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Abstract

This paper investigates deep learning based image translation techniques to perform a
colorization of near-infrared (NIR) images. Current deep neural network design patterns
like inception modules, skip-connections or multi-scalar processing are combined and
examined. Adversarial training is used to improve the realism of the resulting image in
the translated domain. The presented approach is trained and evaluated on NIR-RGB
image pairs from a real-world dataset containing a large amount of road scene images in
summer. The dataset was captured by a multi-CCD NIR/RGB camera to ensure a perfect
pixel to pixel registration.

1 Introduction

In advanced driver assistance systems (ADAS), infrared cameras are frequently used as a
sensor for image recognition. Compared to regular RGB cameras, they can achieve a higher
sensitivity, because of the absence of color or IR-cut filters. Further, in the case of near-
infrared (NIR), "invisible" headlights are utilized to illuminate the scene without blinding
other road users. The disadvantage, though, is on one hand that such cameras produce in
general monochromatic images and on the other hand that these images appear unnatural.
The unfamiliar appearance for the human eye is due to the reflectance properties of objects
in the NIR light spectrum, which can severely differ from the well known RGB spectrum. In
a displaying ADAS function, "familiar" RGB images are preferred to be shown to the driver
to increase its acceptance and subsequently its take-rate.

One way to achieve this is the installation of a second sensor only for displaying pur-
poses. This sensor’s output is augmented by additional information extracted from the in-
frared sensor. Neglecting the fact that regular low-cost cameras have issues producing high
quality images at night, installing multiple sensors in a vehicle increases the production cost.
From an economic point of view, a single sensor solution is therefore strongly encouraged.

Automatic colorization of grayscale images appears to be closely related to IR-Coloriza-
tion, but has a great advantage. Grayscale images can directly serve as the luminance com-
ponent in a decorrelated color space, like the CIELAB color space. Hence, most of the
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Figure 1: An NIR image (Left) is colorized (Middle) by the approach described in this paper and
strongly resembles the corresponding groundtruth RGB image (Right). Best viewed in color.

approaches exploit this circumstance and only estimate the missing chrominance compo-
nents. Furthermore is the human eye less sensitive to chrominance inaccuracies. For IR-
Colorization, though, it is crucial to estimate the luminance component as well.

The approach proposed in this paper utilizes deep Convolutional Neural Networks (CNN),
but incorporates current developments of network architectures and training schemes, such as
Adversarial Training [12], Inception Modules [39], U-nets [32] or multi-scalability [26]. The
developed network architecture in this paper resembles an estuary with its many branches
joining into the sea and is therefore called Estuary Network. Extensive experiments and
results, as depicted in Figure 1, show the potential of the proposed approach.

2 Related Work

IR-colorization can be more understood as an image translation problem rather than a classic
grayscale colorization problem. While classic colorization techniques only need to estimate
additional information, namely the chrominance, IR-Colorization actually needs to trans-
form the input into another domain. Example-based advanced Color Transfer techniques
for example need to perform such a domain transfer. In these approaches, fitting exemplary
transforms are looked up in an offline acquired database and applied to the input to perform
the transfer. Most notable approaches transform e.g. day images into night images [35] or
summer images into winter images [22]. The major drawback within these approaches is
the complex processing cue. A maintenance and retrieval mechanism of the best examples
must be implemented, as well as the transfer operation itself. Deep learning approaches,
on the other hand, inherently learn these mechanisms during training and, thus, reduce the
modeling effort considerably.

In the recent years, quite a few deep learning based grayscale colorization approaches
emerged [3, 5, 6, 16, 24, 47], which might be extensible to IR-Colorization. They can be
subdivided into approaches that quantize the color space and estimate "color classes" [24, 47]
and approaches that directly estimate continuous color values [3, 5, 6, 16]. Class-based ap-
proaches work well with smaller, but do not scale for higher image resolutions. The memory
required to store probability maps for a larger amount of color classes is unfeasible. Di-
rect inference does not share this constraint, but often suffers in color fidelity because of
the indiscriminative loss function [47]. Limmer and Lensch [26] propose an IR-Colorization
network based on direct inference. It is capable of producing full resolution RGB images, but
due to the nature of the coherence gap [26], the raw network output is noisy and blurred. A
post-processing step is necessary to blur the noise and recover the lost details at the expense
of correctness and realism in the output.
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Neural networks that explicitly enforce realism in the training objective are Generative
Adversarial Networks (GAN) [12]. Their adversarial training scheme was quickly adopted
for all kinds of applications: style transfer [25, 43, 49], image inpainting [31], 3D-model
generation [44] or grayscale colorization [3], just to name a few. Many other works address
the issue of image translation in general, namely transforming an image from one domain
into another [2, 8, 18, 20, 28, 40, 50]. These approaches use hand-tailored network topolo-
gies or training schemes to achieve optimal results.

Contrary to that, Isola et al. [18] introduced an approach that can be applied to a variety
of image translation tasks, while achieving reasonable results for all of them. They employ a
conditional GAN consisting of a U-Net [32] architecture as the generator and the truncated
encoder part of a similar U-Net as the discriminator. Further do they combine the adversarial
loss with an additional L;-loss to train the generator. The results and flexibility of their
approach is promising considering IR-Colorization.

Based on the approaches by [18] and [26], this work explores new network structures in-
corporating current CNN design patterns [37]. To increase the realistic impression of the gen-
erated output, adversarial training is used and evaluated. Finally, we show that, by using the
right design patterns, existing networks can be enhanced to not only perform IR-colorization,
but also improve the quality of such colorizations compared to previous approaches.

3 Approach

3.1 Encoder-Decoder Networks

Encoder-Decoder networks are deep neural networks that first consecutively encode a sig-
nal into a code-vector of lower spatial resolution as the input (bottleneck) and then con-
secutively decode it to a signal in the target domain. Many well performing deep network
architectures [14, 36, 38] are only designed as encoders, where the output is of lower spa-
tial resolution than their input. To maintain the input resolution, but also leveraging the
encoding effect, Fragmentation Layers [10, 41, 42] can be used. Numerous network archi-
tectures [4, 26, 27, 34, 46] utilize this technique in a variation commonly known as dilated
convolution. The common practice, however, is to keep the encoding structure and to de-
sign an additional decoder part for the network. The decoder often consists of transposed
convolutions with fractional stride, which serve as trainable upsampling operators. If the
code vector, though, is not expressive enough, upsampled outputs lack details lost in the
downsampling process [18, 29]. To recover this information skip-connections have been de-
veloped. These skip-connections combine intermediary feature maps of the encoder with
corresponding feature maps of the decoder. This is closely related to residual connections,
see He et al. [14]. Residual connections only span over singular network layers or modules
instead of larger network parts. While Long ez al. [29] combine the feature maps by a simple
element-wise addition, Ronneberger et al. [32] use channel-concatenation in their U-Nets
and let a following (transpose-)convolution handle the summation. Isola et al. [18] apply a
U-Net based network structure in their approach.

3.2 Multi-Scalar Networks

While Encoder-Decoder networks implicitly handle multi-scalar processing of the input,
other approaches explicitly handle multi-scalar input, e.g. [7, 9, 26, 27, 45]. These ap-
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Residual Inception Module

Figure 2:  The residual inception module used in this work. If the Inception module is used as a
downsampling module, layers with an asterisk have a stride of 2. As an upsampling module, these
layers are fractional strided (1/2) transpose convolutions instead of convolutions and bilateral upsam-
pling layers instead of average poolings. The scaling module in the residual connection does nothing,
if down- or upsampling is not required. If residual connections are disabled, this branch is skipped.

proaches construct an image pyramid with regular downsampling operations before process-
ing every scale concurrently in their own branch of the network. The outputs of each branch
are finally combined after they have been upsampled to the same resolution. Approaches
like [7, 45] train the network branch by branch, while [9, 26, 27] train the network with all
branches end to end. Results by [26] show that multiple scales strongly benefit the network’s
recall performance.

3.3 Inception Module

Szegedy et al. [38] published as a key component to their GoogLeNet the so called Inception
Module. These are miniature networks that contain various independent branches of network
layers, which are concatenated in the end. Each branch in a module has its own layer struc-
ture. A module may contain various combinations of computationally lightweight layers,
like overlapping average pooling, 1 x 1-convolutions or 3 x 3-convolutions. Inception mod-
ules result in a greater variety of feature maps and increase the depth of the network, while
the computationally lightweight components ensure a controllable increase of computational
complexity [38]. Recent developments of the GoogLeNet architecture also incorporate up-
and downsampling inception modules and residual connections [14] across regular inception
modules [39]. The inception module used in this work is depicted in Figure 2.

3.4 Recombinator and Estuary Networks

Recombinator Networks (RCN) by Honari et al. [15] combine multi-scalar processing with
the successive upsampling of U-Nets. After building an image pyramid, each scale is first
concatenated with the upsampled output of the previous branch, before it is processed by
various trainable layers. Up- and downsampling routines in RCNs are static network layers,
like average pooling and nearest neighbor upsampling.

In this work, a new network structure is outlined, called Estuary Networks. Similar to
RCNs, they also combine multi-scalar networks with U-Nets. An Estuary Network first
produces multiple scales of its input. Each scale is then processed by its own encoder net-
work branch, which subsequently encodes its input to the spatial size of the lowest scale
using a downsampling module. In every downsampling step the amount of channels is dou-
bled beginning with a base channel size n. until a certain depth is reached. The decoder
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Figure 3: Schematic overview of an estuary network. Downsampling and upsampling modules can
either be inception modules or (fractional) strided (transpose-) convolutions. All feature maps in each
scale are concatenated before the next upsampling module.

of an Estuary Network is structured similarly to the decoder of the U-Net. The only differ-
ence is that an estuary decoder combines all available feature maps of a resolution across
all branches, also called hypercolumns [13]. Contrary to RCNs, all down- and upsampling
routines are trainable. The downsampling modules can either be strided convolution lay-
ers or downsampling inception modules. Upsampling modules are, thus, fractional strided
transpose-convolutions or upsampling inception modules. The amount of channels of a sin-
gle branch inside an inception module is 1/4 of the current amount of channels, so that a
concatenation of the feature maps results in the correct amount of channels. Residual con-
nections for upsampling and downsampling modules are implemented as average pooling
and bilateral upsampling. Before a down- or upsampling module is used, feature maps are
normalized by a batchnorm-layer [17], followed by an activation function. In the encoding
branches the activation function is a leaky ReLU with a slope of 0.2 and in the decoding part
a regular ReLU. The Estuary Network structure is displayed in Figure 3.

3.5 Adversarial Training

Generative Adversarial Networks have been introduced by Goodfellow et al. [12]. They
describe a network architecture and training scheme that trains concurrently two separate
networks. One network, the generator, produces samples of a target distribution that are
rated by another network, the discriminator. The discriminator is trained to distinguish, if
an input sample came from the generator or from the original dataset, while the generator is
trained to "fool" the discriminator. This procedure is called adversarial training.

Let G be the generator and D be the discriminator and the tuple (x,y) € P, a sample
from the dataset Py ,, where x is from the source domain P, and y the correspondent from the
target domain P,. G :x — Y is then a function that generates fake samples y’ ~ P,, which
resemble y. Further is D : y — d a function that computes a probability d € [0..1] that y was
areal sample from P;. The adversarial loss £4p can then be defined as:

Lap(G,D) = Eyp,[log D(y)] + Ex-p[log(1 — D(G(x))]

This loss increases if generated samples from G can not be distinguished from real samples
by D. Consequently, L4p is minimized to optimize D. For optimizing G, this formulation is
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slightly modified to define a minimization problem as well:
L46(G,D) = Erp,[log(D(G(x))]

Here, the loss increases, if samples of G are not classified as samples from P,. According
to [18], it is beneficial to support D additionally with the original input sample x. Both losses
can therefore be conditioned on x by feeding the tuples (x,y) and (x,G(x)) to D. Combin-
ing the adversarial loss with one or multiple traditional objectives, like the L;-distance, is
reported to stabilize adversarial training (see [2, 18, 23, 31, 43, 44, 50]). Other approaches
also define alternative or modified adversarial losses [30, 33, 48]. In this work an additional
L-distance loss is used to train G:

L1,(G) = Exyr,[|ly = Gx)[ 1]
The resulting loss function for G is thus:
L6(G,D)=(1-21)-L46(G,D)+ A Ly, (G),

where A € [0..1] is a linear interpolation factor between L and Ly, .

4 Experiments

In the following, various experiments are conducted. After describing a few details of the
used dataset in Section 4.1, the basic training configuration is explained in Section 4.2. In
Section 4.3 several variations of the adversarial loss are discussed, followed by experiments
regarding skip- and residual connections in Section 4.4. Finally Estuary networks are com-
pared against other networks suitable for image translation tasks in Section 4.5.

4.1 Dataset

The dataset used for NIR-RGB translation tasks consists of 38.495 pixel-registered NIR-
RGB image pairs of rural road scenarios with a resolution of 768 x 1024. These pairs have
been sampled from video sequences taken on sunny days in summer and show a variety
of roads, landscapes, fields and trees. This setting was chosen, because it contains a vibrant
color distribution compared to other possible settings. The dataset is split into 800 evaluation
and 32.795 training image pairs, where each fraction was recorded on different days and
locations.

4.2 Training

All networks have been trained with almost the same hyperparameters. Every training
was performed for 60.000 iterations with a batchsize of 1 and a constant learning-rate of
n = 0.001 on the full-resolution images of the training set. The input images were normal-
ized to a range of [0..1]. Weights were initialized using the Xavier initializer of Glorot and
Bengio [11] and optimized by the Adam optimizer of Kingma and Ba [21]. Both components
use their default parameters. Variables 5 and 7 of all batchnorm layers were left trainable
and, contrary to common practice, running averages of the mean and standard deviation were
not used during recall, because using them resulted in severely distorted outputs. The evalu-
ated estuary networks contained seven downsamplings in the longest branch of the generator,
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Table 1: L;-error of Estuary Networks conditionally and unconditionally trained with various A.
Ly-error

Architecture ‘ A=001 2=001,C A=099 A=099,C A=100

Estuary-16-S | 0.123329 0.131221 0.093502  0.090415 0.090995
Estuary-16-IS

0.135006 0.124661 0.089726 0.083169 0.085258

(a) Input (b) A=0,C (c) A=0.01,C (d A2=0.99,C

(e) Target HAr=1 (g) A =0.01 (h) A =0.99

Figure 4: Example colorizations of network Estuary-16-IS conditionally (upper row) and uncondi-
tionally (lower row) trained with various values of A.

starting with n, = 16 and doubling up to n. = 128. The discriminator for all experiments is
a singular downsampling convolution layer with a filter bank size of n, = 128. One-sided-
label-smoothing [33] is used in its loss L£4p, which, depending on the experiment, is either
conditional or unconditional. The used training framework is Tensorflow [1].

In the following, various variants of network architectures are referred to by appending
suffixes to the architecture names depending on the existence of certain design patterns. The
usage of inception modules instead of (transposed) convolution layers is indicated by "I".
Using skip-connections, residual connections or a conditional discriminator are indicated by
"S", "R" and "C", respectively. An Estuary network using all mentioned design patterns with
n. = 16 is thus referred to as "Estuary-16-ISRC".

4.3 Adversarial Loss

To examine the influence of the adversarial loss on the IR-RGB translation performance,
the following parameters have to be taken into consideration. First, the interpolation factor
A between L£;, and L4 determines how strongly the adversarial objective dominates the
training. When A is set to 0, the network is trained only with L£s5, when set to 1, the
network is solely trained with £, . Derived from [18], the standard value of A is 0.99 in all
experiments if not denoted otherwise. A values of 0,0.01,0.99 and 1 have been examined.
The learning rate was decreased for A € {0,0.01} to 7 = 5-107> for the training to converge.
Second, D can either be conditional or unconditional. This only takes effect when A # 1.
Estuary networks with n, = 16, without residual, but with skip-connections and with and
without inception modules were trained with these seven parameterizations of A. Table 1
lists the L;-error on the evaluation dataset.
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Table 2: L;-error of Estuary Networks with and without skip- and residual connections.
Ly-error
— R S SR

Estuary-16 0.136024  0.139218  0.100473  0.093502
Estuary-16-1 | 0.124239  0.133915 0.094941  0.089726

Architecture

(f) Target (g) Estuary-16-1 (h) Estuary-16-IR (i) Estuary-16-IS (j) Estuary-16-ISR

Figure 5:  Colorizations for an example image of the evaluation dataset showing the influence of
skip-connections and residual connections.

It can be seen that setting A = 1 and or A = 0.99 with a conditional discriminator results
in the lowest L;-loss. It seems that conditioning the discriminator encourages it to penalize
similarly to the L;-loss alone. Slightly worse performs the unconditional discriminator with
A =0.99. The adversarial loss apparently tends to push generated samples away from the
optimum in an L;-sense. Networks trained with A = 0 hardly converge, even with low
learning rates. Networks trained with A = 0.01 converge much slower compared to A = 0.99
and A = 1 and, thus, generate output images of lower quality. Figure 4 displays a comparison
of output images trained with these A configurations.

4.4 SKkip- and Residual Connections

In the following, the influence of skip- and residual connections and their interaction in es-
tuary networks with inception modules is evaluated. Therefore, structurally similar estuary
networks are trained with and without skip- and residual connections (1 = 0.99, uncondi-
tional). Table 2 shows the L;-error of the evaluated networks. Skip connections increase the
Li-performance considerably compared to their counterparts. Residual connections, though,
appear not to show a clear tendency regarding the L-error. This reflects the findings in [39]
reporting that residual connections mostly increase training speed, but not improve the con-
vergence point. Inspecting Figure 5, residual connections appear to have another effect,
though. Generated images with residual connections appear sharper and less blurry. It must
also be denoted that the images generated without skip-connections hardly reconstruct orig-
inal details. They rather consist of image patch patterns that resemble real ones.
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Table 3: L;-error for various network architectures, their amount of trainable parameters in million and
average execution time for an 1024 x 768 image on an NVIDIA TITAN X (Pascal) GPU in seconds.

Architecture Li-error  nparam [m]  timing [s]
U-Net-64-S 0.108879 54.4 0.089
U-Net-64-1S 0.103525 25.1 0.171
Estuary-32-S 0.100113 68.6 0.241
Estuary-32-1S 0.083664 28.3 0.323
Limmer-3-12-3-bp | 0.103510 1.4 0.263
Johnson-6 0.126073 2.0 0.128
Honari-64-5 0.179843 0.5 0.077
Honari-64-5-1 0.120775 0.2 0.204

(f) Target (g) U-Net-64-1S (h) Estuary-32-IS (i) Honari-64-5-1 (j) Lim-3-12-3-bp [26]

Figure 6: Colorizations for an example image of the evaluation dataset using various network
architectures for image translation tasks.

4.5 Network Comparison

In this section the various network architectures for image translation tasks are compared
against each other. The baseline network is on one hand the U-Net-64 structure by [32] used
in [18] as is and modified by replacing all (transpose-)convolutions with inception modules.
On the other hand, the second baseline network is the multi-scale network by [26] without
their post-processing step. This network was not trained with an adversarial loss. Further
evaluated networks are Johnson-6 [19], which is used in [50], and Honari-64-5 [15] with
n. = 64 and 5 branches. Lastly Estuary-32 networks with and without inception modules
and skip connections are compared. Estuary-32 networks were chosen, because they have
a similar amount of network parameters compared to U-Net-64 networks. Table 3 shows
the L;-error of these topologies and the amount of trainable parameters and their timing in
seconds on a single NVIDIA TITAN X (Pascal) GPU.

Regarding the L;-error, U-Nets [18, 32] and Estuary networks outperform network ar-
chitectures by Johnson et al. [19], Honari et al. [15] or Limmer and Lensch [26]. Estuary
networks tend to perform visually similar to U-Nets. Using inception modules instead of
simple convolutions boosts the recall performance considerably and reduces the amount of
trainable parameters a large amount at the cost of execution speed. The RCN architecture
(Honari-64-5) has the highest execution speed, but can not reach the objective and visual
performance of the other network architectures, even when using inception modules. Fig-
ure 6 shows images generated by the discussed topologies. The inception variants of Estuary
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networks and U-Nets perform visually similar and appear to produce sharper results than
their variants without inception modules.

5 Conclusion

This paper introduced measures to improve deep learning based IR-Colorization. The pro-
posed network architectures combine CNN design patterns, like U-Nets, multi-scalar net-
works, inception modules, skip- and residual connections and adversarial training. Ex-
periments conducted in this paper indicate that replacing simple (transpose-)convolutions
with inception modules has a large positive impact on the objective estimation error and re-
duces the amount of network parameters considerably at the cost of execution speed. Skip-
connections further decrease this error and are an inevitable component to get appealing out-
put images, while residual connections appear to have almost no impact. Using adversarial
training combined with a traditional loss function tends to increase the realistic impression
of its output, while reducing the objective performance. Using a conditional adversarial loss
did not have a big impact on the objective performance. Although Estuary networks with
Inception modules often acquire the best objective error, U-Nets without Inception modules
possess a better trade-off between execution speed and objective performance, while main-
taining a similar visual appearance.
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