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The ability to estimate number is widespread throughout the animal kingdom.

Based on the relative close phylogenetic relationship (and thus equivalent

brain structures), non-verbal numerical representations in human and non-

human primates show almost identical behavioural signatures that obey

the Weber–Fechner law. However, whether numerosity discriminations

of vertebrates with a very different endbrain organization show the same be-

havioural signatures remains unknown. Therefore, we tested the numerical

discrimination performance of two carrion crows (Corvus corone) to a broad

range of numerosities from 1 to 30 in a delayed match-to-sample task similar

to the one used previously with primates. The crows’ discrimination was

based on an analogue number system and showed the Weber-fraction signa-

ture (i.e. the ‘just noticeable difference’ between numerosity pairs increased

in proportion to the numerical magnitudes). The detailed analysis of the per-

formance indicates that numerosity representations in crows are scaled on a

logarithmically compressed ‘number line’. Because the same psychophysical

characteristics are found in primates, these findings suggest fundamentally

similar number representations between primates and birds. This study

helps to resolve a classical debate in psychophysics: the mental number line

seems to be logarithmic rather than linear, and not just in primates, but

across vertebrates.
1. Introduction
A growing body of literature suggests that the ability to judge number is wide-

spread throughout the animal kingdom. Number discrimination has been

demonstrated in such diverse taxa as insects [1,2], fish [3,4], amphibians [5,6],

birds [7,8] and mammals [9–11]. Among mammals, numerical competence has

been studied most intensively in primates [12–15]. Birds, however, possess

similarly elaborate quantification skills [16]. In their natural habitat, birds use

numerical information to counteract nest parasitism [17], to forage for food

[18–20] or to communicate with conspecifics [21]. Birds can also be trained in

the laboratory to distinguish stimuli based on the number of items [8,22,23].

Corvid songbirds are renowned for their flexible behaviour [24], making them

ideal model organisms for the study of cognition [25,26] and high-level brain

functions [27–30]. Ever since Koehler and his co-workers explored the numerical

capabilities of birds [31], corvids have been known to show some level of quantity

discrimination [32], and they use quantity rules to direct behaviour [33]. Jungle

crows have been trained on relative numerosity discriminations to always

choose the larger of two sets of (3–8) visual shapes [34]. Relative quantity judge-

ments are also observable without training, as crows and jackdaws [20]

spontaneously selected the larger of two food quantities as long as one of the

sets contained fewer than five objects [19].

For non-symbolic number representations, two systems are discussed: an object

file system (OFS) and/or an analogue number system (ANS). The OFS has been

described for spontaneous numerosity discriminations in human infants [35,36]

and rhesus monkeys [37]. It is thought that the OFS keeps track of a small

number of items byassigning markers to individual set items. This system provides

precise number representations, but based on the limited number of markers,
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it can only represent up to four items; it fails for quantities

greater than four, the putative number of available markers.

As an alternative—or additional—mechanism, the ANS

has been demonstrated repeatedly in animals, human infants

and innumerate adults [38,39]. The ANS has no set-size limit

and estimates numerosities only approximately. Numerical

magnitude perception shows characteristic psychophysical

effects reminiscent of sensory judgements: number dis-

crimination improves with increasing numerical distance

between two values (the numerical distance effect) and, at a

given numerical distance, it worsens with increasing absolute

magnitude (the numerical magnitude effect) [40–42].

Within the realm of the ANS, the scaling scheme (i.e. the

relationship between stimulus magnitude and its sensation)

is of special interest. If the relationship is of linear nature

(linear-coding hypothesis), the internal representations are

symmetric distributions on a linearly scaled number line.

Such representations centred on each number would become

progressively wider in proportion to increasing magnitude,

and the ratio of the standard deviation to the mean (i.e. the

coefficient or variation) would be constant across quantities.

However, if the relationship between physical magnitude and

sensation is nonlinear (nonlinear compression hypothesis), the

‘just noticeable difference’ for the discrimination of larger num-

bers (relative to a reference number) would be higher than for

smaller numbers. This disparity would be compensated for if

numerical representations would be described on a nonlinearly

scaled number line, which would result in symmetric numerical

representations. Here, the accuracy of the representations stays

invariable with increasing size of a quantity, and the standard

deviation, not the coefficient or variation, is constant across

quantities. A possible nonlinear compression is the logarithmic

scaling as predicted by the Weber–Fechner law [40], which

states that linear increments in sensation S are proportional to

the logarithm of stimulus magnitude I, such that S ¼ k � log(I).

Previous work by Bogale et al. [19,34] and Ujfalussy et al.
[20] required relative numerosity judgements. These, how-

ever, do not require animals to know anything about the

precise numerical value in order to make a correct choice

[43]. To explore cardinal (absolute numerosity) judgements,

discriminations of variable numerosities relative to both

larger and smaller adjacent numerical values are necessary.

We have previously shown that carrion crows master cardinal

judgements for very small (1–5) numerosities [44]. However,

several important questions remained open, as follows.

First, would crows familiar with small numerosities gen-

eralize numerical judgements to much larger numerosities as

a prerequisite for a conceptual grasp of cardinal number?

So far, only very restricted ranges of relatively small numer-

osities have been applied in corvid studies. Spontaneous

discriminations of the quantity of food items even suggested

that they do not discriminate larger quantities [19]. Whether

crows possess an ANS characterized by the absence of a

set-size limit therefore remains unknown.

Second, which—and how many—representational sys-

tem(s) would crows employ to assess small and large cardinal

number? Work with crows spontaneously discriminating the

relative quantity of food items suggested a set-size-limited

OFS [19]. However, both small and large numerosities have

been shown to be represented by a single ANS in non-human

primates [45,46]. Only simultaneous investigation of both

small and large numerosities in the same task can help to

decipher the applied representational system(s).
Third, if crows possess an ANS, how would they represent

cardinal numbers on the ‘number line’? Whether the men-

tal number line for non-symbolic number is linear or rather

logarithmically compressed is a classic debate in human psy-

chophysics, but a comparative approach in different animal

taxa is needed to arrive at cross-species, potentially evolutionary

stable schemes of numerical representations. Suggestive evi-

dence with small numbers indicated nonlinear compression of

number representations in crows [44]. However, because dis-

crimination for small numerosities is quite precise and only

covers a very limited number range, absolute cardinality judge-

ments to a broad range of numerosities addressing the ANS

needs to be tested. This allows construction of detailed perform-

ance functions (i.e. probability density functions) that indicate

subjects’ behavioural representations of cardinal number. So

far, numerical scaling has only been tested in two primate

species: rhesus monkeys and humans [46–49].

Here, we address these issues from a comparative point of

view in carrion crows, an avian vertebrate that is only dis-

tantly related with mammals and primates. To ensure direct

comparability of the data, the crows performed a delayed

numerosity discrimination task similar to the previously

used task in rhesus monkeys and humans [42], and with

the same broad range of up to 30 items. A comparative inves-

tigation of avian and mammalian species is particularly

interesting, since birds lack a six-layered neocortex, which is

thought to endow mammals and primates with the highest

levels of cognition, and therefore also numerical competence.

Instead, different parts of the avian endbrain evolved as the

highest cognitive brain centre [50] after the ancestors of mam-

mals and birds diverged 300 Ma [51]. Whether birds with an

independently and distinctly evolved endbrain exhibit the

same (or different) numerical representations as primates in

terms of (i) the number and types of representational systems

and (ii) the nature of the ‘mental number line’ is unknown.
2. Material and methods
(a) Subjects
We trained one male and one female hand-raised carrion crow

(Corvus corone corone) for the experiments. For details on the

birds’ housing and diet, see Hoffmann et al. [52]. The crows were

obtained from the institute’s breeding facilities, hand raised and

trained on a delayed match-to-numerosity task. The crows were

maintained on a controlled feeding protocol during the sessions

and earned food during and after the daily tests. Both crows

were previously involved in another numerosity study [44].

(b) Apparatus
The crows sat on a wooden perch placed inside of an operant

conditioning chamber in front of a touchscreen (3 M Microtouch,

1500, 60 Hz refresh rate). Viewing distance to the monitor was

14 cm. The program CORTEX (National Institute of Mental

Health) presented the stimuli and stored behavioural data. An

automated feeder delivered either mealworms (Tenebrio molitor
larvae) or bird seed pellets upon correctly completed trials.

During each trial, crows were trained to keep their head still in

front of the computer display. This was controlled via a reflector

foil attached to the crow’s head. A trial only started when the

crow moved its head into the beam of an infrared light barrier

and kept its head still throughout the trial, thus ensuring stable

head position. Whenever the crow made premature head move-

ments, and thereby left the infrared light barrier with its head

http://rspb.royalsocietypublishing.org/
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during an ongoing trial, the computer terminated the trial and

the trial was discarded.

(c) Behavioural protocol
The two crows learned to distinguish dot displays via a delayed

match-to-numerosity task (figure 1a). A crow started a trial by

positioning its head in front of the monitor, thus closing an infra-

red light barrier and keeping the head still throughout the trial. A

black screen was shown for 600 ms (pre-sample phase), followed

by a display showing the sample numerosity. The sample stimu-

lus disappeared after 800 ms and the crow had to memorize the

sample for 1000 ms during the delay phase in which only the

grey background circle was visible. In the following test phase,

the test1 display was a ‘match’ in 50% of the cases (i.e. it con-

tained the same number of dots as the sample stimulus). The

crow had to respond to indicate a numerical match by moving

its head out of the light barrier. In the other 50% of the cases,

the test1 was a ‘non-match’, showing more or fewer dots than

the sample display; here, the crow had to refrain from respond-

ing and wait for 800 ms until the test2 display appeared, which

always displayed a match. Head movements before the test

period aborted the trial automatically. Error trials led to a

time-out of 3 s. Correct trials were rewarded with food via the

automated feeder.

(d) Stimuli
The stimuli consisted of dot displays with varying numbers of dots

(figure 1b). Black dots (0.48–2.58 of visual angle) compromising a

set were drawn on a grey background circle (12.38 visual angle)

shown in the centre of the screen. Seven numerosities were used:
1, 2, 4, 7, 12, 20 and 30. Each of these numerosities served as

sample and test stimulus. The sample and match numerosities

within one trial were always indicated by different displays, thus

preventing the crows from matching visual patterns. The displays

were generated using a custom-written MATLAB script. The dot

arrangements were pseudo-randomly generated and exchanged

for new displays on a daily basis. Newly generated stimuli for

each session prevented the crows from simply memorizing the

visual patterns to solve the task. One stimulus batch contained

12 unique displays for each numerosity for each session (six stan-

dard and six control displays per numerosity). To further control

for low-level visual features that may covary with changing

numbers of dots, we showed two stimulus sets every session:

the ‘standard’ trial stimuli (‘standard stimuli’) showed dots of

pseudo-random size arranged randomly (but non-overlapping)

on the background circle; and the ‘control’ trial stimuli (‘control

stimuli’) showed dots with both equal dot area and equal dot den-

sity combined across all numerosities. ‘Dot density’ was defined as

average distance between (the centres of) all dots on a numerosity

display. ‘Dot area’ was defined as cumulative surface area of all

dots on a numerosity display (i.e. the overall black area when indi-

vidual black dots were added). Standard and control trials were

randomly and unpredictably alternated.

(e) Data analysis
The percentage of correct responses for every numerosity combi-

nation was calculated and plotted on a number scale. The

resulting behavioural performance functions represented the prob-

ability that the crow judged the sample and test1 numerosities as

being equal. To evaluate the symmetry and the width of the

performance functions (i.e. the numerosity representations),
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Gaussian functions were fitted (MATLAB Curve Fitting Toolbox) to

these behavioural performance functions plotted on four different

scales: a linear scale, a power function with exponent of 0.5, a

power function with exponent of 0.33 and a logarithmic (log2)

scale. The scales were chosen based on the theories of Fechner

[53] and Stevens [54]: Fechner suggested that the relationship

between a sensory stimulus and its sensation is of logarithmic

nature, whereas Stevens claimed that the relationship is based on

a power law. The more symmetrical the plotted performance func-

tions appeared on a given scale, the better the resulting fit (r2)

with the Gaussian functions. The better the fit, the better the

given scale describes the relationship between the physical magni-

tude and its sensation. The widths of the Gaussian fits (sigma)

were evaluated to test for the magnitude effect. If there is a magni-

tude effect, the sigmas of the linear Gaussian fits should increase

when plotted against numerosity; the sigmas should be stable if

the scaling is perfectly counteracting the proportional broadening

of the performance functions.

The Weber fraction is a measure of how much two stimuli

need to differ in order for someone to be able to detect a differ-

ence ( just noticeable difference). The Weber fractions were

calculated separately for the ‘smaller’ and ‘larger’ sides of the

filter functions [55] (i.e. smaller and larger comparisons with

respect to the sample numerosity). Weber fractions were

calculated with the formulae

WS¼
n�nS

nS
for Weber fractions smaller than the sample

and WL¼
nL�n

n
for Weber fraction larger than the sample,

where n is the sample numerosity and nS is a numerosity smaller

than the sample that the crow can discriminate from the sample

n in 50% of the cases. The same holds for nL except that it is

larger than the sample. The WS-value stands for the Weber fraction

for comparisons of a sample numerositiy relative to smaller (non-

match) numerosities, whereas the WL-value represents the

Weber fraction for comparisons of a sample numerositiy relative

to larger (non-match) numerosities. The smaller the Weber

fraction, the better the crows can discriminate a numerosity from

its neighbours.
3. Results
(a) General performance and reaction times
Both crows performed a delayed match-to-numerosity task

that required them to distinguish numbers of up to 30 dots

(figure 1a). The crows were tested over 32 (crow A) and 46

sessions (crow J), respectively. Mean performance across all

sessions was 79.5+0.6% for crow A and 78.9+0.7% for

crow J. On average, crow A completed 609 trials per session,

and crow J completed 678 trials.

The reaction time was assessed from match trials only,

because test2 was always a match and thus predictable if

test1 happened to be a non-match. Crow A successfully com-

pleted on average 277 match trials per session, whereas crow

J completed 328 match trials. The RTs differed significantly

across the numerosities in both birds ( p , 0.001, Friedman

test). Crow A responded with a median RT of 254 ms, crow J

showed a median RT of 185 ms.
(b) Numerosity discrimination performance
In order to ensure numerosity judgements rather than discrimi-

nation of covarying low-level visual features in the displays, we

tested the crows with control stimuli in addition to the
standard stimuli (figure 1b). In control stimuli, the total areas

and the average density of dots was equated. Standard and

control stimuli were shown equally often in a pseudo-

random order. Both crows performed equally well in standard

and control trials (figure 2). The behavioural performance

functions indicate the probability with which the crows

judged different numerosities as being equal to a specific

sample numerosity. For instance, the dark green curve

(figure 2a) represents trials with numerosity 7 as sample

numerosity. The data point for numerosity 7 represents the

proportion of correct choices (around 85% correct) when

test1 showed 7 items (match trials). The data points for lower

and higher numerosities signify how often the crow erro-

neously judged non-match numerosities being equal to the

sample numerosity 7. The curve shows that the crow made

many mistakes for numerosities immediately adjacent to numer-

osity 7, such as 4 and 12, but performed progressively better for

non-match numerosities more distant from 7, such as 1 and 30.

Equivalent functions are present for all tested sample numeros-

ities in both birds, and for both standard (figure 2a,c) and control

stimuli (figure 2b,d). This is a clear reflection of the ‘numerical

distance effect’.

In addition, the performance curves are quite narrow for

small numerosities, such as 1 and 2, but become systematically

broader with increasing sample numerosities. This reflects that

the crows had more difficulties to discriminate large-value

numerosities of a given distance compared with small-value

numerosities. In other words, for large sample numerosities,

the test1 stimulus had to be numerically more distant from

the sample stimulus to be equally well discriminable compared

with smaller sample stimuli. This effect is known as the

‘numerical magnitude effect’ [40–42]. Besides these well-

known psychophysical effects, both crows showed comparable

performance functions for standard (figure 2a,c) and control

stimuli (figure 2b,d ), indicating that they judged the number

of items rather than low-level visual features in the displays

that may covary with an increase of numerosity.
(c) Scaling of numerical representation
Behavioural performance functions were asymmetric when

plotted on a linear number scale: the functions’ slopes

towards lower numerosities were steeper compared with

those towards larger numerosities (figure 3a; see also individ-

ual functions in figure 2). However, plotting the same data

on a logarithmically compressed number line resulted in

seemingly symmetric, Gaussian peak functions (figure 3b).

To explore and quantify the best scaling scheme for numer-

osity representations (i.e. the scaling that results in most

symmetric curves, or probability density functions, respect-

ively), the behavioural filter functions were plotted on

different scales: a liner, a power function with exponent 0.5

(power(1
2)), a power function with exponent 0.33 (power(1

3))

and a logarithmic (log2) scale. The nonlinear compression

increases along this sequence. The goodness-of-fit of a Gauss

function to the behavioural data was computed (figure 3c).

The more symmetrical the data appeared on a given scale,

the better the r2 of the resulting fit with the Gauss bell.

The averaged goodness-of-fits (r2) on these different scales

were 0.54+0.014 (linear), 0.69+0.01 (power(1
2)), 0.74+0.01

(power(1
3)) and 0.80+0.01 (logarithmic). The goodness-of-fits

on the four scaling schemes differed significantly from each

other ( p , 0.001, Friedman test, n ¼ 78). Thus, the logarithmic

http://rspb.royalsocietypublishing.org/


pe
rf

or
m

an
ce

 (
%

 s
am

e 
as

 s
am

pl
e)

pe
rf

or
m

an
ce

 (
%

 s
am

e 
as

 s
am

pl
e)

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

(a) (c)

(b) (d)

1 2 4 7 12 20 30 average

1 4 7 12 20 30 1 4 7 12 20 30

1 4 7 12 20 30 1 4 7 12 20 30

no. items no. items

Figure 2. Behavioural performance of both crows for standard and control stimuli. (a) Performance of crow A for standard stimuli (n ¼ 32 sessions).
(b) Performance of crow A for control stimuli (n ¼ 32 sessions). (c) Performance of crow J for standard stimuli (n ¼ 46 sessions). (d ) Performance of crow J
for control stimuli (n ¼ 46 sessions). Colour indicates the numerosity of the sample stimulus; the x-axis shows the test1 numerosity. Performance on the y-
axis represents the likelihood that a crow judges the sample and test1 numerosity as being equal (error bars+ s.e.m.). ‘Average’ indicates the performance
for a given sample numerosity. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160083

5

 on March 23, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
scaling provided significantly better fits than the other three

scales ( p , 0.001, Wilcoxon test, n ¼ 78).

Next, we analysed the widths (s) of the Gaussian func-

tions fitted to the performance curves. On the linear scale,

the widths were increasing with increasing numerosity with

a slope of 0.311 (figure 3d ). The increase of the widths on

the linear scaling indicates the presence of the numerical

magnitude effect. The slopes of the nonlinearly compressed

scales were almost even with increases of 0.032 (power(1
2)),

0.011 (power(1
3)) and 0.006 (logarithmic). Thus, at a logarith-

mic compression of the number line, the performance

functions’ width was constant across numerosities.

As an additional measure of quantity discriminability, the

Weber fractions were computed separately for smaller (WS)

and larger (WL) numerosity comparisons with respect to the

sample numerosity. The average Weber fractions were 1.25

for WS and 1.42 for WL (figure 3e,f). The crows discriminated

numerosity 1 from 2 and numerosity 2 from 1 with a Weber

fraction of 0.75 more easily than the larger numerosities (note

that the data points of WL for number 1 and WS for number 2

both indicate Weber fractions for numerosity 1 discriminations,

namely 1 versus 2 (WL) and 2 versus 1 (WS), respectively).
4. Discussion
In this study, we investigated the internal representation

of numerical quantity in crows. The crows were able to dis-

criminate numerosities of up to 30, irrespective of the

stimuli’s appearance and low-level visual features. The
applied delayed match-to-numerosity task allowed for a

detailed measurement of cardinal judgements relative to

both smaller and larger numerosities. The resulting peak

performance functions, or probability density functions,

depicted the crows’ behavioural representations of numerical

quantity. Performance showed clear indications of an ANS

with numerical distance and magnitude effects [40–42].

Numerosity discrimination was best described by a non-

linearly compressed logarithmic scale, just as predicted by

the Weber–Fechner law.

The crows robustly processed numerical information rather

than low-level visual features in the displays, such as cumu-

lated dot area and dot density, for which we controlled. Even

more controls have been applied in a previous study [44],

none of which distracted the crows from numerosity. Our

data suggest that crows do not use number as a ‘last resort’

to discriminate quantity, as has been suggested several times

(e.g. [56]). Also, previous work indicates that the number of

items, and not just continuous quantity, is a salient parameter

animals use to discriminate stimuli [3,8,57–59]. Neurons selec-

tively tuned to controlled numerosity have also been reported

in numerically naive monkeys that have never been trained to

discriminate the number of items [60]. All these findings

suggest numerical quantity as a ‘natural category’ that is

spontaneously represented by different animals.

(a) Analogue number representations in crows
The crows successfully discriminated numerosity displays

in a delayed match-to-numerosity task with up to 30 dots
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irrespective of appearance and low-level visual features.

Discrimination performance showed signs of the ANS: the dis-

criminatory precision increased with increasing numerical

distance of the test stimulus from the sample quantity (numerical

distance effect). Performance distributions became progressively

wider for larger set sizes (numerical size effect).

Performance accuracy was largely consistent with the ANS.

For numerosity 2 and higher, comparable filter functions (in

terms of shape and width on a logarithmic scale) and similar

average performances were observed in both experimental

conditions (standard and control). No precision change

between small numerosities (2 and 4) and large numerosities
(7–30) were observed, as would have been expected for a tran-

sition from the OFS to the ANS, and no upper numerosity limit

(characteristic for the OFS) was observed. Collectively, this

argues for an ANS in crows. An equivalent pattern has been

reported for trained monkeys [13,42,45], adult humans

prevented from counting [42,61,62] and innumerate adult

humans [63]. Whether numerical representational systems

change as a function of the crows’ behavioural status (con-

ditioned versus spontaneous number discriminations) needs

to be explored in more detail.

As an exception from these findings, numerosity 1 was

represented much more precisely (i.e. lower Weber fraction)
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than all other numerosities, including small numerosities 2 and

4. This was unexpected on the background of both the OFS

(which posits equal high precision for all small numerosities

from 1 to 4) and the ANS (which assumes equal Weber

fractions for all numerosities from 1 to 30). Numerosity 1

might indeed constitute a special set and thus be represented

differently and more precisely; after all, numerosities are collec-

tions of single elements (i.e. multiples of numerosity 1).

A special role of numerosity 1 is also suggested based on

neuronal recordings in monkeys [60]. Moreover, the special

status of one element is omnipresent in the singular–plural

dichotomy (or numerosity 1 versus all other numerosities

distinction) found in natural language. Our findings would

support biological roots of such a singular–plural dichotomy

even in a non-mammalian species.

In most previous studies with animals, discrimination

accuracy has been measured based on number ratio effects

(performance for smaller number/larger number), with the

common finding that accuracy decreases as the ratio between

the numerical values approaches 1 [45]. In this study, the

crows needed more than twice the numerical distance to

reach similar performance accuracy as monkeys and humans

with similar dot displays [45,46,57,64,65]. This inferior

discrimination performance may indicate more limited

numerical capacities in crows, which was also indicated for

other songbirds [66]. It could also reflect a general accuracy def-

icit; in teleost fish, for instance, accuracy in selecting the larger

of two sets hardly exceeds 70%, no matter how easy (small) the

numerical ratios are (e.g. [67]). Similar maximal accuracy levels

have been reported for amphibians [6]. However, we know that

crows can perform close to 100% correct [27,28,30]. Given that

the tested numerical distances between match and non-match

numerosities were much larger compared with previous

monkey and human studies [45,46], an alternative explanation

is that the crows did not exploit the full capacity of their ANS.

Testing with all possible value ratios needs to resolve this ques-

tion in the future. As it stands, non-human and human

primates seem to show a more accurate ANS compared with

fish, amphibians and birds.
(b) Precision and speed of numerosity discriminations
Except for numerosity 1, the Weber fractions characterizing

the just noticeable difference between number pairs remained

constant across sample numerosities. In the current study, the

crows’ Weber fractions of 1.12 (crow A) and 1.51 (crow J)

were more than twice as large compared with values of

0.51 and 0.47 for the same two crows in our previous inves-

tigations with small numerosities from 1 to 5 [44]. The

increased Weber fractions in the current report are most

likely to result from much larger numerical distances of the

non-match numerosities relative to the sample numerosity

(i.e. the crows were not forced to discriminate as precisely

as in the previous study [44] in which minimal numerical dis-

tances of one between all numerosities were applied). This

indicates that the choice of the numerosities the animals

have to compare has an impact on precision, and the Weber

fractions we obtained for numerosities 1–5 are the more

reliable and more comparable values.

The original Weber fractions of 0.51 and 0.47 for the

respective crows are almost identical to the values reported

for non-human primates. For instance, values of 0.51 and

0.60 were obtained for rhesus monkeys using a similar
delayed match-to-numerosity task [46]. In a forced-choice

delayed match-to-sample protocol, Jordan & Brannon [68]

reported Weber fractions of 0.47 and 0.48 for rhesus monkeys.

In this study, it was also shown that monkeys improved their

precision due to training with decreasing Weber fractions

from 0.58 to 0.32. This confirms our speculation that the

different Weber fractions we found for our crows might be

due to different task demands as a function of narrowly or

broadly spaced number pairs, and it is likely to be influenced

by the training stage of the animal on the specific task.

In humans tested with a delayed match-to-numerosity task,

again very comparable Weber fractions of 0.55 were found for

numerosities beyond 6. Cantlon & Brannon [45] found a Weber

fraction of 0.26 in humans performing an ordinal number com-

parison task, and this value was much smaller than for

monkeys performing the same ordinal task. However, the

more precise performance of human subjects in this study com-

pared with monkeys was accompanied by longer reaction

times for humans (on average an additional 100 ms).

This suggests that a trade-off between speed and accuracy

might be an important reason for varying Weber fractions

within and between species. Interestingly, we found a similar

speed–accuracy trade-off for our two crows. Crow A

responded on average 96 ms faster, and crow J responded

142 ms faster in the 1–30 (this study) compared with the

1–5 protocol [44]. We suspect the crows would have shown

similar discrimination behaviour for the large numerosity

protocol as for the small numerosity protocol with more

training, most probably at the expense of speed.

For our research goals, working with trained instead of

spontaneously discriminating crows offered several advan-

tages, including rigorous controls for non-numerical stimulus

features and consistently motivated subjects that exploit their

numerical competence to the best of their capacities over

many trials. The latter aspect allowed us to obtain detailed

and reliable performance functions that could be tested with

respect to the scaling of the crows’ ‘number line’. We think

our data in trained crows demonstrate the numerical capacity

these birds have at their disposal also in their standard ecologi-

cal environment—both behaviourally and neuronally. Of

course, studies on numerical competence in trained animals

need to be complemented by findings in spontaneously discri-

minating animals to exploit the respective advantages of both

approaches (discussed in [69]). For instance, why crows seem

to refrain from exploiting these capacities in specific situations

[19] needs further investigation. Comparative behavioural and

neuronal data from monkeys indicate that the same neuronal

codes and brain areas are engaged in trained and in numeri-

cally naive (untrained) animals [60]; behavioural training

results in mild, but not categorically different representational

enhancements in some regions of the primate brain’s number

network [70]. It will be interesting to know whether this

neuro-ethological observation also holds for corvids.
(c) Scaling of internal numerosity representations
Our study shows that the non-symbolic representation of

numerosities in crows is described best on a nonlinearly com-

pressed, logarithmic ‘number line’. Performance distributions

were asymmetric when plotted on a linear scale. By contrast,

nonlinear scaling of the performance functions resulted in

symmetric peak functions which were reflected in signifi-

cantly higher goodness-of-fit values and constant standard
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deviations of the fitted Gaussian distributions. In addition,

our findings indicate that the logarithmic scale (according

to the Weber–Fechner law) described the data even better

than power function scales (postulated by Stevens’s law)

because the goodness-of-fit values of the crows’ performance

functions were the highest for the logarithmic scaling. These

findings for large numerosities are fully consistent with a

previous report on small numerosities in crows [44]. More

importantly, the corvid data are in agreement with findings

in rhesus monkeys for small [47] and large [46] numerosities,

and also for non-verbal discriminations in adult humans [46]

and an Amazonian indigenous group with reduced

numerical lexicon [49].

Crucially, we even have direct evidence for a logarithmic

scaling of numerosities in crows (and monkeys) based on the

neuronal code for numerosities. In a previous study, we

recorded single-cell activity from a telencephalic association

area (termed NCL) in crows, which discriminated the visual

number of items [44]. NCL neurons were tuned to individual

preferred numerosities, and neuronal discharges proved to be

relevant for the crows’ correct performance. Just like the per-

formance functions described in the current study, the

neuronal tuning functions were also best described on a log-

arithmic number line, arguing for a nonlinearly compressed

neuronal coding of numerical information, just as predicted

by the psychophysical Weber–Fechner law.
These behavioural and neuronal data showed an impress-

ive correspondence of the codes found in the avian brain with

those described earlier in the primate brain [15]. Our report

helps to resolve a classical debate in psychophysics: the

mental number line seems to be logarithmic rather than

linear, and not just in primates, but across vertebrates. It

suggests that this way of coding numerical information has

evolved based on convergent evolution, because it exhibits

a superior solution to a common computational problem.

We believe a comparative approach is indispensable for deci-

phering evolutionarily stable (or newly invented) phenomena

in numerical cognition.
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