aver-
age confidence (MMC |) [Hendrycks et al., 2019]. Addi-
tionally, for OOD detection, we use the FPR95 () metric
which measures the false positive rate at a fixed true posi-
tive rate of 95% when discriminating between in- and out-
of-distribution data, based on their confidence (maximum
predictive probability) estimates.

5.2 TOY EXPERIMENTS

We begin with toy regression and classification results in
Fig. 1 (bottom) and Fig. 3, respectively. As expected, the
MAP-trained networks produce overconfident predictions
in both cases. While LA provides meaningful uncertainty
estimates, it can still be overconfident near the data. The
same can be seen in the regression case: LA’s uncertainty
outside the data region grows slowly. LULA improves both
cases: it makes (i) the regression uncertainty grow faster
far from the data and (ii) the classification confidence more
compact around the data region. Notice that in both cases

Table 1: Calibration and generalization performance. All
values are in percent and averages over five prediction runs.
Best ECE values among each pair of the vanilla and LULA-
equipped methods (e.g. LA and LA-LULA) are in bold. Best
overall values are underlined.

MNIST SVHN CIFAR-10 CIFAR-100
ECE |
MAP 13.8+£0.0 9.7+0.0 12.240.0 16.6+0.0
MAP-Temp 14.840.0 2.0+0.0 4.540.0 4.1£0.0
DE 13.240.0 4.3+0.0 6.1+0.0 5.440.0
DE-Temp 16.9+£0.0 2.240.0 3.8+£0.0 4.5+0.0
LA 12.6+0.1 9.3+0.0 10.940.3 7.040.1
LA-LULA 148403 3.3%+0.1 7.5£0.1 5.34+0.2
Ace. 1
MAP 99.740.0 97.1+0.0 95.0+0.0 75.840.0
MAP-Temp 99.740.0 97.1+0.0 95.0£0.0 75.8+0.0
DE 99.7+0.0 97.6+0.0 95.5+0.0 79.0+0.0
DE-Temp 99.740.0 97.640.0 95.540.0 79.1+0.0
LA 99.7+0.0 97.1+0.0 95.0+0.0 75.8+0.0
LA-LULA 99.6£0.0 97.1£0.0 94.9+0.0 75.610.1

LULA does not change the prediction of LA.

5.3 IMAGE CLASSIFICATIONS
5.3.1 Calibration

Table 1 summarizes the calibration and generalization per-
formance of LULA in terms of ECE and test accuracy,
respectively. We found that on “harder” datasets (SVHN,
CIFAR-10, CIFAR-100), LULA consistently improves the
vanilla LA’s calibration, often even better than DE. However,
on MNIST, both DE and LULA attain worse calibration than
the vanilla LA. This might be because the accuracy of the
network on MNIST is already almost perfect, thus even an
overconfident classifier could yield a good ECE value—DE
and LULA generally reduce confidence estimates (cf. Ta-
ble 6 in the appendix) and thus yielding higher ECE values.
Nevertheless, as we shall see in the next section, LULA is
in general better calibrated to outliers than the other base-
lines on MNIST. As a final note, we emphasize that LULA
preserves the predictive performance of the base LA and
thus MAP’s. This is important in practice: The allure of

Log-likelihood 1

MMC |

0.2

| |
[] — o
/ kR
[}
2

Log-Likelihood 1

ECE | Brier score |
0.1
40 /
/ MAP
20 / 0.05 DE
LA
LA-LULA
0
0 50 100 150 0 50 100 150
Angles Angles

Figure 4: Values of various uncertainty metrics as the rota-
tion angle on MNIST images increases.

deep networks is their high predictive performance, thus,
“non-destructive” post-hoc methods are desirable.

5.3.2 Dataset Shift Robustness

Dataset shift robustness tasks benchmark uncertainty cali-
bration of a predictive model on corruptions or perturbations
of the true dataset. To this end, we present various uncer-
tainty metrics of LULA on the MNIST-R dataset in Fig. 4. In
all metrics considered, LULA improves not only the vanilla
LA upon which LULA is implemented but also the state-of-
the-art baseline in DE. Thus, even though LULA reduces
calibration on the true MNIST dataset, it excels in making
the network robust to outliers.

We furthermore present the results on the corrupted CIFAR-
10 dataset in Fig. 5. It can be seen that on average, LULA
improves the vanilla LA, making it competitive to DE. In
fact, on higher corruption levels, LULA can achieve better
performance than DE, albeit marginally so. Nevertheless,
this is important since standard BNNs have been shown to
underperform compared to DE [Ovadia et al., 2019].

5.3.3 OOD Detection

While dataset shift robustness tasks measure performance
over outliers that are close to the true data, OOD detection
tasks test performance on outliers that are far away from
the data (e.g. SVHN images as outliers for the CIFAR-10
dataset). Table 2 summarizes results. For each in-distribution
dataset, LULA consistently improves the base LA, both in
terms of its confidence estimates on OOD data (MMC) and

-10*
-2 ‘ . *

IIMAP
-4 Imoe
O0ea

l JLA-LuLA

0.8
0.7

0.6

MMC |,

1y
ail

1 2

0.5

Severity

Figure 5: Summarized uncertainty quantification perfor-
mance at each severity level of the CIFAR-10-C dataset.

its detection performance (FPR95). Furthermore, LULA in
general assigns lower confidence to OOD data than DE. This
suggests that, far from the data, LULA is more calibrated
than DE. While LULA is better than DE in the detection
of OOD data on CIFAR-10, DE yields a stronger FPR95
performance than LULA in general. Nevertheless, we stress
that LULA is more cost-efficient than DE since it can be
applied to any MAP-trained network post-hoc. Moreover,
unlike DE which requires us to train multiple (in our case,
5) independent networks, LULA training is far cheaper than
even the training time of a single network—see next section.

As stated in Section 4, LULA is orthogonal to prior variance
tuning methods commonly done in Laplace approximations.
Hence, in Table 2 we also show the OOD detection perfor-
mance of LULA when applied to the LLLA baseline. We
observe that LULA consistently improves LLLA. The same
observation can also be seen when LULA is applied on top
of a Laplace-approximated state-of-the-art OOD detector
(OE): LULA also consistently improves OE even further.

54 COST

Table 3 shows the computational overhead of LULA (wall-
clock time, in seconds) on a single NVIDIA V100 GPU. The
cost of augmenting the WideResNet-16-4 network with 512
LULA units is negligible. The training time of these units
is around 20 seconds, which is also negligible compared to
the time needed to do MAP training.

Table 2: OOD detection performance for each in-distribution
dataset in terms of MMC and FPR95. Values are averages
over six OOD test sets and five prediction runs. Best values
among each pair of the vanilla and LULA-equipped methods
are in bold. Best overall values are underlined.

MNIST SVHN CIFAR-10 CIFAR-100
MMC |
MAP 804400 72.940.1 74240.1 64.520.1
MAP-Temp 82.2£0.0 634200 60.5£0.0 48.240.1
DE 738400 583201 663200 46.840.0
DE-Temp 84.14£0.0 59.0£0.1 62.0£0.0 46.520.1
LA 787401 72.140.1 70.7402 534402
LA-LULA 46.0+£0.8 609402 63.8:04 410405
LLLA 61.0404 473203 428204 465405
LLLA-LULA 569408 521404 351403 33.1+07
OE 352400 18.0£0.0 534£00 51.840.0
OE-LULA 22602 20.1+02 52.0+0.1 44.5+02
FPRY5 |
MAP 50400 259401 53.1£02 80.120.1
MAP-Temp 50400 25.640.1 47.0£02 77.140.1
DE 42400 11.940.1 476400 59.3+0.1
DE-Temp 45400 1644+0.1 448400 72340.1
LA 49400 255402 485405 783405
LA-LULA 58405 211204 395414 719413
LLLA 58405 220+£1.8 237405 754409
LLLA-LULA 4.540.1 19.4+05 229408 68.4+17
OE 55400 17400 274400 59.640.1
OE-LULA 51403 L7400 267402 585404

Table 3: Wall-clock time in seconds for augmenting the
WideResNet-16-4 network with 512 LULA units and train-
ing them for ten epochs with a validation set of size 2000.

MNIST SVHN CIFAR-10 CIFAR-100

0.005 0.005 0.004 0.006
20.898 22.856 22222 21.648

Construction
Training

6 CONCLUSION

We have proposed LULA units: hidden units associated with
partially zero weights that can be added to any pre-trained
MAP network for the purpose of exclusively tuning the un-
certainty of a Laplace approximation without affecting its
predictive performance. The crux of LULA is the observa-
tion that these units induce additional dimensions and thus
degrees of freedom in the network’s parameter space that
do not affect the network output. However, these additional
parameters do non-trivially affect the curvature of the loss
landscape and therefore the covariance matrices of Laplace
approximations. Because of this, LULA units are indeed
“uncertainty units”. They can, moreover, be trained via an
objective that depends on both inlier and outlier datasets to
calibrate the network’s predictive uncertainty estimates. We
show empirically that LULA provides a cheap yet effective

post-hoc uncertainty tuning for Laplace approximations.

Acknowledgements

The authors gratefully acknowledge financial support by
the European Research Council through ERC StG Action
757275 / PANAMA,; the DFG Cluster of Excellence “Ma-
chine Learning - New Perspectives for Science”, EXC
2064/1, project number 390727645; the German Federal
Ministry of Education and Research (BMBF) through the
Tiibingen Al Center (FKZ: 01IS18039A); and funds from
the Ministry of Science, Research and Arts of the State of
Baden-Wiirttemberg. The authors are also grateful to all the
anonymous reviewers for their critical and helpful feedback.
AK is grateful to the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for support. AK
also thanks all members of the Methods of Machine Learn-
ing group for helpful feedback.

References

Shun-Ichi Amari. Natural gradient works efficiently in
learning. Neural computation, 10(2):251-276, 1998.

Christopher M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

Julian Bitterwolf, Alexander Meinke, and Matthias Hein.
Certifiably Adversarially Robust Detection of Out-of-
Distribution Data. In NeurIPS, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight Uncertainty in Neural Net-
works. In ICML, 2015.

Glenn W Brier. Verification of Forecasts Expressed in Terms
of Probability. Monthly Weather Review, 78(1), 1950.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
Downsampled Variant of ImageNet as an Alternative to
the CIFAR Datasets. arXiv preprint arXiv:1707.08819,
2017.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. Back-
PACK: Packing more into Backprop. In ICLR, 2020.

Andrew YK Foong, Yingzhen Li, José Miguel Hernandez-
Lobato, and Richard E Turner. ’In-Between’ Uncer-
tainty in Bayesian Neural Networks. arXiv preprint
arXiv:1906.11537,2019.

Mark N Gibbs. Bayesian Gaussian Processes for Regression
and Classification. PhD thesis, Department of Physics,
University of Cambridge, 1997.

Alex Graves. Practical Variational Inference for Neural
Networks. In NIPS, 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In ICML,
2017.

Matthias Hein, Maksym Andriushchenko, and Julian Bit-
terwolf. Why ReLU Networks Yield High-confidence
Predictions Far Away from the Training Data and How to
Mitigate the Problem. In CVPR, 2019.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich.
Deep Anomaly Detection with Outlier Exposure. In /CLR,
2019.

José Miguel Hernandez-Lobato and Ryan Adams. Prob-
abilistic Backpropagation for Scalable Learning of
Bayesian Neural Networks. In ICML, 2015.

Tom Heskes. On “Natural” Learning and Pruning in Multi-
layered Perceptrons. Neural Computation, 12(4), 2000.

Geoftrey E Hinton and Drew Van Camp. Keeping the Neural
Networks Simple by Minimizing the Description Length
of the Weights. In COLT, 1993.

Alexander Immer, Maciej Korzepa, and Matthias Bauer.
Improving Predictions of Bayesian Neural Networks via
Local Linearization. In AISTATS, 2021.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig.
Being Bayesian, Even Just a Bit, Fixes Overconfidence
in ReLU Networks. In ICML, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles. In NIPS, 2017.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin.
Training Confidence-calibrated Classifiers for Detecting
Out-of-Distribution Samples. In /CLR, 2018.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradi-
ent Descent with Warm Restarts. In /CLR, 2017.

David JC MacKay. The Evidence Framework Applied to
Classification Networks. Neural computation, 1992a.

David JC MacKay. A Practical Bayesian Framework For
Backpropagation Networks. Neural computation, 4(3),
1992b.

Andrey Malinin and Mark Gales. Predictive Uncertainty
Estimation via Prior Networks. In NIPS, 2018.

Andrey Malinin and Mark Gales. Reverse KL-Divergence
Training of Prior Networks: Improved Uncertainty and
Adversarial Robustness. In NIPS, 2019.

James Martens. New Insights and Perspectives on the Nat-
ural Gradient Method. arXiv preprint arXiv:1412.1193,
2014.

James Martens and Roger Grosse. Optimizing Neural Net-
works With Kronecker-Factored Approximate Curvature.
In ICML, 2015.

Alexander Meinke and Matthias Hein. Towards Neural
Networks that Provably Know when They don’t Know.
In ICLR, 2020.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining Well Calibrated Probabilities Us-
ing Bayesian Binning. In AAAI, 2015.

Radford M Neal. Bayesian Learning via Stochastic Dynam-
ics. In NIPS, 1993.

Radford M Neal. Bayesian Learning for Neural Networks.
PhD thesis, University of Toronto, 1995.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural
Networks are Easily Fooled: High Confidence Predictions
for Unrecognizable Images. In CVPR, 2015.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David
Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lak-
shminarayanan, and Jasper Snoek. Can You Trust Your
Model’s Uncertainty? Evaluating Predictive Uncertainty
under Dataset Shift. In NeurIPS, 2019.

Rahul Rahaman and Alexandre H Thiery. Uncertainty
Quantification and Deep Ensembles. arXiv preprint
arXiv:2007.08792, 2020.

Hippolyt Ritter, Aleksandar Botev, and David Barber. On-
line Structured Laplace Approximations for Overcoming
Catastrophic Forgetting. In NIPS, 2018a.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A
Scalable Laplace Approximation for Neural Networks.
In ICLR, 2018b.

Herbert E Robbins. An Empirical Bayes Approach to Statis-
tics. In Proceedings of the 3rd Berkeley Symposium on
Mathematical Statistics and Probability, 1956.

David J Spiegelhalter and Steffen L Lauritzen. Sequen-
tial Updating of Conditional Probabilities on Directed
Graphical Structures. Networks, 1990.

Antonio Torralba, Rob Fergus, and William T Freeman. 80
Million Tiny Images: A Large Data Set for Nonparametric
Object and Scene Recognition. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 30(11), 2008.

Max Welling and Yee W Teh. Bayesian Learning via
Stochastic Gradient Langevin Dynamics. In ICML, 2011.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael
Mahoney. PyHessian: Neural Networks Through the
Lens of the Hessian. arXiv preprint arXiv:1912.07145,
2019.

Sergey Zagoruyko and Nikos Komodakis. Wide Residual
Networks. In BMVC, 2016.

	Introduction
	Background
	Bayesian Neural Networks
	Laplace Approximations

	Learnable Uncertainty Units under Laplace Approximations
	Construction
	Training
	Practical Matters

	Related work
	Experiments
	Setup
	Toy Experiments
	Image Classifications
	Calibration
	Dataset Shift Robustness
	OOD Detection

	Cost

	Conclusion

