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Abstract
Working memory is associated with persistent activity in the prefrontal cortex (PFC). The neuromodulator dopamine,
which is released by midbrain neurons projecting into the frontal lobe, influences PFC neurons and networks via the
dopamine D1 (D1R) and the D2 receptor (D2R) families. Although behavioral, clinical and computational evidence suggest
an involvement of D2Rs in working memory, a neuronal explanation is missing. We report an enhancement of persistent
working memory responses of PFC neurons after iontophoretically stimulating D2Rs in monkeys memorizing the number
of items in a display. D2R activation improved working memory representation at the population level and increased
population dynamics during the transition from visual to mnemonic representations. Computational modeling suggests
that D2Rs act by modulating interneuron-to-pyramidal signaling. By increasing the population‘s response dynamics, D2Rs
might put PFC networks in a more flexible state and enhance the neurons’ working memory coding, thereby controlling
dynamic cognitive control.
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Introduction
The persistent activation of prefrontal cortex (PFC) neurons in
the absence of external stimulation is considered a neuronal
correlate of working memory, which is the ability to briefly
retain and manipulate information in mind (Fuster 2008).
During working memory, stimuli are processed flexibly from
moment to moment depending on the behavioral context and
current goals mediating cognitive control (Baddeley 2012).
Working memory, and executive control functions in general,
are influenced by midbrain dopamine neurons that project to
PFC. There, dopamine affects PFC neurons via the dopamine
D1 receptor (D1R) and D2 receptor (D2R) families (Robbins and
Arnsten 2009).

While D1Rs have been shown to modulate working memory
and other executive functions on both behavioral (Sawaguchi
and Goldman-Rakic 1991; Müller et al. 1998; Noudoost and

Moore 2011; Puig and Miller 2012) and neuronal level (Williams
and Goldman-Rakic 1995; Vijayraghavan et al. 2007; Puig and
Miller 2012; Ott et al. 2014), the role of D2Rs has been less clear.
Behaviorally, D2Rs stimulation can improve working memory
performance in primates (Mehta et al. 2001; Gibbs and
D’Esposito 2005; Von Huben et al. 2006) and D2Rs are involved
in cognitive flexibility and attention (Floresco and Magyar 2006;
Noudoost and Moore 2011; Stelzel et al. 2013; Puig and Miller
2015). Clinical evidence suggests a prominent role of D2Rs in
psychiatric diseases characterized by disturbed executive con-
trol and psychosis (Winterer and Weinberger 2004; Rolls et al.
2008). Supported by computational modeling studies, D2Rs
were hypothesized to increase cognitive flexibility by putting
PFC working memory networks in a flexible state (Durstewitz
and Seamans 2008; Rolls et al. 2008) enabling dynamic cognitive
control (Stokes et al. 2013; Cools 2015).
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Despite this evidence, a neuronal correlate of D2R influence
on working memory signals is lacking. In a previous single-cell
study in monkeys required to memorize the location of saccade
targets, D2R manipulation had a strong impact on eye
movement-related discharges, but no effect on the preceding
persistent spatial working memory signal (Wang et al. 2004). So
far, the underlying physiological basis for D2Rs modulation of
working memory is still unknown.

We hypothesized that D2Rs modulate persistent working
memory activity in PFC neurons. Therefore, we trained two
macaque monkeys to remember visual items that represented
different numerosities, thus involving feature-based working
memory processing as opposed to spatial working memory
(Nieder 2002; Viswanathan and Nieder 2013; Jacob and Nieder
2014; Nieder 2016). By combining single unit recordings with
iontophoretic drug application and computational modeling,
we show that D2R stimulation indeed increases working mem-
ory coding at the single neuron level and enhances the
response dynamics of prefrontal neuronal populations.

Materials and Methods
Animals and Surgical Procedures

Two male rhesus monkeys (Macaca mulatta) were implanted
with a titanium head post and one recording chamber centered
over the principal sulcus of the lateral PFC, anterior to the
frontal eye fields (right hemispheres in both monkeys). Surgery
was conducted using aseptic techniques under general anes-
thesia. Structural magnetic resonance imaging was performed
before implantation to locate anatomical landmarks and recon-
struct recording sites with stereotactic coordinate (Fig. 1D). All
experimental procedures were in accordance with the guide-
lines for animal experimentation approved by the authority,
the Regierungpsräsidium Tübingen, Germany.

Task

Monkeys performed a memory-guided decision-making task,
comparing sample numerosities (set sizes) with test numeros-
ities. They initiated a trial by grasping a lever and maintaining
central fixation on a screen. After a pure fixation period
(500ms), a sample stimulus (500ms) cued the animals for the
reference numerosity (i.e., number of dots) they had to remem-
ber in the subsequent memory delay period (delay 1, 1000ms)
without numerosities. The first memory interval was followed
by a rule-cue (300ms) that instructed the monkeys to select
either a larger number of dots (“greater than” rule) or a smaller
number of dots (“less than” rule) than the sample numerosity
in the subsequent test phase. The test phase was preceded by a
second delay (delay 2, 1000ms) requiring the monkeys to
assess the rule at hand for the subsequent choice. In the fol-
lowing test 1 phase, the monkeys had to release the lever in a
“greater than” trial, if the number of items in the test display
was larger than the number of items in the sample display, or
to keep holding the lever for another 1200ms until the appear-
ance of a second test display (test 2), if the number of items in
the test display was smaller than the number of items in the
sample display. In a “less than” trial, these conditions were
reversed. Monkeys got a liquid reward for a correct choice.
Thus, only test 1 required a decision; test 2 was used so that a
behavioral response was required in each trial, ensuring that
the monkeys were paying attention during all trials. Because
both sample and test numerosities varied randomly, the mon-
keys could only solve the task by assessing the numerosity of

the test display relative to the three possible numerosities of
the sample display together with the appropriate rule in any
single trial. To test a range of numerosities, both monkeys were
presented with numerosities 2 (smaller test numerosity = 1,
larger test numerosity = 4), 8 (4:16), and 32 (16:64). For any sam-
ple numerosity, test numerosities were either larger or smaller
with equal probability (p = 0.5). Because the monkeys’ numer-
osity discrimination performance obeys the Weber–Fechner
law (Nieder and Miller 2003), numerosities larger than the sam-
ple numerosity need to be numerically more distant than

Figure 1. Memory-guided decision-making task and behavioral performance.

(A) Memory-guided decision-making task. Monkeys grabbed a bar and fixated a

central fixation spot throughout the trial. They had to remember a sample

numerosity (number of dots) during the memory delay period (delay 1). After

presentation of a rule cue indicating either the “greater than”- (red circle) or

“less than”-rule (blue circle), the monkeys were required to respond (by releas-

ing the bar) to test-displays showing more or fewer dots, respectively, than the

sample numerosity to receive a reward. (B) Example sample stimuli. For each

session, new random dot patterns were created, using different patterns for all

sample-test combinations. (C) Behavioral performance (% correct) for monkey E

for the range of sample numerosities (“2”, “8”, and “32”). (D) Behavioral perform-

ance of monkey O. (E) Population response of neurons selective for the sample

numerosity of monkey E during the memory delay period. Black line, preferred

numerosity, gray line, nonpreferred numerosity. Shaded areas represent SEMs

across neurons. (F) Same conventions as in (E) for monkey O. (G) Recording site

located in the right lateral PFC around the principal sulcus for both monkeys

(red shaded area). AS = arcuate sulcus, iAS = inferior limb of AS, sAS = superior

limb of AS, PS = principal sulcus.
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numerosities smaller than the sample numerosity to reach
equal discriminability. Based on this design, any test numeros-
ity (except the smallest and largest used) served as test numer-
osities for different sample numerosities, thus preventing
the animals from learning systematic relations between
numerosities.

To prevent the animals from exploiting low-level visual
cues (e.g., dot density, total dot area), a standard numerosity
protocol (with dot sizes and positions pseudo-randomized) and
a control numerosity protocol (with equal total area and aver-
age density of all dots within a trial) were each presented in
50% of the trials in a pseudo-randomized fashion. Each rule
was signified by two different rule-cues in two different sensory
modalities: a red circle (“greater than” rule, red color) or a white
circle with a drop of water (“greater than” rule, water) signified
the rule “greater than”. The “less than” rule was cued by a blue
circle (“less than” rule, blue color) or a white circle with no
water (“less than” rule, no-water). We showed in previous stud-
ies that monkeys generalize the numerical principles “greater
than” and “less than” to numerosities they had never seen
before (Eiselt and Nieder 2013). Before each session, the dis-
plays were generated anew using MATLAB (Mathworks). Trials
were randomized and balanced across all relevant features
(sample numerosities, “greater than” and “less than” rules,
rule-cue modalities, standard and control stimuli, match and
non-match trials). Monkeys had to keep their gaze within 1.75°
of the fixation point from the fixation interval up to the onset
of the first test stimulus (monitored with an infrared eye-
tracking system; ISCAN, Burlington, MA).

Electrophysiology and Iontophoresis

Extracellular single-unit recording and iontophoretic drug
application was performed as described previously (Jacob et al.
2013; Ott et al. 2014). In each recording session, up to three
custom-made tungsten-in-glass electrodes flanked by two pip-
ettes each were inserted transdurally using a modified elec-
trical microdrive (NAN Instruments). Single neurons were
recorded at random; no attempt was made to preselect the
neurons to any task-related activity or based on drug effects.
Signal acquisition, amplification, filtering, and digitalization
were accomplished with the MAP system (Plexon). Waveform
separation was performed offline (Offline Sorter; Plexon). Drugs
were applied iontophoretically (MVCS iontophoresis system;
npi electronic) using custom-made tungsten-in-glass electrodes
flanked by two pipettes each (Thiele et al. 2006; Jacob et al.
2013; Ott et al. 2014). Electrode impedance and pipette resist-
ance were measured after each recording session. Electrode
impedances were 0.8–3MΩ (measured at 500Hz; Omega Tip Z;
World Precision Instruments). Pipette resistances depended on
the pipette opening diameter, drug, and solvent used. Typical
resistances were 15–50MΩ (full range, 12–160MΩ). As in previ-
ous experiments (Jacob et al. 2013; Ott et al. 2014), we used
retention currents of –7 nA to hold the drugs in the pipette dur-
ing control conditions. The ejection current for SKF81297
(10mM in double-distilled water, pH 4.0 with HCl; Sigma-
Aldrich) was +15 nA, the ejection current for SCH23390 (10mM
in double-distilled water, pH 4.0 with HCl; Sigma-Aldrich) was
+25 nA, and the ejection current for quinpirole (10mM in
double-distilled water, pH 4.0 with HCl; Sigma-Aldrich) was
+40 nA. In control experiments with 0.9% physiological NaCl,
pH 4.0 with HCl, the ejection current was +25 nA. We did not
investigate dosage effects and chose ejection currents to match
the values reported to be maximally effective, i.e., in the peak

range of the “inverted-U” (Wang et al. 2004; Vijayraghavan et al.
2007). In these studies, D1R agonists have been shown to be
most effective at moderate doses of 15 nA (Vijayraghavan et al.
2007). For D1R antagonists, 25 nA has been repeatedly used and
shown to yield specific effects (Williams and Goldman-Rakic
1995; Vijayraghavan et al. 2007). For D2R agonists, which have
not been shown to modulate delay period activity previously,
larger doses have yielded stronger effects on saccade-related
activity (Wang et al. 2004). Thus, we used 40 nA to try maximiz-
ing potential D2R effects. For each recording session, one pip-
ette per electrode was filled with drug solution (either
SKF81297, SCH23390, quinpirole or NaCl), and the other always
contained 0.9% NaCl. We used the same drug for all pipettes
within the same recording session. The drugs used are highly
selective for D1Rs (SKF81297, SCH23390) or D2Rs (quinpirole)
and show very little affinities for the corresponding other
receptor family (Seeman and Van Tol 1994). In addition, they
are highly specific and show only little affinity to other recep-
tors such as serotonin receptors (Hyttel 1983; Andersen and
Jansen 1990, Levant et al. 1992). In each recording session, con-
trol conditions using the retention current alternated with drug
conditions using the ejection current. Drugs were applied con-
tinuously for 12–15min (drug conditions), depending on the
number of trials completed correctly by the animal. Each con-
trol or drug application block consisted of 72 correct trials to
yield sufficient trials for analysis. The first block (12–15min)
was always the control condition. Given that iontophoretic
drug application is fast and can quickly modulate neuronal fir-
ing properties (Jacob et al. 2013), we did not exclude data at the
current switching points.

Data Analysis

Selection Criteria
All well-isolated recorded single units with a baseline spike
rate above 0.5 Hz (determined in the 500ms fixation period pre-
ceding sample presentation) and with at least 15 trials for each
of the three sample numerosities in each control and drug
condition entered all subsequent analyses. Neurons were not
included based on drug effects. Only correct trials were
analyzed.

Numerosity-Selective Neurons
We calculated a two-way ANOVA for each neuron to determine
if a neuron‘s response was correlated with sample numeros-
ities in the memory delay period (delay 1), thus representing a
numerosity in working memory. We used spike rates in an
800ms window beginning 200ms after sample offset, based on
previous studies (Bongard and Nieder 2010; Vallentin et al.
2012). The main factors were numerosity (“2”/”8”/”32”) and
iontophoresis condition (control conditions/drug conditions).
We identified numerosity-selective neurons by a significant
main factor of the factor numerosity (p < 0.05). Since the mon-
keys’ behavior did not show any differences for standard and
control stimuli, and because we have shown previously that
neuronal responses in the PFC do not differentiate between
standard and control stimuli (Bongard and Nieder 2010), we
pooled over standard and control stimuli trials.

Single-cell and Population Responses
For plotting single-cell spike density histograms, the average
firing rate in trials with one of the three different sample
numerosities (correct trials only) was smoothed with a
Gaussian kernel (bin width of 200ms, step of 1ms). Tuning
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curves were constructed by calculating mean spike rates in the
same analysis window used for the ANOVA. For the population
responses, we defined a neuron‘s preferred numerosity as the
numerosity yielding the higher average spike rate in the ana-
lysis window used for the ANOVA, averaging over control and
drug trials. Accordingly, the intermediate and least preferred
numerosities were defined as the numerosities resulting in
lower average spike rates. Neuronal activity was normalized by
subtracting the mean baseline firing rate in the control condi-
tion and dividing by the standard deviation of the baseline fir-
ing rates in the control condition. For population histograms,
normalized activity was averaged and smoothed with a
Gaussian kernel (bin width of 200ms, step of 1ms). Population
tuning curves were calculated as the mean normalized activity
for each condition in the same analysis windows used for the
ANOVA.

Neuronal Information About Sample Numerosities
We estimated the information a single unit carried about the
sample numerosity during working memory by using three dif-
ferent quantifications. Calculations were performed based on
spike rates in the delay period using the same analysis window
as for the ANOVA. Additionally, we performed sliding window
analysis, using spike rates in overlapping 100ms windows
stepped in 10ms increments from fixation onset to the end of
the delay 1 period. First, we defined a tuning index (TI) by sub-
tracting the neuron‘s spike rate to the least preferred sample
numerosity from the spike rate of the preferred numerosity
and dividing by the sum, i.e.,

( ) ( )= – +TI FR FR / FR FR .pref leastpref pref leastpref

TIs vary between 0 and 1, expressing the relative (rather than
absolute) differences in spike rates between sample numeros-
ities, where low values correspond to low numerosity selectiv-
ity and high values correspond to high numerosity selectivity.
Second, we calculated the percentage explained variance (PEV)
using ω2, expressing how much of a neuron‘s spike rates can be
explained by the sample numerosity (Jacob and Nieder 2014). ω2

is defined as

( )ω = – × ( + )SS df MSE / SS MSE ,2
groups total

where the individual terms are calculated using a one-way
ANOVA using all three sample numerosities as levels (pooled
over control and drug condition). SSgroups is the sum of squares
between groups (sample numerosities), SStotal the total sum of
squares, df the degree of freedoms, and MSE the mean squared
error. The number of trials in each group was balanced by
stratifying the number of trials in each group to the minimum
trial number across groups, randomly selecting individual
trials. This process was repeated 25 times, and the mean of the
stratified values was taken as the final statistic. ω2 is an
unbiased, zero-mean statistic when there is no information,
while values above zero indicates the variance explained by the
sample numerosity (Jacob and Nieder 2014). Values range
roughly from 0 to 1, expressing the fraction of explained vari-
ance in the data explained by the task variable (i.e. ω2 values of
0.1–0.2 correspond to 10–20% “percent” explained variance).
Third, sample numerosity coding quality was quantified using
receiver operating characteristic (ROC) analysis derived from
Signal Detection Theory. The area under the ROC curve
(AUROC) is a nonparametric measure of the discriminability of
two distributions. It denotes the probability with which an ideal

observer can tell apart a meaningful signal from a noisy back-
ground. Values of 0.5 indicate no separation, and values of 1 sig-
nal perfect discriminability. The AUROC takes into account
both the difference between distribution means as well as their
widths and is therefore a suitable indicator of signal quality.
We used AUROCs to quantify the quality of sample numerosity
coding in the memory period. We calculated the AUROC for
each neuron using the spike rate distributions of the preferred
and the least preferred numerosity in the same analysis win-
dow used for the ANOVA.

Linear Regression Analysis
We used linear regression analysis to estimate the neuronal
population coding of numerosities in working memory, disen-
tangling general drug-induced neuronal activity changes and
variability of neuronal responses explained by numerosity.
Analysis was performed following Mante et al. (2013) and is
described in detail in Supplementary Materials. In brief, neur-
onal data was binned (100ms, 50ms steps) and z-scored. We
then estimated regression coefficients for numerosity for each
neuron and time bin, describing how much of the trial-by-trial
variability of a neuron depends on the sample numerosity.
Regression coefficients were averaged during the delay 1 period,
yielding a time independent estimate of each neuron‘s numer-
osity coding strength during working memory. To quantify the
population‘s momentary numerosity evidence, we projected
the population response onto the population vector containing
the regression coefficients. All analyses steps and control ana-
lyses (shuffled data, cross-validation and simulations) are
described in Supplementary Materials.

Principal Component Analysis
We performed principal component analysis (PCA) to represent
the population activity of all recorded single units in a low-
dimensional subspace, extracting shared activity patterns
prominent in the population response (Cunningham and Yu
2014). Analysis is described in detail in the Supplementary
Materials. In brief, neuronal data was binned (100ms, 50ms
steps), z-scored and trial-averaged. By considering the activity
of all neurons in each time bin and condition as pseudo-
simultaneous, we performed PCA to represent neuronal popula-
tion activity using the first three principal components capturing
the largest amount of variance in population response,
accounting for 42% (for quinpirole data) of the total variance.
The distance between pair-wise trajectories in state space
was calculated as the Euclidean distance using the full
n-dimensional space. Trajectory velocity was calculated as the
Euclidean distance between two adjacent time bins divided by
the time step (Stokes et al. 2013). Distance and velocity was
baseline-normalized using condition-specific baselines in con-
trol and drug conditions. All analyses steps and control ana-
lyses (shuffled data, cross-validation and simulations) are
described in the Supplementary Materials.

Neural Network Model
We implemented a neural network model to investigate pos-
sible synaptic mechanisms by which D2Rs modulate delay peri-
od activity. Network architecture and parameters were
identical to Brunel and Wang (2001) and are described in detail
in Supplementary Materials. In brief, the model consisted of
pyramidal cells and interneurons described by leaky integrate-
and-fire neurons. Excitatory connections from pyramidal cells
to pyramidal cells and from pyramidal cells to interneurons
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consisted of AMPA and NMDA currents. Inhibitory connections
from interneurons to interneurons and from interneurons to
pyramidal cells were modeled as GABA currents. The network
shows two distinct stable attractor states (Brunel and Wang
2001; Wang 2002): Without stimulation, pyramidal cells in the
network show a low-firing spontaneous activity state domi-
nated by GABA currents (Brunel and Wang 2001). When transi-
ently stimulating a subset of pyramidal cells with strong
recurrent excitatory connections, the neurons’ activity switch
to a high-firing persistent activity state dominated by NMDA
currents. We implemented neuromodulation by systematically
changing synaptic conductances within the model and investi-
gating effects on the network‘s attractor states. Model imple-
mentation was realized using Python and the brian simulator
(Goodman and Brette 2009). Model architecture, equations and
parameters are described in Supplementary Materials.

Results
We trained monkeys to memorize the number of items over a
brief delay period (‘memory delay’ in Fig. 1A) in a delayed
response task (Bongard and Nieder 2010; Ott et al. 2014). The
monkeys had to assess the number of dots shown on a sample
display, and maintain this sample numerosity in working
memory during the delay period. Next, a rule cue was pre-
sented that instructed the monkeys to respond to a subsequent
test display showing either more or less dots than the sample
display. Thus, the delay phase after sample presentation con-
stituted a pure working memory period (devoid of motor prep-
aration) which allowed for investigation of neuronal working
memory processes.

While the monkeys performed this task with varying
numerosities and rules proficiently (Fig. 1B–D), we recorded 310
randomly selected single neurons from the lateral PFC of two
macaque monkeys (Fig. 1G). For monkey E, recording locations
of 206 neurons comprised areas in dorso-lateral PFC (area 9/46d
and 9/46 v). For monkey O, recording was performed from 104
neurons in ventro-lateral PFC (areas 9/46 v, 47/12 and 45 A)
(Petrides 2005). To directly assess the impact of dopamine
receptor targeting agents on neuronal working memory activ-
ity, each neuron was recorded both without drug application
(control condition) and while stimulating dopamine receptor
agents at the vicinity of the recorded neurons using micro-
iontophoresis (drug condition) (Thiele et al. 2006; Jacob et al.
2013). Control conditions alternated with drug conditions in
each recording session in blocks of about 12min. In each ses-
sion we tested one of three different substances that selectively
targeted the D2R or the D1R: The D2R was assessed in 76 neu-
rons (55 monkey E, 21 monkey O) by applying the D2R agonist
quinpirole. The D1R was tested in 82 neurons (25 monkey E,
57 monkey E) using the D1R agonist SKF81297, and in 85 neu-
rons (59 monkey E, 26 monkey O) using the D1R antagonist
SCH23390. To verify drug-specific effects, 67 neurons were
recorded using normal saline (monkey E). In general, D2R
stimulation slightly increased the neuron‘s spiking activity,
while D1R stimulation slightly decreased neuronal activity (Ott
et al. 2014).

We identified single units selectively encoding the sample
numerosities during the memory delay (delay 1; see Fig. 1A)
using a 2-way-ANOVA with main factors sample numerosity
(“2”, “8”, “32”) and drug condition (control, pharmacological
application). Many neurons were tuned to one of the presented
numerosities in the delay period (Nieder 2002; Jacob and Nieder
2014). For monkey E, 24 out of 206 (13%) recorded neurons were

numerosity-selective. For monkey O, the percentage of
numerosity-selective neurons was similar (13 our of 104
neurons; 13%) and not different from monkey E (p = 0.85,
Fisher‘s exact test). The population activity of numerosity-
selective neurons showed a similar profile, with increasing dif-
ferentiation in neuronal activity between the neuron‘s
preferred and nonpreferred numerosities (Fig. 1E,F). We
combined neuronal data of both monkeys in the following
analyses except where noted.

A representative delay-selective unit (Fig. 2A) showed char-
acteristic tuning for one of the sample numerosities, i.e. a high-
er discharge rate for their preferred numerosity (“2” in this
neuron) and increasingly lower discharge rates for more distant
numerosities. After D2R stimulation with quinpirole, response
differences of the same neuron to different memorized numer-
osities were increased, enhancing neuronal selectivity and tun-
ing curve (Fig. 2B). To analyze averaged responses and tuning
curves of the entire population of selective neurons, we ordered
each neuron‘s delay-selective discharges to the three presented
numerosities by its respective preferred, intermediate preferred
and least preferred numerosity. A comparison of the popula-
tion averaged spike rates in the control (Fig. 2C) and drug condi-
tions (Fig. 2D), showed enhanced differentiation of the
responses to the three memorized numerosities during
D2R stimulation, and a steepening of the population averaged
tuning curves (Fig. 2D).

D2R Stimulation Enhanced Working Memory Coding at
the Single Neuron Level

To quantify the neuronal delay selectivity across time, we
defined a sliding tuning index (TI) (Fig. 3A) (see Materials and
Methods). The TI was significantly enhanced by D2R stimulation
for delay-selective neurons (Fig. 3B) (TI = +0.11 mean ± 0.04
SEM, p = 0.01, signed rank test). As a measure of effect size, we
derived the percentage of explained variance (PEV, expressed
as absolute values ω2, ranging roughly from 0 to 1 fraction of
explained variance) by the variable “numerosity” across time
for all selective neurons, calculated using a sliding ANOVA
(Fig. 3C) (see Materials and Methods). The PEV also increased after
D2R stimulation (Fig. 3D) (ΔPEV = +0.06 ± 0.02, p = 0.01, signed
rank test). To quantify coding quality, we compared discharge
rates of the neuron‘s preferred and least preferred sample
numerosity by calculating the area under the receiver operating
characteristic (AUROC) across time (Fig. 3E). D2R stimulation
significantly increased AUROCs in the delay period
(ΔAUROC = +0.11 ± 0.03, p = 0.003, signed rank test), indicating
an enhancement of the neurons’ working memory coding qual-
ity (Fig. 3F). This enhancement was observed for all compari-
sons between the most, intermediate and least preferred
numerosity (Fig. S1). The modulation of numerosity was similar
in both monkeys. For the 8 selective neurons recorded from
monkey E (out of a total of 12 neurons from both monkeys) the
ΔAUROC was +0.08 (± 0.03), and for the 4 selective neurons
from monkey O the ΔAUROC was +0.17 (± 0.07). In addition, we
analyzed D2R-induced changes of working memory coding by
including all recorded neurons (delay-selective or not, n = 76)
and observed the same increase in coding strengths and com-
parable results when analyzing data of individual monkeys
(monkey E, n = 55; monkey O, n = 21) (Fig. S2). The effect of
pharmacological manipulation was confirmed through applica-
tion of saline (NaCl) which did not result in any coding changes
(Fig. S5A–H). Thus, D2R stimulation improves memory-delay
selectivity for quantities at the single neuron level.
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D2R Stimulation Enhanced Working Memory Coding at
the Population Level

To describe numerosity representation at the population level,
we used linear regression disentangling general drug-induced
shifts of neuronal activity from neuronal activity explained by
numerosity (Mante et al. 2013). By modeling interactions
between drug and sample numerosity, we defined numerosity-
related axes for control and drug conditions and projected the
population response of all 76 neurons tested with the
D2R-agonist onto these axes. This provided an estimate of
the numerosity representation during working memory at the
population level for control and drug conditions (see Materials
and Methods).

Relative to the control condition (Fig. 4A), D2R stimulation
prominently increased numerosity representation by the
neuronal population during the entire delay period (Fig. 4B).
We quantified the selectivity between numerosities responses
by calculating the distance between state trajectories (in
Fig. 4A,B) for all sample combinations. Compared to control
conditions (Fig. 4C), stimulation of D2Rs enhanced discrimin-
ation between numerosities in the delay period (Fig. 4D).
Average trajectory differences increased after D2R stimulation
(Fig. 4E) (change in mean Δtrajectory = +1.1 ± 0.19, p = 0.001,
bootstrapping). Moreover, the regression weights for the task
variable ‘numerosity’ were increased by D2R stimulation, as
witnessed by a positive interaction term (Fig. 4F, mean inter-
action term = +0.021 ± 0.006, p = 0.003, signed rank test). D2R

stimulation enhanced working memory coding in neuronal
population of both monkeys independently. For monkey E, the
average trajectory differences increased after D2R application
(Fig. 4G) (change in mean Δtrajectory = +0.87 ± 0.18, p = 0.01,
bootstrapping). Likewise, the average trajectory difference was
enhanced after D2R application for monkey O, too (Fig. 4H)
(change in mean Δtrajectory = +1.29 ± 0.34, p = 0.03, bootstrap-
ping). We confirmed the results of the regression analysis by
using shuffled data and cross-validation (Fig. S6). To confirm
that overall drug-induced shifts in spiking activity cannot
explain the results, we simulated data applying the same
strength of numerosity coding and the same amount of drug-
induced shifts in overall spiking activity (Fig. S6). These con-
trols verified that general changes in neuronal activity did not
drive specific D2R modulation of working memory. Application
of saline (NaCl) did not produce any effects (Fig. S5I–J). Thus,
D2R-stimulation enhanced the neuronal population‘s represen-
tation of numerosities in the memory delay period.

D1R Manipulation did not Modulate Working Memory
Coding at Single Neuron or Population Levels

We assessed D1R manipulation on working memory coding by
either stimulating or blocking D1R using SKF81297 or
SCH23390, respectively. We found no differences in coding
strength of sample numerosities at the single neuron level
when applying the D1R agonist SKF81297 (Fig. S3A–H) or the

Figure 2. D2R modulation of working memory-selective neurons. (A) Dot-raster histogram (top; each dot represents an action potential; colors indicate the three

numerosities) and spike-density histograms (bottom) of an example neuron. The neuron was tuned to numerosity “2”, with lower activity for more distant numeros-

ities (inset tuning curve in delay 1 period). (B) After D2R stimulation, the same neuron as in (A) showed enhanced and more selective tuning (layout as in (A)). (C)

Time course of average normalized response of all numerosity-selective delay neurons; trials grouped according to the neurons’ preferred numerosity (inset tuning

curve in delay 1 period). (D) Same neurons as in (C), after D2R stimulation. Population responses were enhanced and tuning was steeper (layout as in (C)).
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D1R antagonist SCH23390 (Fig. S4A–H). In addition, we per-
formed population analysis to assess D1R effects on working
memory coding using the same linear regression analysis as
described previously (Mante et al. 2013). We found no signifi-
cant differences of working memory coding for neurons tested
with the D1R agonist (Fig. S3I–J) or D1R antagonist (Fig. S4I–J).
Thus, D1R manipulation, in contrast to D2R stimulation, did
not affect memory-delay selectivity for quantities at the single
neuron or population level.

Dopamine Receptors Modulated the PFC Population’s
Response Dynamics

To assess neuronal population’s response dynamics, we ana-
lyzed population responses of all recorded 76 neurons tested
for D2R-effects by representing the population single-unit
activity in a low-dimensional space using PCA (see Materials

and Methods), extracting shared activity patterns prominent in
the population response (Harvey et al. 2012). Population activity
represented by the first three principal components (PCs)
showed prominent shifts in population activity after sample
onset and at the beginning of the memory delay period as a

Figure 3. D2R stimulation enhanced numerosity coding during working mem-

ory at single neuron level. (A) Time-dependent TIs for control (black) and drug

(red) conditions from fixation onset to the end of the delay 1 period for working

memory-selective neurons. (B) TIs during the delay period for quinpirole appli-

cation plotted agains TIs in control conditions; each dot corresponds to one sin-

gle unit, inset shows mean over neurons. (C) Time course of PEV (ω2) (layout as

in (A)). (D) PEV (ω2) during quinpirole application plotted against PEV in control

conditions (layout as in (B)). (E) Time course of AUROCs (layout as in (A)). (F)

AUROCs during quinpirole application plotted against AUROCs in control condi-

tions (layout as in (B)). Gray windows in (A,C,E) denote analysis window in the

delay 1 period. Error bars and colored shaded areas represent standard errors of

the mean (SEMs). * p < 0.05, ** p < 0.01 (signed rank test).

Figure 4. D2R stimulation enhanced numerosity coding during working mem-

ory at population level. (A) Population responses projected on the numerosity

axes for control conditions. Trajectories represent the time-dependent numer-

osity evidence control conditions for different numerosities represented by the

neuronal population. (B) Time-dependent numerosity evidence for the same

population of neurons under quinpirole (layout as in (A)). (C) Absolute differ-

ences between all pair-wise sample trajectory combinations (see (A)) in control

conditions. (D) Absolute differences between all pair-wise sample trajectory

combinations under quinpirole (layout as in (C)). (E) Mean trajectory difference

(i.e., mean of curves in (C and D)) for control conditions (black) and drug condi-

tions (red). D2R stimulation significantly enhanced mean trajectory difference

in the delay 1 period (inset). (F) Population average regression weights for the

factor numerosity in the linear regression model for control and drug condi-

tions (interaction term for sample and drug is either subtracted or added,

respectively, see Materials and Methods). (G) Mean trajectory difference for

monkey E (layout as in (E)). (H) Mean trajectory difference for monkey E (layout

as in (E)). Gray shaded areas denote analysis window, error bars represent SEMs

(estimated by bootstrapping). *** p < 0.001, ** p < 0.01, * p < 0.05 (bootstrapping in

(E) and signed rank test in (F)).
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function of numerosities (Fig. 5A). After stimulating D2Rs with
quinpirole, population activity followed similar trajectories, but
showed improved differentiation between different numeros-
ities (Fig. 5B). Discrimination between numerosity representa-
tions, quantified by the Euclidean distance between population
trajectories for all numerosity combinations (Fig. 5C, see
Materials and Methods), was increased by D2R stimulation in
the delay period (Fig. 5D). The mean differences between the
trajectories were significantly higher during D2R-stimulation
(Fig. 5E) (change in mean Δtrajectory = +0.37 ± 0.18, p = 0.02,
bootstrapping).

To evaluate population dynamics further, we quantified the
speed with which the population trajectories traveled through
state space by calculating the average rate of change of state
space trajectories (Stokes et al. 2013) (see Materials and Methods).
Delay-period onset (and sample onset) induced a rapid acceler-
ation of the population trajectories (Fig. 5F). The distances

traveled by the trajectories were greater after D2R stimulation
(Fig. 5F, bottom inset, change in traveled distance = +2.1 ± 1.3,
p = 0.04, bootstrapping). Velocity decreased during the delay
period, indicating a more stable state during working memory
(Fig. 5F, top inset). Thus, D2R stimulation enhanced velocity
particularly during the dynamic (i.e. transition) periods of the
population activity. As above, we verified PCA analysis by using
shuffled data, cross-validation, and simulated data (Fig. S7).
Thus, D2R stimulation increased the neuronal population‘s
response dynamics, enhancing the trajectories’ separability in
state space. Interestingly, D1R stimulation (Fig. 6A,B), but not
D1R blockage (Fig. 6C,D), significantly decreased the popula-
tion‘s velocity in state space (change in velocity = –2.4 ± 1.2,
p = 0.02, change in traveled distance = –2.4 ± 1.3, p = 0.004,
bootstrapping, control analyses in Fig. S8). Application of saline
(NaCl) did not produce any effects (Fig. S5K–L). Thus, D1Rs and
D2Rs showed opposite effects on coding stability during transi-
tion stages.

Computational Modeling Suggests Specific Mechanism
for D2R Modulation

We implemented a biophysically plausible network attractor
model of object working memory (Brunel and Wang 2001;
Wang 2002; Goodman and Brette 2009) to investigate possible
mechanisms of D2R actions. The model consisted of pyram-
idal cells and interneurons with recurrent excitatory and
recurrent inhibitory connections (Fig. 7A). These cell types
generate attractor networks with stable spontaneous activity
states and stable persistent (reverberatory) activity states
(Fig. 7B) modeling information held in working memory (see
Materials and Methods). Connections were modeled by excita-
tory pyramidal-to-pyramidal and pyramidal-to-interneuron
AMPA and NMDA glutamatergic synapses, as well as
inhibitory interneuron-to-interneuron and interneuron-to-
pyramidal GABAergic synapses.

When transiently stimulating one of three selective subsets
of pyramidal cells, corresponding to neurons selective for one of

Figure 5. D2R stimulation enhanced response dynamics of prefrontal popula-

tions. (A) The activity of all recorded neurons (n = 76) recorded with D2R stimu-

lation represented in state space by the first three PCs for control conditions. (B)

Same neurons as in (A) represented in state space during quinpirole application

(layout as in A). (C) Euclidean distance between all pair-wise trajectories (see

(A)) for control conditions. (D) Euclidean distance between all pair-wise trajec-

tories (see (B)) during quinpirole application (layout as in (C)). (E) Mean trajec-

tory distance (i.e,. mean of curves in (C and D)) for control (black) and drug (red)

conditions. D2R stimulation significantly increased trajectory distance in the

delay 1 period (inset). (F) Mean trajectories’ velocity, i.e. the rate of change of

positions in state space over time, for control (black) and drug (red) conditions.

D2R stimulation increased the population‘s mean velocity in state space at the

beginning of the delay period after sample offset (top inset) as well as the dis-

tance traveled by the trajectories through state space (bottom inset). Numbers

indicate trial events, 1: fixation onset, 2: sample onset: 3: delay 1 start, 4: delay

1 end (rule cue onset). Gray shaded areas denote analysis windows, error bars

represent SEMs (estimated by bootstrapping). ** p < 0.01, * p < 0.05

(bootstrapping).

Figure 6. D1R stimulation decreased response dynamics of prefrontal popula-

tions. (A) PCA analysis for SKF81297. Same conventions as in Fig. 5E for D1R

stimulation. (B) Same conventions as Fig. 5F for SKF81297. (C) PCA analysis for

SCH23390. Same conventions as in Fig. 5E for blocking D1Rs. (D) Same conven-

tions as Fig. 5F for SCH23390. Gray shaded areas denote analysis windows, error

bars represent SEMs (estimated by bootstrapping). ** p < 0.01, * p < 0.05

(bootstrapping).
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the three numerosities, the pyramidal cell population switched
from a spontaneous activity state to a stable persistent activity
state without further stimulation (Fig. 7B). In vitro studies using
prefrontal slices suggest that D2R stimulation decreases respon-
siveness to GABA in pyramidal cells (Seamans et al. 2001;
Trantham-Davidson et al. 2004). We thus studied effects of
decreasing the GABA conductance in interneuron-to-pyramidal
synapses, which lead to an overall increase in spiking activity
that impaired the network‘s stable spontaneous activity state
under only slight decreases of GABA conductances (Fig. 7C).

D2R stimulation has been shown to modulate interneuron
excitability (Zhong and Yan 2016). We implemented this effect
by increasing AMPA conductances in interneurons, leading to
an increase in inhibition and to a breakdown of the network‘s
persistent activity state (Fig. 7D). However, by combining both
modulations, disinhibition of pyramidal cells by decreasing
GABA conductances was balanced by increasing AMPA conduc-
tances in interneurons, i.e., increasing interneuron excitability.
Both spontaneous and persistent activity states remained
stable over a larger range (Fig. 7E). The network showed a small
increase in spontaneous activity in addition to a prominent
increase of persistent activity, increasing the neurons’ selectiv-
ity to a sample stimulus during the delay memory period,
reproducing our key experimental results.

Discussion
We show that stimulation of prefrontal D2Rs enhanced work-
ing memory representations of numerosities both on single
neuron and on population levels. D2Rs changed the flexibility
of neuronal population activity by increasing the population‘s
response dynamics. By using a computational model of

prefrontal networks, we suggest a mechanism by which D2Rs
control prefrontal working memory networks.

D2R Improves Feature-based Working Memory
Representations

These results provide a neuronal basis for D2R modulation of
working memory in primates and complement reported behav-
ioral effects of D2R manipulation. D2R stimulation has been
shown to influence working memory performance in monkeys
and humans by increasing or decreasing performance (Arnsten
et al. 1995; Mehta et al. 2001; Gibbs and D’Esposito 2005; Von
Huben et al. 2006), depending on the subject‘s baseline per-
formance (Clark and Noudoost 2014). In addition, D2Rs play a
role in mediating cognitive flexibility (Klanker et al. 2013).
Blocking D2Rs impairs the ability of rats to switch between dif-
ferent response strategies (Floresco et al. 2006). In monkeys,
blocking prefrontal D2Rs impairs learning of new association
rules and reduces neural selectivity for the learned saccade dir-
ection (Puig and Miller 2015), while stimulating D2Rs increased
neural selectivity for task rules in the same numerical switch-
ing task (Ott et al. 2014).

Despite this behavioral impact, a neuronal correlate of D2R
modulation of working memory was lacking so far. In monkeys
performing a oculomotor delayed-response (ODR) task to test
spatial working memory, D2Rs did not modulate persistent
delay activity (Wang et al. 2004). However, because the ODR
task allows for saccadic motor preparation, many neurons
might reflect response-related signals rather than pure working
memory representations during the delay (Takeda and
Funahashi 2004; Markowitz et al. 2015). Here, we excluded
motor preparation during the delay by forcing the monkeys to

Figure 7. Attractor network model for D2R modulation of working memory. (A) Within the network, recurrent excitatory connections by AMPA and NMDA receptors

are structured in three selective pyramidal cell groups (colored circles), characterized by strong recurrent connections within one selective pool w+ (thick arrows) (see

Materials and Methods) and weak synaptic connections w– between pools (dashed arrows) and from non-selective neurons. Other connections have weight w = 1 (thin

arrows). An interneuron pool is characterized by recurrent GABA connections and interneuron-to-pyramidal GABAergic connections subject to neuromodulation (C).

Pyramidal cells project to interneurons, too (D). External Poisson input is mediated by AMPA receptors. For details see Materials and Methods. (B) Population activity

before and after transient stimulation (red shaded area) of the first selective pool (purple curve), showing two distinct stable states, a spontaneous activity state before

stimulation and a persistent activity state after stimulation. (C) Simulation under systematic variation of GABA conductances in interneuron-to-pyramidal synapses.

Plotted is the spontaneous activity (closed circles) before stimulation and the persistent activity after stimulation (open squares) of the stimulated selective pool (purple),

corresponding to a bifurcation diagram (Brunel and Wang 2001). Note that a decrease in GABA conductance is plotted to the right, since D2R stimulation has been

shown to decrease GABA transmission. (D) Same conventions as in (C) with systematic variation of AMPA conductances from pyramidal cells to interneurons. (E)

Proposed D2R modulation combing both GABA modulation in (C) and AMPA modulation in (D).
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make a response-independent and rule-cued decision.
Persistent activity in the delay phase thus reflects feature-
based working memory representations devoid of motor prep-
aration. In this situation, we find that D2R stimulation robustly
enhanced persistent mnemonic activity in PFC neurons, thus
resolving the discrepancy between behavioral and neuronal
effects. It is also conceivable that feature-based working mem-
ory and spatial working memory are distinctly represented by
PFC neurons and differentially modulated by dopamine
(Wilson et al. 1993). We recorded neurons in the vicinity of the
principal sulcus of both monkeys. Recording sites overlapped
with a previous study, which did not find D2R modulation of
delay period activity (Wang et al. 2004), although our recordings
extended more ventrally of the principal sulcus, which is pos-
sibly more strongly involved in feature-based working memory
(Wilson et al. 1993). Although anatomical differences might
contribute to the distinct results, the largely overlapping
recording sites together with studies emphasizing that visual
features and spatial locations are represented in both ventral
and dorsal lateral PFC (Rao et al. 1997) make this possibility
unlikely.

In contrast to the clear D2R effects, D1R manipulation did
not seem to modulate persistent working memory activity in
the current study. This was unexpected, given that several
studies reported D1R modulation of spatial working memory
signals (Williams and Goldman-Rakic 1995; Vijayraghavan et al.
2007). While D1R stimulation decreased neuronal firing rates
(Ott et al. 2014), D1R effects were not restricted to unspecific
changes in firing rates. D1R activation increased the persistent
rule-related signals in the same task using the same drug
amount as in the present study (Ott et al. 2014). A possible
explanation for this discrepancy might be related to the prom-
inent dose-dependency of D1R effects. Reported D1R manipula-
tions followed an inverted-U function and produced varying
effects, including an improvement of spatial workings memory
signals by both stimulating and blocking D1Rs (Williams and
Goldman-Rakic 1995; Vijayraghavan et al. 2007). Thus, effects
observed after D1R manipulation seem to heavily depend on
the baseline activation of D1Rs. This D1R response function
might account for the differences between our and other stud-
ies. Alternatively, or in addition, D1R modulation might differ-
entially modulate spatial (Williams and Goldman-Rakic
1995; Vijayraghavan et al. 2007) and feature-based (our study)
working memory. Further studies directly comparing dopamine
receptor modulation of spatial and feature-based working
memory representations might reveal if D1Rs or D2Rs differen-
tially modulate both signals.

Putative D2R Mechanism Involves Differential
Modulation of Interneurons and Pyramidal Cells

We implemented a biophysically plausible spiking neural net-
work in which synaptic connections are described on a single
neuron level. By simulating recurrent excitatory and inhibitory
connections, the activity of neurons in the network show char-
acteristic stable attractor states. This approach was used previ-
ously to describe working memory and decision-making
processes (Durstewitz et al. 2000a; Wang 2002; Constantinidis
and Wang 2004). Using this model, we investigated possible
D2R mechanisms of action by incorporating D2R modulation of
synaptic conductances. We constrained possible synaptic
modulation by investigating putative D2R targets supported by
in vitro studies (Seamans et al. 2001; Trantham-Davidson et al.
2004; Zhong and Yan 2016), although we acknowledge diverse

D2R effects found in vitro (Seamans and Yang 2004). Our mod-
eling results suggest that D2Rs act on synaptic transmission to
modulate working memory representations via two distinct
mechanisms. First, we propose that D2Rs change interneuron-
to-pyramidal signaling by reducing inhibitory postsynaptic cur-
rents (IPSCs) mediated by GABA receptors in pyramidal cells
(Seamans et al. 2001), thus disinhibiting pyramidal cell firing.
Second, D2R stimulation might increase AMPA synaptic cur-
rents in interneurons (Zhong and Yan 2016), thereby increasing
interneuron excitability and possibly balancing excessive exci-
tatory effects induced by D2R stimulation. Combined, the pro-
posed D2R mechanism accounts for two key experimental
results of the current study. First, D2R stimulation increased
neuronal activity of prefrontal neurons (Ott et al. 2014), which
has also been reported by previous studies (Wang and
Goldman-Rakic 2004; Wang et al. 2004). Second, D2R activation
increased the differentiation between persistent activity and
spontaneous activity in the network model, thus enhancing
working memory selectivity.

The proposed mechanism assumes that D2Rs influence inter-
neurons and pyramidal cells differentially. This assumption is
supported by studies that showed a differential impact of dopa-
mine on pyramidal cells and interneurons (Gao and Goldman-
Rakic 2003). Dopamine inhibits putative interneurons, whereas it
both excites and inhibits putative pyramidal cells (Jacob et al.
2013). Thus, differential modulation of cortical cell types might
be a key mechanism by which dopamine controls cortical net-
works. In agreement with previous reports, our findings support
a strong role of interneurons in maintaining working memory
representations (Rao et al. 2000; Constantinidis et al. 2002). D2Rs
are abundantly expressed in PFC interneurons, particularly in
parvalbumin-positive interneurons (de Almeida and Mengod
2010), which have been shown to modulate response gain in
rodent cortex (Wilson et al. 2012). Thus, D2R modulation of inter-
neuron signaling might mediate the observed changes in work-
ing memory activity. The neural network model provides
hypotheses about micro-circuit mechanisms that can now be
tested empirically (Wang et al. 2013). Specifically, we hypothesize
that experimentally manipulating GABA currents in prefrontal
networks might modulate the persistent activity of neurons
similarly as observed in the model.

Our results complement studies investigating possible
mechanisms of D1Rs (Durstewitz and Seamans 2008). It has
been proposed that D1Rs modulate the network‘s persistent
activity by changing recurrent NMDA conductances (Durstewitz
et al. 2000b; Brunel and Wang 2001), which increases persistent
delay activity of single neurons in the model. This result repro-
duces experimental studies reporting an enhancement of
selective response in the delay period of single neurons after
D1R stimulation (Vijayraghavan et al. 2007; Ott et al. 2014).
Thus, D2Rs and D1Rs might act on prefrontal networks by
distinct physiological mechanisms (Ott et al. 2014).

Dopamine Receptors Modulate Population Dynamics

Because neuronal responses show high complexity and vari-
ability at the single neuron level (Rigotti et al. 2013), we
explored whether computations in PFC might emerge from
the dynamics of populations of neurons (Mante et al. 2013). We
described neuronal responses in the framework of dynamical
systems in which the activity of neuronal population can be
described as a dynamical process revealing shared activity
patterns that are prominent in the population response
(Cunningham and Yu 2014). This allowed us to study dopamine
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receptor modulation of PFC population properties. D2R activa-
tion increased working memory representations of numeros-
ities at the population level independently of general shifts in
neuronal activity, suggesting that D2Rs interact with mechan-
isms generating persistent working memory activity. This
working memory representation can be realized through
sequence-based circuit dynamics not captured by single neuron
analyses but by our state space analysis (Harvey et al. 2012).
State space analysis revealed how neuromodulation can
change the dynamic properties of neuronal populations. D2R
stimulation increased the state space distance between trajec-
tories during working memory. As a consequence, the neuronal
system can differentiate more reliably between working mem-
ory representations of numerosities.

At the onset of visual stimulation with numerosities as well
as during the transition from visual to mnemonic processing
during the delay, population responses were characterized by
high dynamic phases. These instances of high population
dynamics were followed by a more stable phase during working
memory. This characteristic response dynamic was similarly
observed during flexible decision-making (Stokes et al. 2013).
D2R stimulation enhanced the dynamic responses of PFC popu-
lations, thereby enhancing state flexibility in PFC populations.
In contrast, D1R stimulation decreased population dynamics,
thereby maintaining PFC populations in a more stable state.

These results support computational models which suggest
that dopaminergic modulation of prefrontal working memory
networks balance stability and flexibility of working memory
representations (Seamans et al. 2001; Seamans and Yang 2004;
Durstewitz and Seamans 2008; Rolls et al. 2008). According to this
hypothesis, a D1R-dominated state stabilizes prefrontal repre-
sentations, whereas a D2R-dominated state destabilizes them
enabling switching between different representations thus medi-
ating flexibility. Our results provide experimental evidence that
D2Rs contribute to controlling stability and flexibility of pre-
frontal working memory representations. These results contrib-
ute to the idea that excessive cortical D2R activation contributes
to psychosis by destabilizing working memory representations in
schizophrenic patients (Winterer and Weinberger 2004; Rolls
et al. 2008). Thus, excessive D2R activation might attribute aber-
rant salience to external events or internal representations, lead-
ing to symptoms of psychosis such as sensory hallucinations
and intrusions of thought (Kapur 2003). In conclusion, prefrontal
dopamine receptors might mediate dynamic cognitive control
(Cools 2015) by balancing the stability of persistent activity dur-
ing working memory with the flexibility of prefrontal networks
needed for adaptive, goal-directed behavior.
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