Advanced Mathematical Methods WS 2019/20

1 Linear Algebra

PD Dr. Thomas Dimpfl

Chair of Statistics, Econometrics and Empirical Economics

Wirtschafts- und Sozialwissenschaftliche Fakultät

Outline: Linear Algebra

1.9 Quadratic forms and sign definitness

Readings

Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne
Strøm. Further Mathematics for Economic Analysis.
Prentice Hall, 2008 Chapter 1

Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- ► Lecture 26: Symmetric matrices and positive definiteness https://www.youtube.com/watch?v=umt6BB1nJ4w
- ► Lecture 27: Positive definite matrices and minima Quadratic forms
 - https://www.youtube.com/watch?v=vF7eyJ2g3kU

Definitions

- ▶ Degree of a polynomial
- ► Form of *n*th degree
- special case: quadratic form

$$Q(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

A quadratic form $Q(x_1, x_2)$ for two variables x_1 and x_2 is defined as

$$Q(x_1, x_2) = \mathbf{x}' \mathbf{A} \mathbf{x} = \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} x_i x_j$$

where $a_{ij} = a_{ji}$ and, thus,

with the symmetric coefficient matrix
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$

-6-

Graph of the positive semidefinite form $\mathrm{G}(x_1,x_2)=(x_1+x_2)^2$

The quadratic form associated with the matrix $\bf A$ (and thus the matrix $\bf A$ itself) is said to be

```
\begin{array}{lll} \text{positive definite,} & \text{if } Q = x' \mathsf{A} x > 0 & \text{for all } x \neq 0 \\ \text{positive semi-definite,} & \text{if } Q = x' \mathsf{A} x \geq 0 & \text{for all } x \\ \text{negative definite,} & \text{if } Q = x' \mathsf{A} x < 0 & \text{for all } x \neq 0 \\ \text{negative semi-definite,} & \text{if } Q = x' \mathsf{A} x \leq 0 & \text{for all } x \end{array}
```

Otherwise the quadratic form is **indefinite**.

Note: For any quadratic matrix $\bf A$ it holds that $\bf x' \bf A \bf x = \bf x' \bf B \bf x$ with $\bf B = 0, 5 \cdot (\bf A + \bf A')$ symmetric.

The quadratic form Q(x) is

- ▶ positive (negative) definite, if **all** eigenvalues of the matrix **A** are positive (negative): $\lambda_i > 0$ ($\lambda_i < 0$) $\forall j = 1, 2, ..., n$;
- ▶ positive (negative) semi-definite, if **all** eigenvalues of the matrix **A** are non-negative (non-positive): $\lambda_j \geq 0$ $(\lambda_j \leq 0) \ \forall j=1,2,\ldots,n$ and **at least one** eigenvalue is equal to zero;
- ▶ indefinite, if two eigenvalues have different signs.

Properties of positive definite and positive semi-definite matrices

- 1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
- 2) If A is positive definite, then A^{-1} exists and is positive definite.
- 3) If **X** is $n \times k$, then **X'X** and **XX'** are positive semi-definite.
- 4) If **X** is $n \times k$ and $rk(\mathbf{X}) = \mathbf{k}$, then **X'X** is positive definite (and therefore non-singular).