Advanced Mathematical Methods WS 2019/20

Statistical Inference

PD Dr. Thomas Dimpfl

Chair of Statistics, Econometrics and Empirical Economics

Wirtschafts- und Sozialwissenschaftliche Fakultät

Readings

A. Papoulis and A. U. Pillai. *Probability, Random Variables and Stochastic Processes*.

Mc Graw Hill, fourth edition, 2002 Chapter 8

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

▶ Lecture 25: Classical Inference III

Hypothesis testing

Ingredients:

- ▶ null hypothesis H_0 , alternative hypothesis H_1
- ightharpoonup significance level α (given)

2 possible errors:

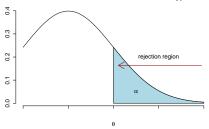
- α error/ type 1 error: reject a correct (null) hypothesis
- β error/ type 2 error:
 do not reject a wrong (null) hypothesis

Two ways of testing

θ unknown parameter in the population

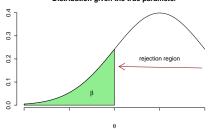
- 1. $H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0$
 - ightarrow two-sided test
- 2. $H_0: \theta \leq \theta_0$ $H_0: \theta \geq \theta_0$ $H_1: \theta < \theta_0$
 - \rightarrow one-sided test

Distribution of the test statistic under the Nullhypothesis



• $f_q(q, \theta_0)$: distribution under the H_0

Distribution given the true parameter



• $f_q(q, \theta)$: distribution given the true θ

- ▶ Under H_1 , the most likely values of q are on the right of $f_q(q, \theta_0)$.
- ▶ We therefore reject H_0 if q > c (with rejection area $[c, \infty]$)
- ▶ We select α : $P(q > c | H_0) = \alpha$ \rightarrow $c = q_{1-\alpha}$ and don't reject H_0 if $q < q_{1-\alpha}$

Operating characteristic:

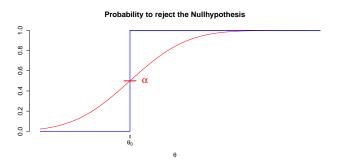
$$\underbrace{\beta(\theta)}_{\text{depends on }\theta, \text{ the true parameter}} = \int\limits_{-\infty}^{c} f_q(q,\theta) dq$$

 \rightarrow can't be controlled

Ideal Situation:

$$\alpha=\beta=\mathbf{0}$$

for H_0 : $\theta = \theta_0$ and H_1 : $\theta > \theta_0$



Ideally:

- ▶ don't reject H_0 as long as the true value θ is smaller than θ_0
- ightharpoonup reject as soon as heta is greater than $heta_0$

α : at the intersection:

if α is small, the chances to reject H_0 are small if θ is only slightly bigger than θ_0

The faster the probability to reject H_0 increases (steeper red line), the better.

Hence: power of the test

What does significant really mean?

statistical significance

- does not answer the question wether the null hypothesis is wrong or right
- ▶ does not indicate how (un-) likely the null hypothesis is
- only controlled by maximum probability to run into type 1 error (α)
- provides no control over probability of type 2 error (β)

goal: for α given

- \rightarrow minimal β
- \rightarrow minimal $\alpha + \beta$
- \rightarrow maximal 1β

t-Test

estimated parameters $\widehat{\beta}_1 \dots \widehat{\beta}_k$

- 1. define H_0 , e.g. $H_0: \beta_k = \bar{\beta_k}$
- 2. define H_1 , e.g. $H_1: \beta_k \neq \bar{\beta_k}$
- 3. believe in law of large numbers and CLT
- 4. construct test statistic

$$t = \frac{\widehat{\beta_k} - \overline{\beta_k}}{s.e.(\widehat{\beta_k})} \sim t(N - K)$$
 under H_0

- 5. choose significance level α
- compare t and critical value compare t and empirical p-value

Confidence Interval

construct a confidence interval around $\widehat{\beta_k}$ \rightarrow interval for $\bar{\beta_k}$, for which $H_0: \beta_k = \bar{\beta_k}$ cannot be rejected

$$CI(\beta_k, \alpha) = \left[\widehat{\beta_k} - t_{\frac{\alpha}{2}} \cdot s.e.(\widehat{\beta}), \widehat{\beta_k} + t_{\frac{\alpha}{2}} \cdot s.e.(\widehat{\beta})\right]$$

Testing linear hypotheses: Wald test

Multiple Hypotheses (#r) for multiple parameters (k)

$$\underbrace{R}_{\#r \times k} \underbrace{\beta}_{k \times 1} = \underbrace{r}_{\#r \times 1}$$

under H_0 :

$$\begin{array}{ccc}
R\widehat{\boldsymbol{\beta}} \underset{p}{\rightarrow} \mathbf{r} & R\widehat{\boldsymbol{\beta}} \overset{a}{\sim} N(0, RVar(\widehat{\boldsymbol{\beta}})R') \\
\underbrace{(R\widehat{\boldsymbol{\beta}} - \mathbf{r})'(RVar(\widehat{\boldsymbol{\beta}})R')^{-1}(R\widehat{\boldsymbol{\beta}} - \mathbf{r}) \overset{a}{\sim} \chi^{2}(\#r)}_{\text{Wald test statistic for linear hypotheses}}$$