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Executive Summary

Crop models are invaluable tools for predicting the impact of climate change on crop production

and assessing the fate of agrochemicals in the environment. To ensure robust predictions of crop

yield, for example, models are usually calibrated to observations of plant growth and phenological

development using different methods. However, various sources of uncertainty exist in the model

inputs, parameters, equations, observations, etc., which need to be quantified, especially when

model predictions influence decision-making. Bayesian inference is suitable for this purpose

since it enables different uncertainties to be taken into account, while also incorporating prior

knowledge. Thus, Bayesian methods are used for model calibration to improve the model and

enhance prediction quality.

However, this improvement in the model and its prediction quality does not always occur

due to the presence of model errors. These errors are a result of incomplete knowledge or sim-

plifying assumptions made to reduce model complexity and computational costs. For instance,

crop models are used for regional scale simulations thereby assuming that these point-based

models are able to represent processes that act at regional scale. Additionally, simple statistical

assumptions are made about uncertainty in model errors during Bayesian calibration. In this

work, the problems arising from such applications are analysed and other Bayesian approaches

are investigated as potential solutions.

A conceptually simple Bayesian approach of sequentially updating a maize phenology model,

an important component in plant models, was investigated as yearly observation data were gath-

ered. In this approach, model parameters and their uncertainty were estimated while accounting

for observation uncertainty. As the model was calibrated to increasing amounts of observation

data, the uncertainty in the model parameters reduced as expected. However, the prediction

quality of the calibrated model did not always improve in spite of more data being available

for potentially improving the model. This discrepancy was attributed to the presence of errors

in the model structure, possibly due to missing environmental dependencies that were ignored

during calibration.

As a potential solution, the model was calibrated using Bayesian multi-level modelling which

could account for model errors. Furthermore, this approach accounted for the hierarchical data
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structure of cultivars nested within maize ripening groups, thus simultaneously obtaining model

parameter estimates for the species, ripening groups and cultivars. Applying this approach

improved the model’s calibration quality and further aided in identifying possible model deficits

related to temperature effects in the post-flowering phase of development and soil moisture.

As another potential solution, an alternative calibration strategy was tested which accounted

for model errors by relaxing the strict statistical assumptions in classical Bayesian inference. This

was done by first acknowledging that due to model errors, different data sets may yield diverse

solutions to the calibration problem. Thus, instead of fitting the model to all data sets together

and finding a compromise solution, a fit was found to each data set. This was implemented by

modifying the likelihood, a term that accounts for information content of the data. An additive

rather than the classical multiplicative strategy was used to combine likelihood values from

different data sets. This approach resulted in conservative but more reliable predictions than

the classical approach in most cases. The classical approach resulted in better predictions only

when the prediction target represented an average of the calibration data.

The above-mentioned results show that Bayesian methods with representative error assump-

tions lead to improved model performance and a more realistic quantification of uncertainties.

This is a step towards the effective application of process-based crop models for developing

suitable adaptation and mitigation strategies.
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Zusammenfassung

Pflanzenwachstumsmodelle sind wertvolle Instrumente für die Vorhersage der Auswirkungen

des Klimawandels auf die Pflanzenproduktion und die Beurteilung des Verbleibs von Agro-

chemikalien in der Umwelt. Um zuverlässige Vorhersagen z. B. für Ernteerträge zu gewährleisten,

werden die Modelle in der Regel mittels Beobachtungen des Pflanzenwachstums und der Pflanzen-

entwicklung kalibriert. In den Modelleingaben, Parametern, Gleichungen, Beobachtungen usw.

gibt es jedoch verschiedene Quellen der Unsicherheit, die quantifiziert werden müssen, insbeson-

dere wenn die Modellvorhersagen als Basis von Managementscheidungen dienen sollen. Die

Bayes’sche Inferenz ist eine für diesen Zweck geeignete Methode, da sie ermöglicht, verschiedene

Unsicherheiten zu berücksichtigen und dabei auch Vorwissen einzubeziehen. Daher werden

Bayes’sche Methoden zur Modellkalibrierung eingesetzt, um das Modell zu verbessern und die

Vorhersagequalität zu erhöhen.

Die erwartete Verbesserung des Modells und seiner Vorhersagequalität tritt jedoch nicht

immer ein, da strukturelle Modellfehler vorhanden sein können. Diese Fehler sind das Ergeb-

nis unvollständigen Wissens oder vereinfachender Annahmen, die zur Verringerung der Model-

lkomplexität und der Rechenzeit getroffen wurden. So werden beispielsweise Erntemodelle für

Simulationen auf regionaler Ebene verwendet, wobei davon ausgegangen wird, dass diese punkt-

basierten Modelle in der Lage sind, Prozesse darzustellen, die auf regionaler Ebene ablaufen.

Außerdem werden bei der Bayes’schen Kalibrierung einfache statistische Annahmen über die

Unsicherheit der Modellfehler getroffen. In dieser Arbeit werden die Probleme, die sich aus

solchen Anwendungen ergeben, analysiert und andere Bayes’sche Ansätze als mögliche Lösungen

untersucht.

Ein konzeptionell einfacher Bayes’scher Ansatz zur sequentiellen Aktualisierung eines Phänologie-

modells für Mais, einer wichtigen Komponente in Pflanzenmodellen, untersucht. Das bedeutet,

dass sukzessive Beobachtungsdaten hinzugefügt wurden. Bei diesem Ansatz wurden die Modell-

parameter und ihre Unsicherheit unter Berücksichtigung der Beobachtungsunsicherheit geschätzt.

Mit zunehmender Menge an Beobachtungsdaten wurde das Modell immer wieder re-kalibriert,

wobei die Unsicherheit der Modellparameter erwartungsgemäß abnahm. Anders als erwartet,

verbesserten die zusätzlichen Daten die Vorhersagequalität nicht immer. Diese Diskrepanz
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wurde auf das Vorhandensein von Fehlern in der Modellstruktur zurückgeführt, die möglicherweise

auf nicht berücksichtigte Abhängigkeiten von Umweltfaktoren zurückzuführen sind.

Als eine mögliche Lösung wurde das Modell mit Hilfe der Bayes’schen Multilevel-Modellierung

kalibriert, einer Methode, bei der solche Modellfehler einbezogen werden können. Darüber

hinaus berücksichtigt dieser Ansatz die hierarchische Struktur der Sorten, wobei die unter-

suchten Maissorten in Reifegruppen zusammengefasst werden. Dies ermöglichte die gleichzeit-

ige Schätzung von Modellparametern für Mais, die Reifegruppen und die untersuchten Sorten.

Dieser Ansatz verbesserte die Kalibrierung des Modells und half außerdem bei der Identifizierung

möglicher Modelldefizite im Zusammenhang mit Temperatureffekten in der Entwicklungsphase

nach der Blüte und der Bodenfeuchtigkeit.

Als weitere mögliche Lösung wurde eine alternative Kalibrierungsstrategie getestet, bei der

Modellfehler durch Lockerung der strengen statistischen Annahmen der klassischen Bayes’schen

Inferenz berücksichtigt wurden. Dabei wurde zunächst anerkannt, dass verschiedene Datensätze

aufgrund von Modellfehlern unterschiedliche Lösungen für das Kalibrierungsproblem liefern

können. Anstatt das Modell an alle Datensätze gemeinsam anzupassen und eine Kompro-

misslösung zu finden, wurde eine Anpassung für jeden Datensatz gesucht. Dazu wurde die Like-

lihood modifiziert, die den Informationsgehalt der Daten berücksichtigt. Um die Likelihood-

Werte aus verschiedenen Datensätzen kombinieren zu können, wurde eine additive statt der

klassischen multiplikativen Strategie verwendet. Dieser Ansatz führte in den meisten Fällen

zu konservativeren, aber zuverlässigeren Vorhersagen als der klassische Ansatz. Der klassische

Ansatz führte nur dann zu besseren Vorhersagen, wenn das Vorhersageziel einen Durchschnitt

der Kalibrierungsdaten darstellte.

Die oben genannten Ergebnisse zeigen, dass Bayes’sche Methoden mit repräsentativen Fehler-

annahmen zu einer verbesserten Modell-Performance und einer realistischeren Quantifizierung

von Unsicherheiten führen. Dies ist ein Schritt in Richtung einer effektiven Anwendung prozess-

basierter Pflanzenwachstumsmodelle bei der Entwicklung geeigneter Anpassungs- und Eindämmungs-

strategien.
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CHAPTER 1

Introduction

Since the Industrial Revolution, the world has seen an increase in population which, in part,

has been enabled by advances in agriculture. The ability to develop large farmlands through

mechanized agricultural practices, development and dissemination of new high-yielding, pest-

resistant and resilient crop varieties facilitated by the Green Revolution (Pingali, 2012), along

with progresses made in storage and transportation have been influential in feeding a growing

population. However, this comes at a cost; with rampant deforestation, land-use change, envi-

ronmental degradation due to over-fertilization and persistence of pesticides in soil and water,

and greenhouse gas emissions contributing to climate change. In spite of the giant leaps made

in agricultural technologies, climate change still threatens our path to a food-secure future. The

influences of agricultural practices on the environment as well as the impact of climate change

on food production need to be understood to implement sustainable strategies and make policy

decisions.

Plants exhibit complex interactions with the environment and responses to management

practices. In an attempt to comprehend these processes, mathematical models have been devel-

oped since the 1960s. These models fall into two broad categories: statistical and process-based.

Statistical models consist of equations that empirically relate observed variables such as weather

to target variables of interest such as crop yield. These models require large number of obser-

vations in order to establish such relationships. With increasing data availability, statistical

models have found increased application in recent years (Panayi et al., 2017). On the other

hand, process-based models are not as data-dependent. They represent our knowledge about

the underlying biophysical processes in the form of mathematical equations (Lobell and Asseng,

2017). Following the early pioneering work of de Wit (1965) and Duncan (1971) on photosyn-

thesis of leaf canopies, more complex crop models have been developed that can be coupled

with weather, soil, and field management models for a more holistic assessment (Jones et al.,

2017). The choice between these two classes of models depends on the scope of the study, which

could differ in spatio-temporal scale and end-goal. For example, short-term predictions for
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sustainable field management decisions and yield optimization would dictate a different model

choice from studies that focus on large regional-scale, multi-year predictions for climate impact

assessment or water and nutrient cycling. The advantage of process-based models lies in the

system-understanding that they provide, which is beneficial in exploring climate change adapta-

tion strategies (Lobell and Asseng, 2017), for instance. The lines between these two categories

of models are sometimes blurred since process-based models in use today, often contain some

empirical relationships in their suite of equations (Pasquel et al., 2022). Process-based models

can be combined with statistical inference to improve representation of the modelled system

(Lobell and Asseng, 2017; Dietze et al., 2013).

The most common approach of combining process-based models with statistical inference

is through model calibration. In the process of calibration, model simulations are compared

with observations and the differences between the two are minimized. This is done by tuning

parameters in the model. In process-based models, many parameters have a genetic, physiologi-

cal or biophysical meaning. Their values can sometimes be determined in separate experiments

(Craufurd et al., 2013), but very often they need to be estimated through calibration. Among

the different calibration techniques used in the field of crop modelling, Bayesian methods have

been gaining favour in recent years. The ability to include independent prior knowledge in

Bayesian calibration is especially attractive, given the decades of previously-gained knowledge

and insights into these models and agricultural systems. It also offers a solution for expressing

different uncertainties, such as those in the model inputs, equations, parameters, observations,

etc. in terms of the predicted variable of interest. This becomes important when using these

models for decision-making (Porter et al., 2015; Rötter et al., 2011).

Thus, Bayesian model calibration is theoretically expected to improve representation of the

underlying process by the model and accordingly, its ability to make reliable predictions. How-

ever, it does not always meet this goal due to limitations in the process-based models and a

violation of statistical assumptions in calibration. In this dissertation, I address these two issues

by applying different Bayesian approaches to calibrate crop models. The investigation focuses on

crop models applied at regional scales, which are relevant for environmental impact assessment

and regional climate impact studies.

In the following sections, the process-based crop models and the types of data used to

calibrate them are discussed, with a focus on the problems that arise when such models are

applied at regional scale (section 1.1). This is followed by a brief summary of different Bayesian

methods used in crop modelling (section 1.2). Key research questions addressed in this work are

described, considering model deficits and violated statistical assumptions (section 1.3). Finally,

the research objectives are presented (section 1.4).
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1.1 Process-based crop models

Process-based plant models are dynamic models which simulate important state variables of

interest like crop yield, plant biomass, leaf area index (LAI), phenological development, etc.

which are important from economic and ecological perspectives. Crop yield is undoubtedly

important for agricultural production, while LAI, defined as the one-sided leaf area per unit

area of the ground surface, is additionally used for ecosystem productivity estimation and land-

surface modelling (Shi et al., 2015). Phenology defines the timing of occurrence of certain

biological events in the plant’s life. It is important for making field management decisions

(Potgieter et al., 2021) as well as for monitoring temperature-driven changes in the environment

such as climate change (Menzel et al., 2006). Furthermore, it also controls assimilate-partitioning

in the plant, consequently impacting biomass development and yield. Plant models have also

been coupled with soil-water and solute transport models to predict fertilizer fate (Mehdi et al.,

2015) or the influence of plant growth on the water-balance (Donohue et al., 2007; Kumar

et al., 2019; Zhang et al., 2020). Simulated model outputs of nitrate concentration in the soil,

actual evapotranspiration (ET), and soil-moisture (SM) are investigated in such studies. Field

observations and measurements of these state variables are used to calibrate such models.

Crop models are commonly calibrated to yield and phenology (Seidel et al., 2018), both

of which are either available from field experiments, state administrative office databases or

field-specific observation studies. LAI and biomass can be monitored using ground-based or

satellite-based remote sensing measurements. Model calibration to these state variables has

been shown to improve model simulations of yield (Huang et al., 2015). Coupled models have

also been calibrated to satellite based SM and ET estimates (Rajib et al., 2020). These satellite-

based measurements provide large spatial coverage that capture spatial heterogeneity better than

point-based field measurements and are valuable for regional scale modelling.

Thus, with such new and improved data-gathering techniques we expect to obtain more ac-

curate model parameter estimates on calibration to large good-quality data sets. However, this

is usually not the case. Crop models, like most environmental models, are an imperfect repre-

sentation of the true system. These imperfections hamper the parameter estimation process.

Imperfect models are a result of: (a) incomplete or limited understanding of the underlying pro-

cesses, (b) simplifying assumptions made in the model formulation to reduce model complexity

and computation costs, and (c) extending models to well beyond their intended spatial scale

of application (Pasquel et al., 2022). Uncertainty in the understanding of processes has led to

the development of multiple models and the use of multi-model ensembles (Wallach et al., 2016;

Rettie et al., 2022). Sometimes complex models which are more representative of the true system
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may be available. However, they often have many parameters that need to be determined for

ensuring reliable predictions. Limited data availability for estimating these parameters through

calibration makes the use of such models difficult. Additionally, complex models may also incur

prohibitive computational costs. Thus, simpler models may be preferred in some cases. Many

crop models were, in fact, initially developed as point-models (Pasquel et al., 2022) and are

now being used at larger spatial scales (Ingwersen et al., 2018) such as in predicting water and

nutrient cycles, soil-plant-atmosphere interactions and in climate impact studies. This implies

that many spatial processes may not be adequately represented by the model equations (van

Oijen et al., 2009). By using point-models for regional applications we make certain simplifying

assumptions about the model-representativeness and system-homogeneity. In spite of these lim-

itations, models are nonetheless considered to be valuable tools to assess agricultural processes

in current and future scenarios. Therefore, attempts are made to improve model performance

by calibrating them to data using methods such as Bayesian inference.

1.2 Applications of Bayesian inference

Bayesian inference has been extensively implemented in crop modelling over the past few years.

Through Bayesian methods, uncertainties in inputs, observations, model parameters, and model

structure have been taken into account (Ceglar et al., 2011; Iizumi et al., 2009; Sexton, 2015;

Alderman and Stanfill, 2017) and expressed as uncertainty of simulated state variables. Methods

such as Bayesian Model Averaging (BMA) and Bayesian Model Combination (BMC) have been

used to synthesize simulations from multi-model ensembles for future predictions (Wang et al.,

2017b; Wöhling et al., 2013, 2015; Gao et al., 2021). Multi-objective calibration, i.e. calibrating

the model to data from multiple state-variables (Minet et al., 2015), has been performed to

tackle the problem of equifinality (Mo and Beven, 2004). Furthermore, Bayesian methods like

data assimilation are implemented to update models in real-time based on time-series data such

as satellite-based LAI, soil moisture measurements, etc (Nearing et al., 2012; Zare et al., 2022).

While Bayesian methods have yielded promising results, they may lead to erroneous inference

and unreliable model predictions.

Erroneous model inference arises from the assumptions made when applying Bayesian meth-

ods. The inherent assumption in Bayesian inference is that the model is free of errors or that

the errors can be perfectly described. However, as stated earlier, this is usually not the case

for crop models. A violation of the assumption leads to erroneous parameter estimates and

underestimation of uncertainty, which in turn lead to unreliable model predictions. Nonethe-

less, Bayesian inference is theoretically sound and has still been widely used since it provides a

suitable framework for data-model integration.
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Error-prone models and strict Bayesian assumptions may lead to poor inference. Thus,

different approaches have been used to overcome these problems (see Chapter 2, section 2.1.1

for details). However, these approaches are still under-explored in the field of crop modelling.

With this dissertation I aim to fill this knowledge-gap by using appropriate Bayesian methods

that address these short-comings, especially when crop models are applied at regional scale. It

is essential to first demonstrate the problem and then investigate different approaches to tackle

it. To do so, four research questions are described in section 1.3, which I answer through this

research.

1.3 Research questions

Bayesian inference can be used to update our knowledge about a given model and its parameters

based on observed data. Observations are thus used to approach a ‘true’ model that is able

to perform well in predicting the state variable of interest in new conditions. This implies

that uncertainty in the parameters reduces as compared to our prior knowledge and the model

should perform better at predictions, as compared to before the update. A conceptually simple

consequence of this concept is to update the model parameters sequentially, as and when new

data are gathered. This is referred to as Bayesian sequential updating (BSU). One would

hypothesize that as the model is calibrated to more and more data, the parameter uncertainty

reduces as we also progressively approach the ‘true’ value of the parameters and the ‘true’ model.

Thus, predictions from this updated model are also expected to progressively improve. To test

this hypothesis on crop models, the following research question is framed:

1. Does Bayesian Sequential Updating (BSU) of a crop model improve predictions?

Delving further into the fallacious assumption that the model is error-free, we inherently

assume that the only sources of error are from the observations or measurement processes. Not

accounting for other sources of error or lumping several sources into a single error term (Renard

et al., 2010) leads to underestimation of prediction uncertainty. This is controlled by assump-

tions made in defining the likelihood function, a term in Bayes theorem that incorporates the

information contained in the observations (see section 2.1.1). Very often simplistic, assumptions

are made when defining the likelihood function due to computational costs, limited knowledge

of different sources of error, or due to lack of observation data to sufficiently substantiate more

complex definitions. As a consequence, these assumptions are often violated, leading to es-

timates of ‘effective’ instead of ‘true’ parameters (Reichert and Mieleitner, 2009). Thus, an

assumption that model errors are absent or can be perfectly described, can lead to erroneous

parameter estimates during calibration.
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In the context of crop modelling, model errors could take the form of certain environmen-

tal dependencies which are missing in the model equations or simplifying assumptions such as

different biological groups have similar growth and development, in spite of them exhibiting dif-

ferences. For example, cultivars of the same species may differ in their growth and development.

But they may exhibit some similarity within ripening/maturity groups to which they belong, as

compared to across them. This grouping represents a hierarchical structure of cultivars nested

within maturity groups of a particular species. In regional studies, however, parameter estimates

for a crop species may be obtained by calibrating the model to data from different cultivars grown

in contrasting environments within the target region. In other words, a common parameter set

is estimated for all the data sets represented by distinct cultivar-environment combinations. By

doing so, we attribute the variability in growth and development, which are due to inherent

differences between cultivars and model deficits related to environmental dependencies, to ran-

dom error or aleatoric uncertainty. Thus, the estimated model parameters compensate for these

factors that are ignored or missing in the model during calibration. This results in a compromise

solution wherein the parameters may no longer uphold their intended physiological meaning in

the model. An unrealistic collapse of parameter uncertainty also ensues, since the observed

variability is wrongly attributed to random error. Therefore, we arrive at wrong (effective)

parameter values with high certainty, which in turn leads to unreliable model predictions.

A Bayesian multi-level modelling (BMM) approach is suitable for incorporating hierarchical

structures, such as those between cultivars-ripening groups, during calibration. It can also

be used to account for model errors such as those from missing environmental dependencies

in the model equations (Zhang and Arhonditsis, 2009). Thus, BMM provides a method to

better account for different sources of errors, rather than lumping them together. Analyses

of the relationship between parameters in the BMM approach that account for these errors

and environmental variables can help identify areas for model improvement. This approach is

also expected to improve model calibration performance as compared to the commonly used

approach of pooling all errors into a single term. The following research question is proposed to

evaluate the BMM approach:

2. Can Bayesian multi-level modelling (BMM) be used to obtain reliable parameter estimates

by accounting for inherent data structures and identifying model deficits?

When a common parameter set is estimated for different cultivars and environments, the

model is required to fit all data sets represented by distinct cultivar-environment combinations

simultaneously. This requirement is implicit in the method used to combine likelihood values

from different data sets in classical Bayes (see section 2.1.1). Given the differences in data sets,

this almost impossible task is only fulfilled through a compromise solution to the parameter
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inference problem. Thus, an alternative strategy of combining likelihoods is proposed, which

relaxes the constraint of fitting all data sets simultaneously, to obtain a more representative

estimate of parameter and prediction uncertainty. The following research question is framed to

evaluate this alternative strategy.

3. Can an alternative strategy of combining likelihoods lead to reliable predictions?

1.4 Research objectives and scope

The following research objectives are defined so that these research questions can be addressed:

1. Evaluate model predictions upon implementing Bayesian sequential updating (BSU) to

sequentially calibrate a phenology model to yearly data (Chapter 3)

2. Implement a Bayesian multi-level modelling (BMM) approach to calibrate a phenology

model so that inherent data structures can be taken into account and model deficits

related to environmental factors can be identified (Chapter 4)

3. Compare phenology predictions from a model calibrated using an alternate formulation of

combined likelihood with those using the classical approach (Chapter 5)

In the first and third study, silage maize phenology observations made between 2010 and 2016

from two regions in southern Germany were used (Weber et al., 2022). In the second study,

silage maize phenology data between 2010 and 2017 from across Germany was used (DWD

Climate Data Center (CDC), 2019). The SPASS phenology model was used to simulate maize

phenological development (Wang, 1997).
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CHAPTER 2

Theory & Methods

The theoretical concepts used in the following chapters are explained by calibrating a simple

two-parameter model to synthetic data. We start by recalling Bayes theorem, followed by a

synthetic case study in which four Bayesian approaches are compared.

2.1 Bayesian inference

Bayesian inference can be used to express the parameters of a model in terms of probability

distributions. According to Bayes theorem, the probability of a parameter having a certain

value is conditional on the observed data. It is given by:

p(θ|Y ) =
p(θ)p(Y |θ)
p(Y )

(2.1)

where p(θ|Y ) is defined as the posterior probability of a parameter θ given the model and

observations Y. It is proportional to the product of the prior probability of the parameters

p(θ), and p(Y |θ) which is the probability of the observations given the model and parameter

θ (commonly referred to as the likelihood). In case the model has multiple parameters, θ

represents a parameter vector while p(θ) and p(θ|Y ) are multivariate probability distributions

with a dimension corresponding to each parameter. The denominator of the equation is defined

as the prior predictive distribution (p(Y ) =
∫
p(θ)p(Y |θ)dθ). It can become mathematically

intractable. Thus, sampling methods are used to estimate posterior distributions. This is

the reason why there have historically been only limited applications of Bayesian inference.

Computational advances have led to its revival in the past few decades. Bayesian theorem

thus offers a method for updating our prior beliefs about the model parameters (from P (θ) to

P (θ|Y )), based on new observations. Bayes theorem can be extended to multiple models in an

ensemble. However, in this dissertation the application has been limited to a single model.
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2.1.1 Likelihood

An important term in Bayes theorem that deals with current observations is the likelihood. It

expresses the probability of observations given the model and parameters (or likelihood of the

parameters, given the observations). Consequently, it defines the distribution of the residu-

als (difference between the observations and simulations) around the simulated model output.

Model errors are commonly assumed to be normally distributed, centred at zero, independent

and identical, with the standard deviation being equal to that of the observation error (Reichert

and Mieleitner, 2009). This assumption implies that the model is unbiased, the error at each

observation is independent from the next, and that measurement/observation error is the only

source of error. However, in models that simulate environmental processes, certain process-

representations may be missing, resulting in epistemic uncertainty and error distributions that

deviate from zero (Reichert and Schuwirth, 2012). Model errors may not be independent since

they can be propagated through space and time, making errors at one point dependent on the

previous (Reichert and Mieleitner, 2009). Furthermore, errors may not be identical (constant

standard deviation) but could vary as a function of the simulated state variable (Schoups and

Vrugt, 2010). Apart from errors in observations and model parameters, those in model inputs

and boundary conditions contribute to the total model error. It is practically impossible to

know all sources of errors and their properties, making it difficult to find a suitable expression

for the likelihood function to represent this uncertainty. Thus, assumptions about model errors

are usually simplistic and hence violated. Different approaches detailed in literature attempt to

tackle this problem.

While there is indisputable benefit in improving process models (Wang et al., 2017a; Maio-

rano et al., 2017) for better system understanding and prediction capability, it is impossible to

construct a perfect environmental model. Modellers have addressed this problem by defining

more representative likelihood functions. Methods like Bayesian hierarchical models have been

implemented, which can be used to disentangle different sources of errors that contribute to

total predictive uncertainty and in-turn provide valuable insights into model limitations (Del

Giudice et al., 2013). In the Bayesian total error analysis (BATEA) framework (Kavetski et al.,

2006b,a), errors from forcings, response and model structure are explicitly characterized. Re-

ichert and Mieleitner (2009) defined time-dependent parameters to account for structural un-

certainty. Other studies (Weber et al. (2018) for example) have aimed at obtaining a correct

statistical description of total uncertainty. Schoups and Vrugt (2010) proposed a formal gener-

alized likelihood function to be used when residual errors are correlated, heteroscedastic, and

non-Gaussian with varying degrees of kurtosis and skewness. Samadi et al. (2018) used a post-

calibration error-modelling approach in which generalized additive models of location, scale
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and shape (GAMLSS) were applied to characterize the uncertainty. Xu and Valocchi (2015)

implemented a data-driven error modelling approach in which a Gaussian process model was

implemented in the Bayesian calibration framework to account for model structural error. Other

methods like GLUE (Beven and Binley, 1992, 2014) provide options to avoid over-conditioning

the model on observations through the use of likelihood measures, methods for likelihood com-

bination, and exclusion of non-behavioural parameters from the posterior distribution. GLUE

and its pseudo-Bayesian implementations (Mantovan and Todini, 2006; Beven et al., 2007, 2008;

Vrugt et al., 2009) have been extensively applied in crop-modelling (Makowski et al., 2002; Mo

and Beven, 2004; He et al., 2010; Pathak et al., 2012; Sexton et al., 2016; Gao et al., 2020).

However, other methods, although well-developed in the field of hydrology, have only been ap-

plied to a limited extent in crop modelling (literature review provided in Wallach and Thorburn

2017).

In this dissertation I focus on two approaches: the first aids in identifying model deficits while

providing a better representation of the likelihood; the second offers a pragmatic alternative

strategy for calibration by relaxing the assumptions of the likelihood. In the following section,

an example of the two approaches is provided, through a synthetic case study with a phenology

model for visual depiction and comparison.

2.2 Synthetic case study

In this case study we calibrate the SPASS phenology model to observations of different maize

cultivars. Synthetic observations were generated from the model such that they emulated dif-

ferences in phenology between cultivars. This was done by assigning six different values to two

parameters of the model (toptv and toptr), corresponding to cultivars A, B, C, D, E, and F. The

remaining model parameters were fixed. The SPASS model was run using the same forcings

and boundary conditions for all six cultivars. Simulated phenology at 60, 90, 120, and 150 days

after sowing was recorded and a random observation error (normally distributed, centred at zero

and with a standard deviation of 3 BBCH - phenology units) was added to obtain the synthetic

observations.

Four Bayesian calibration approaches were used to estimate the two SPASS model parame-

ters. The model was calibrated to observations from cultivars A, B, and C while the remaining

cultivars D, E, and F were used to evaluate the model’s prediction performance after calibration.
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2.2.1 Calibration approaches

Let yd,c represent the observed phenology for cultivar c ∈ Ω where Ω = {A,B,C} at a particular

day after sowing d ∈ D where D = {60, 90, 120, 150}. Then, ȳd,c(θ, T, s) is the phenology on a

given day d simulated by a deterministic model (SPASS in this case) as a function the model

parameters θ, forcings such as temperature T and boundary conditions such as sowing date s.

Let Y = {yd,c; d ∈ D; c ∈ Ω} define the vector of phenology observations and Ȳ = {ȳd,c; d ∈

D; c ∈ Ω} define the corresponding vector of simulated phenology. On each day after sowing,

phenology of a particular cultivar is simulated by the deterministic model such that

yd = ȳd(θ, T, s) + εd (2.2)

where εd is the total error or the difference between the observed and simulated value (van Oijen,

2017). We are uncertain about the error and assume that this uncertainty can be represented

by a Gaussian distribution such that εd ∼ N (µ = 0, σ2) (i.e. centred at zero and a standard

deviation σ).

Suppose a modeller is tasked with estimating the model parameters such that the calibrated

model can be used for future predictions of maize phenology. Having prior knowledge about the

parameters and wanting to quantify uncertainty in phenology predictions, the modeller decides

to apply a Bayesian approach. For this purpose, the posterior distribution in Eq. 2.1 can be

written as a proportionality by dropping the normalization constant in the denominator:

p(θ | Y, T, s) ∝ p(Y | θ, T, s) p(θ) (2.3)

where p(θ) is the joint prior probability distribution of the model parameters. Based on the

definition of εd in Eq. 2.2, the likelihood of the parameter given each observation can be written

as

p(yd | θ, T, s) = N (yd − ȳd(θ, T, s), µ = 0, σ2) (2.4)

If we assume that the errors are uncorrelated, then the joint likelihood for all observations in a

growing season is

p(Y | θ, T, s) =
∏
d∈D

N (yd − ȳd(θ, T, s), µ = 0, σ2) (2.5)

The model can be calibrated using four approaches, as described below in terms of their

likelihoods.
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a) Pooled

In order to simulate phenology for the maize species, the modeller may decide to implement a

pooled approach by combining all data from the three cultivars together and estimating common

model parameters θsp for the species. Under ideal conditions of a perfect model, the total residual

error would only depend on the error in observing Y , which is known (standard deviation of

measurement error is δ). In such cases the likelihood is given by:

p(Y | θ, T, s) =
∏
c∈Ω

∏
d∈D

N (yd,c − ȳd,c(θsp, T, s), µ = 0, σ2 = δ2) (2.6)

where θ = {θsp} is the estimated parameter vector.

However, the modeller may acknowledge that this assumption is unrealistic since neglecting

between-cultivar differences may lead to errors, in addition to those from other error sources. The

modeller chooses to estimate the total residual error as a lumped term (σ) without distinguishing

between the different sources. In this case the total error constitutes that in measurements,

model equations, forcings, boundary conditions, etc. In this case, the likelihood takes the same

formulation but with an additional estimated parameter θ = {θsp, σ}.

b) Unpooled

On the other hand, the modeller may acknowledge that the different cultivars could vary in

their biophysical parameters and calibrates the model separately to data from each of the three

cultivars. This yields a cultivar-specific likelihood function expressed as:

p(Yc | θ, T, s) =
∏
d∈D

N (yd,c − ȳd,c(θc, T, s), µ = 0, σ2 = δ2) (2.7)

where θ = {θc; c ∈ C} is the estimated cultivar-specific parameter.

c) Hierarchical

As an intermediate between the pooled and unpooled cases, the modeller acknowledges that

cultivars of the same maize species should share some similarities and thus incorporates this

knowledge using a hierarchical expression for the parameters.

p(Y | θ, T, s) =
∏
c∈Ω

∏
d∈D

N (yd,c − ȳd,c(θsp,c, T, s), µ = 0, σ2) (2.8)

where θsp,c = θsp+∆θc and the estimated parameter vector is θ = {θsp,∆θc, σ}. Here, priors are

specified for both the hyperparameters (θsp) and the deviation of the cultivar-specific parameters
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from the hyperparameters (∆θc). In such an approach the cultivar-specific parameters θsp,c and

the species parameters θsp can be simultaneously estimated.

d) Additive

The modeller may have an alternative perspective - since observations were made for different

cultivars, not all data are equally informative for the inference problem (i.e. estimating param-

eters for the species). This can be accounted for by the method used to combine likelihoods.

In the classical Bayesian approach, likelihoods are multiplied. By doing so we are trying to

obtain a common parameter set that fits all data. By adding likelihoods, however, we identify

parameters that fit any of the data-points. If probable parameter values common to all data

exist in this case, they obtain a higher probability. Thus, likelihoods can be added as an alterna-

tive approach. As an extreme case, all likelihood values could be added in theory by replacing

all multiplications in Eq. 2.6 by sums. However, the modeller should use system and model

knowledge to define data-groups in which likelihoods within groups are multiplied and across

groups are added. In this synthetic example, the modeller may make a reasonable assumption

that a common parameter set should be obtained for a cultivar in one growing season. Thus,

the cultivars are used to define separate data groups, such that the combined likelihood is given

by:

p(Y | θ, T, s) =
∑
c∈Ω

∏
d∈D

N (yd,c − ȳd,c(θsp, T, s), µ = 0, σ2 = δ2) (2.9)

where θ = {θsp} is the estimated parameter vector. Note the difference between the Eq. 2.6

and Eq. 2.9 - the multiplication of likelihoods across cultivars has been replaced by addition.

Further details of this approach are covered in Chapter 5.

2.2.2 Comparing the approaches

In these approaches, parameter estimates are obtained for the species and/or for the individual

cultivars in the calibration data set (Table 2.1). In the Pooled case for example, parameters are

only estimated for the species, while in the Hierarchical case, they are simultaneously estimated

for the species as well as for the cultivars A, B, and C in the calibration data set.

Table 2.1: Posterior parameter distributions obtained from the different calibration approaches

Pooled Hierarchical Additive Unpooled
Species yes yes yes no
Cultivar no yes no yes

To assess how these approaches defer in their prediction capabilities, we analyse the poste-

rior parameter distributions and visualize their overlap with the posterior distribution of the
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prediction target. The prediction targets are the cultivars which have been left out during the

calibration exercise, namely D, E, and F. To obtain reference prediction target distributions, the

model was calibrated to each of the individual cultivars (i.e. the unpooled approach). These dis-

tributions represent the best performance of the model, given the observed data set, in absence

of any additional prior information. Target distributions for the calibration cultivars are also

provided for reference. Larger the overlap between the posterior distribution from a particular

calibration approach with that of the prediction target, better is that approach at prediction.

In Fig. 2.1, species parameter estimates are compared with the prediction targets. In Fig. 2.2,

cultivar-specific parameter estimates from the Hierarchical and Unpooled cases are provided.

The grey boxes represent the parameter space formed by the two model parameters toptr and

toptv. All sub-plots show the same extent of the parameter space. The posterior parameter

distribution in each calibration case is shown by the coloured dot-plots of the posterior samples,

where the colours indicate the posterior probability density. Contours indicate the ∼2 standard

deviations of the target distributions. Markov Chain Monte Carlo (MCMC) sampling method

was used for all cases except the Additive case in which brute-force Monte Carlo (MC) sampling

was used. All parameters were assumed to have uniform prior distributions, except for ∆θc in

the Hierarchical case where a normal distribution was assumed.

Greater the overlap between the dot-plots and a prediction target contour, better will the

calibrated model be at predicting that particular target cultivar. In the Pooled case without σ

estimation (Fig. 2.1a, Eq. 2.6), the posterior distribution collapses and results in a negligible

overlap with the targets, or even the cultivars used for calibration. The resultant parameters

arrive at a compromise solution which will perform poorly in predicting many of the targets.

This also reflects an underestimation of parameter uncertainty. In the Pooled case with σ esti-

mation (Fig. 2.1b), wider parameter distributions are obtained that overlap with some targets.

Conceptually, the variability between cultivars is attributed to random noise (σ), together with

errors in measurements, inputs, boundary conditions, etc. While the wider parameter distribu-

tions and the estimated total error may be able to predict some targets, the predictions may not

be robust due to the attribution of between-cultivar variability to aleatory instead of epistemic

uncertainty. In the Hierarchical case (Eq. 2.8), the variability between cultivars is correctly

attributed to epistemic uncertainty. This resulted in higher uncertainty in the species param-

eter estimates (Fig. 2.1c) that have a larger overlap with targets. Furthermore, this approach

also provides parameter estimates for individual cultivars (Fig. 2.2a) used for calibration. Thus,

phenology can not only be predicted in case of new cultivars or the species as a whole, but also

when the same calibration cultivars are grown in the future. In the Additive case (Fig. 2.1b,

Eq. 2.9), wider uncertainty in posterior parameter distributions is obtained which would at
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least be able to predict those cultivars that were used for calibration. This is apparent from

the overlap with the calibration targets. The resultant cultivar-specific parameter estimates in

the Unpooled case (Fig. 2.2b, Eq. 2.7) are useful in predicting phenology if the same cultivar

is grown in the future. However, it would be a poor predictor of the species as a whole. In

all cases, the posterior parameter distributions have little to no overlap with the contour for

cultivar F. This is related to representativeness of the data: all methods would perform poorly

if the prediction target is not well-represented in the calibration data set.

Figure 2.1: Comparison of the posterior parameter distributions for the species obtained from
different Bayesian approaches. Posterior parameter distributions of toptv (y-axis) and toptr
(x-axis) from the SPASS phenology model in the (a) Pooled, (b) Pooled with estimated σ, (c)
Hierarchical, and (d) Additive calibration cases for the synthetic case study. The grey boxes
represent the parameter space formed by the two model parameters. It shows the same extent of
the parameter space in all sub-plots. The red and blue contours indicate ∼ 2 SD of the posterior
parameter distributions with red contours marking the cultivars that were used for calibration
and blue for the prediction targets. The posterior parameter distributions are shown by the
coloured dot-plot of the posterior samples, where the colours indicate sample density (posterior
probability density) - black for lower and yellow for higher densities.
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In the synthetic case study, the only source of model error arises from not accounting for

between-cultivar variability. However, for models used with real data sets, the models may

also be deficient in some process representation such as dependencies on key environmental

variables. This deficit may not be known beforehand. These different errors may interact,

leading to complex structures. In the following chapters, the approaches described above will

be applied to real-world problems to further investigate their performance.
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CHAPTER 3

A Bayesian sequential updating approach to predict

phenology of silage maize

Authors: Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, Thilo

Streck

This chapter is taken from the publication “Viswanathan et al. (2022), A Bayesian sequential up-

dating approach to predict phenology of silage maize, Biogeosciences, 19, 2187–2209, DOI: 10.5194/bg-

19-2187-2022”, with minor modifications.

Abstract

Crop models are tools used for predicting year-to-year crop development on field to regional scales.

However, robust predictions are hampered by uncertainty in crop model parameters and in the data used

for calibration. Bayesian calibration allows for the estimation of model parameters and quantification of

uncertainties, with the consideration of prior information. In this study, we used a Bayesian sequential

updating (BSU) approach to progressively incorporate additional data at a yearly time-step in order to

calibrate a phenology model (SPASS) while analysing changes in parameter uncertainty and prediction

quality. We used field measurements of silage maize grown between 2010 and 2016 in the regions of

Kraichgau and the Swabian Alb in southwestern Germany. Parameter uncertainty and model prediction

errors were expected to progressively be reduced to a final, irreducible value. Parameter uncertainty was

reduced as expected with the sequential updates. For two sequences using synthetic data, one in which

the model was able to accurately simulate the observations, and the other in which a single cultivar

was grown under the same environmental conditions, prediction error was mostly reduced. However, in

the true sequences that followed the actual chronological order of cultivation by the farmers in the two

regions, prediction error increased when the calibration data were not representative of the validation

data. This could be explained by differences in ripening group and temperature conditions during

vegetative growth. With implications for manual and automatic data streams and model updating,

our study highlights that the success of Bayesian methods for predictions depends on a comprehensive

understanding of the inherent structure in the observation data and of the model limitations.
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3.1 Introduction

The effects of climate change are already being felt, with increasing global temperature and frequency of

extreme events (Porter et al., 2015), which will have an impact on food availability. In order to mitigate

risks to food security, suitable adaptation strategies need to be devised which depend on robust model

predictions of the productivity of cropping systems (Asseng et al., 2009). Soil–crop models, which

are able to predict changes in crop growth and yield as a consequence of changes in model inputs

such as weather, soil properties, and cultivar-specific traits, are considered suitable tools to plan for

a secure future. However, achieving robust model predictions is challenging. This is because there is

uncertainty in the model inputs, parameters, and process representation, as well as in the observations

used to calibrate these models (Wallach and Thorburn, 2017). It is therefore essential to quantify these

uncertainties.

Different interpretations of the underlying soil–crop processes have led to different representations

in models of varying complexity (Wallach et al., 2016). Process model equations have parameters that

represent physiological processes, but are often based on empirical relationships. These relationships de-

scribe system processes which cannot be further resolved with reasonable effort. While some parameters

that represent physiological aspects of plant growth and development can be determined in dedicated

experiments (Craufurd et al., 2013), many others still need to be estimated through model calibration.

However, the measured parameters and state variables used for model calibration are uncertain due to

errors in the measuring device or technique and due to the natural variability of the system owing to

processes occurring at different spatial or temporal scales. Given the different sources of uncertainty,

it is important to set up adequate workflows to enable uncertainty quantification and protocols for

reporting them, especially when they influence decision-making (Rötter et al., 2011).

For this, the Bayesian approach is an elegant framework to propagate uncertainty from measure-

ments, parameters, and models to prediction. One advantage of Bayesian inference is the use of prior

information (Sexton et al., 2016). The posterior probability distribution obtained by conditioning on

one dataset can then be used as a prior distribution for the next dataset in a sequential manner (Hue

et al., 2008). This approach, called “Bayesian sequential updating” (BSU), would be more computa-

tionally efficient than having to re-calibrate the model to all previous datasets every time new data are

available. It has been applied to big data studies in which large datasets were split to reduce compu-

tational demand and the information was sequentially incorporated (Oravecz et al., 2016). Cao et al.

(2016) used BSU to analyse the evolution of the posterior parameter distribution for soil properties by

incorporating data from different types of experiments. Thompson et al. (2019) applied this approach to

estimate species extinction probabilities where species-siting data were sequential in time. While there

are numerous examples of Bayesian methods being applied in crop modelling for uncertainty quantifica-

tion and data assimilation (Alderman and Stanfill, 2017; Ceglar et al., 2011; Huang et al., 2017; Iizumi

et al., 2009; Makowski, 2017; Makowski et al., 2004; Wallach et al., 2012; Wöhling et al., 2013, 2015), to

the best of our knowledge, the BSU method has not been evaluated in the field of crop modelling to date.
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In this study we assessed whether crop model predictions progressively improve as new information is

incorporated using the BSU approach. This ascertains whether the model and parameters are both

temporally and spatially transferable for a particular crop species, an important aspect for large-scale

and long-term predictions. Our study focused on modelling crop phenological development.

Plant phenology is concerned with the timing of plant developmental stages such as emergence,

growth, flowering, fructification, and senescence. It is controlled by environmental factors such as solar

radiation, temperature, and water availability, and depends on intrinsic characteristics of the plants

(Zhao et al., 2013). Phenological development is a crucial state variable in soil–crop models, since it

controls many other simulated state variables such as yield, biomass, and leaf area index by influencing

the timing of organ appearance and assimilate-partitioning. Phenology is not only species-specific

but can also differ between cultivars of the same species (Ingwersen et al., 2018). Model parameters

that influence phenology could vary depending on the cultivars (Gao et al., 2020) and possibly also

on environmental conditions (Ceglar et al., 2011). Since parameter uncertainty is a major source of

prediction uncertainty (Alderman and Stanfill, 2017; Gao et al., 2020), it impacts prediction quality.

To this end, we assessed the impact of sequentially incorporating new observations with the BSU

approach on the prediction quality of phenological development. For this, we modelled phenological

development of silage maize grown between 2010 and 2016 in Kraichgau and the Swabian Alb, two

regions in southwestern Germany with different soil types and climatic conditions. We monitored the

changes in parameter uncertainty and evaluated prediction quality by performing model validation in

which simulated phenological development was compared with observations for datasets that were not

used for calibration. We hypothesized that:

1. Parameter uncertainty decreases and quality of prediction improves with the sequential updates

in which increasing amounts of data are used for model calibration.

2. For the first few sequential updates, the quality of prediction is variable, until the calibration

samples become representative of the population.

3. The prediction error then progressively drops to an irreducible value that represents the error in

inputs, measurements, model structure, and variability due to spatial heterogeneity that is below

model resolution.

We tested these hypotheses by applying BSU in two modelling cases that represent ideal and real-

world conditions. In the first case, we applied BSU to two synthetic sequences: an ideal sequence

of observations wherein the model is able to simulate the observations accurately, and a controlled

cultivar–environment sequence of observations which represent different growing seasons of a single

cultivar grown under the same environmental conditions. In the second case, we applied the BSU to

two true sequences that follow the actual chronological order in which different cultivars of silage maize

were grown in the two regions under different environmental conditions.

With this study, we explicitly deal with a well-known problem in regional modelling, which carries

particular weight in the case of maize. On a regional scale, maize cultivars may differ considerably

in their phenological development, but cultivar information will rarely be available. Even if data on
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cultivars grown were available, phenological data on all relevant cultivars in a particular region will

rarely be at hand. Consequently, model parameters are typically estimated for the crop species and

not for the individual cultivars. Also, the maize cultivars of our study represent only a small subset

of cultivars grown in Kraichgau and the Swabian Alb. We therefore grouped the maize cultivars into

ripening groups for analysis of prediction quality.

3.2 Materials and methods

3.2.1 Study sites and measured data

The data used for the study consist of a set of measurements taken at three field sites (site 1, site 2, site 3)

in Kraichgau and two field sites (site 5 and site 6) on the Swabian Alb, in southwestern Germany, between

2010 and 2016 (Fig. 3.1i) (Weber et al., 2022). The main crops in rotation were winter wheat, silage

maize, winter rapeseed, and cover crops such as mustard and phacelia. Additionally, spelt and spring

and winter barley were also grown on the Swabian Alb. Amongst others, continuous measurements of

meteorological conditions, soil temperature, and moisture were taken. Soil profiles were sampled at the

sites for characterization of soil properties.

Kraichgau and the Swabian Alb represent climatologically contrasting regions in Germany. Kraich-

gau is situated 100–400 m above sea level (a.s.l.) and characterized by a mild climate with a mean

temperature above 9° and mean annual precipitation of 720–830 mm. It is one of the warmest regions

in Germany. The Swabian Alb is located at 700–1000 m a.s.l. with a mean temperature of 6–7° and

mean annual precipitation of 800–1000 mm. Kraichgau soils have often developed from several metres of

Holocene loess, underlain by limestones. They are predominantly Regosols and Luvisols. The Swabian

Alb has a karst landscape with clayey loam soils, often classified as Leptosols. Soils may be less than

0.3 m thick in some areas. While the soils at the sites in Kraichgau are similar, they vary across the

sites on the Swabian Alb (Wizemann et al., 2015).

At every study site, which had an area of approx. 15 ha, replicate observations were made by assessing

phenological development stages from maize plants in five subplots of 2 m× 2 m each. Ten maize plants

were chosen from each subplot. We used the BBCH growth stage code (Meier, 1997) to define the

development stages. The BBCH value of 10 marks the emergence and the start of leaf development, 30

stands for stem elongation, 50 for inflorescence, emergence or heading, 60 for flowering or anthesis, 70

for development of fruit, 80 for ripening, and 90 for senescence (Fig. 1ii). In the following sections, the

individual growing seasons for silage maize are denoted by the site and year of growth, i.e. the site-year

(Table 3.1). For example, silage maize grown at site 2 in Kraichgau in the year 2012 is referred to

as “2 2012”. The different cultivars used in the study can be grouped into three ripening or maturity

groups, based on their timing of ripening. Mid-early (ME) and late (L) ripening cultivars were grown

in Kraichgau, and early (E) and mid-early (ME) ripening cultivars were grown on the Swabian Alb.
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3.2.2 Soil–crop model

To simulate the soil–crop system, we used the SPASS crop growth model (Wang, 1997). SPASS is

implemented in the Expert-N 5.0 (XN5) software package (Heinlein et al., 2017; Klein et al., 2017;

Priesack, 2006). In XN5, the SPASS crop model is coupled with the Richards equation for soil–water

movement as implemented in the Hydrus-1D model (Šimůnek et al., 1998). The routine uses van

Genuchten–Mualem hydraulic functions (van Genuchten, 1980; Mualem, 1976) and the heat transfer

scheme from the Daisy model (Hansen et al., 1990). In the SPASS model, germination to emergence

(up to BBCH 10), the vegetative phase (between BBCH 10 and 60), and the generative or reproductive

phase (BBCH 61 onwards) of the crop are modelled. Temperature and photoperiod are the two main

factors affecting the phenological development rate (for details, refer to Appendix A: SPASS phenology

model).

Daily weather data consisting of maximum and minimum temperatures were used in XN5 to calculate

the air temperatures within the crop canopy. Soil properties (texture class, grain size, rock fraction, bulk

density, porosity), as well as van Genuchten parameters and hydraulic properties (soil water content at

wilting point, field capacity, residual and saturated water content, and saturated hydraulic conductivity),

were based on soil samples taken at the sites in 2008 to characterize the soil profile. The soil horizons

in the model were based on these soil profile descriptions. Initial values of soil volumetric water content

were based on measurements. The simulations for each site-year were started on the harvest date of

the preceding crop in the crop rotation at that site. This ensured adequate spin-up time prior to the

simulation of silage maize, which was sown in April and May.

3.2.3 Selection of model parameters

Parameters were pre-selected (Hue et al., 2008; Makowski et al., 2006) based on expert knowledge. The

prior default values and uncertainty ranges are given in Table 3.2. A global sensitivity analysis using the

Morris method (Morris, 1991) was then carried out to identify the sensitive parameters to be estimated

through Bayesian calibration (Supplement S1). The sensitive parameters identified for calibration were:

effective sowing depth (SOWDEPTH), which influences the emergence rate, and parameters affecting

development in the vegetative phase (PDD1, TMINDEV1, DELTOPT1, and DELTMAX1). Parameter

DELTOPT2, from the temperature response function during the reproductive phase, was estimated

during calibration even though it was less sensitive. The choice of using this parameter during calibration

was based on knowledge of model behaviour, so as to reduce the calibration error in the reproductive

phase (Lamboni et al., 2009). Thus, out of 11 pre-selected parameters (Table 3.2), six were estimated

in BSU, while the remaining parameters were fixed at their default values.
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3.2.4 Bayesian sequential updating

In the BSU approach, Bayesian calibration is applied in a sequential manner. New data are used to

re-calibrate the model, conditional on the prior information from previously gathered data. We describe

the details of this approach here.

Bayes theorem states that the posterior probability of parameters θ given the data Y , P (θ|Y ), is

proportional to the product of the joint prior probability of the parameters P (θ) and the probability

of generating the observed data with the model, given the parameters P (Y |θ). The term P (Y |θ)

is referred to as the likelihood function and is defined as the likelihood that observation Y , that is

observed phenological development in this study, is generated by the model using the parameter vector

θ. The posterior probability distribution is obtained by normalizing this product by the prior predictive

distribution (Gelman et al., 2013) or Bayesian model evidence (Schöniger et al., 2015) P (Y ), which is

obtained by integrating the product over the entire parameter space.

Hence, we write:

P (θ|Y ) =
P (θ)P (Y |θ)

P (Y )
, (3.1)

where

P (Y ) =

∫
θ

P (θ)P (Y |θ) dθ. (3.2)

Equation (3.2) can become intractable, especially with a large number of parameters as this involves

integrating over high-dimensional space (Schöniger et al., 2015). Instead, sampling methods such as

Markov chain Monte Carlo (MCMC) are used to estimate the posterior distribution.

For one site-year sy1 and corresponding observation vector Y sy1
, the posterior parameter probability

distribution is

P (θ|Y sy1
) =

P (θ)P (Y sy1
|θ)∫

θ
P (θ) P (Y sy1

|θ) dθ
, (3.3)

where P (θ) represents the initial prior probability distribution that could be based on expert knowledge.

The posterior parameter distribution P (θ|Y sy1
) can now be used as a prior distribution for the next site-

year sy2. Thus, for site-year syn with an observation vector Y syn , the posterior parameter probability

distribution is

P (θ|Y syn) =
P
(
θ|Y sy(n−1)

)
P (Y syn |θ)∫

θ
P
(
θ|Y sy(n−1)

)
P (Y syn |θ) dθ

. (3.4)

This equation defines the BSU approach in which the model is calibrated in a sequential manner.

New data from a site-year (Y syn) are used to re-calibrate the model, conditional on the prior information

from previous site-years. The posterior distribution obtained from the previous Bayesian calibration

P (θ|Y sy(n−1)
) is used as prior probability for calibration to the next site-year.

With the aim of making the computations tractable, we deviate slightly from this pure BSU approach

as we do not strictly use the posterior distribution from the previous site-year as the prior distribution

for the next one, but sequentially calibrate the model to data from an increasing number of site-

years instead. The reason for this deviation is that in applying BSU, where the posterior parameter

distribution is estimated by sampling methods, a probability density function needs to be approximated
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from the sample, so that it can be used as a prior probability for the subsequent site-year. This

approximation introduces additional errors. Since joint inference is known to be better than sequential

inference using posterior approximations (Thijssen and Wessels, 2020), Eq. (3.4) can be re-written,

under the assumption that the phenology observations from all site-years are independent and identically

distributed (Gelman et al., 2013), as follows:

P (θ|Y syn) =
P (θ)

∏syn
x=sy1

P (Y x|θ)∫
θ
P (θ)

∏syn
x=sy1

P (Y x|θ)dθ
. (3.5)

Thus, we use Eq. (3.5) to sequentially update the probability distribution of parameters by increasing

the dataset size at each step through the addition of one site-year worth of new data Y x to the previous

dataset Y x−1.

After each inferential step, the probability of observing a certain phenology at the next site-year

syn+1 is predicted by

P
(
Y syn+1

|Y syn

)
=

∫
P
(
Y syn+1

|θ
)
P (θ|Y syn)dθ, (3.6)

where P
(
Y syn+1

|Y syn

)
is the posterior predictive distribution (Gelman et al., 2013). We refer to the

current methodology as BSU, although it is not strictly so, for reasons of simplicity and the formal

similarity of our approach. All calculations and the BSU were carried out using the R programming

language (R Core Team, 2020)(R Core Team, 2020).

In the following sections, we describe the components of Bayes formula in detail.

3.2.4.1 Likelihood function

Let θ = (ϕ1ϕ2ϕ3, . . .ϕj) represent a vector of the model parameters to be estimated in this study

(Table 2). Suppose Y = (y1, y2, y3, . . .yd) is a vector of the means of observed phenological development

on different days during the growing season for a particular site-year. The mean observation yd on day

d for the site-year is given by

yd=
1

P

1

R

P∑
p=1

R∑
r=1

yr,p,d, (3.7)

where yr,p,d represents the rth replicate of observed phenological development, measured at subplot p

on day d for a particular site-year, R is the total number of replicates at subplot p, and P is the total

number of subplots per field.

If we assume that all replicates R in all subplots P are independent, the standard deviation of

the replicate observations on day d is σr,p,d=

√
P∑
p=1

R∑
r=1

(yr,p,d−yd)
2 /(P ×R) . This is one source of

observation error that represents the spatial variability at the study site which is below the spatial

resolution of the model. We also assume an additional source of error in identification of the correct

phenological stage and its exact timing of occurrence. We assume that this error is within a standard

deviation of 2 BBCH (σident,d= 2 for each observation day d). This assumption was made because 2

is the most common difference between development stages in the phenological development of maize
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on the BBCH scale. Assuming that the error from replicate observations (σr,p,d) and the error in the

identification of phenological stages are additive, the total observation error is σ2
d= (σr,p,d+σident,d)

2.

The model residual yd−f(θ)d is the difference between the observed yd and the model simulated

f(θ)d phenological stage and is represented by the likelihood function. Assuming normally distributed

residuals, it is given by

P (yd|θ) =
1

σd
√

2π
e
−0.5

(
yd−f(θ)d

σd

)2
. (3.8)

The likelihood values for all the observations are combined by taking the product of the likelihoods

per day of observation, under the assumption of independent and identically distributed model residuals.

Thus, the joint likelihood function is given by

P (Y x|θ) =

D∏
d=1

P (yd|θ) , (3.9)

where Y x is the observation vector for site-year x.

3.2.4.2 Prior probability distribution

As prior information, we used a weakly informative probability distribution function (pdf) to ensure

that the posterior parameter distributions are mainly determined by the data that are sequentially

incorporated. For this, we used a platykurtic prior probability distribution that is a combination of a

uniform and a normal distribution (Fig. 3.D1) of the form:

P (ϕj) =


1
c

1

σ
√
2π
e
−

(ϕj−µ)
2

2σ2 for a ≤ϕj< µ− 2σ

1
c

1

σ
√
2π
e−2 for µ− 2σ ≤ϕj≤ µ+ 2σ

1
c

1

σ
√
2π
e
−

(ϕj−µ)
2

2σ2 for µ+ 2σ <ϕj≤ b

 . (3.10)

where ϕj is a model parameter in the parameter vector θ, a and b are the minimum and maximum

limit for the parameter, respectively, µ is the mean (default value in Table 2), and σ is the standard

deviation. The normalization constant c is used to ensure that the area under the curve equals unity

as required for probability density functions.

c = −erf
(√

2
)

+
4√
2π
e−2−1

2
erf

(
a− µ
σ
√

2

)
+

1

2
erf

(
b− µ
σ
√

2

)
.

(3.11)

The joint prior pdf was calculated by P (θ) =
∏J
j=1 P (ϕj) and the model parameters were assumed

to be uncorrelated. The parameters a, b, σ, µ, of P (ϕj) were based on expert knowledge (Table 2).

3.2.4.3 Posterior probability distribution

The posterior parameter distribution was sampled using the Markov chain Monte Carlo method –

Metropolis algorithm (Metropolis et al., 1953) (for details, refer to Appendix B: Posterior sampling
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using MCMC Metropolis algorithm). Three chains were run in parallel. A normal distribution was

chosen as the transition kernel. The jump size was adapted so that the acceptance rate would be

between 25 % and 35 % (Gelman et al., 1996; Tautenhahn et al., 2012). For each sequential update

calibration case, when a new site-year was added to the calibration sequence, the three chains were

re-initialized and the transition kernel was re-tuned. A preliminary calibration test case, in which the

model was calibrated to site-year 6 2010, was used to generate the starting points of the chains for

each of the calibration cases. The starting points were randomly sampled from the posterior parameter

range of the calibrated test case. This was done to reduce the time to convergence. For the test case

calibration, the starting points of the chains were randomly sampled from the prior range. The number

of iterations for adapting the transition kernel varied between the different calibration cases. This

number was low for some of the calibration cases because we set the initial pre-adaptation value for

the standard deviation of the transition kernel, so that the acceptance rate would be between 25 % and

35 %. This initial value was based on knowledge gained from preliminary calibration test simulations.

Convergence of the chains after jump adaptation was checked using the Gelman–Rubin convergence

diagnostic (Brooks and Gelman, 1998; Gelman and Rubin, 1992). The total number of samples of the

posterior distribution in each calibration case was dependent on the Gelman–Rubin diagnostic being

≤ 1.1, while ensuring a minimum of 500 accepted samples per chain, that is a minimum of 1500 samples

across the three chains. In effect, the total number of samples per calibration case was greater than

1500. The burn-in was variable and depended on the jump adaptation. Only the iterations from the

jump adaptation step were discarded as burn-in. Parameter mixing was evaluated using trace plots.

For model validation, the posterior predictive distribution was used to simulate phenological de-

velopment and compare it with observations at site-years that were not included in the calibration

sequence.

3.2.5 Performance metrics

Bias and normalized root mean square error (NRMSE), as defined in Eqs. (3.12) and (3.13), for site-year

sy were calculated to assess the calibration and prediction performance.

Biassy=
1

D

D∑
d=1

(
yd−f (θi)d

)
(3.12)

NRMSEsy=

√√√√ 1

D

D∑
d=1

(
yd−f (θi)d

)2
σ2
d

(3.13)

Here, θi is the ith parameter vector, D is the total number of observation days for the particular site-year,

f(θi)d is the simulated phenological development, yd is the mean observed phenological development,

and σd is the standard deviation of the observations (as defined in section 3.2.4.1) on day d. Under the

assumption of normally distributed error, the natural logarithm of the likelihood probability is inversely

proportional to the normalized mean square error: ln (P (Y sy |θi))∝−NRMSEsy
2. The normalized

bias NBiassy= 1
D

∑D
d=1

yd−f(θi)d
σd

is also reported in some plots.
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The prediction quality is good when NRMSE is low and bias is zero. Prediction performance

is classified as good, moderate, or poor depending on the median NRMSE of the predictions for a

site-year. We use the following categories: good performance for median NRMSE≤ 1, moderate for

1<median NRMSE≤ 2, poor for 2<median NRMSE≤ 3 and very poor for median NRMSE> 3.

We estimated the information entropy of the posterior parameter distributions after each sequential

update using the redistribution estimate equation (Beirlant et al., 1997) (Supplement S2). A change in

entropy with sequential updates indicates a change in uncertainty of the parameters, where higher infor-

mation entropy indicates greater uncertainty in the posterior parameters. In line with our hypotheses,

we expect the entropy to decrease with sequential updates.

3.2.6 Modelling cases

The BSU approach described in the previous sections and the subsequent analysis using the performance

metrics were applied to two synthetic sequences and two true sequences of site-years. The synthetic

sequences were used to demonstrate the application of the BSU approach in ideal conditions, while the

true sequences were used to extend the application to real-world conditions. Figure 3.2 shows the four

sequences and the site-years used for calibration and validation.

Figure 3.2: The site-years used for calibration and validation in each sequential update for the
two synthetic sequences, namely ideal and controlled cultivar–environment, and the two true
sequences for Kraichgau and the Swabian Alb are shown. In the synthetic sequences, a total
of 10 updates were performed by sequentially adding 1 through 10 site-years to the calibration
dataset. After each update, prediction quality was analysed for a set of 10 validation site-years.
A total of three sequential updates in Kraichgau and six sequential updates in the Swabian
Alb true sequences were analysed. In the sequential updates for the true sequences, a site-year
was included for calibration, following the actual chronological order of growth. The remaining
site-years grown in the region were then used for validation.
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3.2.6.1 Synthetic sequences

We set up two synthetic sequences, namely ideal and controlled cultivar–environment. In each synthetic

sequence, we used 10 sequential updates wherein 1 through 10 site-years were used in calibration. After

each sequential update, the calibrated model was validated against a different set of 10 synthetic site-

years (Fig. 3.2). Note here that the 10 site-years used for validation were the same across the sequential

updates. Data from the 10 site-years used for calibration and the 10 site-years used for validation for

the two synthetic sequences are shown in Fig. 3.3. Site-year 6 2010 was used to generate data for the

synthetic sequences, as described here.

Figure 3.3: Synthetic site-year observations used for calibration and prediction in (i) the ideal
and (ii) controlled cultivar–environment synthetic sequences. The pink boxes and whiskers
represent the range of values for the 10 synthetic site-years used for calibration while the blue
boxes and whiskers represent the range of values for the 10 site-years used for validation. The
length of the box represents the inter-quartile range (IQR), whiskers extend from the box up to
1.5× IQR and values beyond this range are plotted as points.

The ideal sequence represents a case in which the model is able to accurately simulate the obser-

vations. The only sources of difference between site-years are from the spatial variability at the field

site which is below model resolution and from the incorrect identification of phenological stages during

field observations. To generate the ideal sequence of site-years, we first calibrated the model to phenol-

ogy at 6 2010. The parameter set θMAP corresponding to the maximum a posteriori probability (MAP)

estimate was used to simulate phenology and generate the synthetic dataset. To introduce inter-site-

year differences, noise was added to simulated phenology f(θMAP)d on observation day d, where the

noise was equal to the total observation uncertainty σd on that day for site-year 6 2010. Thus, for each

synthetic site-year on observation day d, the phenological development was sampled from the range

of total observation uncertainty σd at 6 2010, around simulated phenology f(θMAP)d . The synthetic
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observations were generated for the same observation days as the actual observations at 6 2010. We

ensured that phenological development stages did not decrease with time, that is ẏd≥ẏd−1, where ẏd−1

is the sampled phenological development on the previous observation day d− 1. Of the 20 site-years

generated in this manner, 10 site-years were used for calibration while the remaining 10 were used for

validation. The synthetic site-years were ordered randomly during BSU calibration.

The controlled cultivar–environment sequence represents a sequence of site-years where the same

cultivar is grown under the same environmental conditions. In this case, however, the model may not

accurately simulate the observations, implying the presence of model structural error (e.g. the model’s

inability to capture slow emergence as explained in Appendix A: SPASS phenology model). For the

controlled cultivar–environment sequence, we generated the synthetic site-year data from observations

of the cultivar grown at 6 2010. For each synthetic site-year, the phenological development ẏd on

observation day d was sampled from the range of total observation uncertainty σd around the observed

mean yd. As in the ideal sequence, we ensured that phenological development stages did not decrease

with time. Again, 10 site-years were randomly assigned for calibration.

3.2.6.2 True sequences

A total of three sequential updates in Kraichgau and six sequential updates in the Swabian Alb were

analysed (Fig. 3.2). In each sequential update, an additional site-year was included in the calibration

dataset, following the actual chronological order in which maize was grown in the regions. For the

Kraichgau sequence, four site-years were available for calibration and validation (3 2011, 2 2012 1 2014,

and 2 2014). The model was sequentially calibrated to phenological development of maize for site-

years 3 2011, 2 2012, and 1 2014. After each update, phenological development was predicted for the

subsequent site-years. For example, in the first sequential update at Kraichgau, the model was calibrated

to 3 2011. The site-years 2 2012, 1 2014 ,and 2 2014 were used for validation to assess the prediction

quality of the calibrated model. In the second sequential update, the model was calibrated to 3 2011

and 2 2012, while 1 2014 and 2 2014 were used for validation. Note here that the number of site-years

used for validation decreases with each sequential update. In the Swabian Alb sequence, seven site-years

were available for sequential calibration and validation (6 2010, 5 2011, 5 2012, 6 2013, 5 2015, 5 2016,

and 6 2016). The sequential updates were performed in a similar manner as in Kraichgau.

3.3 Results

In this section, we first describe the results for one example of Bayesian calibration using the data from

site-year 6 2010 (section 3.3.1). Here, we examine the resulting simulated phenology after calibration

as well as the posterior parameter distributions. We then look at the results from the synthetic and

true sequences. We first evaluate the evolution of the posterior parameter distributions with sequential

updates. As an example, we analyse the marginal distributions of the individual parameters and entropy

of the joint parameter distributions for the true sequences (section 3.3.2). Lastly, we report the
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prediction quality results for the synthetic and true sequences (section 3.3.3).

3.3.1 Bayesian calibration results

By way of example, Fig. 3.4 shows the Bayesian phenological model calibration results for silage maize

for the first site-year 6 2010. Cross-plots of the posterior parameters (Fig. 3.4i) show a weak negative

correlation between PDD1 and TMINDEV1 and between PDD1 and DELTOPT1, while a weak positive

correlation is observed between PDD1 and DELTMAX1. The observed mean phenological development

falls within the range of simulations after calibration (Fig. 3.4ii). The marginal posterior parameter dis-

tributions are narrower than the initial prior distributions (Fig. 3.4iii). A shift in parameter distribution

to the margins of the prior ranges is also noteworthy.

Figure 3.4: Results of Bayesian calibration of the model to phenological development (BBCH
stages) for site-year 6 2010. (i) Cross-plot of the posterior samples of the six estimated parame-
ters. Red represents high density and blue low density (IDPmisc package in R, Locher (2020)).
(ii) Observed and simulated phenological development after calibration, plotted against the day
of the year. The red points are the mean observations, while the black error bars indicate
± 3 SDs. The mean simulation is indicated by the continuous black line. The blue bands repre-
sent the different percentiles of simulated phenology. Note that the simulated phenology bands
only represent the uncertainty in model parameters and do not include the noise term. (iii)
Prior (white) and posterior (salmon) marginal parameter distributions for the six estimated
parameters.
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3.3.2 Parameter uncertainty

We analysed the change in posterior parameter distribution with the sequential updates. Figure 3.5i

shows the marginal initial prior and posterior parameter distributions for the Swabian Alb and Kraich-

gau true sequences. The x-axis from left to right indicates the initial prior parameter distribution

followed by the sequential calibration of the model to an increasing number of site-years. The dis-

tributions for the six estimated parameters are compared after each sequential update. The width of

each box with whiskers represents the uncertainty in the parameter values. There is a clear narrowing

of parameter distributions after the first sequential update from the initial prior. However, with the

exception of DELTOPT2, the remaining parameters do not show a noticeable and consistent narrowing

in range with sequential updates. Information entropy of the joint posterior parameter distributions

in Fig. 3.5ii decreases with sequential updates and there is a large reduction in entropy with the first

sequential update. In the Swabian Alb sequence (Fig. 3.5iia), entropy continues to decrease until the

model is calibrated to 6 2010, 5 2011, and 5 2012, after which there is no significant reduction. In the

Kraichgau sequence (Fig. 3.5iib), the inclusion of 1 2014 during calibration results in further uncertainty

reduction. Similar observations were made for the synthetic sequences (Supplement S5).

3.3.3 Prediction quality

3.3.3.1 Synthetic sequences

In the synthetic sequences, we assessed the prediction quality after applying BSU to 10 synthetic site-

years, while excluding model structural error and inter-site-year differences in cultivar and environmental

conditions in the ideal sequence and controlled cultivar–environment sequence, respectively. In both

sequences we account for identification uncertainty and spatial variability within the modelled site.

Figure 3.6 shows the trend in median NRMSE and bias with the sequential updates from 1 to 10, for

the two synthetic sequences. While the bias and NRMSE were calculated for all parameter vectors in

the posterior sample derived from the MCMC sampling method, only the median values are plotted

and analysed for simplicity.

In the ideal sequence (Fig. 3.6i), the overall median NRMSE (Fig. 3.6ia) and bias (Fig. 3.6ib) are

low, with many site-years exhibiting a drop in the median NRMSE below a value of 1. However, after

a few sequential updates, no further reduction is observed. In the controlled cultivar–environment

sequence (Fig. 3.6ii), although most individual site-years showed a reduction in median NRMSE with

the sequential updates, there were some that exhibited an increase in median NRMSE (ss2 12 and ss2 15

in Fig. 3.6iia). These site-years were also characterized by low initial median prediction bias, followed

by an increase in the absolute bias with sequential updates (Fig. 3.6iib).

3.3.3.2 True sequences

Because fewer site-years were used for validation in the true sequence as compared to the synthetic

sequence, we analysed the prediction quality for each validation site-year individually, with the sequential
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Figure 3.5: (i) Marginal initial prior and posterior parameter distributions of the six estimated
parameters plotted against the calibration site-years, after BSU was applied to a true sequence
(a) on the Swabian Alb and (b) in Kraichgau. The SPASS model was calibrated to observed
phenological development (BBCH). (ii) Information entropy of the joint posterior parameter
distributions plotted against the calibration site-years, after BSU was applied to the true se-
quences. The x-axis labels from left to right indicate the initial prior parameter distribution
followed by the sequential calibration of the model to an increasing number of site-years. The
“+” symbol before the site-year label on the x-axis indicates the new site-year that was included
in the sequential calibration. The length of the box in (i) represents the inter-quartile range
(IQR), whiskers extend from the boxes up to 1.5× IQR and values beyond this range are plotted
as points.
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Figure 3.6: (a) Median NRMSE and (b) median bias of prediction for the 10 validation site-
years, after BSU was applied to the ideal (i) and controlled cultivar–environment (ii) synthetic
sequences. The number of site-years used for calibration is shown on the x-axis and represents
the sequential updates from 1 to 10. The SPASS model was calibrated to phenological de-
velopment (BBCH). The lines and points correspond to the 10 synthetic validation site-years:
ss1 11-ss1 20 from the ideal sequence and ss2 11-ss2 20 from the controlled cultivar–environment
sequence.

updates. Figure 3.7 shows the prediction quality (i.e. NRMSE and bias for all the posterior predictive

samples) of the model after BSU was applied to the true sequence of site-years in Kraichgau (Fig. 3.7i–

iii) and on the Swabian Alb (Fig. 3.7iv–ix). For each site-year, we plot the quality of prediction, after

calibration to all preceding site-years. For example, Fig. 3.7vi shows the performance metric for site-year

6 2013 after the model was calibrated first to 6 2010, then to 6 2010 and 5 2011, and finally to 6 2010,

5 2011, and 5 2012, respectively (blue box-plots from left to right). As a reference, the performance

metric derived from calibrating the model to the target site-year, namely 6 2013 in Fig. 3.7vi, is shown

as the leftmost result (grey box-plot) of each sequence. It is clear that this calibration always yields

the best performance metrics for the given data. While the NBias was calculated for all parameter

vectors in the posterior MCMC sample, only the median values of the absolute NBias are also plotted

to compare the trends between NRMSE and NBias with the sequential updates.
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Figure 3.7: Performance metrics for site-years in Kraichgau (i–iii) and on the Swabian Alb (iv–
ix), after applying BSU to the two true sequences. The SPASS model was calibrated to observed
phenological development (BBCH). NRMSE and bias are plotted against the site-years used in
calibration. In each sub-plot, the grey box-plot represents the calibration performance metric,
i.e. when the model is calibrated to the site-year of interest. The blue box-plots represent the
prediction performance metrics when the model is calibrated (from left to right) to an increasing
number of preceding site-years. L, ME, and E indicate the maturity group of the cultivars: late,
mid-early, and early, respectively. The “+” symbol before the site-year label on the x-axis and
before the maturity group label indicates the new site-year that was included in the sequential
calibration. The length of the box represents the inter-quartile range (IQR), whiskers extend
from the box up to 1.5× IQR and values beyond this range are plotted as points. The zero bias
is indicated by a red dashed line in the bias plots. The median values of the absolute NBias are
represented by red asterisks (∗) in the NRMSE plots.
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The NRMSE is expected to decrease with the inclusion of more site-years for calibration. This

holds true in the case of Kraichgau, where mid-early cultivars were grown (Fig. 3.7ii, iii), but in hardly

any case on the Swabian Alb (Fig. 3.7iv–ix). We also expected the prediction quality to improve

when a calibration sequence is made up of the same cultivar or ripening group. Note, however, the

poor prediction quality in Fig. 3.7iv and the increase in NRMSE with the inclusion of 5 2011 in the

calibration sequence in Fig. 3.7ix. Additionally, the prediction quality for the early cultivar at 5 2016

(Fig. 3.7viii) deteriorates upon the inclusion of the same cultivar grown at 5 2015 in the calibration

sequence. In all predictions, the absolute NBias follows a similar trend as the NRMSE. Note that there

is a difference in the performance metrics between the different site-years when the model is directly

calibrated to the target site-year (grey box-plots in Fig. 3.7). The three site-years in Kraichgau and

site-years 5 2011, 5 2012, 5 2015, and 6 2016 in the Swabian Alb exhibit good-to-moderate calibration

quality, while 6 2013 and 5 2016 have moderate-to-poor calibration quality.

3.4 Discussion

In this study, we aimed to analyse whether progressively incorporating more data through BSU reduces

model parameter uncertainty and produces robust parameter estimates for predicting phenology of

silage maize.

3.4.1 Parameter uncertainty

Bayesian calibration resulted in reduced posterior parameter uncertainty in comparison to the initial

prior ranges that were guided by expert knowledge (Fig. 3.4iii). The uncertainty in parameter DEL-

TOPT2 decreased, as seen from the narrowing of the marginal posterior distributions (Fig. 3.5). The

remaining parameters did not show a consistent progressive reduction in uncertainty with the sequential

updates. They also had a relatively higher correlation with the other parameters (Fig. 3.4i). The lack

of uncertainty reduction may be due to equifinality, meaning that multiple parameter combinations

produce the same output (Adnan et al., 2020; He et al., 2017a; Lamsal et al., 2018). The reduction

in information entropy of the posterior parameter distributions after the sequential updates (Fig. 3.5ii)

confirms the reduction in overall parameter uncertainty.

The optimum temperatures for vegetative (TOPTDEV1 = TMINDEV1 + DELTOPT1) and repro-

ductive (TOPTDEV2 = TMINDEV2 + DELTOPT2) development are lower than our prior belief. The

effective sowing depth (SOWDEPTH) is higher than the actual sowing depth of 3–5 cm, as the model

cannot capture slow emergence (as discussed in the Appendix A: SPASS phenology model). In Kraich-

gau, the posterior distributions for SOWDEPTH and minimum temperature for vegetative development

(TMINDEV1) did not change significantly as compared to the prior, indicating that the model did not

learn much from the data. These parameters, however, show a change from the prior in the Swabian

Alb. Kraichgau is warmer than the Swabian Alb. On most days, temperatures in Kraichgau are above

the minimum temperature for vegetative development (TMINDEV1), resulting in limited learning. A
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similar reasoning applies to SOWDEPTH, which is a proxy parameter that impacts emergence rate.

Emergence occurs only above a certain threshold temperature which is hard-coded in the model. Tem-

peratures in Kraichgau are mostly above this threshold temperature for emergence, resulting in limited

learning and insignificant change from the prior distribution. In the Kraichgau sequence (Fig. 3.5ib),

PDD1 and DELTMAX1 decrease when site-year 1 2014 is added to the calibration sequence. Both

parameters cause a faster development rate during the vegetative phase. This faster vegetative devel-

opment results in earlier initiation of the reproductive phase, as seen in the mid-early ripening cultivar

1 2014 as compared to the late cultivars 3 2011 and 2 2012. In the Swabian Alb sequence (Fig. 3.5ia),

inclusion of early cultivars at 5 2012 and 5 2016 results in shallower SOWDEPTH and, consequently,

faster emergence. However, whether this early emergence is truly a feature of early cultivars or a con-

sequence of the timing of first observations in the growing season cannot be satisfactorily distinguished

with the available data. The physiological development days at optimum vegetative phase temperature

(PDD1) were also lower than our initial prior belief. We, however, interpret these results with cau-

tion since parameters may compensate for model structural errors and some parameters are correlated

(Alderman and Stanfill, 2017).

3.4.2 Prediction quality

We analysed synthetic sequences to assess whether a consistent reduction in prediction error is achieved

when more site-years are available for calibration, in the absence of model structural errors (ideal

sequence), and in the absence of inter-site-year differences due to cultivars and environmental conditions

(controlled cultivar–environment sequence). For the ideal sequence we used simulated phenology and

added a random noise term that represents spatial variability and identification error. For the controlled

cultivar–environment sequence we used the observations instead of simulated phenology to generate the

dataset. Hence, in the latter sequence, there is not only random noise but also a model structural

error component. As the noise and model error components cannot be resolved, the estimated model

parameters compensate for both, leading to larger prediction errors (Fig. 3.6ii).

In the ideal sequence, the model was able to accurately simulate the observations, the only source

of between-site-year variability being within-site spatial variability and identification uncertainty. The

overall initial prediction quality was moderate to good, indicating that when there was no model struc-

tural error, the calibrated model was able to predict moderately well in spite of some observational

variability (Fig. 3.6i). The progressive drop in median NRMSE to a value of 1 indicated that the cali-

brated model was able to explain all other variability apart from that arising from the total observation

uncertainty. Thus, with this sequence, we demonstrated the successful application of the BSU approach

in ideal conditions.

In the controlled cultivar–environment sequence, the same cultivar was grown in the same environ-

mental conditions across the site-years. With this sequence, we tested the success of the BSU approach

when model structural errors could exist in addition to between-site-year variability as in the ideal

sequence. The overall change in prediction error decreased with the sequential updates, as it possibly
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approaches an irreducible value. This is seen from the convergence of the different lines corresponding

to the prediction site-years in Fig. 3.6iia. However, this irreducible value is higher than an NRMSE

of 1 due to model structural error. Prediction error for most individual site-years decreased with the

sequential updates. However, there were two site-years where the error increased (ss2 12 and ss2 15).

These two site-years initially exhibited a low positive prediction bias that progressively became negative

with the sequential updates (Fig. 3.6iib). This can be attributed to representativeness of the calibration

data (Wallach et al., 2021a). The two prediction site-years were more similar to the initial few site-years

than the later site-years in the calibration sequence.

We applied the BSU approach to real-world conditions represented by the true sequences of silage

maize grown in Kraichgau and on the Swabian Alb (Fig. 3.7). In Kraichgau, the prediction quality

improved with sequential updates as expected. However, it deteriorated for many site-years on the

Swabian Alb. This is again attributed to the representativeness of the calibration data as seen in

the controlled cultivar–environment sequence. To understand this behaviour we carried out single

site-year calibration and predictions, i.e. calibrating the model to individual site-years and predicting

the remaining site-years (for details, refer to Appendix C. Single site-year calibration). As parameter

estimates may vary by ripening group or cultivar, we analysed the prediction results within these

classes. Calibrating the model to a site-year from the same ripening group or even the same cultivar

as the prediction target site-year did not always result in the best prediction quality. Within the mid-

early and early ripening groups, prediction quality showed a correlation with the difference in average

temperature during the vegetative phase, between the calibration and prediction target site-year. This

correlation indicated that the best predictions of phenology for a particular site-year would be achieved

when the model is calibrated to a cultivar from the same ripening group and grown under the same

temperature conditions during the vegetative phase. The calibration quality for the individual site-years

represented by grey box-plots in Fig. 3.7 shows that the model is able to simulate some site-years better

than others. Residual analysis (Supplement S3) revealed that the model was unable to capture the

slow development during the vegetative phase for these site-years with poorer calibration quality. This

could be due to model limitations (i.e. model equations or hard-coded parameters) and could explain

the correlation between temperature similarity and prediction quality.

The single site-year predictions showed that site-years 1 2014 and 2 2014, where the same mid-early

cultivar was grown, were the best predictors of each other and their prediction by the late cultivar at

3 2011 was poorer. Therefore, in the case of the Kraichgau sequence (Fig. 3.7ii–iii), we observed a

decrease in prediction error as we progressively calibrated the model to 3 2011, to 3 2011 and 2 2012,

and to 3 2011, 2 2012 and 1 2014. In the Swabian Alb sequence (Fig. 3.7iv–ix) where mid-early and

early cultivars are grown, the effect of different ripening groups and temperatures caused an increase in

prediction error.

In real-world conditions represented by the true sequences, the prediction quality thus depends on the

interplay between model limitations and inherent data structures presented in the differences between

maturity group and cultivars. Since the model calibration and prediction quality varies with environ-

mental factors, it highlights the need to better account for the influence of these environmental drivers
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in the model. This would increase model transferability to other sites. This could be best achieved by

improving the process representation in the model and by including the uncertainty in forcings during

calibration. An alternative approach would be to define separate cultivar- and environment-specific

parameter distributions. It is common practice to determine cultivar-specific parameters in crop mod-

elling (Gao et al., 2020). He et al. (2017b) found that data from different weather and site conditions

are required to obtain a good calibrated parameter set for a particular cultivar. Improved crop model

performance has been reported upon the inclusion of environment-specific parameters in calibration

(Coelho et al., 2020). Cultivar- or genotype- and environment-specific parameters already exist in some

models (Jones et al., 2003; Wang et al., 2019). However, these genotype parameters have also been found

to vary with the environment, indicating that they may represent genotype× environment interactions

and not fundamental genetic traits (Lamsal et al., 2018). Further analysis of calibrated model parame-

ters and model performance metrics with respect to environmental variables would provide insights into

areas for model improvement. Nonetheless, the cultivar and environmental dependency of parameters

is a major drawback for large-scale model applications and long-term predictions, as information on

crop cultivars is usually not available on regional scales and specific characteristics of future cultivated

varieties are currently unknown. It is essential to collect cultivar and maturity group information in

official surveys. Furthermore, other Bayesian approaches such as hierarchical Bayes, which allow for

the incorporation of this information during calibration, should be explored. Model calibration in a

Bayesian hierarchical framework would enable inherent data structures, represented by the cultivars

within ripening groups of a particular species, to be accounted for. Additionally, differences in envi-

ronmental conditions can also be represented. On regional scales, where information about maturity

groups and cultivars is unavailable, accounting for environmental effects alone may still prove to be

beneficial. A Bayesian hierarchical approach could even be applied to predict the growth of current as

well as future cultivars.

3.4.3 Limitations

We would like to draw attention to the three assumptions in the current study which might cause an

underestimation of uncertainties. First, the standard deviation of the likelihood model was not esti-

mated, but assumed to be known and equal to the sum of observed spatial variability and identification

error. It represents the minimum error and is equal to the total error only if there are no differences in

environmental conditions and cultivars across the site-years. Second, the likelihood model was assumed

to be centred at 0, which only holds true when there are no structural errors. In most cases, however,

model structural errors and other systematic errors will exist, which may result in much larger errors

than what was assumed. Third, the errors are assumed to be independent and identically distributed.

A violation of this assumption can lead to underestimation of uncertainty in the parameters and the

output state variable (Wallach et al., 2017). In the residual analysis of the sequential updates with

three or more site-years, a slight deviation from a Gaussian distribution was observed (Supplement S3).

This skewness was caused due to model limitations, that is its inability to capture the slow development
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observed during the vegetative phase in some site-years. Autocorrelation of errors can exist for state

variables such as phenology that are based on cumulative sums. However, based on the limited dataset,

an autocorrelation in the errors could not be substantiated and an in-depth analysis is far beyond the

scope of this study.

We observed that the posterior parameter distributions were at the margins of the initial prior dis-

tribution ranges, for which this study now provides a basis to update this prior belief. This considerable

update of the parameter prior indicates that either the prior ranges are not suitable for the cultivars

in this study or that the parameters are compensating for structural limitations of the model. Further

in-depth investigation of their potential contributions could only be achieved with datasets that are

much larger than the one employed here.

3.5 Conclusions

Through a Bayesian sequential updating (BSU) approach, we extended a classical application of Bayesian

inference through time to analyse its effectiveness in the calibration and prediction of a crop phenology

model. We assessed whether BSU of the SPASS model parameters, based on new observations made in

different years, progressively improves prediction of the phenological development of silage maize.

We applied BSU to synthetic sequences and true sequences. As expected, the parameter uncertainty

decreased in all sequences. The prediction errors decreased in most cases in the synthetic sequences,

where we had an ideal model that was able to accurately simulate observations, and where the model

could contain structural errors but the dataset contained only a single maize cultivar grown under the

same environmental conditions. In the ideal synthetic sequence, the prediction quality was variable

for the first few sequential updates. The prediction error then decreased in both synthetic sequences

until it approached an irreducible value. In the true sequences, however, which included cultivars from

different ripening groups and environmental conditions, the prediction quality deteriorated in most

cases. Differences in ripening group and temperature during the vegetative phase of growth between

the calibration and prediction site-years influenced prediction quality.

With an increasing amount of data being gathered and with improvements in data-gathering tech-

niques, there is a drive to use all available data for model calibration. However, our study shows that

a simplistic approach of updating the model parameter estimates without accounting for model lim-

itations and inherent differences between datasets can lead to unsatisfactory predictions. To obtain

robust parameter estimates for crop models applied on a large scale, the Bayesian approach needs to

account for differences not only in maturity groups and cultivars but also in environment. This could

be achieved by applying Bayesian inference in a hierarchical framework, which will be the subject of

future work.
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3.6 Appendix A: SPASS phenology model

In the following paragraphs we describe the equations in the SPASS phenology model (Wang, 1997).

The model parameters are indicated by words with all capitalized letters (e.g. SOWDEPTH, PDD1

etc.).

The crop passes through four main stages: sowing (stage −1.0), germination (stage −0.5), anthesis

(stage 1.0, end of the vegetative phase and beginning of reproductive phase), and maturity (stage 2.0).

Temperature and photoperiod are the two main factors affecting phenological development rate. The

impact of water availability on germination is also reflected in the SPASS model.

For germination, soil moisture is the limiting factor. Germination occurs when

θact(is) > θpwp(is) (3.A1)

or

0.02 ≤ 0.65
[
θact(is) − θpwp(is)

]
+ 0.35

[
θact(is+1) − θpwp(is+1)

],
where θact(is) is the actual volumetric water content of the seed soil layer is and θpwp(is) is the volumetric

water content in the seed soil layer at permanent wilting point. If these conditions are not met within

40 d of sowing, crop failure is assumed.

The development rate from germination to emergence (Rdev,emerg) (d−1) is controlled by air tem-

perature:

Rdev,emerg = (Tavg−Tbase) × 0.5/ΣT, (3.A2)

where, Tavg (°C) is the daily average air temperature and Tbase (°C) is the base temperature set to 10 °C

for maize. The term ΣT (°C) is the temperature sum needed for emergence:

ΣT = 15.0 + 6.0 × SOWDEPTH, (3.A3)

where SOWDEPTH (cm) is the sowing depth of the seed.

After emergence, the development rate in the vegetative phase Rdev,v (d−1) depends on temperature

and photoperiod:

Rdev,v = Rmaxdev,vfT,v(T )f (hphp) (3.A4)

where Rmaxdev,v= 1/PDD1 is the maximum development rate in the vegetative phase (d−1), PDD1

is the number of physiological development days from emergence to anthesis (d), f(hphp) is the pho-

toperiod factor, and fT,v(T ) is the temperature response function (TRF) for the vegetative phase. The
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photoperiod factor is expressed as

f (hphp) = 1− e
−4(hphp−dlmin)
DLOPT−dlmin (3.A5)

where

dlmin = DLOPT + 4/PDL

hphp (h) is the photoperiod length, that is the amount of time between the beginning of the civil

twilight before sunrise and the end of the civil twilight after sunset (the time when the true position of

the centre of the sun is 4° below the horizon), PDL (−) is the photoperiod sensitivity, and DLOPT (h)

is the optimum daylength for a particular cultivar.

The development rate in the generative or reproductive phase (Rdev,r) (d−1) only depends on tem-

perature such that:

Rdev,r = Rmaxdev,rfT,r(T ) (3.A6)

where Rmaxdev,r= 1/PDD2 is the maximum development rate in the reproductive phase (d−1), PDD2

is the number of physiological development days from anthesis to maturity (d), and fT,r(T ) is the

temperature response function (TRF) for the reproductive phase.

The temperature response function fT has cardinal temperatures: minimum temperature, Tmin (°C),

optimum temperature, Topt (°C), and maximum temperature, Tmax (°C):

fT (T, Tmin, Topt, Tmax)

=


2(T−Tmin)

α·(Topt−Tmin)α−(T−Tmin)
2α

(Topt−Tmin)2α
if Tmin ≤ T ≤ Tmax

0 otherwise

(3.A7)

where

α =
ln2

ln
(
Tmax−Tmin
Topt−Tmin

)
As the TRF is phase-specific, the cardinal temperatures are also phase-specific. For fT,v, the cardinal

temperatures are Tmin = TMINDEV1, Topt = TOPTDEV1, Tmax = TMAXDEV1, while for fT,r, the

cardinal temperatures are Tmin = TMINDEV2, Topt = TOPTDEV2, Tmax = TMAXDEV2.

The development stages after germination (Sdev) are calculated in daily time steps as

Sdev =

n∑
d=dgerm

Rdev−0.5, (3.A8)

where dgerm is the day on which seed germination occurs and n is the number of days after germination:

Rdev=


Rdev,emerg if − 0.5 ≤Sdev< 0.0

Rdev,v if 0.0 ≤Sdev< 1.0

Rdev,r if 1.0 ≤Sdev< 2.0.

(3.A9)
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Finally, the SPASS development stages (−0.5 ≤ Sdev ≤ 2) are converted to BBCH development

stages (0 ≤ BBCH ≤ 95). Here, Sdev= 0 corresponds to BBCH = 10 (emergence and start of the vege-

tative phase), Sdev= 0.4 to BBCH = 31, and Sdev= 1 to BBCH = 61 (start of the generative or repro-

ductive phase).

Preliminary simulations showed that the model was unable to capture the slow rate of emergence

after sowing, as seen in the observations, when the true sowing depth for maize was used. This could

be due to uncertainty in the hard-coded parameters in the emergence rate Eq. (3.A2) which were not

estimated in this study. This is an example of structural error in the model. In order to simulate this slow

emergence, an effective sowing depth (SOWDEPTH) was set, which is deeper than the actual sowing

depth range for maize (3–5 cm). Another example of model structural error would be missing factors,

which play a role in phenological development. SPASS assumes that phenological development depends

only on temperature and daylength. Other factors such as water stress, nitrogen deficiencies, and high

ozone concentrations could also play a role but are ignored. Moreover, the shape of the temperature

response function could be inadequate in capturing the plant’s true response to temperature.

In the case of the cardinal temperatures for the vegetative and reproductive phases, the parameters

DELTOPT and DELTMAX were introduced instead of TOPTDEV and TMAXDEV during sensitivity

analysis and MCMC sampling, to ensure that during parameter sampling TMINDEV<TOPTDEV<TMAXDEV.

Thus, TMINDEV, DELTOPT, and DELTMAX were used to parameterize the temperature response

function during calibration, where TOPTDEV

=TMINDEV+DELTOPT and TMAXDEV=TOPTDEV+DELTMAX.

3.7 Appendix B: Posterior sampling using MCMC Metropo-

lis algorithm

The posterior parameter distribution was sampled using a Markov chain Monte Carlo (MCMC) method

based on the Metropolis algorithm (Iizumi et al., 2009; Metropolis et al., 1953). Three Markov chains

were run in parallel using the foreach (Microsoft and Weston, 2020) and doParallel (Microsoft and

Weston, 2019) packages in R (R Core Team, 2020). First, initial parameter vectors were selected as

a starting point for each chain. Then, the size of the transition kernel used to propose new candidate

parameter vectors in the chain was adapted, based on the acceptance rate, to improve the efficiency of

the MCMC algorithm (Gelman et al., 1996). After the adaptation, the Markov chains were run until

the Gelman–Rubin convergence diagnostic for the posterior parameter distribution was ≤ 1.1 (Brooks

and Gelman, 1998; Gelman and Rubin, 1992). The detailed steps are given here.

First sample

Step 1: Let θ1 be an arbitrary initial parameter vector in a chain, selected from within the parameter

ranges provided by the expert. This method of selection was used for the Bayesian calibration of site-
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year 6 2010. For the other calibration cases, the initial parameter vectors were obtained by sampling

from the range of the posterior parameter distribution after calibration to 6 2010. This was done to

reduce the time to convergence as it is expected that the posterior parameter distributions for the other

calibration cases would be in the vicinity of the posterior distribution obtained after calibration to

6 2010. Bayes theorem is estimated as

P (θ1 |Y )∝ P (θ1)P (Y |θ1) , (3.B1)

whereP (Y |θ1) and P (θ1) are calculated using Eqs. (3.9) and (3.10), respectively. The error function

in Eq. (3.11) required for P (θ1) was calculated using the pracma package (Borchers, 2020).

Jump adaptation

A symmetrical transition kernel or jump distribution is used to select the next candidate parameter

vector. The transition kernel is a normal distribution that is centred at the current parameter vector,

and has a variance vector V 2. The off-diagonal elements of the variance–covariance matrix are 0.

Step 2: The transition kernel centred at θt−1 is used to propose a new candidate parameter vector

θ∗t .

Step 3: The model is simulated using parameter vector θ∗t and the numerator of Bayes theorem is

calculated using the prior and likelihood as per Eq. (3.B1).

Step 4: The acceptance ratio (r) for a proposed candidate parameter vector is

r =
P (θ∗t )P (Y |θ∗t )

P (θt−1)P (Y |θt−1)
. (3.B2)

Step 5: The candidate parameter vector θ∗t is either accepted or rejected as the new parameter

vector θt based on the condition

θt=

 θ∗t r > u

θt−1 r ≤ u

 , (3.B3)

where u ∼ U(0, 1) is a random sample from a uniform distribution between 0 and 1. Proposals of

parameters which were outside the bounds of the prior and likelihood result in a zero in the numerator

of Eq. 3.B2. These parameters are rejected and discarded. The next proposal is generated with the

jump distribution centred at the last accepted parameter vector, until the next proposal is accepted.

Step 6: After 20 accepted parameter vectors per chain, the acceptance rate ar = acc/tot is calculated

across the chains, where acc represents the number of accepted vectors (i.e. 20 accepted runs per chain

×3 chains in this case) and tot represents the total vectors proposed. Based on the acceptance rate

(ar), the standard deviation V of the transition kernel, which controls the jump size, is adapted as per

the condition in Eq. 3.B4, so that the acceptance rate is between 25 % and 35 % (Gelman et al., 1996;

60



BAYESIAN SEQUENTIAL UPDATING

Tautenhahn et al., 2012):

V =


V × 1.01 ar ≥ 0.35

V × 0.99 ar ≤ 0.25

V 0.25 < ar < 0.35.

(3.B4)

If the acceptance rate ar is between 25 % and 35 %, we proceed to the main set of runs to obtain the

posterior parameter distributions.

Main runs

In the main runs, steps 2–5 are repeated with the final jump distribution achieved at the end of the

jump adaptation steps.

Step 7: The convergence of the chains after jump adaptation is checked using the Gelman–Rubin

convergence criteria (GR). The gelman.diag function from the coda package in R (Plummer et al.,

2006) was used to evaluate the GR diagnostic after every 20 accepted parameter vectors in each chain.

As per the GR diagnostic criteria, the Markov chains have converged to represent a stable posterior

distribution if within-chain variance is approximately equal to between-chain variance. The MCMC

chains are stopped if there are a minimum of 500 accepted runs per chain and if GR ≤ 1.1 (Brooks and

Gelman, 1998) for each parameter.

Step 8: In the final step, all the runs from the jump adaptation phase are discarded as burn-in.

Parameters from the remaining accepted runs define the posterior distribution.

3.8 Appendix C. Single site-year calibration

In order to better understand the results of the true sequences, single site-year calibration and predictions

were made within and across the two regions. Since calibration yields the best performance metrics, we

analysed the median NRMSE ratio for each prediction-target site-year, i.e. the ratio between the median

NRMSE of prediction and the median NRMSE of calibration to the prediction target (Fig. 3.C1). We

expect that the model predicts best, i.e. with a low median NRMSE ratio, when it is calibrated to the

same cultivar or ripening group. However, we found that this was not always the case. This is a result

of careful analyses of calibration–prediction performance, detailed here.

The mid-early cultivar at 5 2011 was poorly predicted by all mid-early cultivars, but was better

predicted by early cultivars. Site-years 1 2014 and 2 2014 in Kraichgau, where the mid-early cultivar

Grosso was grown, were the best predictors of each other. However, even though the early cultivar LG

30.217 was grown at 5 2015 and 5 2016, these two site-years were not the best predictors of each other.

Similarly, site-years 2 2012 and 3 2011, where the late cultivar Canavaro was grown, were also not the

best predictors of each other. In predictions for mid-early cultivars, a spread in median NRMSE ratio

was seen when the model was calibrated to other mid-early cultivars. The mid-early cultivar at 1 2014

and 2 2014 in Kraichgau had a comparable prediction quality when the model was calibrated to the

late cultivar grown in Kraichgau or to the mid-early cultivars grown on the Swabian Alb.
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Figure 3.C1: Median NRMSE ratio for prediction-target site-years after single site-year calibra-
tion of the SPASS model to observed phenological development (BBCH). The median NRMSE
ratio on the y-axis is the ratio between the median NRMSE of prediction and the median
NRMSE of calibration to the prediction-target site-year. Each point represents the median
NRMSE ratio of prediction of the site-year on the x-axis when the model was calibrated to
phenology from every other site-year separately (single site-year calibration). The points are
grouped and coloured by ripening group of the calibration site-year while the ripening group
of the prediction target site-years are indicated on the top of the plot. The box and whiskers
show the spread in median NRMSE ratio of predicting a particular site-year after the model
was separately calibrated to site-years from a particular ripening group. Calibration site-year
points from the same cultivar as the prediction site-year are labelled.

Figure 3.C2: A cross-plot between the performance metric median NRMSE and the absolute
difference in temperature between the site-year used for calibration and the prediction-target
site-year, averaged over 40–100 d after sowing, for (i) mid-early and (ii) early ripening cultivars.
Colours of the best-fit lines and points indicate the prediction-target site-year. Median NRMSE
points at 0 °C on the x-axis are calibration performance metrics for the target site-year while the
remaining are prediction performance metrics. Point labels indicate the site-years to which the
model was calibrated. The SPASS model was calibrated to observed phenological development
(BBCH).
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To explain the spread in prediction NRMSE within ripening groups, we examined the relationship

between NRMSE and the difference in average temperature between the site-year used for calibration

and the predicted or target site-year. The temperature was averaged over an interval of 40–100 d

after sowing (i.e. approximate vegetative phase of development). For the mid-early ripening cultivars

(Fig. 3.C2i), the median NRMSE shows a clear correlation. Albeit tested with a limited number of

site-years, early-ripening cultivars (Fig. 3.C2ii) show a similar trend.

3.9 Appendix D: Platykurtic prior

An example of a platykurtic probability density function which is used as a weakly informative prior for

the model parameters is shown in Fig. 3.D1. It is a combination of a uniform and normal distribution.

The default, minimum, maximum, and standard deviation values from Table 3.2 were used in Eq. (3.10)

to obtain the prior probability distribution for the estimated parameters.

Figure 3.D1: An example of the platykurtic probability density function that was used as a prior
for the model parameters. The default, minimum, maximum, and standard deviation values for
the parameter are used to define this function.
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ibration of a process-based maize phenology model, Ecological Modelling, Volume 474, 110154, DOI:
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Abstract

Plant phenology models are important components in process-based crop models, which are used to

assess the impact of climate change on food production. For reliable model predictions, parameters in

phenology models have to be accurately known. They are usually estimated by calibrating the model

to observations. However, at regional scales in which different cultivars of a crop species may be grown,

not accounting for inherent differences in phenological development between cultivars in the model

and the presence of model deficits lead to inaccurate parameter estimates. To account for inherent

differences between cultivars and to identify model deficits, we used a Bayesian multi-level approach to

calibrate a phenology model (SPASS) to observations of silage maize grown across Germany between

2009 and 2017. We evaluated four multi-level models of increasing complexity, where we accounted for

different combinations of ecological, weather, and year effects, as well as the hierarchical classification of

cultivars nested within ripening groups of the maize species. We compared the calibration quality from

this approach to the commonly used pooled approach in which none of these factors are considered.

The pooled model led to over-confident process model parameter estimates and comparatively poor

calibration quality. The mean value of the unexplained residual error standard deviation reduced from

5.5 BBCH (phenological development units) in the pooled model case (BM-0) to 5.3 BBCH when eco-

region and year effects (BMM-1) were considered. Additionally accounting for weather effects (BMM-2a)

resulted in a mean value of 5.2 BBCH. Calibration quality especially improved when the hierarchical

classification of cultivars within ripening groups of maize was incorporated. Including the hierarchical
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classification with eco-region and year effects (BMM-2b) led to a mean residual error of 4.4 BBCH

while additionally considering weather effects in the full model case (BMM-3) resulted in a value of

4.3 BBCH. Our findings have implications for regional model calibration and data-gathering studies,

since it emphasizes that ripening group and cultivar information is essential. Furthermore, we found

that if this information is not available, at least weather, eco-region and year effects should be taken

into account. Accounting for only the eco-region and year effects led to parameter-compensation of

the missing weather effects. Our results can facilitate model improvement studies since we identified

possible model limitations related to temperature effects in the reproductive (post-flowering) phase and

to soil-moisture. We demonstrate that Bayesian multi-level calibration of a phenology model facilitates

the incorporation of hierarchical dependencies and the identification of model limitations. Our approach

can be extended to full crop models at different spatial scales.

4.1 Introduction

Plant phenology plays an important role when assessing the impact of climate change and evaluating

crop production (Menzel et al., 2006; Siebert and Ewert, 2012; Zhao et al., 2013; Wittich and Liedtke,

2015; He et al., 2017b; Wallach et al., 2021a). It is controlled by environmental variables and determines

the timing of plant organ development and the distribution of the products of photosynthesis, such as

sugars, to different parts of the plant. Thus, predictions of phenological development are essential for

evaluating crop growth and yield, and for supporting field management decisions such as the timing of

fertilizer application (Potgieter et al., 2021). These phenology predictions are made possible by using

numerical models.

Phenology models are in turn important components of crop models, which are used for simulating

crop growth and development, and yield. Besides data-driven statistical models, it is process-based

models which enable a thorough understanding of the underlying processes for evaluating potential

policy interventions and adaptation to climate change (Lobell and Asseng, 2017). In these process

models, phenology is simulated as a parametric function of environmental variables such as temperature

and photoperiod. Parameters of these models have to be determined accurately to ensure reliable

predictions.

Since model parameters often cannot be measured directly, they need to be estimated by comparing

model outputs with observed data using methods such as Bayesian inference. Bayesian calibration

provides a framework to quantify different sources of uncertainty, which is essential for better predictions,

with the added value of being able to include prior information (Makowski et al., 2002). To this end,

Bayesian methods have been applied in numerous crop model calibration studies (Makowski et al., 2006;

Iizumi et al., 2009; Sexton et al., 2016; Alderman and Stanfill, 2017; He et al., 2017b; Gao et al., 2020).

During the calibration of phenology models, cultivar-specific parameters are usually estimated (Gao

et al., 2020). This is because phenological traits differ markedly, not only between species and between

ripening or maturity groups of crop species such as maize (Oluwaranti et al., 2015), but also between
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cultivars within these ripening groups. Phenological development of a cultivar is also dependent on the

environment and reflects genotype × environment interactions. Thus, methods such as selecting cultivar

observations from contrasting environments for calibration (He et al., 2017b) and using cross-validation

tests while evaluating environmental responses of the cultivar (Fukui et al., 2015) are suggested for

determining these cultivar-specific parameters.

However at regional scales, where many cultivars of a particular species are grown together, cultivar-

specific parameters may not be suitable. In such calibration studies, region-specific model parameter

estimates are obtained for the crop species (Iizumi et al., 2009; Therond et al., 2011; Angulo et al.,

2013; Soltani et al., 2016), but differences between cultivars grown in the region are usually not taken

into account. The resultant estimates are a compromised solution for all the cultivars grown in different

environments represented by the calibration data set.

Furthermore, models may not represent the underlying processes accurately. Commonly, environ-

mental interactions are incompletely or poorly understood, leading to conceptual uncertainty. This is

reflected in multiple model formulations to represent the same process (Kumudini et al., 2014; Wang

et al., 2015; Wu et al., 2017). Consequently, models may have structural deficits. But the implicit

assumption in Bayesian inference is that the model is without errors or that all errors are perfectly de-

scribed (Hsueh et al., 2022). During calibration, the estimated parameters may compensate for model

limitations (Wallach, 2011). As a consequence, even parameters which are meant to be cultivar-specific

have been found to vary with the environment (Ceglar et al., 2011), thus often loosing their original

physiological meaning (Lamsal et al., 2018).

Ignoring inherent data structures and the presence of model deficits result in inaccurate parame-

ter estimates. When data structures such as the hierarchical classification of cultivars nested within

ripening groups of a species are ignored, the uncertainty in the resultant ‘effective’ parameters are un-

derestimated. Furthermore, indiscriminate use of large amounts of data to calibrate imperfect models

leads to an overconfidence in erroneous parameter estimates (Motavita et al., 2019), which in turn has

been shown to result in erroneous model predictions (Viswanathan et al., 2022b). Thus, it is important

to account for these data structures and model deficits during parameter estimation.

Therefore, we propose a Bayesian multi-level calibration of a process-based plant phenology model

to account for inherent data structures and to identify model deficits. Bayesian multi-level modelling

(BMM) has been widely applied in ecological modelling (Clark, 2003; Li et al., 2015; Thomas et al.,

2017; Tian et al., 2020), and has more recently been applied to plant models. For example, Patrick et al.

(2009) applied a hierarchical Bayesian approach to estimate parameters of the Farquhar photosynthesis

model. Jarqúın et al. (2016) used a hierarchical Bayesian formulation of a linear-bilinear model to

investigate genotype × environment (G × E) interactions of maize from breeding trials. Fer et al.

(2021) applied hierarchical Bayes to a dynamic vegetation model in conjunction with a Bayesian model

emulator. Senf et al. (2017) applied Bayesian hierarchical modelling to a satellite-based data-driven

phenology model to account for spatial and temporal variation in phenology. Qiu et al. (2020) developed

a Bayesian hierarchical space–time model to study the impact of climate change and extreme events on

phenological development. To the best of our knowledge, the BMM approach has not been applied to
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calibrate a process-based phenology model on a regional scale. By applying the BMM approach, we can

honour the hierarchical classification of cultivars nested within ripening groups of a crop species. Thus,

species-, ripening group-, and cultivar-specific parameters can be simultaneously estimated (Van Oijen

and Höglind, 2016). We can also account for phenological development that depends on additional

environmental factors which are not already captured in the model equations (Del Giudice et al., 2013).

Methods such as cross-calibration have been used to determine crop model parameters for representative

crop cultivars grown in different agro-ecological sub-zones (Xiong et al., 2008). But parameter estimates

from such an approach would have limited applications when the phenological development of a new

cultivar belonging to a different ripening group is to be predicted. Parameter estimates from the BMM

approach can be used for such applications. The advantage of BMM lies in its borrowing strength (Zhang

and Arhonditsis, 2009), where parameter estimates for data-limited cultivars can benefit from data-rich

ones. Additionally, the appropriate depiction of data groups results in a representative quantification

of prediction uncertainty (Gelman, 2006a).

We tested the proposed approach by evaluating four BMM cases of increasing complexity in which

we calibrated the SPASS (Wang, 1997; Wang and Engel, 1998, 2000) phenology model to observations of

silage maize grown across Germany from 2009 to 2017. The SPASS model has proven to be successful for

different crop species (Gayler et al., 2002; Priesack et al., 2006; Biernath et al., 2011), including maize,

and was one of the well-performing models in the Agricultural Model Intercomparison and Improvement

Project (AgMIP) studies (Bassu et al., 2014; Durand et al., 2018; Kimball et al., 2019). It works well

for cultivar-specific crop simulations. However, crop species simulations suffer when ripening group and

cultivar information is not incorporated during calibration, a problem that is not unique to the SPASS

model. Furthermore, a previous study (Viswanathan et al., 2022b) highlighted possible environment-

related deficits in the SPASS phenology model which needed systematic evaluation. Thus, in the four

BMM cases, we accounted for different combinations of yearly variability, environmental effects arising

from growth in different ecological regions and weather conditions, and the classification of cultivars

into ripening groups. With these cases we assessed the importance of including cultivar information in

regional calibration studies. We evaluated the BMM approach by comparing calibration results from

the four cases with the commonly used pooled approach, where a set of model parameters was estimated

for silage maize grown across all environments. We also analysed trends between environmental effect

parameters and environmental variables to identify possible model deficits. The findings of our study

are expected to have implications for regional calibration and model improvement studies.

4.2 Materials and Methods

4.2.1 Data

We used phenology observations of silage maize grown between 2009 and 2017 at locations across Ger-

many, collected by the German National Meteorological Service (Deutsche Wetterdienst-DWD) (DWD

Climate Data Center (CDC), 2019). The observers reported the date of the first detected occurrence

67



BAYESIAN MULTI-LEVEL MODELLING

of maize phenological development stages, namely, 10, 31, 53, 61, 75, 83, and 87 on the BBCH scale

(Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) (Meier, 2018), in the assigned

observation area. Corresponding cultivars and ripening groups were also reported. We refer to data sets

by the site and year in which silage maize was cultivated, that is, “site-year”. We removed site-years

for which sowing and harvest dates were not reported and in which the BBCH data was not strictly

monotonically increasing with time. Additionally, observations that fell outside the range of sowing and

harvest dates were discarded. We note that not all of the seven above-mentioned phenological stages

were available in all site-years.

Minimum and maximum daily air temperatures were used as inputs to the SPASS phenology

model. Weather data from the DWD stations were not available at all plant observation sites. There-

fore, temperature data were extracted at all sites from the ERA5-Land re-analysis gridded data set

(Muñoz Sabater, 2019). This data set has a spatial resolution of 0.1°× 0.1° and hourly temporal resolu-

tion. The hourly data were aggregated to daily values. We consider the re-analysis data to be a better

spatial representation than point measurements at the weather stations.

To assess model limitations related to temperature and precipitation, site-years were classified into

ten weather classes based on average temperature and cumulative precipitation between April and

June, and between July and September (periods during which maize usually undergoes vegetative and

reproductive development, respectively). A K-means clustering algorithm was applied to define the

weather classes (details in Appendix A. Weather class clustering). Site-years were also grouped into

nine ecological regions based on the classification provided by the BfN (Bundesamt für Naturschutz)

(2017). For computational reasons, a subset of 100 site-years out of 3004 was randomly selected for

calibration where it was ensured that at least one site-year was selected from each of the four ripening

groups, nine ecological regions, ten weather classes and nine years. The calibration data set consisted of

66 cultivars from the four ripening groups (Table 4.1). It was also ensured that the relative proportions

of site-years from the different ripening groups in the full data set were maintained in the calibration

subset (early: 34%, mid-early: 54%, mid-late: 11% and late: 0.4% in the full data set). The 100

site-years used for calibration contained 604 phenology observations.

Table 4.1: Summary of site-years and cultivars used for calibration

ripening group early mid-early mid-late late Total

number of cultivars 25 33 7 1 66

number of site-years 35 55 9 1 100

4.2.2 Phenology model

Air temperature, site-latitude, sowing and harvest dates are required as inputs to the SPASS phenology

model. The model has nine parameters, seven of which were estimated during calibration (Table 4.2)

and the remaining two were fixed at default values. The model equations and details are given in

68



BAYESIAN MULTI-LEVEL MODELLING

Appendix B. SPASS model equations. We provide a brief summary below.

Three main phases of development are defined in the model: emergence, vegetative and reproductive

phases. Emergence is dependent on the sowing depth, assumed to be fixed for all the site-years at 3 cm,

and on the temperature above a minimum value (emt). The development rate during the vegetative and

reproductive phases is dependent on the number of physiological development days at optimum tem-

perature (pdd1 for vegetative and pdd2 for reproductive) and on the Temperature Response Function

(TRF). The TRF is defined by phase-specific minimum, optimum and maximum cardinal temperatures

(tminv, toptv and tmaxv, respectively, for vegetative and tminr, toptr and tmaxr, respectively for re-

productive). The SPASS phenology model as described in Wang (1997) was implemented in our study

with the following modifications: (a) the photoperiod effect on the vegetative phase was not considered,

(b) no soil water-limiting effect on germination was assumed and germination occurs instantaneously

after sowing, and (c) for numerical reasons the transition between emergence and vegetative phases was

defined by a sigmoidal function instead of the original step function.

The parameters for physiological development days at optimum temperature for the vegetative

(pdd1 ) and reproductive phases (pdd2 ) were estimated in the study. Additionally, minimum and op-

timum temperature for vegetative (tminv and toptv, where toptv = tmaxv − dtoptv) and reproductive

(tminr and toptr, where toptr = tmaxr− dtoptr) phases, as well as the minimum temperature required

for emergence (emt), were estimated. However, the parameters tmaxv and tmaxr were not estimated.

The range of average daily temperatures during the growing season at the study site-years were between

-6 and 31 °C. This is usually expected to be at or lower than the optimal temperatures for maize, a

warm-weather plant. The lack of observations in the supra-optimal temperature range would make

constraining tmax difficult (Wang et al., 2015) and is expected to incur problems of equifinality. To

avoid these problems, the values of tmaxv and tmaxr were fixed at 44 °C.

We used Bayesian inference to determine the posterior probability of the model parameters. Let

φd represent the given phenology observation on day d. The phenology φ̄d(T ,θ) at day d, simulated

by the SPASS model with a parameter vector θ, is dependent on air temperatures T from the date of

germination to the day d. The phenology observations are available at days D, so the parameters are

conditioned on Φ = {φd; d ∈ D} through the likelihood function p(Φ | θ, T ). The posterior parameter

distribution is given by

p(θ | Φ,T ) ∝ p(Φ | θ,T ) p(θ) (4.1)

where p(θ) is the joint prior probability distribution of the parameters.
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Table 4.2: Prior distributions for estimated parameters in the process-based SPASS phenology
model and the multi-level model cases. The mean and standard deviation (SD) are specified for
normal distributions while the minimum (min.) and maximum (max.) are specified for uniform
distributions.

Parameter unit Description Distribution mean/ SD/

min. max.

emt ◦C Base temperature for emergence Normal 10 1

pdd1 day
Physiological development days-

vegetative phase
Normal 45 7

tminv ◦C
Minimum temperature- vegeta-

tive phase
Normal 6 0.7a

dtoptv ◦C

Difference between maximum

and optimum temperature - veg-

etative phase

Normal 10 1.5

pdd2 day
Physiological development days -

reproductive phase
Normal 36 10

tminr ◦C
Minimum temperature - repro-

ductive phase
Normal 8 1b

dtoptr ◦C

Difference between maximum

and optimum temperature - re-

productive phase

Normal 10 1.5

σ BBCH
Standard deviation of model

residual error
Uniform 0 10

δw BBCH
Weather effect by weather class

w
Normal 0 5

γe BBCH Eco-region effect by eco-region e Normal 0 5

λ BBCH
Standard deviation of year ef-

fects τy
Uniform 0 5

a SD = 1.5 for ∆θr and ∆θr,c; b SD = 2 for ∆θr and ∆θr,c

4.2.3 Bayesian model cases

We describe five Bayesian model cases (one pooled and four multi-level model cases as seen in Fig. 4.1) in

terms of their likelihood functions in the following sections. The prior distributions for all the estimated

parameters are provided in Table 4.2.
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Figure 4.1: Graphical representation of the five Bayesian models: (a) BM-0: pooled, (b) BMM-
1: eco-region effects with random year effects, (c) BMM-2a: weather and eco-regions effects with
random year effects, (d) BMM-2b: hierarchical classification of cultivars into ripening groups
with eco-regions effects and random year effects, and (e) BMM-3 or full model: hierarchical
classification of cultivars into ripening groups, eco-region and weather effects with random year
effects. In the SPASS phenology model, phenological development on a given day (d) is a
function of air temperatures (T ) from the date of germination to that day. θsp is the maize
species-level parameter vector, ∆θr is the difference between the ripening group-level parameter
θsp,r and θsp, ∆θr,c is the difference between the cultivar-level parameter θsp,r,c and θsp,r, and
σ is the standard deviation of the likelihood function. γe represents the eco-region effect, δw,
the weather class effect, τy the year effect and λ is the standard deviation of the year effect.
E=eco-regions, Y = year, W = weather class, R = ripening group, C = cultivar. The red arrows
outside the model sketches represent model extensions. During calibration, θsp,r is estimated
for the 4 ripening groups, θsp,r,c for 66 cultivars, δw for 10 weather classes, γe for 9 eco-regions,
and τy for 9 years.
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4.2.3.1 BM-0: Pooled model

The pooled model is the most commonly used calibration setup for regional scale studies, where a

common parameter set is estimated for all cultivars grown in different environmental conditions in the

region. Assuming independent Gaussian observation errors, the likelihood function for the pooled model

is given by

p(Φ | θ,T ) =
∏
d∈D

N (φ̄d(θsp,T ), σ2) (4.2)

where θ = {θsp, σ}, θsp represents the maize species (sp) parameters, and N (φ̄d(θsp,T ), σ2) the density

of a normal distribution with mean equal to the simulated phenology φ̄d and standard deviation σ.

The pooled model case is shown in Fig. 4.1a. The joint prior probability p(θsp) ∼ N (µsp,Σsp) was

represented by a multivariate normal distribution with seven dimensions corresponding to the SPASS

model parameters (emt, pdd1, tminv, dtoptv, pdd2, tminr, dtoptr). The mean vector of the distribution

(µsp) and main diagonal elements of the variance–covariance matrix (Σsp) are defined in Table 4.2

(mean and squared standard deviation, respectively) while the off-diagonal elements are zero.

4.2.3.2 BMM-1: Fixed eco-region effects and random year effects

We expect that the different eco-regions and years in which silage maize was grown in Germany influence

phenology. We analysed this effect with the BMM-1 model (Fig. 4.1b), where we accounted for fixed

effects due to the different eco-regions and random effects arising from variability between the years. If

the different eco-regions and years are represented by e ∈ E and y ∈ Y , respectively, then

p(Φ | θ,T ) =
∏
e∈E

∏
y∈Y

∏
d∈D

N (φ̄d(θsp,T ) + γe + τy, σ
2) (4.3)

where parameters γe and τy ∼ N (0, λ) represent the effects by eco-region e and year y, respectively,

E = 9 is the total number of eco-regions, Y = 9 is the total number of years, and θ = {θsp, γe, λ, σ}.

A uniform prior density was assumed for the standard deviation of the year effects λ as per Gelman

(2006b) (Table 4.2).

4.2.3.3 BMM-2a: Fixed eco-region and weather effects and random year effects

Although the SPASS model accounts for the effect of temperature on phenological development, there

could be other weather conditions (i.e. temperature and precipitation during specific phases) that are

important but not adequately captured in the model. Also, differences in weather conditions could result

in a perceived variability between eco-regions and between years. In the BMM-2a model (Fig. 4.1c),

we additionally accounted for the effects due to the different weather classes. If the different weather

classes are represented by w ∈W and parameter δw represents the effects by weather class, then

p(Φ | θ,T ) =
∏
w∈W

∏
e∈E

∏
y∈Y

∏
d∈D

N (φ̄d(θsp,T ) + γe + τy + δw, σ
2) (4.4)
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where θ = {θsp, δw, γe, λ, σ} and W = 10 is the total number of weather classes.

4.2.3.4 BMM-2b: Fixed ripening, cultivar, eco-region effects and random year

effects

As a modification from BMM-1, we also accounted for the inherent structure in the data in BMM-2b

(Fig. 4.1d) wherein the cultivars c, are nested within ripening groups r of the maize species sp.

p(Φ | θ,T ) =
∏
e∈E

∏
y∈Y

∏
d∈D

N (φ̄d(θsp,r,c,T ) + γe + τy, σ
2) (4.5)

where θ = {θsp,r,c, γe, λ, σ} and θsp,r,c represents the joint probability distribution of all the estimated

cultivar-level parameters in the hierarchy. It can be expressed as θsp,r,c = θsp + ∆θr + ∆θr,c, where

∆θr = θsp,r − θsp is the difference between the species-level parameters (θsp) and the ripening group-

level parameters (θsp,r), and ∆θr,c = θsp,r,c − θsp,r is the difference between the ripening group-level

and the cultivar-level parameters. Thus, the SPASS model parameters corresponding to 66 cultivars

(cultivar-level) and 4 ripening groups (ripening group-level) in the calibration data set are estimated.

Their prior probability p(∆θr) ∼ N (0,Σr) and p(∆θr,c) ∼ N (0,Σr,c) were represented by multivariate

normal distributions, centred at zero. Their variance–covariance matrices (Σr, Σr,c) were equivalent to

that of the species-level prior Σsp for all parameters except tminv and tminr (note different standard

deviation in the footnote of Table 4.2).

4.2.3.5 BMM-3: Full model

Finally, in the full model (Fig. 4.1e), we accounted for the inherent hierarchical data structure, eco-

regions and weather effects, as well as year effects.

p(Φ | θ,T ) =
∏
w∈W

∏
e∈E

∏
y∈Y

∏
d∈D

N (φ̄d(θsp,r,c,T ) + γe + τy + δw, σ
2) (4.6)

where θ = {θsp,r,c, δw, γe, λ, σ} and θsp,r,c = θsp + ∆θr + ∆θr,c.

4.2.4 Posterior sampling

Markov Chain Monte Carlo sampling of the posterior parameter distributions was performed using the

Gibbs algorithm from the Jags software (Plummer, 2003) implementation in R2jags (Su and Yajima,

2020) and jagsUI (Kellner, 2021) packages in R (R Core Team, 2020). For the model cases BM-0, BMM-

1, BMM-2a and BMM-2b, 500 runs were used for adaptation. Three chains were run and 5000 iterations

were run per chain until the Gelman Rubin convergence diagnostic was ≤ 1.1. Of these iterations, every

5th parameter vector (thinning = 5) was stored, resulting in a total of 3000 samples that were used for

generating the posterior parameter distributions and simulated phenology described in the results. For

BMM-3, 100 runs were used for adaptation. Three chains were run and 3600 iterations per chain were
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run until the Gelman Rubin convergence diagnostic was ≤ 1.1. All the samples (total of 10,800) were

used for the plots. Diagnostic plots for the MCMC samples are provided in Supplement S6.

4.2.5 Calibration performance metrics

Calibration quality was assessed for each of the 100 site-years used for calibration and for each of the five

model cases by estimating the expected value (π(Φ̄)) of a loss function L(Φ, Φ̄) where Φ̄ = {φ̄d; d ∈ D}

is a vector of phenological development simulated by the model.

π(Φ̄) =

∫
θ

L(Φ, Φ̄)p(θ | Φ, T )dθ (4.7)

where L(Φ, Φ̄) is either RMSE =
√

1
D

∑D
d=1(φd − φ̄d)2 or bias = 1

D

∑D
d=1(φd − φ̄d).

4.3 Results

We first provide results from the classification of 3004 site-years into environmental classes (section

4.3.1). We then describe the calibration quality of the SPASS model in the different Bayesian model cases

(section 4.3.2), followed by an analysis of the posterior distributions of the SPASS model parameters

(section 4.3.3), the environmental effects (section 4.3.4) and residual uncertainty (section 4.3.5). All

figures were made using the ggplot2 (Wickham, 2016) package in R. We note here again that out of the

3004 site-years, 100 were used for calibration.

4.3.1 Classification of site-years into environmental classes

All site-years were classified into ten weather classes (Fig. 4.2). The weather classes were based on

the average temperatures and cumulative precipitation between April and June and between July and

September. Silage maize cultivated across Germany generally undergoes vegetative development from

April to June and reproductive development from July to September. Phenological development dur-

ing the vegetative and reproductive phases are dependent on temperature. The relationship between

temperature and phenological development is usually represented by equations in phenological models,

including SPASS. However, existing model equations may not accurately capture this temperature re-

sponse. Additionally, the influence of factors like precipitation that are known to influence phenology

in some plant species (Moore and Lauenroth, 2017), could also have either a direct influence on maize

phenology or an indirect effect by influencing temperatures within the crop canopy. However, these

effects are not represented in the SPASS phenology model. Thus, site-years were classified into the

weather classes to assess model limitations related to temperature and precipitation.

All site-years were also classified into nine ecological regions (Fig. 4.3). Eco-region 0 includes the

Alpine foreland and foothills characterized by flysch and molasse deposits, as well as glacial moraines.

This eco-region has experienced on average higher rainfall (average cumulative precipitation of∼700 mm,

based on site-years in the full data set) than the other eco-regions during the maize growing season

74



BAYESIAN MULTI-LEVEL MODELLING

(April–September between 2009 and 2017). Eco-region 1 comprises the Swabian and Franconian Alb,

and the Black Forest (average elevation ∼400 m a.s.l.). It is marked by sedimentary deposits and the

development of loess and loamy soils. The Rhine river plain is in eco-region 2. Eco-regions 3 and 4

consist of the middle highlands (average elevation of 300–400 m a.s.l.) of the Thuringian Forest and

Harz Mountains. The region is characterized by sedimentary deposits with some metamorphic rocks

and the development of loess loam. The remaining eco-regions consist of the northern lowlands, typi-

fied by moraine deposits. Eco-region 7 includes the Mecklenburg Lake District and consists of young

moraine deposits. Eco-regions 6 and 8 largely consist of old moraine deposits. Eco-region 8 has been,

on average, hotter and drier (average daily temperature of 15–16 °C and average cumulative precip-

itation of ∼500 mm) than the other eco-regions during the growing season (please refer to Figs.S7.2

and S7.3 in Supplement S7.2 for details). Note that since the 100 site-years used for calibration were

randomly sampled, the calibration data set contained only a few site-years from ecological regions in

the northeastern part of Germany.

4.3.2 Calibration quality

As an example, we compare observed and simulated phenology for silage maize grown at a site in the

state of Bavaria in 2009 from the pooled model case (BM-0) and the full model case (BMM-3) (Fig. 4.4).

The blue bands show the 5–95th percentile of simulated phenology that account for uncertainty from

model parameters (θsp for BM-0 in Fig. 4.4a and θsp,r,c for BMM-3 in Fig. 4.4b) while the red bands

additionally account for environmental effects (δw, γe, τy in Fig. 4.4b). The grey bands show the 5–95th

percentile of simulated phenology that additionally account for the unresolved residual error (σ). There

is a reduction in bias in BMM-3 as compared to BM-0. Furthermore, there is an overall reduction in

unresolved residual error in BMM-3 with the model parameters and environmental effects accounting

for a large share of the error variance. We also note that the blue bands in Fig. 4.4a have collapsed

around the mean simulated phenology.

The model performance represented by the mean RMSE and bias for the 100 calibration site-years

(Fig. 4.5) improved with model complexity from the pooled model to the full model (BM-0, BMM-1,

BMM-2a, BMM-2b, BMM-3). This is evident from the reduction in mean RMSE and shrinkage of

the mean bias towards zero. In Fig. 4.6 the model performance from the five cases were analysed by

ripening group and weather class. Across the plots, the two cases BMM-2b and BMM-3 that account

for the ripening group-cultivar hierarchy generally exhibit a lower bias and RMSE as compared to the

others. Across the four ripening groups (Fig. 4.6a), the mean bias is closer to zero with increasing

model complexity, as seen in Fig. 4.5. A decrease in mean bias and RMSE occurs on the inclusion of

cultivar-ripening group information through the hierarchy in BMM-2b and BMM-3. The single site-year

from the late ripening cultivar included in calibration also exhibits a clear improvement in RMSE and

bias. While the inclusion of weather effects (Fig. 4.6b) in the model cases BMM-2a and BMM-3 result

in smaller mean RMSE and bias only in some weather classes, the inclusion of cultivar-ripening group

hierarchy results in an improvement in most classes. Although the inclusion of eco-regions and year
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effects (BMM-1 to BMM-3) (Fig. 4.C1 in the Appendix C. Model performance metrics) improves RMSE

and bias in some eco-regions and years, a clear trend across all the classes cannot be identified.

Figure 4.5: Box-plots of the mean RMSE and bias for each calibration site-year in the five
model cases, BM-0 (pooled), BMM-1 (eco-regions, random year effects), BMM-2a (eco-regions,
weather class, random year effects), BMM-2b (ripening group-cultivar hierarchy, eco-region,
random year effects), BMM-3 (full model with cultivar-ripening group hierarchy, eco-regions,
weather class, and random year effects). Each box-plot represents the 100 site-years used for
calibration. Hinges of the box-plot represent the inter-quartile range (IQR), whiskers extend
from the hinges up to 1.5×IQR and values beyond this range are plotted as points. Note that the
phenology simulations used to estimate RMSE and bias do not take the σ parameter uncertainty
into account.

4.3.3 Phenology model parameters

The marginal posterior distributions of the SPASS model parameters were analysed for the full model

(BMM-3) to investigate differences between cultivar, ripening group and maize species parameter es-

timates after the environmental effects are taken into account. Figure 4.7 shows the posterior pa-

rameter distribution by species (θsp), ripening groups (θsp,r = θsp + ∆θr) and cultivars (θsp,r,c =

θsp+∆θr+∆θr,c) for two parameters tminv and pdd1. Parameter tminv shows low variability between

cultivars of the same ripening group while pdd1 shows high variability. A similar visual inspection of

other parameters showed that they could be classified into the categories of low (tminv, tminr, toptr)

and high (pdd1, pdd2, toptv, emt) between-cultivar variability (Figs.4.D1, 4.D2 in Appendix D. SPASS

model parameter distributions).
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Figure 4.7: Posterior distribution of parameters in the full model case BMM-3: minimum tem-
perature for development in the vegetative phase (tminv) and physiological development days
for the vegetative phase at optimum temperature (pdd1 ). The distributions are provided for
the species (θsp), ripening group (θsp,r) and cultivar (θsp,r,c) levels of the hierarchy. Colours of
cultivar distributions correspond to their respective ripening groups.

4.3.4 Environmental effects

The prior and posterior parameter distributions of the weather effects (δw) and eco-region effects (γe)

were analysed with respect to their corresponding classes in the four multi-level model cases (Fig.4.8).

Negative effects indicate an overestimation, while positive effects indicate underestimation of phenology

by the SPASS model and the remaining effects that were considered in the particular BMM case. This

over/underestimation is corrected by the corresponding environmental effect parameter to improve the

model’s fit to the data in that BMM case. The posterior parameter distributions deviate from the

prior which is normally distributed around zero and are narrower than the prior. The eco-region 2

(Fig. 4.8a) exhibits a negative effect in all model cases. Eco-regions 0 and 1 exhibit similar effects

and so do eco-regions 3 and 4, in all model cases. The parameter distributions of the weather effects

(Fig. 4.8b) are only shown for BMM-2a and BMM-3 since these effects are taken into account only in

these two cases. Weather classes 6 and 10 have similar posterior parameter distributions for weather

effects. These classes have different average cumulative precipitation but similar average temperatures

(Supplement S7.3). This indicates that temperatures have a larger influence than precipitation on these

weather effects.

To identify possible model deficits, we analysed trends between the median value of the weather

effects parameters and mean of the average daily temperature and cumulative precipitation of the

weather classes from April to June and July to September for the cases BMM-2a and BMM-3. A high

correlation coefficient is seen between the median weather effect per class and the mean of the average

daily temperature from July to September (Fig. 4.9). The correlation coefficient reduces from -0.87 in

BMM-2a to -0.64 in the full model BMM-3 where the cultivar-ripening group hierarchy is considered.

This is also accompanied by a widening in confidence intervals of the linear regression line.
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Figure 4.8: The prior and posterior parameter distributions of (a) eco-region effects for the
nine eco-regions and (b) weather effects for the ten weather classes. The distributions of the
eco-region effects (γe) and weather effects (δw) (y-axis) are plotted against their corresponding
classes (x-axis) in the four Bayesian multi-level model cases. The Bayesian multi-level models
are: BMM-1: eco-region with random year effects; BMM-2a: weather, eco-region with random
year effects; BMM-2b: cultivar-ripening group hierarchy, eco-region and random year effects;
BMM-3: cultivar-ripening group hierarchy, weather, eco-region random year effects. Hinges of
the box-plot represent the inter-quartile range (IQR), whiskers extend from the hinges up to
1.5×IQR and values beyond this range are plotted as points.

Figure 4.9: Median value of the weather effects parameters plotted against the mean of the aver-
age daily temperature between June and September for the 10 weather classes for the Bayesian
model case (a) BMM-2a (eco-regions, weather class, random year effects) and (b) BMM-3 (full
model with cultivar-ripening group hierarchy, eco-regions, weather class, and random year ef-
fects). The ten points correspond to the ten weather classes. The grey bands represent 95%
confidence interval of the regression line.

The eco-region effect (γe) was included in all the Bayesian multi-level model cases. Figure 4.10

shows a comparison between the median eco-regions effects for the four multi-level models. A negative

eco-region effect indicates an overestimation of phenology by the SPASS model and the other effects that

were accounted for in the particular BMM case. This overestimation was corrected by the eco-region
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effect parameter. Conversely, a positive eco-region effect indicates an underestimation of phenology by

the SPASS model and the other effects. Eco-regions 6 and 8 have similar median eco-region effects, and

so do 3 and 4. Eco-regions 2, 6, and 8 show a negative eco-region effect while 3 and 4 show a positive

effect irrespective of the model case. A comparison of BMM-1 (Fig. 4.10a) with BMM-2a (Fig. 4.10b)

and BMM-2b (Fig. 4.10c) shows that the inclusion of weather effects (BMM-2a) results in a positive

eco-region effect in most regions, while the inclusion of cultivar-ripening group hierarchy (BMM-2b)

results in negative eco-region effects. However, this tendency is not seen when both weather effects and

cultivar-ripening group hierarchy are included in BMM-3 (Fig. 4.10d).

Figure 4.10: Median value of the eco-region effects parameters plotted for the nine eco-regions
across Germany for the Bayesian multi-level models (a) BMM-1 (eco-regions, random year
effects), (b) BMM-2a (eco-regions, weather class, random year effects), (c) BMM-2b (ripening
group-cultivar hierarchy, eco-region, random year effects), and (d) BMM-3 (full model with
cultivar-ripening group hierarchy, eco-regions, weather class, and random year effects). The
numbers indicate the nine eco-regions. (Projection system: DHDN 3 Degree Gauss Zone 3).
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Figure 4.11: Posterior parameter distributions of (a) standard deviation of the likelihood func-
tion (σ) and (b) standard deviation of the random year effects (λ), for the Bayesian models
(BM-0 to BMM-3), expressed in units of phenological development (BBCH).

4.3.5 Residual uncertainty

The standard deviation (σ) of the likelihood function and standard deviation (λ) of the year effect τy,

represent the unresolved and resolved components of residual uncertainty, respectively. Figure 4.11a

shows the posterior parameter distribution of σ from the five Bayesian models. There is a reduction

in unresolved residual uncertainty with increasing model complexity from BMM-0 to BMM-3. A large

reduction is seen on the inclusion of ripening-cultivar hierarchy in BMM-2b and BMM-3. The standard

deviation of the year effect (λ) (Fig. 4.11b) shows an increase from BMM-1, BMM-2a to BMM-2b,

followed by a slight decrease in BMM-3.

4.4 Discussion

The Bayesian multi-level models were able to improve calibration by partitioning some of the residual

uncertainty into those arising from the hierarchical classification of cultivars and differences in eco-

regions, weather conditions and year of growth. As seen in Fig. 4.4, the unresolved residual uncertainty

in simulated phenology was smaller in the full multi-level model case (BMM-3 in Fig. 4.4b) than in

the pooled case (BM-0 in Fig. 4.4a). This was also shown by the reduction in the standard deviation

of the likelihood function (σ) in Fig. 4.11a. Moreover, the multi-level models reduced bias and RMSE

(Fig. 4.5), especially in the cases of BMM-2b and BMM-3. The differences between different cultivars

and ripening groups were taken into account by the hierarchical structure of cultivars nested within

ripening groups in BMM-2b and BMM-3 (Fig. 4.6a). As a result, the uncertainty in simulated phenology

(Fig. 4.4) originating from the process model parameters did not collapse as seen in the pooled case

(BM-0), due to a collapse of the posterior parameter distribution (not shown). The over-confidence in

the parameters of the pooled case can lead to poor predictions (Motavita et al., 2019) because most of

the variability between site-years, which can be attributed to cultivar and ripening group differences,
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are attributed to random noise (σ). The additional inclusion of the weather effects (from BMM-2b to

BMM-3) further improved calibration quality (Fig. 4.6b). The full multi-level model BMM-3 allowed

for a more representative estimate of SPASS model parameter uncertainty. This was seen from the

wider ranges (blue bands) of the resultant simulated phenology in Fig. 4.4b as compared to Fig. 4.4a.

Based on their between-cultivar variability, the posterior distributions of SPASS model parameters

were grouped into: cultivar-specific (high variability) and ripening group-specific (low variability) pa-

rameters (Fig. 4.7). The parameters that exhibited low between-cultivar variability such as tminv, tminr,

and toptr (Fig. 4.D1) define the Temperature Response Function (TRF). In general, cardinal tempera-

tures are expected to be ripening group-specific, while parameters such as pdd1 and pdd2 (Fig. 4.D2),

should be cultivar-specific because they represent traits that would be optimized in different cultivars

by plant breeders (Parent et al., 2018; Zheng et al., 2012; Challinor et al., 2016). Most model pa-

rameters exhibited this expected behaviour, with the exception of toptv. The posterior distribution of

parameter toptv, which influences vegetative development, may not only represent the ripening group-

specific optimum temperature but may have also compensated for a missing cultivar-specific effect. We

assumed no photoperiod effect on vegetative development in the model since this effect is small for

maize grown in temperate regions (van Bussel et al., 2015). Nonetheless, such an effect could exist

and be cultivar-dependent. This missing effect could have been compensated by toptv in the model.

The base temperature for emergence emt also exhibited some between-cultivar variability. This pa-

rameter could have compensated for the effects of some cultivar-specific hard-coded parameters in the

emergence equation (Eq. 4.B1). Furthermore, the ripening group-level distributions of parameter tminv

(Fig. 4.7a) showed that, as expected, early/mid-early ripening groups on average have a lower minimum

temperature requirement for vegetative development than the mid-late/late ripening groups. Over-

all, the match between the behaviour of calibrated parameters and theoretical expectation highlights

the model’s robustness if weather and eco-region effects are also accounted for through the multi-level

modelling approach.

Analyses of the weather effects parameters highlight model deficits related to temperature effects

during reproductive development. Firstly, the non-zero values of the posterior parameter distributions

indicate that weather effects are influential (Fig. 4.8). Also, the narrow posterior distributions as

compared to the prior show that the parameter values are informed by the observations. Furthermore,

there was a high correlation between median weather effects and average reproductive phase temperature

by weather class (Fig. 4.9). These weather effects indicate that the model overestimates phenological

development at higher late summer temperatures and underestimates at lower temperatures. This

trend reduced with the introduction of the cultivar-ripening group hierarchy. Certain cultivars may

have been selected by the farmers based on their performance in the local environmental conditions

such as temperature (Siebert and Ewert, 2012; Parker et al., 2017; Parent et al., 2018). Introducing

the ripening groups as a level in the hierarchy could account for the differences between the groups in

reaching maturity. This differentiation of ripening groups becomes evident in the reproductive phase

of development during the late summer months. In the absence of cultivar-ripening group hierarchy in

BMM-2a, the weather effects captured these differences, as shown in Fig. 4.9a. This has implications
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in cases where ripening group and cultivar information are not available. Regional data sets, such as

those from the state office of agricultural statistics, may not contain information about the cultivars

grown, but information about environmental conditions are usually more readily available. In the

absence of ripening group and cultivar information, accounting for weather effects will still result in

some degree of improvement in model calibration quality. Although weakened in BMM-3, the weather

effect-temperature trend was not completely removed (Fig. 4.9b). This indicates that model deficits

related to temperature effects persist in the reproductive phase. Thus, accounting for weather effects in

addition to the hierarchy in BMM-3 resulted in improved site-year calibration quality in many weather

classes as compared to BMM-2b (Fig. 4.6b). The current TRF in the reproductive phase may not

sufficiently capture the true development behaviour. Different TRFs for maize phenology should be

evaluated using this approach with the aim of identifying a better representation of the underlying

processes.

Analyses of eco-region effects parameters point to model deficits related to soil moisture. Since

eco-region effects were accounted for in all the four multi-level model cases, we first provide a detailed

discussion of the results here. The median values of the eco-region effects exhibited a positive increase

in many regions on the inclusion of weather effects (Fig. 4.10b), and a negative increase on the inclusion

of cultivar-ripening group hierarchy (Fig. 4.10c) as compared to the BMM-1 (Fig. 4.10a). Accounting

for either one of these factors (weather effects or cultivar-ripening group hierarchy) without the other

possibly resulted in the eco-region effects compensating for these missing factors. The neighbouring

eco-regions 6 and 8 (northern Lowlands), and 2 (Rhine plain), as well as 3 and 4 (central Uplands)

exhibited similar trends in eco-region effects, irrespective of the model case. Eco-regions 6 and 8 and eco-

regions 3 and 4 can be further grouped, thus allowing for model simplification. The distinct differences

between the Lowlands, the Rhine plains (negative eco-region effect), and the Uplands (positive eco-

region effect) could be due to distinct climatological or pedological features. The northern Lowlands

are characterized by moraines that have high groundwater levels. The Rhine plain also exhibits higher

groundwater productivity than the central Uplands (Bundesanstalt für Geowissenschaften und Rohstoffe

(BGR), 1993). In the full model (BMM-3), phenological development was overestimated in the northern

Lowlands and Rhine plain, even after the process-model output was corrected for weather and year

effects. This overestimation was then corrected by the negative eco-region effects in these regions.

This could indicate a possible influence of water-logging which slows phenological development and

is not accounted for in the SPASS model. Liu et al. (2021) found that accounting for water-logging

stress on phenology and yield in the APSIM model improved model performance for barley. A similar

consideration in the SPASS model equations may be required to account for this stress. This effect could

also occur because high soil–water content or water-logged soils might lower temperatures within the

crop canopy through the cooling effect of evaporation, changes in albedo at the soil surface, enhanced

soil heat capacity, and heat transport resulting in a heat transfer away from the soil surface. None of

these effects are accounted for in the model. An alternate formulation of the multi-level model that

separately accounts for factors like soil, climate and topography instead of eco-regions is suggested to aid

further investigation. By separating the effects of ecological regions from the process model parameters
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we were able to gain further insights into the model and identify possible model deficits.

As is expected, the unresolved model residual error represented by the standard deviation of the

likelihood function reduced with increasing model complexity. A large reduction was seen due to the

inclusion of the ripening group-cultivar hierarchy. This could have been a consequence of including a

large number of parameters corresponding to 4 ripening groups and 66 cultivars in models BMM-2b and

BMM-3. The other nuisance parameter, the standard deviation of the random year effects, increased

with increasing model complexity from BMM-1, BMM-2a to BMM-2b, followed by a slight reduction

in BMM-3. Accounting for other effects resulted in a better estimation of the random year effects that

were previously attributed to the unresolved residual error.

While Bayesian multi-level modelling improved calibration, we acknowledge the limitations of our

approach in using limited data and excluding input uncertainty. Although the inclusion of only eco-

region, weather and year effects do account for some improvement in model performance (Fig. 4.5),

this was not clearly evident when model performance was analysed by eco-region and weather classes

(Fig. 4.C1). These effects may be convoluted by a possibly stronger effect of cultivar-ripening group

hierarchy, through compensation when it is not explicitly taken into account. Although, more obser-

vation data would help in disentangling the different effects, they may not be available. Additionally,

as noted in this study, using more data is also accompanied by high computation costs, especially for

modelling cases with higher complexity. Importantly, the uncertainty in phenology observations and in

the model inputs like temperature or reported sowing and harvest dates were not considered and could

further confound results. Also, since the observations were made for fixed BBCH stages, we recommend

that the model and likelihood function should be reformulated to represent the uncertainty in the days

rather than phenology stages, for future work.

The resultant posterior distributions from the full model case (BMM-3) facilitate phenology predic-

tions for cultivars, ripening groups and for the maize species grown in different environmental conditions

in Germany. The phenological development of a current cultivar which has been used for calibration,

can be predicted in a different ecological region or weather class. In this case, the posterior parame-

ter distribution of the cultivar can be used to simulate phenology using the SPASS model, while the

corresponding parameters of the ecological region and weather effects can be used to correct the model

simulations for structural deficits. The random year effects and unresolved residuals are added to repre-

sent the total uncertainty in predictions. Furthermore, cultivar-level parameters within a given ripening

group can be used to simulate phenology for new cultivars in that group, while all cultivar-level pa-

rameters can be used to predict phenological development of silage maize grown in Germany in future

scenarios. Although multi-level models are expected to improve prediction quality (Gelman, 2006a),

this may not always occur. Fer et al. (2021) showed that Bayesian hierarchical modelling does not

always lead to best predictions. Instead, it may result in a better representation of prediction uncer-

tainty. This lack of improvement in prediction quality could be attributed to bias–variance trade-off, in

which we introduce more explanatory parameters in the multi-level models at the cost of over-fitting.

Although there is always a danger of over-fitting, we justify the complexity of the multi-level models

since we employed a systematic approach to increase complexity based on system knowledge. While
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assessing prediction quality of the models is important, this is beyond the current scope of gaining a

better understanding of the phenology model and identifying model deficits in its application to regional

studies.

The BMM approach can be used as a diagnostic tool to guide model improvement efforts. For

example, the possible influence of water-logging on phenological development in maize, as hypothesized

from the resultant eco-region effects, emphasizes the need for field experiments to verify and investigate

its impact (Liu et al., 2020). These experiments can then be used to formulate and parameterize

water-logging stress in the process model equations (Liu et al., 2021). Wang et al. (2017a) showed that

improved temperature response functions (TRFs) led to reduced uncertainty in wheat yield projections.

Further studies should focus on comparing the performance of alternate TRFs during reproductive

(post-flowering) development in maize, against experimental data. The BMM approach can also be

applied to process-based crop models, wherein these point-based models can be spatialized (Pasquel

et al., 2022). Additionally, gene-based models can be integrated with crop models to determine more

representative genotype-specific parameters (Wallach et al., 2018; Casadebaig et al., 2020; Oliveira et al.,

2021). BMM can be used to calibrate such models to data from multi-location breeding trails, so that

genotype-dependent parameters and their environmental interactions can be disentangled.

4.5 Conclusions

In this study, we demonstrated that Bayesian multi-level modelling (BMM) is a suitable approach to

account for the hierarchical structure of cultivars nested within ripening groups of a crop species, while

simultaneously providing insights into model deficits related to environmental factors. The pooled

model case (BM-0) led to an over-confidence in the process model parameters and comparatively poor

calibration quality. While accounting for the eco-region and year effects (BMM-1) improved calibra-

tion quality, the eco-region effects possibly compensated for the missing weather effects. Estimating

eco-region, weather, and year effects (BMM-2a) highlighted temperature-related model deficits during

reproductive development. It also showed that in the absence of cultivar-ripening group information,

the weather effects were able to capture their missing effect to some extent. However, accounting for

cultivar-ripening group information (BMM-2b and BMM-3) led to more representative estimates of pa-

rameter uncertainty and clearly improved calibration performance. In the full model case (BMM-3) with

the additional inclusion of the weather effects, the eco-region effects did not compensate for the missing

weather effects (as they did in BMM-2b). Eco-region effects could possibly be linked to water-logging

stress on phenology which is not represented in the process-based model. Furthermore, between-cultivar

variability in posterior parameter distributions matched theoretical expectations, thereby emphasizing

the strength of the full multi-level model. Thus, accounting for the eco-regions, weather and year ef-

fects, and specifically the hierarchical classification of cultivars and maize ripening groups led to better

calibration and representation of parameter uncertainty as compared to the commonly used pooled

approach.
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With our approach, models that have been primarily used for field scale or cultivar-specific studies

can be extended to regional scales. Although we do not explicitly correct the process model equations,

we account for effects of model deficits related to environmental conditions. This approach also high-

lights model deficiencies which can facilitate model improvement. These findings can be used to design

dedicated experiments and data-gathering procedures to support the refinement of model equations.

BMM could also be applied to small-scale studies to account for between-farm and within-farm vari-

ability. BMM is a valuable tool in the Bayesian tool-box that should be implemented in crop model

calibration studies.

4.6 Appendix A. Weather class clustering

The 3004 site-years available for the study, were classified into ten weather classes based on average

temperatures and cumulative precipitation between April and June, and between July and September.

K-means clustering was used to define the weather classes. The K-means algorithm generates clusters

by minimizing within-cluster variance that is based on Euclidean distances (Hartigan and Wong, 1979).

First, the average of the mean daily temperature (Tsy,s) from April to June and from July to September

were calculated for each site-year (sy) as follows:

Tsy,s =
1

Ns

Ns∑
n=1

Tsy,n (4.A1)

where s represents the season from April to June or from July to September, Ns is the total number of

days in that season, and Tsy,n is the mean temperature (°C) on a given day n at site-year sy. Similarly,

cumulative precipitation (Psy,s) was also calculated from April to June, and from July to September as

follows:

Psy,s =

Ns∑
n=1

Psy,n (4.A2)

where Psy,n is the precipitation (mm) on a given day n at site-year sy.

The values for each of the four factors (Tsy,Apr−Jun, Tsy,Jul−Sep, Psy,Apr−Jun, Psy,Jul−Sep) per

site-year were then normalized by scaling the values between 0 and 1.

k̄sy =
ksy − kmin
kmax − kmin

(4.A3)

where ksy represents the factor, k̄sy is its normalized value, and kmin = min(k1, k2, . . . , kSY ) and

kmax = max(k1, k2, . . . , kSY ) are the minimum and maximum values of the particular factor across all

the site-years (SY = 3004), respectively. The kmeans function from the stats package in R was run to

generate ten clusters. To ensure stability of the resultant clusters, 100 starting points were set. The

maximum number of iterations was set to 1000 and 10 clusters were specified to generate 10 weather

classes.
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4.7 Appendix B. SPASS model equations

Phenological development in the SPASS model occurs in three main phases: emergence, vegetative phase

and reproductive phase. The rate of phenological development during emergence or the emergence rate

is a function of sowing-depth (Sdep) in cm and a minimum or base temperature (emt) in °C requirement

only above which emergence occurs. For a particular day d between sowing and harvest, if Td is the

temperature, then the emergence rate Red (d−1) is given by

Red = max

(
0,

0.5× (Td − emt)

15.0 + 6× Sdep

)
(4.B1)

The temperature response function (TRF) defines the phenological development rate during the veg-

etative and reproductive phases, as a function of temperature. Development occurs only between the

minimum (tmin) and maximum (tmax ) temperature defined by the TRF, with maximum development

occurring at the optimum temperature (topt). The TRF is given by

f(Td, tmin, topt, tmax) =


2(Td−tmin)α·(topt−tmin)α−(Td−tmin)2α

(topt−tmin)2α
if tmin ≤ Td ≤ tmax

0 otherwise
(4.B2)

where

α =
ln2

ln

(
tmax−tmin
topt−tmin

) (4.B3)

These cardinal temperatures are expressed in °C and are development phase-specific. Thus, for the

vegetative phase, the development rate Rvd (d−1) is dependent on the phase-specific TRF (fv) (-) and

the maximum development rate (1/pdd1) for the vegetative phase at optimum temperature (d−1). The

TRF scales between 0 and 1 and acts as a reduction factor on the maximum development rate when

the temperature is not at the optimum.

Rvd =
fv(Td, tminv, toptv, tmaxv)

pdd1
(4.B4)

Similarly, for the reproductive phase, if 1/pdd2 (d−1) is the maximum development rate at optimum

temperature and fr (-) is the TRF, then the development rate Rrd (d−1) is given by

Rrd =
fr(Td, tminr, toptr, tmaxr)

pdd2
(4.B5)

The phenological development rate Rd (d−1) at a given day d is given by

Rd =

(1− ψd−1) · Red + (ψd−1) · Rvd if − 0.5 ≤ Sdevd−1 < 1.0

Rrd if 1.0 ≤ Sdevd−1 < 2.0
(4.B6)

where

ψd−1 =
1

1 + e−100(Sdevd−1)
(4.B7)
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In Eq. 4.B6 we introduced a slight modification for the original SPASS model equations (Wang, 1997).

We defined a sigmoid (ψd−1 in Eq. 4.B7) instead of a step function for the transition between emergence

rate and vegetative development rate.

The internal development stage Sdevd is given by

Sdevd =

D∑
d=germ

Rd − 0.5 (4.B8)

where germ is the date of germination or, in this case, date of sowing since germination is assumed to

be instantaneous.

The internal development stages are converted to BBCH stages bbchd by

bbchd =


10× (Sdevd + 1) if Sdevd < 0.0

10× (1 + Sdevd
0.2

) if 0.0 ≤ Sdevd < 1.0

10× (6 + Sdevd−1
0.28

) if 1.0 ≤ Sdevd

(4.B9)

In the R and Jags implementation of the model, phenological development rate is calculated at

time-step of 0.1 day. Air temperatures are first interpolated at this time-step and used as model inputs.

The development rate Eqs. 4.B1, 4.B4 and 4.B5 in units of d−1 are multiplied by 0.1. Phenological

development is calculated from the first time-step of the sowing day to the end on the harvest day.

4.8 Appendix C. Model performance metrics

The model calibration performance represented by the mean RMSE and bias from the 100 site-years

used for calibration (Fig. 4.C1), was analysed by eco-region and year for the five model cases BM-0,

BMM-1, BMM-2a, BMM-2b, BMM-3. Overall, the ripening-cultivar hierarchy in BMM-2b and BMM-3

show a clear improvement in model calibration quality. The inclusion of eco-region and year effects

from BMM-1 onwards, does not show a clear improvement trend across all classes.

4.9 Appendix D. SPASS model parameter distributions

Figures 4.D1 and 4.D2 show posterior distributions of parameters that exhibit low and high between-

cultivar variability, respectively. In general, parameters that exhibit low between-cultivar variability,

correspond to the temperature response function (TRF) in the vegetative and reproductive phases.
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BAYESIAN MULTI-LEVEL MODELLING

Figure 4.D1: Posterior distributions of parameters that exhibit low between-cultivar variability.
Parameters include: minimum and optimum temperatures for development in the reproductive
phase (tminr and toptr, respectively) and minimum temperature for development in the vege-
tative phase (tminv) for the Bayesian full model case BMM-3. The distributions are provided
for the species, ripening group and cultivar levels of the hierarchy. The cultivar distributions
are coloured by their corresponding ripening groups.

Figure 4.D2: Posterior distributions of parameters that exhibit high between-cultivar variability.
Parameters include: phyisiological development days for vegetative (pdd1 ) and generative (pdd2 )
phases, optimum temperature for development in the vegetative phase (toptv), base temperature
for emergence (emt) for the Bayesian full model case BMM-3. The distributions are provided
for the species, ripening group and cultivar levels of the hierarchy. The cultivar distributions
are coloured by their corresponding ripening groups.
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CHAPTER 5

From Bayesian Multiplicative to Additive Calibration

Strategy for More Reliable Predictions - A Demonstration

on Plant Phenology Modelling

Authors: Michelle Viswanathan, Tobias K. D. Weber, Anneli Guthke

Abstract

Bayesian inference of the most plausible parameter values during model calibration is influenced by

the method used to combine likelihood values from different observation data sets. In the traditional

method of combining likelihood values (multiplicative calibration strategy), it is inherently assumed

that the model is true, and that different data sets are similarly informative for the inference prob-

lem. However, practically every model applied to real-world case studies suffers from (misrepresented)

model errors. Forcing an imperfect model to describe all data sets simultaneously inevitably leads to a

compromised solution. As a result, biased and overconfident predictions hinder responsible risk man-

agement and any other prediction-based decisions. To overcome this problem, we recommend to use the

alternative additive calibration strategy that allows the model to fit distinct data sets individually. To

demonstrate the effect of choosing between the traditional multiplicative and the alternative additive

strategy, we present a synthetic and real-world case study of calibrating a plant phenology model to

observations of the maize crop. We demonstrate that the additive strategy results in conservative but

more reliable predictions than the multiplicative strategy when the behaviour of the prediction target

does not represent an average of all data sets. Further, expert knowledge-based data-grouping could be

useful; however, selection of representative calibration data sets is not trivial. We expect the additive

strategy to improve the predictive reliability of imperfect dynamic models in general, by a more real-

istic formulation of the likelihood function instead of assuming a “perfect model setting” in Bayesian

updating.
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5.1 Introduction

Hydrological models for water resources research suffer from diverse sources of uncertainty, such as

sparse and noisy observations of input and output data, limited knowledge of heterogeneously distributed

parameter values, and competing hypotheses about relevant processes at different spatial and temporal

scales (Renard et al., 2010; McMillan et al., 2018). These uncertainties also exist in distributed plant and

crop models, which may be coupled to hydrological models to account for vegetation-water interactions

(Siad et al., 2019). The Bayesian framework allows to quantitatively consider these different sources

of uncertainty during calibration (Bayesian updating), which makes it a popular approach for training

simulation models under uncertainty, e.g. in the fields of rainfall-runoff (Kavetski et al., 2006b; Ajami

et al., 2007), net ecosystem exchange (Weber et al., 2018), and crop modelling (Dumont et al., 2014;

Wöhling et al., 2015; Gao et al., 2021; Viswanathan et al., 2022b).

However, a fundamental assumption that is commonly made when applying Bayes theorem is that

the underlying model structure is true, or when considering several models, that the true model is in

this set. Simplistic assumptions are made regarding model residual errors and their distribution, and

they are often assumed to only arise from uncertainty in observations. This means that with regard to

the example of parameter inference, if the analyzed model is true, Bayesian updating will identify the

true system’s parameter values in the limit of infinite calibration data. In real-world applications, the

assumption of a true model is always violated, because the chosen model will be a coarse abstraction of

the natural system. Model errors may exist due to simplified or erroneous model equations (structural

errors), errors in the model inputs or boundary conditions, etc. In other words, model deficits exist

that are expressed as errors in prediction (Wöhling et al., 2013; Viswanathan et al., 2022b). Several

model deficits with respect to different processes might interact and produce complicated patterns of

model error that depend on simulation period-specific boundary conditions, acting processes, amongst

others (Hsueh et al., 2022). Thus, it is practically impossible to perfectly describe all errors, and

simplistic assumptions about them do not hold true in most real-world applications. Despite the fact

that these assumptions are not fulfilled, they are still made when applying the Bayesian approach

for pragmatic reasons and to maintain simplicity. This typically results in overconfident and biased

parameter estimates and prediction intervals (Brynjarsdóttir and O’Hagan, 2014; Xu and Valocchi,

2015).

One possible strategy to address this problem is to try and account for model error in Bayesian anal-

ysis either within the model structure or by an end-of-pipe statistical model error description (Kuczera

et al., 2006; Del Giudice et al., 2013; Xu and Valocchi, 2015; Makowski, 2017; Reichert et al., 2021).

However, these approaches require sufficiently large data sets for defining suitable error models. These

methods may also incur high computational costs with increasing number of parameters to be estimated,

especially when the underlying process model is already computationally expensive.

As a somewhat ad-hoc solution, it has been proposed to use smaller data sets for Bayesian calibration,

in order to avoid extreme narrowing of the posterior distribution (Motavita et al., 2019). By using less
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data, the assumption of the model being quasi-true is more likely to be met (Hsueh et al., 2022).

Although this is a valid recommendation, it is scientifically unsatisfying to discard information just

because the updating procedure is not adequately tailored to the problem. Along the same lines of using

smaller data sets but maintaining the information of the full data set, we propose to divide the available

data into subsets based on expert knowledge, and then to perform Bayesian calibration individually on

each subset. By doing so, we reduce the degree of violation of the fundamental Bayesian assumption.

Finally, the obtained posterior distributions from all subsets are averaged in an additive unweighted

likelihood combination scheme (Zak et al., 1997), henceforth referred to as the “additive likelihood

approach”. The interpretation of the proposed routine is that the model is required to fit certain

segments of a data set (e.g., a time series period that represents a certain hydrological condition, or one

growing season of a specific crop, etc.), but not several segments of different conditions simultaneously,

i.e., with the same parameter set.

We do not believe that a model is generally able to simultaneously fit various conditions of the natural

system without changing model parameters because of the deficits mentioned above. Instead, model

parameters are forced to compensate for model errors during calibration, leading to biased parameter

distributions with misquantified uncertainties. In the traditional case, parameter sets are estimated

that fit well in a compromise sense to the full data set. This is nearly impossible (and often physically

implausible), and explains the typical collapse of the posterior predictive distribution to very narrow

intervals. In the additive strategy proposed in this study, each sub-period for calibration might favour

its own parameter sets, and these are combined to reflect the model’s struggle to match the observed

data more realistically, given the varying boundary conditions.

In a similar vein, Bayesian hierarchical modeling (BHM) has been applied to increase the model’s

generalizability in such situations (Kuczera et al., 2006; Viswanathan et al., 2022a). In contrast to

the simple unweighted averaging of the additive likelihood approach, BHM requires the specification of

hyperparameters and hyperpriors and a smart adaptation of the sampling scheme, which may sometimes

hinder its application in real-world scenarios.

In contrast to the approach taken by Hsueh et al. (2022), who propose a moving time-window

concept for model error diagnosis in a Bayesian framework, we consider expert-elicited sub-data sets

(not necessarily consecutive in time, could also be data sets from different spatial regions, or different

data types, etc.), and contrast the effects of the traditional Bayesian multiplicative (mult) vs. the

alternative additive (add) calibration strategy in their respective predictive performances. We note

that this type of sub-setting and differential treatment of data groups is archetypal for crop model

calibration strategies (Wöhling et al., 2013), in soil-water (Vrugt et al., 2001) and hydrological models

(Razavi and Tolson, 2013; Motavita et al., 2019). This is handled in the additive strategy through an

alternative method of combining likelihoods within and across data-subsets or groups, thus influencing

the probability of data being generated by the given model and parameter set.

The proposed approach of subdividing the available calibration data in view of varying system con-

ditions and applying the additive calibration scheme in Bayesian updating mitigates known problems

of overconfident and biased posterior distributions, which often spoil probabilistic model predictions
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for practical purposes such as resources management, risk assessment, or climate change impact assess-

ment. The goal of this study is to compare the mathematical formulation of the alternative additive

likelihood approach with the traditional multiplicative likelihood approach in Bayesian updating, and

make modellers aware of how their calibration decisions affect the model performance.

He et al. (2010) have evaluated the impact of different likelihood measures (formal and informal

likelihoods) and combinations on crop model parameter estimation within the GLUE framework (Beven

and Binley, 1992, 2014). Since they generated synthetic data without introducing model errors, the true

model was in the set of possible model outcomes. This is exactly why they found that the multiplicative

strategy performs well in reducing posterior uncertainty the most. The problem emerges when we

consider real-world modelling case studies with imperfect models (Beven et al., 2008), and this is

the challenge we tackle here. We investigate the additive and multiplicative likelihood combination

strategies in the presence of model structural errors. In such real-world conditions, we offer a structured

perspective on how to handle multiple data sets and analyse the effect this has on the resulting posterior.

This choice is relevant both in formal Bayesian approaches and in informal GLUE approaches (Mantovan

and Todini, 2006; Beven et al., 2007). We recommend relying on the Bayesian approach (with formal

likelihoods, as used in this study), because it yields proper probability density functions (PDFs) which

are invaluable for decision-making.

We illustrate the performance of both the traditional multiplicative and the alternative additive

calibration approach on the example of a crop phenology model. Phenology is an important state

variable in crop models. It influences plant biomass, leaf area index (LAI), and yield. Crop models,

in turn, are applied at regional scale for several purposes such as climate impact assessment, yield

projection and food security evaluation as well as for investigating the fate of agrochemicals in the

environment (Chenu et al., 2017). Phenological observations of crops are made during field-visits, and

can be used to calibrate crop models. Phenological development depends on environmental drivers

and does not only differ between crop species (such as maize vs. wheat) but also between cultivars.

Cultivars of a species may be grouped into ripening groups based on similar phenological development

in response to environmental drivers. In regional simulations, where we would like to draw inferences for

the crop species as a whole, it is important to account for uncertainty arising from differences between

ripening groups or cultivars. Since phenology model equations do not account for these differences, this

limitation manifests as structural deficits when these models are applied at regional scales. Ideally, such

an application would be a suitable candidate for BHM (Viswanathan et al., 2022a). However, cultivar

and ripening group information may not be available in regional data sets (Teixeira et al., 2017). Field-

based phenology observations may also be limited and insufficient for estimating all hierarchical model

parameters.

In such a situation, a modeller might decide to proceed with a “pooled” approach by gathering

all available observed data over all ripening groups, combine them into one big data set, and perform

Bayesian calibration on it to obtain a common parameter set - with the goal of preparing the model for

“anything that could happen”. By doing so, the modeller inherently and erroneously assumes that the

model is able to capture differences between cultivars and ripening groups. Unfortunately, this decision
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is tragically wrong, because the outcome is an extremely narrow posterior predictive distribution that

is unlikely to have any (substantial) overlap with what is happening in the real system.

So what has gone wrong? By trying to fit different data sets that reflect diverse system conditions

(ripening groups and also soil conditions, weather inputs, etc.), the model struggles to the extent that

numerical sampling might simply fail to find a single parameter set that can predict the full data set

with acceptable accuracy. The traditional multiplicative likelihood-based Bayesian updating routine will

then yield a collapse of the posterior ensemble. So instead of adequately representing the uncertainty

about the ripening group to be predicted, the modeller has posed an impossible task. The model will

become unusable because its predictions have collapsed to a best-compromise solution with possibly no

physical interpretation and practically no uncertainty left in the model parameters, which in reality are

still quite uncertain.

We will first theoretically demonstrate that the multiplication of likelihoods is the source of this

problem and show how such a multi-data set calibration task may be framed mathematically with the

more appropriate additive calibration scheme. Then, we demonstrate the differences between both ap-

proaches in a synthetic and real-world case study. With the synthetic case study, we generate synthetic

data and introduce model structural errors to demonstrate general properties of the additive calibration

strategy. In the real-world case study we investigate the performance of the two strategies in low data

conditions (field-based observations) and low information (no cultivar or ripening group information)

scenarios which are common limitations, as highlighted earlier. We calibrate a plant phenology model

using the traditional multiplicative and the alternative additive approaches. We use phenology observa-

tions of silage maize which was grown in two regions in southwestern Germany between 2009 and 2016

(Weber et al., 2022). During this time period, different cultivars of silage maize belonging to different

ripening groups were grown in different environmental conditions. Furthermore, as in the case of most

environmental models, the phenology model is known to contain model deficits. By investigating differ-

ent combinations of calibration data sets and prediction targets in a real-world case study with known

model deficits, we will derive recommendations on when the traditional multiplicative strategy should

be applied and when the additive strategy is more appropriate for reliable predictions.

This article is structured as follows: We start by recalling Bayesian updating in Section 5.2.1 and the

reasoning behind the traditional multiplicative Bayesian likelihood formulation in Section 5.2.2. Then,

we present the alternative additive strategy based on predefined subsets of calibration data in Section

5.2.3. We explain the skill score used to compare both approaches in Section 5.2.4. Section 5.3 features

the phenology modelling in synthetic and real-world case studies. Results of the calibration strategies

are discussed in Section 5.4. General conclusions and an outlook towards further potential adaptations

of our proposed approach are given in Section 5.5.
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5.2 Bayesian Model Calibration

5.2.1 Bayesian Updating

Model calibration via Bayesian updating defines the posterior probability p (θ|M,yo) of a parameter set

θ given a specific model structure M as the product of its prior p (θ|M) and the likelihood p (yo|M,θ)

to have produced the observed data yo:

p (θ|M,yo) =
p (yo|M,θ) p (θ|M)

p (yo|M)
(5.1)

For the sake of brevity, we omit the notation (·|M) (conditional on model M) from now on, since we

are not concerned with comparing the calibration of competing models, but with comparing alternative

calibration strategies to condition one individual model.

The data used for Bayesian updating, yo, typically comprises either all available data, or the fraction

of it devoted to calibration when the remaining fraction is withheld for validation and/or testing. We

will denote the calibration data set length with No. Through the likelihood function, the goodness-of-fit

between model predictions as a function of model parameters, y = f(θ), and observed data yo is assessed

and used to identify the most-likely regions of the parameter space. The strength of the calibration

effect depends on the exact formulation of the likelihood function. We note that the informativeness

of the prior may also play an important role, but is not investigated here. We focus on the specific

question of how data sets of different types (be it different seasons, different hydrological conditions,

different observed state variables, etc.) can be combined into a formal likelihood function.

5.2.2 Likelihood Formulation in the Traditional Multiplicative Cali-

bration Scheme

Traditionally, a joint likelihood for all data points is formulated. If we assume measurement errors to be

independent, the likelihood simplifies to the product of univariate likelihood functions - an assumption

frequently made in environmental modelling:

p (yo|θ)mult =

No∏
j=1

p
(
yo,j |θ

)
(5.2)

Equation 5.2 implies that the calibration requires each individual parameter set to fit data yo,1 and

data yo,2 and data yo,3, and so on. If even one of the data points has a very low likelihood, the overall

product of likelihoods will be very low, and in the extreme case will be zero. This also becomes obvious

from the equivalence of the product of likelihoods with the sum of the log-likelihoods. The logarithm

places a large importance on small values, so the overall likelihood will be dominated by badly predicted

individual data points. This reveals the difficulty of achieving high (not close-to-zero) likelihoods for

large data sets that cover different conditions/states of a natural system with an imperfect model.

In the context of numerical evaluation, this means that we seek individual parameter sets that fit all
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data points sufficiently well - a very small number of random samples will prove to be “good enough” in

the usually quite vast parameter space of the model. More precisely, the overlap of the extremely sharp

posterior with the typically rather wide prior is so small, that numerical sampling schemes are pushed to

their limits. This difficulty exists no matter which numerical method is used, but of course the methods

differ in accuracy and efficiency. Popular approaches are Monte Carlo simulations with different types of

sampling schemes, such as posterior sampling (Markov chain Monte Carlo, see e.g. Hastings (1970)), or

prior sampling (brute-force Monte Carlo, see e.g. Schöniger et al. (2014)). It is important to point out

that the problem of inefficient search for the high-likelihood region of the model increases with larger

model errors. In other words, the inability of the model to fit all data types simultaneously and/or

larger data sets increases concomitantly, simply because the chance to achieve a high likelihood at each

data point decreases.

5.2.3 Likelihood Formulation in the Additive Calibration Scheme

Instead of the traditional multiplicative calibration scheme that rests on a joint likelihood formulation

for all data points, we propose to subdivide the calibration data set into meaningful subsets and combine

their likelihoods by addition. Mathematically this is achieved by combining likelihoods within subsets

using a product (traditional multiplicative scheme), and across subsets using a sum. With Ns subsets

of data and each subset being denoted by s, containing Nd data points:

p (yo|θ)add =

Ns∑
s=1

Nd∏
j=1

p
(
yo,js |θ

)
(5.3)

Through the sum over all data groups, a parameter sample will score a high likelihood if it fits one

data group extremely well, or many data groups sufficiently well. Badly predicted values will reduce the

score, but not to the extreme extent as in the traditional mult scheme. Additionally, if any likelihood

p
(
yo,js |θ

)
= 0, the combined likelihood p (yo|θ)add does not necessarily equal zero, as it would in case

of p (yo|θ)mult.

Selecting an ideal length of the subsets can be a challenge - the periods should be long enough to

achieve a “healthy” calibration effect by constraining parameter values and reducing uncertainty, but

short enough (time-wise) or specific enough (data type-wise) to assume constant system conditions for

the model to simulate (see the related discussion of Hsueh et al. (2022) on the choice of an optimal

window length for time-windowed Bayesian model error analysis).

The data subsets may be motivated by expert knowledge, for example. It may be possible to define

subsets of the available calibration data based on very similar system conditions. These subsets could

be used to group calibration data such that the model should be able to fit all groups equally well with

the same parameter sets. Other groupings may reflect different system states. Acknowledging that

parameters tend to compensate for model errors, we should aim to identify parameter sets that fit at

least either one of the different data groups.

100



ADDITIVE CALIBRATION STRATEGY

5.2.4 Skill Score Used to Evaluate Predictive Performance

Our goal is to achieve a more realistic estimate of uncertainty in predictions that are informed by a

combination of various data sets. Hence, we are interested in how well future data points are covered

by the posterior predictive distribution. This information is quantified by the predictive density of the

data. We use the predictive log-score (PLS) (Good, 1952) to multiply the densities of all Nt target data

points, or equivalently, sum over their log-densities:

PLS =

Nt∑
j=1

log p(yt,j |θ,yo) (5.4)

Note, that we do not specify how the calibration on yo was performed (multiplicative vs. additive),

because this skill score evaluates the performance on the validation (target) data set independent from

the chosen method for calibration.

While using this skill score seems similar to using a multiplicative scheme for performance evaluation,

there is a fundamental difference: at each data point, the full predictive distribution is taken into

account, which means that different parameter sets can be the best ones for different data points. In

contrast, in the multiplicative calibration case, individual parameter sets are required to fit all data

points simultaneously.

We choose the PLS because it is an adequate measure to rank the quality of the predictive distri-

butions in our application (see Section 5.3); however, our proposed calibration scheme is independent

of the chosen metric such that modellers could decide to use other skill scores to reflect their individual

modelling goals.

5.3 Demonstration in a Crop Phenology Modelling Case

Study

5.3.1 Motivation and Goals

We applied and compared the traditional multiplicative calibration strategy with the alternate additive

strategy on a case study of crop phenology modelling. Phenology defines the timing of plant devel-

opmental stages like emergence, stem elongation, flowering, development of fruit, and senescence. It

is controlled by environmental factors such as temperature, photoperiod, water availability, and also

depends on intrinsic plant characteristics (Zhao et al., 2013).

As mentioned earlier, the influence of these environmental factors on phenological development is not

only species-specific (for example, difference between the species of maize and wheat), but also differs

between ripening groups and cultivars of the same species. This can be modelled using equations with

ripening group- or cultivar-specific parameters. However, for regional-scale modelling studies, where

cultivars belonging to different ripening groups of a crop species are grown, it may be necessary to

determine a common parameter estimate for the species, in order to predict future production.
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Since these models are usually not error-free, because not all environmental interactions are ad-

equately taken into account in the model equations, estimating common parameter sets for different

ripening groups grown in different environments with the traditional multiplicative calibration strategy

results in a compromised solution that may not always lead to reliable predictions (Viswanathan et al.,

2022b).

The alternative additive calibration strategy has the potential to improve predictions by relaxing the

model’s prediction intervals and allowing the model to fit each predefined subset of data, individually.

To assess the prediction performance with the additive calibration strategy, we used both strategies to

calibrate a silage maize phenology model, to phenology observations made in southwestern Germany

between 2010 and 2016. We compared the calibrated model’s prediction performance from the two

strategies using the predictive log-score (PLS) (Section 5.2.4).

5.3.2 Data

The data used for the study consist of phenology observations and temperature measurements from

three field sites (site 1, site 2, site 3) in Kraichgau and two field sites (site 5 and site 6) on the Swabian

Alb, taken between 2010 and 2016 (Weber et al., 2022). At each study site and year combination (called

“site-year” in the following sections), phenological development stages were observed in five subplots

where ten maize plants in each sub-plot were monitored. The BBCH growth stage code (Meier, 2018)

was used to define the development stages.

We calculated arithmetic means of the ten replicates in the five subplots (5 × 10) for every day of

observation. These mean observations were used in model calibration yos = {yo,1s , yo,2s ...y
o,Nd
s }. The

total observation uncertainty δds was calculated as detailed in Viswanathan et al. (2022b) for a site-year

s on a given day of observation d. It was assumed to represent both the uncertainty in identification of

the correct phenological development stages and the spatial variability within the field.

The cultivars grown at the study sites belong to early (E), mid-early (ME), and late (L) ripening

groups. Ripening groups indicate differences in the timing required by the maize cultivars in reaching

maturity, for example: the early ripening cultivars mature the earliest, followed by the mid-early and

then the late ones. Data from 11 site-years were used for the study (Table 5.1). Based on the average of

daily temperatures between 40 and 100 days after sowing, which is the approximate time during which

vegetative development (phenological development between emergence and flowering) occurs, the site-

years were grouped into three temperature classes: (1) low (≤15.4◦C), (2) mid (>15.4◦C and ≥16.6◦C),

and (3) high (>16.6◦C). For example, site-years 3-2011 and 6-2010 are in the mid temperature class and

thus maize crops grown there experienced similar average temperatures (15.4-16.6 ◦C) between 40-100

days after sowing.
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Table 5.1: Site-years used in the case study with ripening groups of silage maize and temperature
class.

Region site-year site year ripening group temperature class

Kraichgau 3-2011 3 2011 late (2) mid

Kraichgau 2-2012 2 2012 late (3) high

Kraichgau 1-2014 1 2014 mid-early (3) high

Kraichgau 2-2014 2 2014 mid-early (3) high

Swabian Alb 6-2010 6 2010 mid-early (2) mid

Swabian Alb 5-2011 5 2011 mid-early (1) low

Swabian Alb 5-2012 5 2012 early (2) mid

Swabian Alb 6-2013 6 2013 mid-early (3) high

Swabian Alb 5-2015 5 2015 early (3) high

Swabian Alb 5-2016 5 2016 early (2) mid

Swabian Alb 6-2016 6 2016 mid-early (2) mid

5.3.3 Model

The SPASS crop growth model (Wang, 1997) has been part of the Agricultural Model Intercomparison

and Improvement Project (AgMIP) (Bassu et al., 2014; Durand et al., 2018; Falconnier et al., 2020;

Kimball et al., 2019; Wallach et al., 2021a,b) and has been among the well-performing models. It is

implemented in the Expert-N 5.0 (XN5) software package (Heinlein et al., 2017; Klein et al., 2017;

Priesack, 2006). In this study, we implemented the SPASS phenology sub-model in the R programming

language (R Core Team, 2020) and used it to simulate phenological development of silage maize grown

at the 11 site-years.

The SPASS phenology model contains 12 parameters, of which 6 were estimated while the remaining

were fixed at their default values (Table 4.2). We modelled three main development phases, emergence

(up to BBCH 10), vegetative (between BBCH 10 and 61) and reproductive (BBCH 61 onwards). Emer-

gence is a function of the sowing depth (sowdepth) and a certain minimum or base temperature require-

ment (emt). The development rate during the vegetative and reproductive phases are dependent on

the number of physiological development days at optimum temperature (pdd1 and pdd2, respectively)

and on the Temperature Response Function (TRF). The TRF is defined by phase-specific minimum

(tminv, tminr), optimum (toptv, toptr), and maximum (tmaxv, tmaxr) cardinal temperatures for the

vegetative and reproductive phases, respectively. The values of the TRF lie between 0 and 1, with the

highest development rate occurring at optimum temperature. The internal development stages are a

cumulative sum of development rates during the three main phases. Finally, the internal development

stages in SPASS are converted to BBCH stages based on conversion relationships (for details please see

Appendix A: SPASS Phenology Model in R).
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The six model parameters estimated during calibration were: effective sowing depth (sowdepth),

physiological development days at optimum temperature (pdd1, pdd2 ), the optimum temperatures

(toptv = tmaxv− dtoptv, toptr = tmaxr− dtoptr) for respective vegetative and reproductive phases, and

the BBCH stage corresponding to the internal development stage of 0.4 (convert). The remaining pa-

rameters were fixed at their default values: tminv = 6◦C, tmaxv = 44◦C, tminr = 8◦C, tmaxr = 44◦C,

pdl = 0 (photoperiod sensitivity).

Table 5.2: Ranges for the estimated SPASS model parameters used to define weakly informative
prior distributions.

Parameter Description Unit Mean SD Min Max

pdd1 physiological development

days - vegetative phase day 45 7 15 70

pdd2 physiological development

days - reproductive phase day 36 8.75 5 70

dtoptv Difference between

maximum and optimum

temperature - vegetative phase ◦C 10 1.5 5 20

dtoptr Difference between

maximum and optimum

temperature - reproductive phase ◦C 10 1.5 5 20

convert equivalent bbch stage

for 0.4 internal phenology stage BBCH 30 7.5 11 59

sowdepth effective

sowing depth cm 8 2.5 1 20

5.3.4 Calibration Schemes in the Context of Site-Years

Let θ represent the vector of uncertain model parameters and yos represent the vector of observations

yo,1s , yo,2s , . . . , y
o,Nd
s at Nd days for the sth site-year. The probability of θ given the observations yos as

per Bayes theorem is

p(θ|yos )mult =
p(θ) ·

∏Nd
d=1 p(y

o,d
s |θ)∫

p(θ) ·
∏Nd
d=1 p(y

o,d
s |θ)dθ

(5.5)

where p(θ) is the prior probability of the parameter vector and p(yo,ds |θ) represents the likelihood of

observing one data point yo,ds , given the parameter set θ. By multiplying the individual likelihoods,∏Nd
d=1 p(y

o,d
s |θ), we assume that the observations are independent from each other (no correlation in

measurement errors over time), and we require the model and its parameter vector to fit the whole

time-series simultaneously (traditional multiplicative strategy). This seems justifiable for observations

made within a site-year since a single cultivar is grown within a field site in a given year. Therefore,
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the parameters of the model, which are based on plant characteristics, are not expected to vary within

a single growing season.

Since data from Ns site-years are available (No = Ns × Nd), we wish to calibrate our model on

this collection of data sets, by following the general modeller intuition of “using all information we

have”. For testing and evaluation purposes, we keep one site-year for validation and exclude it from the

calibration data. To avoid artefacts in our conclusions stemming from distinct site-year characteristics,

we systematically investigate predictive skill for all Ns site-years when calibrating on the data from the

remaining Ns − 1 site-years (leave-one-site-year-out cross-validation).

The maize crop exhibits differences in phenological development between different ripening groups

(Oluwaranti et al., 2015) as well as between cultivars (Gao et al., 2020) within these ripening groups.

Furthermore, these cultivars also exhibit differences in development as a function of the environment

(Lamsal et al., 2018). Ideally, models are expected to capture these environmental dependencies so

as to make them transferable to new environments. However, cultivar-specific parameters are often

found to vary with environmental conditions (Ceglar et al., 2011), indicating possible model structural

limitations in capturing these environmental interactions. When a common parameter set is estimated

for such a model by using all the site-years for calibration, irrespective of ripening group, cultivar or

environmental conditions during growth, the resultant parameter set is a compromised solution. This

corresponds to the traditional multiplicative strategy.

With the case study-specific notation introduced here, the posterior probability of the parameters

in the mult case is given by

p(θ|yo1:Ns−1)mult =
p(θ) ·

∏Ns−1
s=1

∏Nd
d=1 p(y

o,d
s |θ)∫

p(θ) ·
∏Ns−1
s=1

∏Nd
d=1 p(y

o,d
s |θ)dθ

(5.6)

The alternative add strategy, which allows the model to fit data sets from each individual site-year,

would account for the differences between data sets arising from distinct ripening groups, cultivars,

and environmental conditions. In this sense, it would make use of all information in the observations.

The differences between the site-years are translated into wider posterior parameter distributions. As

the posterior parameter distributions then better reflect the variable characteristics of the calibration

site-years, it increases the probability of reliably predicting a new target site-year.

In this add case, the posterior probability of the parameters is given by

p(θ|yo1:Ns−1)add =

p(θ) ·
∑Ns−1
s=1

∏Nd
d=1

p(yo,ds |θ)∫ ∏Nd
d=1

p(y
o,d
s |θ)dθ∫

p(θ) ·
∑Ns−1
s=1

∏Nd
d=1

p(y
o,d
s |θ)∫ ∏Nd

d=1
p(y

o,d
s |θ)dθ

dθ

(5.7)

Note the subtle difference between Eqs. 5.6 and 5.7: in Eq. 5.6 a double product is used, while Eq.

5.7 combines the data within one site-year using a product as per the traditional joint likelihood formu-

lation, but the likelihoods of multiple site-years are summed up (add). In principle, the multiplicative

combination within a single site-year across different development phases (emergence, vegetative and

reproductive) could be questioned and data points could be regrouped based on development phases.
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This would require a detailed insight into model structural errors as a function of plant growth which

is beyond the scope of this study.

The posterior predictive distribution, that is, the probability of observing yoNs given the observations

from the Ns − 1 site-years is expressed as

p(yoNs |y
o
1:Ns−1) =

∫
p(yoNs |θ) · p(θ|yo1:Ns−1)dθ, (5.8)

with the posterior parameter distributions p(θ|yo1:Ns−1) obtained from either the mult (Eq. 5.6) or

the add case (Eq. 5.7).

5.3.5 Test Case Scenarios

We applied the add and the mult calibration strategies in a synthetic and a real-world case study.

5.3.5.1 Synthetic Case Study

We developed a synthetic case study for an intuitive visual comparison of the resultant posterior pa-

rameter distributions in the two strategies and for demonstrating properties of the add strategy. In the

synthetic case study, we calibrated the phenology model to synthetic data sets representing different

cultivars. For our illustrative example, only two model parameters (toptv and toptr) were estimated

during model calibration, while the other parameters were assumed to be known and fixed. Six syn-

thetic data sets were generated using the SPASS model, based on predefined values of toptv and toptr,

representing differences that could exist between cultivars. Since the phenology model equations are not

able to account for between-cultivar differences, this limitation is considered to be a representation of

model structural error. For simplicity, the six cultivars were assumed to be grown at the same site 6 in

the year 2010, i.e. the same environmental conditions. For each of the six synthetic cultivars, phenology

observations were made 60, 120, 150, and 180 days after sowing. A measurement uncertainty of 3 BBCH

standard deviation was assumed and this random error was added to the simulated phenology from the

model to generate the synthetic observations.

The phenology model was calibrated to three cultivars using the two strategies, while the remaining

three cultivars were used for validation. To demonstrate the general properties of the additive calibra-

tion strategy and to contrast it with those of the multiplicative strategy, we defined four prediction

scenarios by reinterpreting the M-settings defined by Höge et al. (2020) in terms of parameter space

and calibration-prediction scenarios. The four scenarios represent different degrees to which the predic-

tion data set is from the same population (Wallach et al., 2021a) as the calibration data sets. In each

of the four scenarios, we compared the prediction quality on using the two calibration strategies. In

Figure 5.1, each box represents the parameter space formed by the two estimated model parameters as

the axes. The ovals represent a projection of the posterior parameter distributions if the model were

calibrated to each cultivar individually using the traditional multiplicative strategy (Eq. 5.5). The blue

ovals represent the three cultivars used for calibration and green are those used for prediction in the
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four M-settings. In the M-closed setting, the prediction site-year has exactly the same cultivar grown

as one of the site-years in the calibration data set. In this scenario the same cultivar A that is in our

calibration data set is predicted. In the Quasi-M-closed setting, the prediction target (cultivar D) is

somewhat similar to one of the cultivars (cultivar C) in the calibration data set. This is indicated by

the overlap between the ovals which represent their posterior distributions when the model is calibrated

individually to them. In the M-complete setting, the prediction target (cultivar E) represents an average

behaviour of all the cultivars in the calibration data set since it lies in-between the three calibration

cultivars. In the M-open setting the prediction target (cultivar F) is not well represented by members

of the calibration data set since it lies away from any of the calibration cultivars.

Figure 5.1: Prediction scenarios based on M-settings (Höge et al., 2020). The grey box rep-
resents the model parameter space formed by the estimated parameters. It spans the same
parameter space in each of the four scenarios with the ovals representing the posterior param-
eter distribution on calibration to individual cultivars. Labels in the ovals indicate the cultivar
names. Blue represents the cultivars used for calibration (cultivars A, B, and C) while green
the prediction targets (cultivars A, D, E, and F).

5.3.5.2 Real-World Case Study

In this case study, we compared the mult and add calibration strategies in predicting phenology at all 11

site-years (Table 5.1). For each prediction target site-year, the SPASS phenology model was calibrated

to the 10 remaining site-years (leave-one-site-year-out). In this low information scenario, we were blind

to the information about the ripening groups and temperature classes provided in Table 5.1 during

calibration. We also tested a high information scenario, in which we used this additional information

to select a subset of site-years for calibration and defined data-groups where likelihoods from site-years

within the same group were combined using a product and across groups using a sum. The test case

scenarios in the real-world case study are summarized in Fig. 5.2.

In the low information scenario, likelihood values from the calibration site-years were combined

using Eq. 5.6 for the mult strategy. In the add calibration strategy, likelihood values of data-points

within each site-year were combined by a product while likelihoods across site-years were combined

by a sum as shown in Eq. 5.7. For the high information scenario, we subdivided the data based on
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knowledge about the model’s performance. A previous study (Viswanathan et al., 2022b) showed that

the SPASS phenology model was able to predict better when the prediction site-years had the same

average temperature during vegetative development as the calibration site-year. Therefore, in the high

information scenario, only site-years which were from the same vegetative temperature class (Table 5.1)

as the prediction target site-year were used for calibration with the mult and add strategies. Knowledge

about the cropping system was then used in the add scheme to define the likelihood combination strategy.

Cultivars from the same ripening group are expected to exhibit similarities in phenological development.

Therefore, likelihoods from the same ripening group were combined by a product and across ripening

groups by a sum (Eq. 5.7). For example, in the high information scenario prediction of site-year

6-2013, only site-years in the same temperature class 3 (high average temperature during vegetative

development) as the target, namely 5-2015, 1-2014, 2-2014, and 2-2012 were used for calibration. For

the mult strategy, the likelihoods of all data points within this selection of site-years were combined

by a product (Eq. 5.6), while in the add strategy, likelihoods from site-years 1-2014 and 2-2014 in the

mid-early ripening group were combined using a product. This was then combined with the likelihood

from 2-2012 in the late ripening group and the likelihood from 5-2015 in the early ripening group using

a sum. Note, that there is no test case for predicting 5-2011 in the high information scenario as there

were no other site-years from the same temperature class.

Figure 5.2: The low and high information scenarios, on which the multiplicative and additive
calibration strategies were demonstrated. For each case represented by a vertical column, the
prediction target site-year is marked in red while the site-years used for calibration are marked
in blue. In the low information scenarios, ripening group and temperature class information
was not considered for calibration and all remaining site-years except the prediction target were
used. For the high information scenario, where ripening group and temperature class information
was used to select site-years for calibration and to define data-groups, site-years excluded from
calibration are in grey, while those site-years that were used for calibration are labeled with
their respective ripening group (E = early, ME = mid-early, L = late) and temperature class
(1 = low, 2 = mid, 3 = high). All likelihoods from site-years with the same label belonged to
the same ripening group and were combined by a product in the additive strategy. Likelihoods
across ripening groups were combined by a sum in this strategy.
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5.3.6 Numerical Implementation

Since different versions of likelihood formulation are straightforward to implement in brute-force Monte

Carlo sampling, we chose this numerical approach to obtain posterior parameter distributions. Alter-

natively, we could have used, e.g., an MCMC method, but would have had to rerun the MCMC for

each prediction scenario, since the objective function changes with the considered calibration data sets.

This would have caused a tremendous computational effort. For Monte Carlo sampling, in contrast, the

effort was in creating the prior ensemble once, while likelihoods for different test case scenarios were

obtained in the form of less-expensive post-processing.

The Monte Carlo ensemble consists ofNMC = 511, 000 samples of the six parameters θ = {φ1, φ2..., φ6}.

Maize phenology is simulated as a function of each parameter realization, f(θi), i = 1 . . . NMC , for

Ns = 11 site-years. A weakly informative parameter prior p(θ), defined by a platykurtic distribution,

is prescribed (details can be found in Appendix B: Prior Distribution).

Considering the shape of the likelihood function, we assumed that the residuals followed a nor-

mal distribution with a fixed standard deviation σds =
√
δds

2 + ω2 where δds is a combined measure

for the uncertainty in the measurement stemming from the observation process of BBCH and spatial

heterogeneity in the field. The additional variance of ω2 = 4 represents a lumped model error term.

p(yo,ds |θ) =
1

σds
√

2π
exp

(
− yo,ds − f(θ)ds

2σds

)2

(5.9)

The Effective Sample Size (ESS, Liu (2008)) was estimated to ensure that a large enough number

of ensemble members contribute to posterior statistics.

In our low information scenario, the ESS values range from < 10 for the mult strategy to 2,000 <

ESS < 4,000 for the add strategy with Ns − 1 calibration site-years. The ESS starts to drop below 20

in the mult strategy after using four or more site-years for calibration. This demonstrates the ensemble

collapse that is often observed in Bayesian calibration on large data sets that contain a lot of non-

redundant information. In contrast, the ESS values in the add calibration strategy show that this is

not a problem in our proposed approach because the sampling method does not have to struggle as

hard to find suitable parameter values. While ESS values for the mult strategy would undoubtedly

improve with a better sampling algorithm, we still report these results here to highlight the unrealistic

peakedness of the posterior distribution.

In the high information scenario in which only a selected subset of site-years is used for calibration,

the ESS values for the add strategy range between 200 < ESS < 1,500. Here, the sampling problem is

mitigated due to both, data set selection as well as ripening group based data-groups in the add strategy.

For comparison, the mult strategy in the high information scenario yielded ESS ranging between 50

< ESS < 200. As a reference for these values, when the model was only calibrated to data from the

prediction target site-year, the range of ESS is 500 < ESS < 2,000 (900 on average).
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5.4 Results and Discussion

We first present the results of the synthetic case study, followed by the real-world case study and discuss

conditions in which the add or mult strategy results in better prediction.

5.4.1 Synthetic Case Study

Figure 5.3 shows the posterior parameter distributions of the two parameters (toptv and toptr) in the

synthetic case study. The parameter space is defined by the margins of the box. Here we see a striking

difference between the additive and multiplicative calibration strategies. Figure 5.3a shows the posterior

distribution when the model is calibrated separately to each of the three calibration cultivars A, B,

and C. Figures 5.3b and c show the posterior distribution in the add and mult calibration strategies,

respectively. The posterior distribution is wider and multi-modal in the add case since the parameter

uncertainty accounts for the differences in the individual cultivars. In the mult case, the posterior

distribution has collapsed and has resulted in a compromised solution that is not representative of any

single one of the cultivars considered for calibration.

Figure 5.4a shows the posterior parameter distribution if the model were calibrated separately to

each of the prediction target cultivars in the respective M-setting. Figure 5.4b shows the prediction

results from the mult and add calibration strategies. The predictive log scores (PLS) for the four M-

setting scenarios are provided in the Fig. 5.5. The M-closed (cultivar A) and Quasi-M-closed (cultivar D)

cases show that the mult strategy performs poorly even in predicting a cultivar that is well-represented

in the calibration data set (Fig. 5.4). This can also be seen from the lower PLS values (Fig. 5.5) for the

mult strategy in predicting all calibration cultivars A, B, and C (M-closed setting). In the Quasi-M-

closed setting, the mult strategy resulted in overestimated phenological development in the later part of

the growing season. However, these observations are captured within the wider prediction intervals of

the add strategy. In the M-complete setting, the mult strategy is able to capture observed phenological

behaviour. It performs almost as well as the add strategy (note similar PLS values in Fig. 5.5) when

the prediction target represents this average behaviour as in the M-complete case. In fact, it has the

potential to perform even better than the add strategy by reducing variance in cases where the bias is

already low. The M-open case highlights the problem of representativeness of the calibration data set,

where none of the approaches can perform well. From the predictive-log-scores (PLS) (Fig. 5.5) we see

that the add strategy performs better than the mult in all M-setting scenarios of our synthetic example.
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Figure 5.3: Posterior parameter distributions of the two parameters (toptv and toptr) within
the uniform prior parameter space defined by the margins of the box. (a) Posterior distribution
when the model is calibrated individually to each of three cultivars A, B, and C. Posterior
distribution in the (b) additive and (c) multiplicative calibration strategies. The axes of all the
graphs are at the same scale for ease of comparison. The colours indicate probability density
and have been re-scaled to the minimum and maximum values in each sub-plot. Yellow and red
colours indicate higher probabilities.

Figure 5.4: a) Posterior parameter distributions if the model were calibrated separately to each
of the prediction target cultivars in the four different M-settings, i.e. cultivars A, D, E, and
F. (b) Prediction results from the multiplicative and additive calibration strategies. The red
points represent the mean of the observed phenology while the error bars represent two standard
deviations of observation uncertainty. The coloured bands represent the different percentiles of
simulated phenology (1 SD, 5-95, 1-99) using the SPASS phenology model, consisting of model
parameter uncertainty only.
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Figure 5.5: The predictive log-score (PLS) for calibration and prediction results for M-settings
in the synthetic case study. The predictions in the mult and add strategies were made after
calibrating the model to cultivars A, B, and C. The calibration result in which the model was
calibrated to the prediction target cultivar is also provided as reference.

5.4.2 Real-World Case Study

For the purpose of discussion, we present selected real-world case study results of the low informa-

tion scenario. Mult and add strategy results are shown for predictions of the early cultivar at 5-2012

(Fig. 5.6a), the mid-early cultivar at 6-2010 (Fig. 5.6b), and the late cultivar at 3-2011 (Fig. 5.6c). We

also present the results in the high information scenario for prediction of site-years 2-2014 (Fig. 5.7a)

and 6-2016 (Fig. 5.7b). The PLS of all other investigated cases are summarized in Fig. 5.C1 in Appendix

C: Predictive Log-Score (PLS): Real-World Case Study.

As a reference, we also show calibration results for the prediction target site-year, where the model

was calibrated to the data set from this target site-year alone. This can be understood as an idealized

case, because we use exactly the data to be predicted for constraining the model’s parameter distribu-

tions. Hence, prediction intervals should be tight around the data values. When calibrating on other

site-years (realistic case), we would expect an inferior prediction performance, and wish to identify the

calibration strategy that brings prediction intervals as close to the target data as possible.

For the high information scenario, apart from the mult (MULT) and add (ADD) cases as described in

section 5.3, we additionally present results from the ADD sy case in which data-groups of the selected

subset of site-years were only based on site-year information, while ripening group information was

ignored (i.e. only selected subset of site-years where used where likelihood values within a site-year were

combined by multiplication while those across site-years by a sum). The motivation is to understand

whether simply excluding site-years with a different temperature class than that of the prediction

target is beneficial, and to what extent the additional ripening group information can further improve

performance. The mult and add strategies using Ns − 1 site-years are also provided for reference, and

112



ADDITIVE CALIBRATION STRATEGY

are labeled as MULT all and ADD all, respectively.

5.4.2.1 The Additive Strategy is Conservative but Reliable

For all three target site-years shown in Fig. 5.6, the idealized case of calibrating on the target site-

year only (first column in Fig. 5.6) yields accurate mean predictions and tight credible intervals, with

observation uncertainty being partly larger than model parameter and model error uncertainty.

The traditional MULT all calibration strategy (second column), however, performs very differently,

depending on the analysed target site-year. For site-year 5-2012 (Fig. 5.6a), the prediction interval in the

MULT all case is even narrower than the calibration reference, and fails to cover many observations in the

later phenological development stages. This result clearly demonstrates that combining large data sets

representing different system conditions (here: different sites, cultivars, temperature classes, etc.) via a

joint likelihood function leads to overconfident and biased predictions. Hence, the traditional approach

of using all available site-years, and thereby assuming that maize has similar phenological development

irrespective of differences in ripening group and environmental conditions during development, fails.

The narrow posterior interval reveals that only very few parameter samples could be found that belong

to the “not-close-to-zero likelihood region” of the model. This is reflected in the ESS value which is

as low as 5, and thereby results would be deemed numerically unreliable. Since the sampling effort

to achieve a certain convergence increases exponentially in MC, a drastic extension of the ensemble

would be needed to lift ESS up to reassuring values. In order to keep computational costs within

reasonable limits we did not increase the sample size, but recommend that better sampling methods be

implemented for the mult strategy.

The proposed ADD all strategy (third column in Fig. 5.6), in contrast, produces a much wider

credible interval that relies on a comfortable ESS of 2,790. Maize phenological development is assumed

to be distinct between the site-years in the ADD all strategy, and this is why the calibration is not

as strong and allows for more variability in the posterior credible intervals. The ADD all intervals

succeed in capturing all target data points. This is also reflected in the PLS values (fourth column in

Fig. 5.6) with that of the ADD all strategy being higher than the MULT all strategy. As compared to

the idealized case of calibration on this site-year only, the ADD all intervals are much wider, and hence

the predictive density of the individual data points is lower, leading to (as expected) a worse PLS as

compared to this idealized reference.

In summary, for this specific prediction site-year, the ADD all calibration strategy leads to conser-

vative but more reliable prediction results than the MULT all strategy. This is also observed for the

prediction of phenology at site-years 5-2015, 6-2013, 5-2011, and 2-2014 (Fig. 5.C1). These results are

similar to the M-closed and Quasi-M-closed scenarios in the synthetic case study.
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Figure 5.6: Observed and simulated phenology at site-years (a) 5-2012, (b) 6-2010, and (c)
3-2011 in the low information scenario. First column shows posterior credible intervals obtained
from calibration on the target site-year only; second and third columns show posterior credible
intervals from MULT all and ADD all calibration strategies, respectively; fourth column sum-
marizes the predictive log-score for the three cases. The red points represent the mean of the
observed phenology while the error bars represent two standard deviations of the observation
uncertainty. The coloured bands represent the different percentiles of simulated phenology (1
SD, 5-95, 1-99) using the SPASS phenology model, consisting of model parameter uncertainty
and a model error term. The solid line represents the posterior mean of the simulations.

5.4.2.2 The Multiplicative Strategy Succeeds when the Target Represents an Av-

erage Behaviour

In the prediction of phenology at site-year 6-2010 (Fig. 5.6b), the ADD all strategy performs worse than

the MULT all strategy due a special feature of maize phenological development. Here, the MULT all

strategy prediction performs really well and captures the data points even better than the calibration

reference as shown by the PLS values. The MULT all case demonstrates what we would ideally like to

achieve through calibration: with more and more data added (here: ten site-years instead of just the

target one), model predictions should converge toward the observed system behaviour. While the PLS

value of prediction in the MULT all case might seem only slightly higher than the PLS of the calibration

reference, we find that important phenological development stages like the ones around flowering (60
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BBCH) exhibit a narrower range of uncertainty in the MULT all case. Predicting the number of days

after sowing that are required to reach this development stage is important for making field management

decisions such as the timing of fertilizer applications.

Again, the ADD all strategy yielded wider prediction intervals, but this time the loss of precision

resulted in a lower PLS value than the MULT all strategy. This is because the MULT all strategy

achieves a high precision paired with a very low bias, which is optimal for predicting each data value

with a high predictive density.

The exceptionally good performance of the MULT all strategy in this test case can be explained by

the characteristic development behaviour of the three ripening groups. As indicated by the name, mid-

early ripening cultivars generally mature earlier than the late ripening cultivars, but later than the early

ripening cultivars. Although deviations occur due to environmental conditions and field management

decisions, this general pattern can still be observed. Thus, the phenological development of mid-early

cultivars, like the one at site-year 6-2010, represents an average behaviour of the three ripening groups.

In the MULT all strategy, the resultant compromised solution for phenology predictions after calibrating

the model to data sets from the three ripening groups closely matched the observed development at

6-2010. Since the MULT all strategy already performed very well, the relaxation of the prediction bands

in the ADD all strategy led to poorer predictions. Similarly, prediction with the MULT all strategy

was better than the ADD all strategy for the mid-early cultivars at 6-2016 and 1-2014 (the interested

reader is referred to Fig. 5.C1 in Appendix C: Predictive Log-Score (PLS): Real-World Case Study).

These results are similar to the M-complete scenario in the synthetic case study.

5.4.2.3 Representativeness of the Calibration Data Plays a Role

In the case of site-year 3-2011 (Fig. 5.6c), the MULT all strategy results in poor predictions and the

ADD all strategy yields only a marginal improvement as the wider prediction intervals still do not

fully capture many of the observations. This is attributed to the representativeness of the calibration

data (Wallach et al., 2021a) as observed in the M-open scenario of the synthetic case study. The

calibration data consists of only one site-year from the same cultivar as the prediction target site-year

but this cultivar was grown under different temperature conditions. However, even though the same

cultivar was grown at 2-2012, the MULT all calibration strategy was better than the ADD all strategy

at prediction (Fig. 5.C1). This site-year falls in the ‘high’ temperature class (Table 5.1) to which many

calibration site-years belong and thus has representative site-years in the calibration data set. The

high temperature results in earlier phenological development of this cultivar even though it belongs to

the late ripening group, thus representing an average behaviour (Section 5.4.2.2). On the other hand,

even though 5-2011 is a mid-early ripening cultivar, the ADD all strategy performs better than the

MULT all. This is because there are no other site-years that lie within the same temperature class, and

thus does not represent an average behaviour like the other mid-early cultivars.

In studies where data availability is not a limitation, we would only choose representative data for

calibration, e.g. site-years from the same ripening group or cultivar, or those from the same environ-
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mental conditions as the prediction site-year. However, in regional studies with an aim to forecast

a particular species where different cultivars and ripening groups are grown in different conditions,

the ADD all strategy enables us to account for the differences in data sets when estimating model

parameters and uncertainty, resulting in a more conservative and reliable prediction outcome.

5.4.2.4 Data Set Selection for a Successful Additive Strategy is no Trivial Exercise

To test the potential of expert knowledge-based combination of selected site-years for calibration (high

information scenario), only site-years 5-2015, 6-2013, 1-2014, and 2-2012 (all temperature class 3, cf.

Fig. 5.2) were used for calibration in order to predict phenology at site-year 2-2014 (Fig. 5.7a). Recall

from Section 5.3.5.2 that, in this approach, we combined site-years of the same ripening group by a

product, and used a sum across different ripening groups (ADD case in Fig. 5.7). For comparison, we

also show predictions with the mult strategy (MULT), and the add strategy without ripening group

information (ADD sy, i.e. data-groups based on site-years). Additionally, we provide prediction results

from the low information scenarios where Ns − 1 = 10 non-target site-years were used for calibration

(MULT all vs. ADD all).

The traditional MULT all case (Fig. 5.7a-v) leads to overconfident prediction intervals for this

predicted site-year, and the ADD all case (Fig. 5.7a-vi) improves on that with wider intervals that

succeed in capturing all target data points. The question whether this uncertainty can be reduced

again without making overconfident and biased predictions via the add strategy can be answered with

yes in this case: the ADD prediction interval has become narrower without losing any data points

(Fig. 5.7a-ii). This is also obvious from the increase in PLS (Fig. 5.7a-vii). This effect can be caused

by either the mere selection of site-years (as opposed to taking all available data independent of their

representativeness, cf. Section 5.4.2.3) and/or due to the incorporation of ripening group information

in defining data-subsets. We find that the mere selection of site-years improves over the Ns − 1 cases

(the PLS increases for MULT vs. MULT all and ADD sy vs. ADD all). But the ADD case, in which

we additionally use the ripening group information, indeed performs best (second after calibration on

the target site-year only).

However, for the add strategy with high information to succeed, a good understanding of model

limitations and knowledge about data groups are needed. In the prediction of phenology at site-year 6-

2016 (Fig. 5.7b), the site-year selection resulted in a lower PLS in the MULT case than in the MULT all

case in which all the remaining 10 site-years were used for calibration, because the MULT all case

yields very confident prediction intervals with relatively low bias. Naturally, calibrating on less data

in the MULT case then leads to a weaker calibration effect and a lower PLS. The ADD sy case with

site-year-based data-groups resulted in a marginal improvement in PLS as compared to the MULT case

(the wider intervals of ADD sy now cover e.g. the last data value of the season better), while the ADD

case with the ripening group-based data-subsets performs worse. Yet, in the ADD and ADD sy cases,

all observations and their measurement uncertainty ranges are covered by the high-probability region

of the predictive interval, which is not observed in the other calibration cases. Thus, when aiming at
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reliable predictions and rather accepting variance than bias, the add strategy (ADD, ADD all, ADD sy)

is better suited than the traditional MULT all case.

The prediction results in the additive strategy could potentially benefit from expert knowledge-

based plausibility constraints or by implementing a data-driven approach for defining data groups,

e.g., informed by model deficits which can be evaluated using calibration performance indicators such

as residuals. Defining data subsets based on the highest information content with respect to specific

parameters (Vrugt et al., 2001) would also be insightful. Although we use a Brute-force MC sampling

method, we suggest that MCMC algorithms which have been developed for high-dimensional multi-

modal posterior probability density functions (for example DREAM (Laloy and Vrugt, 2012)) should

be tested in future applications.

The additional information of ripening groups could be taken into account using a Bayesian Hier-

archical Modelling (BHM) approach to calibration. However, BHM requires the definition of priors for

all hyperparameters, which is not a trivial task. The additive calibration strategy does not require this

step. In practical applications our proposed approach may be preferred over BHM because of its ease

of implementation and clear assumptions, while it still ensures reliable predictions. In fact, it would

be similar to combining posterior probability distributions obtained from an unpooled calibration ap-

proach i.e. after calibrating the model separately to each data-group (compare Figs. 5.3a and b). Van

Oijen and Höglind (2016) combined plant cultivar-specific parameter distributions to capture genetic

variations. The model was first individually calibrated to two cultivars and then a beta distribution

was defined with the same mean and variance as the union of the cultivar posterior distributions. A

combined parameter distribution which is conservative but reliable can be achieved in a single step with

the additive strategy, without the need for making further assumptions and methodological choices.
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Figure 5.7: Observed and simulated phenology at site-years (a) 2-2014 and (b) 6-2016. Posterior
credible intervals obtained from i) calibration on the target site-year only, ii) ADD , iii) MULT
calibration cases in the high information scenario, iv) ADD sy case with selected subset of
calibration site-years but site-year based grouping, v) MULT all and vi) ADD all cases in the
low information scenario; vii) summarizes the predictive log-score for all cases. The red points
represent the mean of the observed phenology while the error bars represent two standard
deviations of observation uncertainty. The coloured bands represent the different percentiles
of simulated phenology (1 SD, 5-95, 1-99) using the SPASS phenology model, consisting of
model parameter uncertainty and a model error term. The solid line represents the mean of the
simulations.
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5.5 Summary, Implications and Outlook

With this contribution, we tackle the problem that traditional Bayesian calibration on large, mixed

data sets often leads to overconfident and biased predictions. The reason is the implicit assumption

of Bayesian updating that the model is error-free, or with the errors known and adequately described,

thereby assuming that any data set is similarly informative for the inference problem. However, practi-

cally every model applied to real-world case studies suffers from model structural errors, not all of which

are necessarily known beforehand. Forcing an imperfect model to fit diverse data sets simultaneously

(what we call the multiplicative calibration strategy) inevitably leads to a compromised solution to the

parameter estimation problem, and triggers unreliable predictions. To overcome this problem, we have

proposed that an alternative additive calibration strategy should be used which allows the model to fit

distinct data sets individually. The posterior distributions resulting from calibration on the individual

data sets are then combined (averaged) to reflect the remaining uncertainty after calibration. The pro-

posed approach therefore represents one possible way forward to relax the assumption of a true model

in Bayesian updating, and to obtain more realistic predictive uncertainty intervals in the presence of

model errors.

First, we discussed the mathematical framework in which both strategies are embedded, which

clearly points out the decisive differences in the formulation of the likelihood function. Secondly, we

have compared the performance of the traditional multiplicative and the alternative additive strategies

in a synthetic and real-world case study where a plant phenology model was calibrated to silage maize

observations. The model’s performance in predicting a data set that was not used during calibration

was compared using the predictive log-score (PLS) as a metric. This metric directly evaluates the

predictive density of observed data values, and thus accounts for both bias and variance in the posterior

distributions. We found that the additive strategy resulted in higher scores when the predicted data set

did not represent an average behaviour of the calibration data sets (e.g., with respect to temperature

class or ripening group). As a special case, we also tested a high information scenario in which ripening

group information of the maize crops was used to define data groups. Additionally, only those data sets

from the same temperature class as the prediction target were used for calibration. In this scenario,

likelihoods within groups were combined by a product and across groups were combined by a sum.

While superior to the MULT and ADD sy (site-year-based data-subsets) strategies in some cases, we

found that the additive strategy with ripening group-based data-subsets (ADD) requires a more refined

definition of data-groups based on expert elicitation.

Our proposed method generally applies to mathematical models where diverse data sets (comprising

different state variables, periods of different system conditions, etc.) are used for model calibration.

This approach can also be applied in multi-objective calibration studies, by combining likelihoods of

different objectives using the additive strategy. Testing this approach on different types of models and

data sets and in different applications is recommended for future work. Further, the prediction results

in the additive strategy could be improved by defining data-groups that also account for the model’s
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calibration performance and information content of data with respect to model parameters. We expect

such advances to be very useful for environmental modelling studies where model structural errors are

ubiquitous.

5.6 Appendix A: SPASS Phenology Model in R

The SPASS phenology model used for the study was implemented in R based on the implementation

in the ExpertN-5 (Heinlein et al., 2017) modelling software and as described in (Wang, 1997), with

some modifications: (a) No water-limiting conditions were considered for germination, i.e. germination

occurred instantaneously upon sowing; (b) Photoperiod effect on the vegetative phase of development

was not considered; (c) The phenological development stage in BBCH (convert) that corresponds to the

internal development stage of 0.4 was included as a parameter in the model. In the SPASS model, the

internal development stage (Sdevd) on a given day d is converted to BBCH stage (bbchd) as follows:

bbchd =



10(Sdevd + 1) if Sdevd < 0.0

( 1
0.4

(convert− 10))Sdevd + 10 if 0.0 ≤ Sdevd < 0.4

1
0.6

((60− convert)Sdevd + (−24 + convert)) if 0.4 ≤ Sdevd < 1.0

10(6 + Sdevd−1
0.28

) if 1.0 ≤ Sdevd

(5.A1)

The conversion equations for phenological development stages are equivalent to the those described in

Wang (1997); Viswanathan et al. (2022b) when convert = 30.

5.7 Appendix B: Prior Distribution

A weakly informative prior parameter probability p(θ), defined by a platykurtic distribution (Viswanathan

et al., 2022b) was assumed for each parameter φh:

p(θ) =

6∏
h=1

p(φh), (5.B1)

where

p(φh) =



1

ch

1

γh
√

2π
exp− (φh − µh)2

2γh2
, if ah ≤ φh < µh − 2γh

1

ch

1

γh
√

2π
exp−2, if µh − 2γh ≤ φh ≤ µh + 2γh

1

ch

1

γh
√

2π
exp− (φh − µh)2

2γh2
, if µh + 2γh < φh ≤ bh.

(5.B2)

Parameters of the platykurtic probability density function ah, bh, µh and γh are the minimum (Min),

maximum (Max), mean (default), and standard deviation (SD), respectively, of a parameter φh based

on expert knowledge (Table 5.2) and ch is the normalization constant:
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ch = −erf(
√

2) +
4√
2π

exp−2− 1

2
erf

(
ah − µh
γh
√

2

)
+

1

2
erf

(
bh − µh
γh
√

2

)
. (5.B3)

5.8 Appendix C: Predictive Log-Score (PLS): Real-World

Case Study

Figure 5.C1: The predictive log-score (PLS) for calibration and prediction results. The pre-
dictions in the MULT, ADD, ADD sy strategies were made after calibrating the model to a
selection of site-years. The predictions in the MULT all and ADD all scenarios were made after
calibrating the model to all remaining site-years, excluding the prediction target.
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CHAPTER 6

Conclusions & Outlook

6.1 Summary

Reiterating from the first chapter, the research objectives were to first identify the problems faced when

applying simple Bayesian updating to plant models, and then to investigate the application of other

suitable Bayesian methods to solve these problems.

We have seen that, although Bayes theorem is a suitable framework for incorporating prior informa-

tion and uncertainty quantification during process-model calibration, it leads to unreliable and erroneous

results when model errors are present and statistical assumptions about the errors are violated. This

was demonstrated in Chapter 3 where Bayesian inference was applied to sequentially calibrate a maize

phenology model to data on a yearly basis. Although parameter uncertainty reduced with increasing

amounts of data, the prediction quality did not improve. These problems can be tackled (1) by im-

proving the process model representation and (2) through better statistical representation of errors.

Process model improvement is imperative to have better long term forecasts of crop production and to

understand underlying mechanisms for making predictions in future scenarios and conditions which may

be different from those seen today. However, it must be acknowledged that there will always be some

errors in such environmental models where we try to simulate complex systems and their interactions.

Therefore, the approaches implemented in this dissertation focus on improving statistical representa-

tion of errors while providing some insights into how model deficits can be identified so that studies

addressing process-model improvement could be designed.

Although stated separately, these two solutions are in fact inter-related. This is well demonstrated

in Chapter 4 in which a Bayesian multi-level modelling (BMM) approach was implemented. Accounting

for the hierarchical structure inherent in the data and environmental effects using BMM led to improved

model calibration as compared to the commonly used pooled approach of lumping all errors into one

term. Model deficits related to soil moisture and temperature effects during reproductive development

(post-flowering) were identified. These indicators of model deficits can be used to guide and focus model

improvement initiatives. Although the process model equations are not corrected, the BMM approach

does compensate for these model deficits to some extent, thus improving the overall model performance.

Furthermore, instead of treating the residual error as random in the pooled approach, it was resolved
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into components arising from different environmental factors in the BMM approach, thus also ensuring

better statistical representation of errors. This point was also addressed in Chapter 5 by relaxing

the strict assumptions of Bayesian inference so as to account for model deficits. This relaxation of

assumptions took the form of an alternative likelihood combination strategy applied during calibration.

With this strategy the model is allowed to find a fit to each data set rather than finding a common fit to

all data sets. By doing so, the model parameter estimates account for the differences in data sets caused

by missing process representation and simplified process-model and statistical-model assumptions. As

a result a more representative prediction uncertainty is obtained. Staying true to the ‘Bayesian spirit’,

prior information (expert knowledge) can be used to guide data-groups within which the likelihoods

are combined by a product and across which, by a sum. The alternative strategy performed better in

predictions as compared to the classical strategy of a product-based likelihood combination, except when

the observations represented an average behaviour of all the calibration data sets.

Thus, ignoring model structural errors leads to unreliable parameter estimates and consequently,

predictions. It has been demonstrated that better-suited Bayesian methods exist and should be applied

when calibrating crop models to improve prediction quality.

6.2 Choosing an appropriate approach

The choice of method depends on the goal of a study and other project management constraints (e.g.

trade-off between quality, time, and cost (Fu and Zhang, 2016)). I have outlined qualitative recom-

mendations, in terms of goal, time, computational constraints, to guide such decisions. While the

additive calibration strategy (Chapter 5) provides a better representation of prediction uncertainty,

BMM (Chapter 4) provides insights into model structure and enables identification of model deficits.

By detangling the different sources of model structural error, it provides valuable information for data-

gathering to facilitate uncertainty reduction. It may also result in more representative model parameter

estimates. However, the computational costs could be high depending on the number of parameters as

seen when the full model is applied (Chapter 4). Furthermore, the cost of analyses and interpretation

could also be high, especially when error interactions are taken into account. The additive calibration

strategy works well when the objective is to obtain a more representative prediction uncertainty. With

minimum system and model knowledge the alternative strategy is recommended for conservative but

reliable predictions at relatively low computational and analytical costs. In case of more system and

model performance knowledge, better-informed data-groups can be defined. However, caution should be

exercised since its success is believed to be highly dependent on the definition of these groups. Detailed

likelihood modelling has a higher data requirement and is best-suited for big-data studies. It can be

computationally and analytically demanding but would provide a less conservative and more represen-

tative estimate of prediction uncertainty. Additionally, separating out uncertainty into its components

can help in improving model predictions in new environmental conditions.
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6.3 Future scope

Further work should focus on implementing Bayesian methods to provide insights for improving process-

model representation. Although this dissertation does not directly deal with process-model improvement,

we have seen that approaches such as BMM can be used for this purpose. As the next step in this

direction, a method to quantitatively compare existing models with respect to their deficits is needed.

To achieve this, BMM could be applied to other phenology models. The calibration results can then

be used for model comparison by setting up a coordinate system, i.e. a ‘model-deficit’ space. This

will provide a map of models’ performance that can guide model improvement efforts through targeted

research and experimentation. Furthermore, these results can also be used as a guide for model weights in

multi-model ensembles, when applying these models in specific environmental conditions. Additionally,

extending this application for full crop models and incorporating gene-based modules to simulate existing

processes in crop-simulation models could be a promising next step (Oliveira et al., 2021; Wallach et al.,

2018; Vallejos et al., 2022; Peng et al., 2020).

With increasing data-availability, data-driven machine learning can further augment Bayesian model

inference. As a concrete example, unsupervised machine-learning (ML) algorithms for cluster analysis

(k-means clustering, hierarchical clustering, etc.) can be implemented to define data-groups based not

only on observations, model forcings, system knowledge, but also on model calibration performance

as expressed by the residuals. With systematic definition of groups that also incorporate model per-

formance information, the additive calibration strategy is expected to lead to better predictions by

also reducing variance in predictions. ML can also be used to link models at different scales (Alber

et al., 2019). McCormick et al. (2021) combined knowledge-based (process) model and data-driven

modelling for predicting soybean phenology in the Americas, by using predictions from process-models

as additional features in the machine-learning (LSTM) models. On the other hand, Droutsas et al.

(2022) incorporated the ML algorithm into a process-based crop model. Such applications should be

investigated further with large data sets such as those from precision agriculture (Sharma et al., 2021).

The approaches implemented here should also be extended to multi-objective calibration studies.

Bayesian multi-objective calibration has been attempted in hydrological modelling (Tang et al., 2018),

but it has only been applied to a limited extent in crop modelling (Minet et al., 2015). A common

practice in the crop modelling community is to first calibrate the model to phenology and then to other

state variables (Seidel et al., 2018). Wöhling et al. (2012) attempted multi-objective optimization of

four soil-crop models to LAI, soil moisture and actual evapotranspiration. They found that in some

models multi-objective optimization led to compromised parameter estimates and poor calibration per-

formance for all state variables of interest, than if they were individually calibrated. The additive

calibration strategy could be promising in such studies. Data-groups for combining likelihoods could

be based on the state variable. It is expected to yield better calibration results for the individual state

variables than the classical strategy.

Residual analysis could be used to select a suitable likelihood model especially when satellite-based
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measurements of LAI, biomass, etc. are used to calibrate crop models. Certain problems with erroneous

likelihood assumptions become more relevant when temporally and spatially distributed measurements,

such as those from satellites, are used for calibration. For example, model errors are often assumed

to be independent. But they may be auto-correlated in time (Schoups and Vrugt, 2010) and space

(Pasquel et al., 2022). Based on the nature of some model equations, these model error behaviours

are theoretically expected to exist, for instance, the presence of storage terms in a hydrological model

which would exhibit ‘memory’ effects (Evin et al., 2014) or equations based on cumulative sums in

crop models. Furthermore, model errors are commonly assumed to be identically distributed, but

they may in fact change as a function of the simulated state variable (heteroscadasticity) (Weber et al.,

2018). However, these model errors cannot be adequately specified with the sparse data that are usually

available for crop model calibration. But with the increasing availability of satellite-based measurements

these trends may become readily apparent through residuals analysis (Supplement S3). This analysis

can then be used to validate simplistic assumptions about the errors being Gaussian, independent, and

identically distributed and subsequently update the likelihood model. Selecting a suitable likelihood

model is expected to result in representative prediction uncertainty. Although such likelihood modelling

approaches are commonly applied in the field of hydrology, there are limited examples (Tang et al., 2018,

2019) in crop, agroecosystem or vegetation models calibrated to plant measurements.

6.4 Concluding remarks

In this dissertation a multi-purpose application of Bayesian inference from calibration and prediction, to

identifying model errors was demonstrated at field, regional, and country scale. When properly applied,

Bayesian methods offer the opportunity to express uncertainties in simulated model outputs which

may be state variables of interest such as phenology, biomass or yield. Quantifying these uncertainties

are essential for decision analysis (Howard, 1988; Troost and Berger, 2014). For example, monetary

investments for data-collection should target uncertainty reduction of the more uncertain factors that

have a high impact on the state variable of interest. Accurate uncertainty assessment also plays an

important role in agricultural insurance schemes. They offer a means of protection to farmers against

financial losses in case of an event, for a fee. If the risk of a devastating event (for example, floods

damaging crops) is wrongly assessed as too high, insurance costs may be prohibitively high. Farmers

would have to pay a high fee to protect against an event that is unlikely to occur in reality. On the

other hand, if such events are inaccurately assessed as low risk, farmers would have to bear much of the

financial burden due to inaccurate estimates of maximum possible losses. Thus, accurately quantifying

uncertainty using appropriate Bayesian methods in crop modelling has broad applications in developing

suitable climate change adaptation strategies. Ultimately, as aptly stated by Bickel and Bratvold (2008),

“Uncertainty quantification creates value only to the extent that it holds the possibility of changing a

decision that would otherwise be made differently”.
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Kühn Institute,Quedlinburg. doi:10.5073/20180906-074619.

Meier, U., 2018. Growth stages of mono- and dicotyledonous plants: Bbch monograph. doi:10.5073/
20180906-074619.

Menzel, A., Sparks, T.H., Estrella, N., Roy, D.B., 2006. Altered geographic and temporal variability in
phenology in response to climate change. Global Ecology and Biogeography 15, 498–504. doi:10.111
1/j.1466-822X.2006.00247.x.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., 1953. Equation of State Calculations by
Fast Computing Machines. The Journal of Chemical Physics 21. URL: https://bayes.wustl.edu/
Manual/EquationOfState.pdf.

Microsoft, Weston, S., 2019. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package. URL:
https://CRAN.R-project.org/package=doParallel. r package version 1.0.15.

Microsoft, Weston, S., 2020. foreach: Provides Foreach Looping Construct. URL: https://CRAN.R-p
roject.org/package=foreach. r package version 1.5.0.

Minet, J., Laloy, E., Tychon, B., François, L., 2015. Bayesian inversions of a dynamic vegetation model
at four European grassland sites. Biogeosciences 12, 2809–2829. doi:10.5194/bg-12-2809-2015.

Mo, X., Beven, K., 2004. Multi-objective parameter conditioning of a three-source wheat canopy model.
Agricultural and Forest Meteorology 122, 39–63. doi:10.1016/j.agrformet.2003.09.009.

Moore, L.M., Lauenroth, W.K., 2017. Differential effects of temperature and precipitation on early- vs.
late-flowering species. Ecosphere 8, e01819. doi:10.1002/ecs2.1819.

Morris, M., 1991. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics
33, 161–174. doi:10.2307/1269043.

Motavita, D., Chow, R., Guthke, A., Nowak, W., 2019. The comprehensive differential split-sample
test: A stress-test for hydrological model robustness under climate variability. Journal of Hydrology
573, 501–515. doi:10.1016/j.jhydrol.2019.03.054.

Mualem, Y., 1976. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous
Media. Water Resources Research 12, 513–522. doi:10.1029/WR012i003p00513.
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of applicability of the semi-empirical ecosystem flux model preles for varying forest types and climate.
Global Change Biology 26, 2923–2943. doi:10.1111/gcb.14992.

Troost, C., Berger, T., 2014. Dealing with uncertainty in agent-based simulation: Farm-level modeling
of adaptation to climate change in southwest Germany. American Journal of Agricultural Economics
97, 833–854. doi:10.1093/ajae/aau076.

Vallejos, C.E., Jones, J.W., Bhakta, M.S., Gezan, S.A., Correll, M.J., 2022. Dynamic QTL-based
ecophysiological models to predict phenotype from genotype and environment data. BMC Plant
Biology 22. doi:10.1186/s12870-022-03624-7.
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Supplementary Materials

Selected supplementary materials that have been referenced within the chapters are provided below.

S1 Sensitivity Analysis (chapter 3)

The Morris or elementary effects screening method (Morris, 1991) was used to conduct a qualitative

global sensitivity analysis on phenological development of maize. Sensitivity analysis was only performed

for site-year 6 2010 under the assumption that ranks of the most sensitive parameters would not change

significantly due do the different weather and initial conditions in Kraichgau and the Swabian Alb.

The sensitivity package in R (Iooss et al., 2021) was used. The one-at-a-time (OAT) design in the

morris function was used to define the parameter vectors. A total of 11 parameters that influence

phenological development in the SPASS model were pre-selected based on expert knowledge. Uniform

parameter distributions with a range equal to three standard deviations from the expected value were

used. It is noted that different distributions have been used for Bayesian calibration (platykurtic prior

distribution) and sensitivity analysis (uniform distribution). However, this is assumed to have a limited

influence in identifying the most sensitive parameters. Settings to the morris function were provided:

1000 samples, 10 levels and a grid jump-size of 2 units. Phenology was simulated using the SPASS model

in XN5 software for all the proposed parameter vectors. The morris function was then used to estimate

elementary effects (Cuntz et al., 2015; Morris, 1991) of phenological development at an interval of every

5 days within the growing season. The sensitivity measures, namely, the mean (µ∗) of the absolute

value of the elementary effects of a parameter and the standard deviation (σ) were calculated on these

days to evaluate parameter sensitivity over the growing season.

µ∗θi =
1

N

N∑
n=1

| een,θi | (S1.1)

σθi =

√∑N
n=1(een,θi − µθi)2

N
(S1.2)

where µ∗θi and σθi are the µ∗ and σ sensitivity measures for the i th parameter in the parameter vector

θ, een is the elementary effects for the n th parameter vector, N are the total parameter vectors and
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µθi is given by:

µθi =
1

N

N∑
n=1

een,θi (S1.3)

Based on µ∗, the effective sowing depth (SOWDEPTH) was the most and only sensitive parameter

during emergence, which is intuitive as the other parameters influence development after emergence

(Fig.S1.1). Then the relative importance of parameters that define the cardinal temperatures (DELT-

MAX1, DELTOPT1 and TMINDEV1) and the physiological development days (PDD1) of the vegetative

phase increased. These parameters continued to be the most influential parameters even through the

generative phase of development. Even though DELTOPT2 and PDD2 are important parameters for

the generative phase of development, their influence was small and over-shadowed by the influence of

the vegetative phase parameters.

Figure S1.1: Plots of (i) µ∗ and (ii) sigma of elementary effects calculated for simulated pheno-
logical development at an interval of 5 days over the growing season of silage maize (between
sowing day 112 and harvest day 278 of the year) at site 6 in the year 2010. The parameters that
influence phenological development in the SPASS model are listed in the legend. Plots (iii) and
(iv) are the normalized µ∗ and sigma values per day, respectively, expressed as a percentages.

S2 Estimation of information entropy (chapter 3)

Information entropy (H ) for a continuous distribution is given by:

H = −
∫
f(θ)ln(f(θ))dθ (S2.1)

where f(θ) is the probability density function of θ. Information entropy estimates of the posterior

parameter distributions were obtained using the redistribution estimate equation (Beirlant et al., 1997):
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Hn = − 1

n

n∑
i=1

lnfn(θi) (S2.2)

where Hn is the estimate of information entropy, fn is the Kernel Density Estimate (KDE) and θ1,. . . θn

are independent and identically distributed (i.i.d.) parameter vector samples from the posterior distri-

bution. The KDE was obtained by using the kde function from the ks package in R (Duong, 2021).

Least Squares Cross-Validation (LSCV) was used for bandwidth selection.

S3 Residual Analysis (chapter 3)

Residuals were analysed for the synthetic and true sequences for simulated phenology at the maximum

a posteriori probability (MAP) estimate of the model parameters. The residual plots provided in the

following sections have been separated into the synthetic sequences (section S3.1), Swabian Alb true

sequence (section S3.2), and Kraichgau true sequence (section S3.3). Homoscedasticity was checked by

plotting the residuals against days-after-sowing and simulated phenology (Figs.S3.1, S3.2, S3.7 – S3.12,

S3.17 – S3.19). In general, heteroscedasticity was not observed. Normal assumption of the error model

was verified by plotting histograms of the residuals and quantile-quantile plots (Figs.S3.3, S3.4, S3.13

– S3.15, S3.20). For the first few sequential updates, the number of observations were limited making a

thorough analysis difficult. For the latter few sequential updates, the residuals were found to be nearly

normal.

In the synthetic sequences, the residual error distribution was nearly normal (Figs.S3.3, S3.4). The

slight skewness is attributed to model limitations (controlled cultivar-environment sequence) and specific

site-years that had a different phenological development as compared to the remaining site-years in the

calibration sequence (both synthetic sequences).

The slight skewness observed in the true sequence is attributed to model limitations where the model

is unable to capture the slow development during the vegetative phase that was observed at a few site-

years like 6 2013 (Figs.S3.13, S3.14, S3.15) and 5 2016 (Fig.S3.15). Autocorrelation was estimated after

padding the dataset as the observations are not at regular time-intervals. Therefore, there is no ACF

estimated at some lags. Figure S3.16 contains the autocorrelation (ACF) plot of the residuals after the

model is calibrated to data from site-years 6 2010, 5 2011, 5 2012, 6 2013, 5 2015, and 5 2016. Based

on the limited data with unequal lags, no autocorrelation was detected. However, it is suspected that

with state variables like phenology, which are based on cumulative sums, autocorrelation of errors could

theoretically exist. However, due to data limitations, error modelling would be limited in its scope for

improving the results.

S3.1 Synthetic sequences

In the ideal sequence where there is no model structural error, the skewness in the residual distribution

(Fig.S3.3) is caused by site-year 2. This site-year exhibits a different development-behaviour as compared
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to other site-years in the calibration sequence (Fig.S3.5). In the controlled cultivar-environment sequence

the slight skewness (Fig.S3.4) in the distribution of the residuals are caused due to two reasons. The

site-year 9 exhibits a different phenological development-behaviour as compared to other site-years in

the calibration sequence (Fig.S3.6). Additionally, the model is unable to capture the rapid growth seen

in site-years 3, 4, 5, 8 and 9 between 82 and 110 days after sowing.

Figure S3.1: Residuals vs simulated phenology and days after sowing after calibration to 10
site-years in the ideal synthetic sequence

Figure S3.2: Residuals vs simulated phenology and days after sowing after calibration to 10
site-years in the controlled cultivar-environment synthetic sequence
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Figure S3.3: Histogram and quantile-quantile plots of the residuals after calibration to 10 site-
years of the ideal synthetic sequence

Figure S3.4: Histogram and quantile-quantile plots of the residuals after calibration to 10 site-
years of the controlled cultivar-environment synthetic sequence
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Figure S3.5: The boxplots show the phenological development (BBCH) of all the site-years used
in calibration in the ideal synthetic sequence. The blue point corresponds to the phenological
development (BBCH) for site-year 2.

Figure S3.6: The boxplots show the phenological development (BBCH) of all the site-years
used in calibration in the controlled cultivar-environment synthetic sequence. The blue point
corresponds to the phenological development (BBCH) for site-year 9.
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S3.2 True sequence in Swabian Alb

The residual plots for the sequential updates with greater than 3 calibration site-years show high resid-

uals in the vegetative phase (simulated phenology¡61BBCH) (Figs.S3.10, S3.11, S3.12). Residuals from

site-years 6 2013 and 5 2016 cause this skewness in the distribution of the residuals (Figs. S3.13, S3.14,

S3.15). This behaviour is attributed to the model’s inability to capture the slow development seen in

these site-years as evident from the single-site-year calibration results in Fig.S4.1.

Figure S3.7: Residuals vs simulated phenology and days after sowing after calibration to site-
year 6 2010

Figure S3.8: Residuals vs simulated phenology and days after sowing after calibration to site-
years 6 2010 and 5 2011
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Figure S3.9: Residuals vs simulated phenology and days after sowing after calibration to site-
years 6 2010, 5 2011, and 5 2012

Figure S3.10: Residuals vs simulated phenology and days after sowing after calibration to site-
years 6 2010, 5 2011, 5 2012, and 6 2013

Figure S3.11: Residuals vs simulated phenology and days after sowing after calibration to site-
years 6 2010, 5 2011, 5 2012, 6 2013, and 5 2015
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Figure S3.12: Residuals vs simulated phenology and days after sowing after calibration to site-
years 6 2010, 5 2011, 5 2012, 6 2013, 5 2015, and 5 2016

Figure S3.13: Histogram and quantile-quantile plots of the residuals after calibration to site-
years 6 2010, 5 2011, 5 2012, and 6 2013

Figure S3.14: Histogram and quantile-quantile plots of the residuals after calibration to site-
years 6 2010, 5 2011, 5 2012, 6 2013, and 5 2015
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Figure S3.15: Histogram and quantile-quantile plots of the residuals after calibration to site-
years 6 2010, 5 2011, 5 2012, 6 2013, 5 2015, and 5 2016

Figure S3.16: ACF (auto-correlation function) plots of the residuals after calibration to site-
years 6 2010, 5 2011, 5 2012, 6 2013, 5 2015, and 5 2016
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S3.3 True sequence in Kraichgau

The residual plots for Kraichgau with limited observations show no evidence of heteroscedasticity

(Figs.S3.17, S3.18, S3.19) and a nearly normal distribution (Fig.S3.20).

Figure S3.17: Residuals vs simulated phenology and days after sowing after calibration to site-
years 3 2011

Figure S3.18: Residuals vs simulated phenology and days after sowing after calibration to site-
years 3 2011 and 2 2012

Figure S3.19: Residuals vs simulated phenology and days after sowing after calibration to site-
years 3 2011, 2 2012, and 1 2014
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Figure S3.20: Histogram and quantile-quantile plots of the residuals after calibration to site-
years 3 2011, 2 2012, and 1 2014

S4 Single-site-year calibration results (chapter 3)

Observed and simulated phenology, after the SPASS model was calibrated individually to the site-years

in the study, are plotted in Fig.S4.1.
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Figure S4.1: Observed and simulated phenological development after calibration, plotted against
the day of the year. The red points are the mean observations, while the black error bars indicate
+/- 3 standard deviations. The mean simulation is indicated by the continuous black line. The
green bands represent the different percentiles of simulated phenology. It is noted that for
some site-years, the calibrated model is unable to capture the slow development rate during the
vegetative phase.

S5 Parameter distributions and entropy: synthetic sequences

(chapter 3)

Marginal prior and posterior distributions for the 6 estimated parameters of the SPASS phenology

model and the entropy estimates are plotted for the ideal (Fig.S5.1) and controlled cultivar-environment

(Fig.S5.2) synthetic sequences.
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Figure S5.2: (i) Marginal prior and posterior parameter distributions of the 6 estimated param-
eters after BSU in the controlled cultivar-environment synthetic sequence. Marginal posterior
parameter values (y-axis) is plotted against the number of site-years used for calibration (x-
axis), starting with the initial prior (0 on x-axis). (ii) Information entropy of the posterior
parameter distributions after BSU was applied to the synthetic sequence. Length of the box
represents the inter-quartile range (IQR), whiskers extend from the boxes up to 1.5 × IQR and
values beyond this range are plotted as points. The ranges for parameters SOWDEPTH and
DELTOPT2 narrowed through the sequential updates while the remaining parameters do not
show a noticeable narrowing in range.

S6 MCMC posterior samples (chapter 4)

Markov Chain Monte Carlo (MCMC) sampling of the posterior parameter distributions was performed

using the R2jags (Su and Yajima, 2020) (for cases BM-0, BMM-1, BMM-2a and BMM-2b) and jagsUI

(Kellner, 2021) packages (for BMM-3) in R. In the following section, diagnostic plots are provided for

some MCMC parameter samples from the five model cases. The SPASS model parameters at the species

level (θsp) of the hierarchy are emt sp, pdd1 sp, tminv sp, toptv sp, pdd2 sp, tminr sp, and toptr sp

for model cases BM-2b and BMM-3, and emt, pdd1, tminv, toptv, pdd2, tminr, and toptr for model

cases BM-0, BMM-1, and BMM-2a. The standard deviation of the likelihood function is sigma (σ).

Parameters weath, eco, and year correspond to the weather effects (δw), eco-region effects (γe), and

year effects (τy), respectively.

S6.1 Trace-plots

The trace-plots and density plots (coda package (Plummer et al., 2006) in R (R Core Team, 2020)) for

some parameters from the BMM-2a case are provided as an example. In Fig. S6.1 parameter sigma
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(σ) shows good mixing across the three chains, while parameters pdd1 and pdd2 show relatively poor

mixing. The poor mixing is attributed to the parameter correlations (section S6.4). Parameters weath

(γw) (Fig. S6.2), eco (γe) (Fig. S6.3), and year (τy) (Fig. S6.4) show good mixing.

Figure S6.1: Trace-plots (left) and density plots (right) for some of the species level SPASS
model parameters and the standard deviation of the likelihood function from the BMM-2a case.
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Figure S6.2: Trace-plots (left) and density plots (right) for weather effect parameters for some
of the weather classes from the BMM-2a case.
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Figure S6.3: Trace-plots (left) and density plots (right) for the eco-region effect parameters for
some of the eco-regions from the BMM-2a case.
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Figure S6.4: Trace-plots (left) and density plots (right) for the year effect parameters for some
of the years from the BMM-2a case.

S6.2 Convergence diagnostic

The three chains for the MCMC algorithm were run until the Gelman-Rubin convergence diagnostic

was ≤1.1. In Fig. S6.5 we provide a plot of the shrink factor or the convergence diagnostic (gelman.plot

in coda package (Plummer et al., 2006)) for some of the parameters from the BMM-3 case. It can be

seen that the parameters have converged after 3,500 iterations.
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Figure S6.5: Evolution of Gelman-Rubin shrink factor (y-axis) for some species-level parameters
(θsp) in BMM-3 case with an increase in the number of iterations (x-axis)

S6.3 Auto-correlation plots

The auto-correlation plots (acfplot in coda package (Plummer et al., 2006)) are provided for the species-

level parameters (θsp) and sigma (σ) in the BM-0 (Fig. S6.6) and BMM-3 (Fig. S6.7) cases. These

show the auto-correlation of the parameters within the chain. The auto-correlation decreases to zero

with greater lag. Note that in BM-0 the 5,000 posterior samples were thinned to obtain a final set of

1000 samples. The samples were not thinned in BMM-3. Parameters toptv sp ,toptr sp, pdd1 sp, and

pdd2 sp exhibit a higher auto-correlation which can be attributed to between-parameter correlations

(section S6.4).

158



SUPPLEMENTARY MATERIALS

Figure S6.6: Auto-correlation plots for some parameters in the BM-0 case.

Figure S6.7: Auto-correlation plots for some parameters in the BMM-3 case.

159



SUPPLEMENTARY MATERIALS

S6.4 Correlation plots

Correlation plots (ipairs function in IDPmisc package Locher (2020)) of the species-level parameters (θsp)

in the hierarchy and sigma (σ) of the likelihood function for cases BM-0 and BMM-2b are provided in

Fig. S6.8 and S6.9. Additionally, correlation coefficient plots (corrplot function in corrplot package (Wei

and Simko, 2017)) of some of the parameters are provided for all the cases (Fig. S6.10, S6.11, S6.12,

S6.13, S6.14). The colours of the ellipse indicate positive (blue) or negative correlation (red), while the

colour intensity and shape of the ellipse indicates the value. A correlation coefficient of one is a diagonal

line, while no correlation is represented by a white circle. There is strong negative correlation between

parameters pdd1 and toptv as well as between pdd2 and toptr in BM-0 (Fig. S6.8), but this is not seen

in BMM-2b(Fig. S6.9). The correlation coefficient plots show that in BM-0 (Fig. S6.10), BMM-1 (Fig.

S6.11), and BMM-2a (Fig. S6.12), the correlation exists but is not seen in BMM-2b (Fig. S6.13) and

BMM-3 (Fig. S6.14) where the ripening and cultivar hierarchy is introduced. In these two cases, these

correlations are seen in the ripening- and cultivar-specific parameters (not shown). The eco-regions

effect parameters (eco) are positively correlated with each other and also to the base temperature for

emergence (emt) (Fig. S6.11). The weather effect parameters (weath) in BMM-2a (Fig. S6.12) are also

positively correlated with each other and negatively correlated with the eco-region effect parameters

(eco). This correlation between eco-region and weather effect parameters could be because there is a

very likely overlap between the weather classes and eco-region class as the eco-regions are also based on

climatological characteristics.

Figure S6.8: Cross-plot of the posterior samples of the some estimated parameters in the BM-0
case. Red represents high density and blue low density.
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Figure S6.9: Cross-plot of the posterior samples of the some estimated parameters in the BMM-
2b case. Red represents high density and blue low density.

Figure S6.10: A plot of the correlation coefficients between some of the parameters in the BM-0
case. The colours of the ellipse indicate positive (blue) or negative correlation (red), while the
colour intensity and shape of the ellipse indicates the value. A correlation coefficient of one is a
diagonal line, while no correlation is represented by a white circle.
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Figure S6.11: A plot of the correlation coefficients between some of the parameters in the BMM-
1 case. The colours of the ellipse indicate positive (blue) or negative correlation (red), while the
colour intensity and shape of the ellipse indicates the value. A correlation coefficient of one is a
diagonal line, while no correlation is represented by a white circle.

Figure S6.12: A plot of the correlation coefficients between some of the parameters in the BMM-
2a case. The colours of the ellipse indicate positive (blue) or negative correlation (red), while
the colour intensity and shape of the ellipse indicates the value. A correlation coefficient of one
is a diagonal line, while no correlation is represented by a white circle.
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Figure S6.13: A plot of the correlation coefficients between some of the parameters in the BMM-
2b case. The colours of the ellipse indicate positive (blue) or negative correlation (red), while
the colour intensity and shape of the ellipse indicates the value. A correlation coefficient of one
is a diagonal line, while no correlation is represented by a white circle.

Figure S6.14: A plot of the correlation coefficients between some of the parameters in the BMM-
3 case. The colours of the ellipse indicate positive (blue) or negative correlation (red), while the
colour intensity and shape of the ellipse indicates the value. A correlation coefficient of one is a
diagonal line, while no correlation is represented by a white circle.
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S7 Data set information (chapter 4)

S7.1 Ripening groups and cultivars

Figure S7.1 shows (plotly package (Sievert, 2020)) the names of the different cultivars within the four

ripening groups that were used for calibration. The circle represents 100 site-years used for calibration.

The late ripening group (L) contains only one site-year belonging to cultivar MAS 40F.

Figure S7.1: Cultivars and ripening groups of the 100 site-years that were used for calibration.
The colours represent the ripening groups. E: early, ME: mid-early, ML: mid-late, and L: late.
The circle represents 100 site-years. The cultivar MAS 40F in the late ripening group has only
one site-year.

S7.2 Eco-regions

Figure S7.2 shows the average daily temperature and average cumulative precipitation per eco-region

for April-June and July-September, based on all 3,004 site-years. The months of April-June and July-

September correspond to the time when vegetative and reproductive phenological development usually

occurs for silage maize grown in Germany. These averages are based on 689 locations across Germany

and nine years (2009-2017). Eco-region 8 (eastern part of the northern plains) has the highest tempera-

ture during April-June and July-September. In general, the southern regions received more precipitation

in April-June than the northern regions. Eco-region 0 (region to the north of the Alps) received the

most precipitation while eco-region 8 received the least in both periods.
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Figure S7.3 shows the soil regions (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), 1993)

across the nine eco-regions of Germany. Eco-region 0 consists of carbonates and moraine deposits. Eco-

regions 1, 3, and 4 consist of sedimentary deposits such as sandstone, siltstone, carbonates, claystones

and marls with loess and loamy soils developed in some areas. The Rhine river plain is in eco-region 2

consists of fluvial landscapes. The northern eco-regions 5-8 consist of moraine deposits.

Figure S7.2: Average daily temperature (a, b) and average cumulative precipitation (c, d) per
eco-region for April-June and July-September, based on all 3004 site-years. The numbers indi-
cate the eco-regions based on the classification provided by the BfN (Bundesamt für Naturschutz)
(2017).
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Figure S7.3: The soil regions across Germany (data source: data set classification
©Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) (1993)-BGL5000V2.0) within the
nine eco-regions (data source: BfN (Bundesamt für Naturschutz) (2017)). The colours indicate
the soil regions while the black outline demarcates the nine eco-regions. The numbers indicate
the eco-regions.

S7.3 Weather classes

Weather classes were defined using k-means clustering, based on the average daily temperature and

cumulative precipitation at the 3,004 site-years in the full data set. Figure S7.4 shows the minimum,

mean and maximum values by weather class in the full data set and for the 100 site-years in the

calibration data set. In most cases, the mean temperature and cumulative precipitation per weather

class in the calibration data set are close to those in the full data set. Figure S7.5 shows the distribution

of weather classes by eco-region in the full data set and calibration data set. In the full data set, the

eco-regions 0 and 1 to the south of Germany have more number of site-years in weather classes 8, 9, and

10 as compared to the other eco-regions. These weather classes (especially 9 and 10) are characterized

by high precipitation. Eco-region 8 is dominated by weather classes 3 and 7 which have high late

summer temperatures.
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Figure S7.4: Summary statistics of the average daily temperature (◦C) and cumulative precip-
itation (mm) per weather class in the two periods of April-June and July-September, for the
full data set (3,004 site-years) and calibration data set (100 site-years). The points indicate the
mean value while the error bars indicate the minimum and maximum values. Note that the
k-means clustering used to generate the weather classes was based on the full data set.

Figure S7.5: Weather class representation by eco-region for the full data set (a) and the cali-
bration data set (b). The x-axes are the eco-regions in Germany. The y-axes are the number of
site-years. The colours indicate the weather classes. The inset map shows the locations of the
eco-regions (data source: BfN (Bundesamt für Naturschutz) (2017)).
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