
Symbolic Debugging of Linux Device Drivers
The unsigned int Case

Martin Rathgeber
Christoph Zengler
Wolfgang Küchlin

Symbolic Computation Group
(Prof. Küchlin � Wolfgang@Kuechlin.info)

www-sr.informatik.uni-tuebingen.de
W.-Schickard Institute for Informatics

U. Tübingen

3 March 2011

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 1 / 26

Introduction

Veri�cation of Linux Device Drivers

Software in safety/mission critical systems must be correct!

Problems with FLOSS:

• Many di�erent (external) programmers

• No single source that guarantees quality

Opportunity with FLOSS:

• Open Source permits Open Correctness checks
• by user/reseller of the FLOSS
• by veri�cation provider
• by the community

Why device drivers?

• Device drivers are part of the operating system

• Device drivers have error rates up to three to seven times higher
than the rest of the kernel

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 2 / 26

Introduction

In�niband Device Driver

Goal: Veri�cation of the In�niband/EHCA Device Driver
(in loose cooperation with IBM Böblingen Labs.):

In�niband is

• a switched fabric communications link

• used in high performance computing

EHCA is

• an IBM speci�c implementation of the In�niband standard

• used on IBM's Z series (�Zero downtime�) mainframes

→ EHCA driver is critical for performance and reliability

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 3 / 26

Veri�cation Method

Veri�cation by Bounded Model Checking (BMC)

1 Manually add assertion(s) to program: assert(property)

2 Automatically prove/disprove the assertion by BMC

• CBMC compiles program + (negated) assertion to a Boolean formula and
solves it with a SAT-Solver without human help

program +
assertions

-
Boolean
formula

B

SAT-
Solver

�
�
��

@
@
@R

B
unsatis-
�able

B
satis-
�able

-

-

VERIFICATION
FAILED

VERIFICATION
SUCCESSFUL

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 4 / 26

Work Plan

Research Problems

Some problems

• What is the power of Bounded Model Checking and CBMC?

• �Assertion Engineering:� How to write the assertions?

• How to add global assertions to the program in all the right places?

• How to precondition the program?

• Remove constructs not accepted by CBMC
• Abstract from CBMC

• How to catch compiler errors?

In general, a tool-chain is needed (cf. Avinux [PostSinzKuechlin 2008])

• Write assertions

• Weave assertions into the program

• Precondition the program

• Call the veri�er back-end

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 5 / 26

The Power of BMC

CBMC: C Bounded Model Checker

CBMC: veri�cation tool for C programs by Clarke, Kroening and Lerda
Bounded: Cut loops to bounded length

Example (Prove/Disprove using CBMC)

int main() {

int x = 3;

int y = 4;

assert(x * y == 12);

}

CBMC-output:
VERIFICATION SUCCESSFUL

int main() {

int x = 3;

int y = 5;

assert(x * y == 12);

}

CBMC-output:
Violated property:

line 4 function main

assertion

x * y == 12

VERIFICATION FAILED

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 6 / 26

The Power of BMC

CBMC Advanced Example 1

Function: a < < 4. Property: (a < < 4) == a*16.

unsigned int multiply16(unsigned int a) {

unsigned int p = a << 4;

assert(p == a * 16);

return p;

}

command line output:

cbmc mult.c --function multiply16

file mult.c: Parsing

Converting

...

Solving with MiniSAT2 without simplifier

78 variables , 107 clauses

SAT checker: negated claim is UNSATISFIABLE , i.e., holds

Runtime decision procedure: 0.001s

VERIFICATION SUCCESSFUL

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 7 / 26

The Power of BMC

CBMC Advanced Example 2
Function: abs(x). Property: abs(x) >= 0.

short myabs(short a) {

short result;

if (a < 0)

result = -a;

else

result = a;

assert(result >= 0);

return result;

}

CBMC output:

abs::myabs ::1:: result = -32768 (1000000000000000)

Violated property:

file test.c line 8 function myabs

assertion

result >= 0

VERIFICATION FAILED

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 8 / 26

Signed and Unsigned Integers

Integer data types in C

signed unsigned
(signed) char unsigned char
(signed) short unsigned short
(signed) int unsigned int
(signed) long unsigned long
(signed) long long unsigned long long
s8 u8
s16 u16
s32 u32
s64 u64

Problem
• Unsigned integers represent non-negative values only.

• If negative integer values are assigned, the program continues.

• The bit-pattern is re-interpreted as a positive integer.

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 9 / 26

Signed and Unsigned Integers

Example of Undetected Misuse

Example

s32 some_function () {

return -5;

}

int main() {

u32 u;

s32 s = -13;

u = s;

u = some_function ();

u = -1;

}

The code compiles and runs without error!

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 10 / 26

Signed and Unsigned Integers

More Examples

The misuse may work just �ne sometimes . . .

u32 u = -1;

if (u == -1)

printf("yes");

else

printf("no");

u8 u = -1;

if (u == -1)

printf("yes");

else

printf("no");

u32 u = -1;

if (u < 0)

printf("yes");

else

printf("no");

Output: yes Output: no Output: no

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 11 / 26

Signed and Unsigned Integers

A Possible Explanation

• u32 u = -1;

if (u == -1) ...

Bit pattern u (32 bits) 1111 1111 1111 1111 1111 1111 1111 1111
Bit pattern -1 (32 bits) 1111 1111 1111 1111 1111 1111 1111 1111

⇒ Bit patterns are equal, (u == -1) yields true.

• u8 u = -1;

if (u == -1) ...

Bit pattern u (8 bits) 1111 1111
Bit pattern u (32 bits) 0000 0000 0000 0000 0000 0000 1111 1111
Bit pattern -1 (32 bits) 1111 1111 1111 1111 1111 1111 1111 1111

⇒ u is extended to 32 bits.
⇒ Since u is unsigned extension is by zeroes.
⇒ Bit patterns are di�erent, (u == -1) yields false.

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 12 / 26

Signed and Unsigned Integers

Error Patterns Checked

• Assigning constant to Unsigned Integer

Example
u = 4;

u = -3;

• Comparing constant to Unsigned Integer

Example
u == -3;

u < 0;

u == 4;

• Assigning variable value to Unsigned Integer

Example
u = s;

u = some_function();

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 13 / 26

Assertion Engineering

How to write the assertions

Problem situation
u = <exp>;

1st Ansatz
assert(<exp> >= 0); u = <exp>;

→ Wrong! <exp> may have side-e�ects!

2nd Ansatz
u = t = <exp>; assert(t >= 0);

→ Better, but no universal type for t.

3rd Ansatz
typeof(<exp>) t; u = t = <exp>; assert(t >= 0);

→ More complicated, but universal solution.

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 14 / 26

Assertion Engineering

Weaving Assertions into the Program Automatically

• CBMC can add assertions for some types of problems automatically:

• Array Bounds
• Division by Zero
• Arithmetic Over�ow

• How can we add an assertion for every assignment to an unsigned type?
⇒ need a tool which weaves our assertions into the source code.

• Similar to Aspect Oriented Programming
⇒ weave statements for �veri�cation aspect� into source code.

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 15 / 26

Assertion Engineering

Annotator: Source Code Annotation

Our (Flex/Bison-based) tool for source-code annotation with Unsigned-Assertions.

• Catches easy errors by itself

• unsigned = negative_constant
• unsigned = = negative_constant
• and similar . . .

• Annotates hard case unsigned = variable_value with assertion.

↓

(Unsigned-)Annotator

Handles easy cases by itself, annotates hard cases

↓

CBMC

Proves / disproves assertions for hard cases.

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 16 / 26

Assertion Engineering

Example Annotation

u16 a;

....

a = f(x) + c;

...

⇓
u16 a;

....

typeof(f(x) + c) t; a = t = f(x) + c; assert(t >= 0);

...

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 17 / 26

The Preconditioning Tool-Chain

Reminder: Veri�cation with CBMC

program +
assertions

-
boolean
formula

B

SAT-
Solver

�
�
��

@
@
@R

B
unsatis-
�able

B
satis-
�able

-

-

VERIFICATION
FAILED

VERIFICATION
SUCCESSFUL

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 18 / 26

The Preconditioning Tool-Chain

Why Preconditioning?

Preconditioning: prepare the annotated code for processing by CBMC

• At the time, CBMC could not handle Gnu-C (only ANSI C)

• At the time, CBMC could not handle embedded Assembler

• Now Gnu-C is accepted, as well as embedded Assembler

General reasons for preconditioning:

• Abstract from veri�er back-end

• Remove statements or modify assertions which back-end cannot process

• Catch compiler errors/optimizations

• Pass code through compiler front-end �rst
• Generate fresh C code from compiler intermediate code

• Abstract from source language

• Many compilers can emit C code
• Di�erent back-ends may accept di�erent language �avors

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 19 / 26

The Preconditioning Tool-Chain

A Toolchain for Pre-Processing LINUX code

↓

remove-asm.pl

removes embedded assembler statements

↓

llvm-gcc -c -emit-llvm

Translates C-Code into LLVM-Bytecode

↓

llc -march=c

Translates LLVM-Bytecode back to (ANSI) C-Code

↓

CBMC

Proves or disproves assertions

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 20 / 26

Results

Uses of Unsigned Ints in the In�niband Driver

1 Using Annotator:

• Annotator catches 16 easy errors by itself
• Weaves assertions into the source-code

2 Applying CBMC:

• Device drivers don't have a main function
• CBMC must be called repeatedly on all 47 EHCA entry functions

• 3 × CBMC aborts due to internal error
• 5 × veri�cation takes more than 3 hours
• 31 × CBMC proves all assertions
• 8 × CBMC disproves one or more assertions

• CBMC catches a total of 11 errors.
• CBMC takes about 10sec on most entry functions
• CBMC takes more than 20sec on 7 out of 44 entry functions

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 21 / 26

Results

(Easy) Errors Found by Annotator

File Line Error type
include/linux/mm.h 1279 unsigned = negative number
ehca_irq.c 145 unsigned = negative number
hcp_if.c 783 unsigned = negative number
ehca_cq.c 235 unsigned < 0
ehca_cq.c 358 unsigned == negative number
ehca_irq.c 155 unsigned == negative number
hcp_if.c 251 unsigned == negative number
hcp_if.c 289 unsigned == negative number
hcp_if.c 364 unsigned == negative number
hcp_if.c 559 unsigned == negative number
hcp_if.c 595 unsigned == negative number
hcp_if.c 603 unsigned == negative number
hcp_if.c 638 unsigned == negative number
hcp_if.c 660 unsigned == negative number
hcp_if.c 699 unsigned == negative number
ehca_irq.c 721 unsigned == negative number

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 22 / 26

Results

(Hard) Errors found by CBMC

File Line
hcp_if.c 386, 534, 557, 594, 601, 697, 866
ehca_uverbs.c 272, 294
ehca_mrmw.c 808

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 23 / 26

Summary

Summary / Lessons

Summary

• Found 27 bugs in real Linux code in real industrial setting

• 11 bugs found by formal veri�cation tool

• Built source-code annotation tool

• specialized for Unsigned errors
• generalizable approach

Lessons
• Formal software veri�cation is here

• Tools like CBMC �nd real errors in real code at compile-time

• General speci�cation language is needed

• Tool-chain is needed

• Pre-process �foreign� languages (Gnu-C, C++, . . .)
• Abstract from verifyer back-end (CBMC, . . .)
• Weave global assertions/speci�cations into programs

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 24 / 26

Summary

References
• Ball, Thomas and Bounimova, Ella and Levin, Vladimir and Kumar, Rahul and

Lichtenberg, Jakob: The Static Driver Veri�er Research Platform, Proc. CAV 2010.

• Chou, Andy and Yang, Junfeng and Chelf, Benjamin and Hallem, Seth and Engler,
Dawson: An empirical Study of Operating Systems Errors, Proc. SOSP 2001.

• Clarke, Edmund M. and Kroening, Daniel and Lerda, Flavio: A Tool for Checking
ANSI-C Programs, Tools and Algorithms for the Construction and Analysis of
Systems, 2004.

• H. Post, C. Sinz, and W. Küchlin. Avinux: Towards Automatic Veri�cation of Linux
Device Drivers. In: ProVeCS Workshop Proceedings, TOOLS Europe 2007: Object,
Models, Components and Patterns, Zurich, June 2007.

• H. Post and W. Küchlin, W.: Integration of static analysis for Linux device driver
veri�cation. In: Proc. 6th Intl. Conf. on Integrated Formal Methods (IFM 2007).
Oxford, UK, July 2-5, 2007, LNCS 4591, pp. 518-537.

• H. Post, C. Sinz and W. Küchlin. Automatic Software Model Checking of
Thousands of Linux Modules - A Case Study with Avinux. Journal for Software
Testing, Veri�cation and Reliability, September 2008.

• M. Rathgeber. Veri�kation eines Linux Gerätetreibers. Diplomarbeit am Fachbereich
Informatik, Universität Tübingen, Oktober 2010.

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 25 / 26

Questions

Thank you for your attention!

Questions ?

Rathgeber, Zengler, Küchlin (U. Tübingen) Symbolic Debugging of Linux 2011-03-03 26 / 26

	Title
	Presentation
	Introduction
	Verification Method
	Work Plan
	The Power of BMC
	Signed and Unsigned Integers
	Assertion Engineering
	The Preconditioning Tool-Chain
	Results
	Summary
	Questions

