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A B S T R A C T   

Complex cognition requires coordinated neuronal activity at the network level. In mammals, this coordination 
results in distinct dynamics of local field potentials (LFP) central to many models of higher cognition. These 
models often implicitly assume a cortical organization. Higher associative regions of the brains of birds do not 
have cortical layering, yet single-cell correlates of higher cognition are very similar to those found in mammals. 
We recorded LFP in the avian equivalent of prefrontal cortex while crows performed a highly controlled and 
cognitively demanding working memory task. We found signatures in local field potentials, modulated by 
working memory. Frequencies of a narrow gamma and the beta band contained information about the location of 
target items and were modulated by working memory load. This indicates a critical involvement of these bands in 
ongoing cognitive processing. We also observed bursts in the beta and gamma frequencies, similar to those that 
play a vital part in ‘activity silent’ models of working memory. Thus, despite the lack of a cortical organization 
the avian associative pallium can create LFP signatures reminiscent of those observed in primates. This points 
towards a critical cognitive function of oscillatory dynamics evolved through convergence in species capable of 
complex cognition.   

1. Introduction 

To perform the computations underlying complex cognition, the 
neuronal ensembles of our brains must be coordinated, otherwise, the 
chatter of a billion neurons may produce only noise (Lisman, 1997; 
Miller et al., 2018; Naud and Sprekeler, 2018). Notably, the spiking of 
individual neurons follows a tight temporal organization that results in 
regular patterns of excitation and inhibition. At the network level, these 
patterns of activity can be observed in fluctuations of electrical local 
field potentials (LFP) that oscillate at different frequencies (Buzsáki 
et al., 2013, 2012; Buzsáki and Wang, 2012). These frequencies are 
commonly clustered into bands, for example, the gamma band of fre
quencies above 30 Hz. Gamma oscillations are likely generated in the 
superficial layers of cortex (Bastos et al., 2018; Buffalo et al., 2011; 
Maier et al., 2010), from perisomatic currents around the similarly 

oriented pyramidal cell layer, and they arise from feedback inhibition 
between pyramidal cells and soma targeting parvalbumin-positive 
inhibitory neurons (Buzsáki et al., 2012; Buzsáki and Wang, 2012; 
Cardin et al., 2009; Carlén et al., 2012; Traub et al., 1996). Functionally, 
the gamma band has been suggested to be relevant for inter-regional 
communication of neuronal populations (Fries, 2015) and to play a 
key role in executive control (Miller et al., 2018). Thus, understanding 
these coordinated computations is the key to unlocking a functional 
model of higher cognition. 

A cornerstone of complex cognition is working memory (WM), which 
enables an animal to actively retain and manipulate a limited amount of 
information to guide behavior (Baddeley et al., 2021). WM is also 
particularly well suited to investigate higher cognition from a compar
ative perspective. It was described almost simultaneously in humans and 
pigeons (Baddeley and Hitch, 1974; Honig, 1978). Furthermore, birds 
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and mammals show similar WM performance (Balakhonov and Rose, 
2017; Gibson et al., 2011). For example, the capacity of WM, the number 
of individual items that can be maintained simultaneously, is compa
rable between crows and macaque monkeys (Balakhonov and Rose, 
2017). Even single neuron correlates of WM in birds are virtually 
identical to those in mammals (Ditz and Nieder, 2020, 2016; Moll and 
Nieder, 2015; Rinnert et al., 2019; Rose and Colombo, 2005), and we 
recently found that this also extends to the neurophysiological limits of 
WM capacity (Buschman et al., 2011; Hahn et al., 2021). 

Given the large evolutionary distance between the species, these 
similarities are likely the result of convergent evolution (Emery and 
Clayton, 2004; Güntürkün and Bugnyar, 2016), and they are sharply 
contrasted by prominent anatomical differences. Most notably, birds 
lack the mammalian separation between grey and white matter along 
with the highly structured organization of the neocortex (Güntürkün 
and Bugnyar, 2016; Harris and Shepherd, 2015). While recent data 
suggest a cortex-like circuitry in sensory regions of the avian pallium, a 
layered neocortex-like structure is absent in associative avian brain re
gions that are crucial to WM function (Stacho et al., 2020). This includes 
the avian equivalent of PFC, the nidopallium caudolaterale (NCL), 
which shares many defining properties of the PFC, including the dense 
dopaminergic innervation, multimodal sensory afferents, premotor 
projections, and neuronal correlates for WM (Güntürkün and Bugnyar, 
2016; Herold et al., 2011; Kröner and Güntürkün, 1999; Nieder, 2017; 
Waldmann and Güntürkün, 1993). 

Modern models of WM are heavily influenced by the observation of 
temporal dynamics in the mammalian PFC. In particular, gamma oscil
lations are closely associated with WM-related processes (Howard et al., 
2003; Kornblith et al., 2016; Lundqvist et al., 2016; Roux et al., 2012; 
Tallon-Baudry et al., 1998). The highly structured organization of the 
layered mammalian neocortex is an ideal substrate to generate and 
investigate such oscillations (Einevoll et al., 2013). Consequently, 
models of temporal dynamics are almost exclusively built on mamma
lian data. However, whether these cognitive oscillations require the 
specific layered organization of the cortex is unclear. It has even been 
argued that oscillations could be an epiphenomenon of the underlying 
network architecture rather than a functional process in itself (Merker, 
2013; Ray and Maunsell, 2015). Therefore, the investigation of LFP in 
avian associative brain regions, lacking the layered organization of the 
cortex, offers a unique comparative perspective. 

To date, only relatively few studies have investigated modulations of 
LFP in birds. Most prominently, the optic tectum and neighboring 
tegmental nuclei show modulation in the gamma range during attention 
(Goddard et al., 2012; Neuenschwander and Varela, 1993; Sridharan 
et al., 2011; Sridharan and Knudsen, 2015). Gamma band modulations 
were further reported in the avian forebrain during birdsong (Brown 
et al., 2021; Lewandowski and Schmidt, 2011; Spool et al., 2021), and in 
the avian hippocampal formation in vitro (Dheerendra et al., 2018) and 
during sleep (van der Meij et al., 2020). However, these observations 
cannot answer the question of whether oscillations underlie higher 
cognition since they were either made in the neatly layered optic tectum, 
were tightly linked to motor behavior, or occurred in sleeping birds. 

Thus, descriptions of oscillatory dynamics in the non-layered 
endbrain of birds that are tied to abstract cognition such as WM are 
still lacking. Hence, it remains unknown if the single-cell similarities 
extend to oscillatory population dynamics that underlie higher cognition 
in mammals, or if birds have such cognition without oscillations. If they 
existed and played comparable roles in avian and mammalian WM, it 
would be valuable evidence towards general, cross-species mechanisms 
supporting higher-order cognition. 

2. Material and methods 

Our animals, experimental setup, behavioral protocol, recording 
setup, and surgical procedures were previously described in Hahn et al. 
(2021). 

2.1. Subjects 

We worked with two hand-raised carrion crows (Corvus corone), held 
under identical housing and food protocols as described in Hahn et al. 
(2021). All experimental procedures and housing conditions were car
ried out in accordance with the National Institutes of Health Guide for 
Care and Use of Laboratory Animals and were authorized by the national 
authority (LANUV). 

2.2. Experimental setup and head tracking 

Our setup consisted of an operant training chamber outfitted with a 
touchscreen (22’’, ELO 2200L APR, Elo Touch Solutions Inc., CA) and an 
automatic feeder delivering food reward upon correct pecks on the 
touchscreen. We used two computer vision cameras (‘Pixy’, CMUcam5, 
Charmed Labs, Tx) to track the birds’ head position via a mount of two 
lightweight 3D-printed LEDs that was removed after each experimental 
session. Head-location was acquired at 50 Hz, and data was smoothed by 
integrating over 2 frames in Matlab using custom programs on a control 
PC. Birds were required to ‘hold gaze’ with no more than 2 cm horizontal 
or vertical displacement, and no more than 20◦ horizontal or vertical 
angular rotation. The behavioral protocol was executed by custom code 
written in Matlab using the Psychophysics (Brainard, 1997) and Bio
psychology toolboxes (Rose et al., 2008). Further details about the 
experimental setup have been reported in Hahn et al. (2021). 

2.3. Behavioral protocol 

We trained the birds to perform a delayed non-match to sample task, 
previously used to test the performance under different working mem
ory loads in primates (Buschman et al., 2011). The protocol has previ
ously been reported by Hahn et al. (2021). Trials started with the 
presentation of a red dot centered on the touchscreen (for a maximum of 
40 s). Centering of the head in front of the red dot for 160 ms caused the 
red dot to disappear and a stimulus array of two to five colored squares 
to appear (Fig. 1A, ‘sample’). The sample was presented for 800 ms, 
while the animals had to maintain head fixation and center their gaze on 
the screen. Failure to retain head fixation resulted in an aborted trial. 
The sample phase was followed by a memory delay of 1000 ms after 
which the stimulus array reappeared with one color exchanged. The 
animal indicated which of the colors had changed by pecking the 
respective square. Correct responses were rewarded probabilistically 
(BEO special pellets, in 55 % of correct trials, additional 2 s illumination 
of the food receptacle in 100 % of correct trials). Incorrect responses to 
colors that had not changed or a failure to respond within 4 s resulted in 
a brief screen flash and a 10 s timeout. Individual trials were separated 
by a 2 s inter-trial interval. 

The colored squares were presented at six fixed locations on the 
screen (1–6, Fig. 1A). In each session, one pair of colors was assigned to 
each of the six locations. Each location had its own distinct pair. These 
pairs were randomly chosen from a pool of 14 colors (two color com
binations were excluded since the animals did not discriminate them 
equally well during pre-training). Fig. 1A gives an example: the color- 
change occurred for the middle right where blue (B) is presented dur
ing the sample and green (G) during the choice. In this particular ses
sion, the middle-right location could thus show either of the following 
colors during the sample and choice: B-G (shown in Fig. 1A); G-B; G-G; 
B-B; None-None. On the next session, a new random pair of colors were 
displayed at this location. The order of presentation of colors within a 
pair, the target location (where the color change occurred), and the 
number of stimuli in the array (two to five) were randomized and 
balanced across trials so that each condition had an equal likelihood to 
appear. The width of the colored squares was 10 degrees of visual angle 
(DVA), and squares were placed on the horizontal meridian of the screen 
and at 45.8 DVA above or below the meridian at a distance of 54 and 
55.4 DVA from the center. The binocular visual field of crows is 37.6 
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DVA (Troscianko et al., 2012). With our arrangement on screen, com
bined with the head tracking, we ensured that all stimuli appeared only 
outside of this binocular range. 

2.4. Surgery 

The surgery protocol was identical to the one reported by Hahn et al. 
(2021). Both animals were chronically implanted with a lightweight 
head-post to attach a small LED holder during the experiments. Before 
surgery, animals were deeply anesthetized with ketamine (50 mg/kg) 
and xylazine (5 mg/kg). Once deeply anesthetized, animals were placed 
in a stereotaxic frame. After attaching the small head-post with dental 
acrylic, a microdrive with a multi-channel microelectrode was stereo
tactically implanted at the craniotomy (Neuronexus Technologies Inc., 
Ann Arbor MI, DDrive). The electrode was positioned in NCL (AP 5.0, 
ML 13.0) of the left hemisphere (coordinates for the region based on 
histological studies on the localization of NCL in crows (Veit and Nieder, 
2013)). After the surgery, the crows received analgesics. 

2.5. Electrophysiological recordings of single-cell activity and LFP 

Recordings of neuronal activity (local field potentials and single-cell 
spiking) were performed using chronically implanted 32-channel mi
croelectrodes (Model A1-32-15 mm, Neuronexus Technologies Inc., Ann 
Arbor MI). The distance between individual recording sites (electrodes) 
was 50 µm. The signal was amplified, filtered, and digitized using Intan 
RHD2000 headstages and a USB-Interface board (Intan Technologies 
LLC, Los Angeles CA). The system also recorded digital event codes that 
were sent from the behavioral control PC using a custom IO-device 
(details available at https://www.ngl.psy.ruhr-uni-bochum.de/ngl/sh 
areware/index.html.en). Before each recording session, the electrodes 
were advanced manually using the microdrive. Recordings were started 
20 min after the advancement, and each recording site was manually 
checked for neuronal signals (cellular discharges observable on an audio 
monitor). Signals of analysis of LFP were recorded at a sampling rate of 
30 kHz and filtered with a band-pass filter at recording (1 Hz to 
7.5 kHz). LFP signals were then further processed by offline down- 
sampling to 1 kHz. In each session we simultaneously recorded from 
32 electrodes, with a combined active zone of 1550 µm. For analysis, we 
chose to systematically sub-sample a quarter of all electrodes used (i.e., 
analyzing signals from every fourth electrode, thereby achieving a 
reduced overlap of signal with 200 µm distance between electrodes). To 
verify our results, we applied analysis to a second, independent sub
sample of the electrodes. Qualitative results from this second subsample 
were comparable. Data of single-cell neuronal activity for analysis of the 
spiking rate of the neuronal population (Fig. S10) was obtained from our 
previous study (Hahn et al., 2021). 

2.6. Processing of LFP results 

Prior to extracting frequency power from our signals, we removed 
possible spike-related traces from the LFP signals using the algorithm of 
Banaie Boroujeni et al. (2020). We further processed our LFP signals 
using the FieldTrip open-source software package for Matlab (Oos
tenveld et al., 2010). We extracted frequency power from the signals 
using Morlet-wavelet convolution with a Morlet family of 99 frequencies 
(2–100 Hz), with seven wavelet cycles. We screened all trials for unique 
trial artifacts centered around 50 Hz during processing. On rare occa
sions, electrodes had individual trials that showed magnitudes of fre
quency power up to three magnitudes of power larger than the next 
biggest power value. We handled such artifacts by restricting data 
analysis to the 99th percentile of power values on any electrode (i.e., 
excluding trials from analysis whose power values fell into the top 1% of 
observed values). During manual curation of results, we nonetheless 
observed a few electrodes with power levels exceeding their average 
levels at distinct time points over all frequencies (i.e. power surges not 

restricted to any specific frequency). Those electrodes (n = 31) were 
subsequently removed from data analysis altogether. 

2.7. Statistical testing of power during the trial against baseline power 

We tested frequency power during the trial (in load conditions 1–3, 
at a 1 ms time resolution, across all individual frequencies) against 
baseline frequency power (i.e., testing the trial phase for a specific load 
against its baseline during the middle second of the preceding ITI). This 
preceding ITI was, unlike the following trial period, free of any visual 
stimulation. We used a permutation approach (Oostenveld et al., 2010) 
with Monte-Carlo estimates of significance probabilities based on a 
permutation distribution built from our data (i.e., a data-based null-
distribution). We used 1000 permutations, an alpha level of 5 % to 
determine significance, and an extreme distribution of statistical values 
to correct for multiple comparisons (i.e., correction was achieved by 
comparing observed statistical values against the most extreme (mini
mal and maximal) permutated values). Comparing the observed data to 
this null-distribution is thereby robust against data-based biases (e.g., 
non-normally distributed values). 

2.8. Calculating gamma modulation of individual electrodes 

We determined if an electrode was ’gamma modulated’ by per
forming the statistical testing described above for the average power of 
the ’low gamma band’ (33–48 Hz) at load 1, in 100 ms bins with 100 ms 
steps for the interval beginning at sample start until delay end. We 
classified electrodes as gamma modulated if two consecutive, non- 
overlapping bins had been classified as significant. 

2.9. Statistical testing of power at different loads 

We tested the average change in power per added item in five fre
quency bands (3–7 Hz ’theta’, 8–12 Hz ’alpha’, 13–19 Hz ’beta’, 
33–48 Hz ’low gamma’, and 83–98 Hz ’high gamma’) in bins of 100 ms 
with a step size of 100 ms. To do so we first calculated the average power 
within each frequency band and bin, then normalized the average power 
of each electrode relative to its load 1 condition (i.e., so that power at 
load 1 was 1 and powers at load 2 and 3 were relative to that), and 
finally calculated the average between the differences of load 1 and load 
2, and load 2 and load 3 (Eq. (1)). 

PowerΔitem =
Δload1, load2 + Δload2, load3

2
(1) 

We tested if PowerΔitem was significant by performing a t-test of each 
individual value against the null-hypothesis that it was non-different 
from 0 and corrected for multiple comparisons using the Bonferroni 
method (i.e., αcrit. = 0.0013). We calculated the effect size of the load 
effect quantified by PowerΔitem by performing a repeated measures 
ANOVA (measurements for each electrode at loads 1–3 respectively) 
over all electrodes and calculating the effect size (ω2) for all individual 
bins (Eq. (2)). 

ω2 =
SSeffect − (df load) ∗ (MSerror)

SStotal + MSerror
(2)  

2.10. Model comparison for location information 

To investigate if LFP power contained information about the location 
of presented stimuli, we performed a comparison of generalized linear 
models (GLM) applying the method of Kornblith et al. (2016), for 
comparability of results. We compared a ’full model’, containing nested 
load and location information, to two ’reduced models’ where we 
removed location information about the ipsilateral or contralateral lo
cations and replaced the respective position indicators with their sum. 
Each model was calculated assuming a normal distribution and its 
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canonical ’identity’ link function (f(µ) = µ). For comparison, we also 
assumed a gamma distribution together with its canonical link function 
(f(µ) = 1

µ). Results of both approaches were similar, but model param
eters indicated that the assumption of gamma distribution did not fit all 
electrodes’ data, whereas the normal assumption did. We, therefore, 
decided to report the results of the normal models. The full model was a 
GLM with frequency-band power as response variable and the six 
possible locations as predictors. Each of the six predictors was therefore 
encoded as either 0 (no color at the location) or 1 (color at the location). 
For the reduced model we replaced three of the location indicators 
(either those for the contralateral locations 4–6 or those for the ipsilat
eral locations 1–3) by their cumulative load (i.e., 0–3). The reduced 
models thereby lacked information about the respective locations, 
which, if they were informative about the LFP power, would reduce the 
model fit (quantified by R2

adj.). The difference between the model fits (i. 
e., ΔR2

adj.) then indicates how much information was contained by the 
respective side’s locations. We calculated this model comparison for six 
400 ms bins, with a step size of 400 ms, starting 400 ms before sample 
onset and ending 200 ms after choice onset. We calculated if ΔR2

adj. was 
significant in a particular bin by comparing ΔR2

adj. to a null distribution 
ΔR2

adj.Null generated from the data by permutation of the data labels prior 
to performing the model comparison 1000 times. ΔR2

adj. was considered 
significant if it was bigger than 99.17 % of permutated ΔR2

adj.Null values 
(i.e., at an alpha level of 5%, after Bonferroni correction for multiple 
comparisons). 

2.11. Calculating burst rates 

Burst rates of the individual frequency bands were calculated by 
detecting threshold crossings of power. Frequency-band power quali
fying as burst activity was defined as a power crossing a threshold of 
mean + 1.5 * SD for at least two consecutive cycles (periods) of the 
bands center frequency. The mean was calculated over the 10 preceding 
trials to avoid condition specific systematic changes in power to affect 
burst detection (i.e., the mean to threshold trial t was calculated from 
trials t-10 to t-1, similar to Lundqvist et al. (2018b)). For example: to 
classify an increase in power as a burst in the low gamma band, power 
had to exceed threshold levels for 2 ∗ 1

centerfrequency = 2 ∗ 1
45Hz = 44ms. We 

performed this analysis with a sliding window starting at the start of the 
sample phase and ending with the end of the delay. We also applied 
more conservative thresholds for burst events (mean +2 * SD and 
mean + 3 * SD, and up to three cycles). The results of these more 
stringent bursting criteria were qualitatively the same as for our initial 
threshold (Figs. S6 and S7). 

To further ensure that our burst counts were driven by task condi
tions and did not occur randomly, we used the method of Feingold et al. 
(2015), comparing burst rate of a phase randomized signal to our 
original signal. For this we calculated the Fourier spectrum of our signal 
and assigned to each frequency a phase randomly drawn from a uniform 
distribution of values between -π and π. We then performed a conjugate 
symmetric inverse Fourier transform on the phase randomized data, 
resulting in a ‘synthetic signal’ without a complex component. This re
sults in preserved overall power distribution, but power being shuffled 
in time. We then performed our burst analysis on this synthetic signal to 
calculate an expected null-distribution of burst rates under randomized 
conditions. Burst rates resulting from the actual dataset were then 
compared to the randomized dataset. This gave us an indication to what 
degree bursts occurring during the trial were driven by ongoing pro
cessing, over a random occurrence. To additionally quantify this, we 
calculated the coefficient of variation of each channel within each 
analyzed frequency band and compared it between the original data to 
the surrogate data. This gave us an estimate for the overall variance 
occurring in both data (Fig. S8). 

3. Results 

3.1. Behavior 

To investigate LFP dynamics in the avian brain during a complex 
form of cognition, we trained two crows on a multi-item working 
memory task, previously used for probing WM capacity in crows and 
primates (Balakhonov and Rose, 2017; Buschman et al., 2011). On each 
trial, the crows were presented with a variable number of colored 
squares that they had to retain over a memory delay. Subsequently, the 
colors reappeared, and the birds indicated with a single peck which of 
the squares now had a different color (Fig. 1A). The performance of the 
crows was load-dependent, gradually declining with higher loads. We 
analyzed performances based on the number of colored squares present 
on the side on which the color changed (i.e., ipsilateral to change, in 
contrast to contralateral to change referring to the number of squares on 
the side without a change). Median performances for ipsilateral item 
load of one, two, and three were 95.88 %, 78.31 %, and 58.21 %, 
respectively. This result is very similar to the performance reported in 
monkeys in the same task (Buschman et al., 2011) and has been dis
cussed in detail in a previous study (Balakhonov and Rose, 2017). 

3.2. LFP in the endbrain of crows is task modulated 

To investigate if WM modulates oscillations in a comparable way in 

Fig. 1. (A) Behavioral protocol. After the bird initiated a trial by acquiring and 
holding head fixation, the sample stimuli (2–5 colored squares distributed so 
that 0–3 colored squares appeared on each half of the screen) were presented. 
Birds retained head fixation and maintained color information over a memory 
delay until the choice stimuli were presented (identical in color and location to 
those of the sample phase, except for one square that had changed color). Birds 
then indicated the square that changed color between sample and choice by 
pecking on it. (B) Single-trial example of time-frequency power of LFP. Power 
was elevated during the transition from sample to delay phase in a band be
tween 3 and 8 Hz. Higher frequencies between 40 and 52 Hz showed recurring 
increases of power in short bursts during the sample and the delay period, 
notably also towards the end of the delay. (C) Mean power of the selected bands 
across time (3–8 Hz, red, and 40–52 Hz, blue). The visible peaks correspond to 
the warmer colors in panel B. (D) Raw unfiltered LFP signal (black), and the 
same signal, band-pass filtered in the range of higher frequencies (blue), and of 
the lower range frequencies (red). The respective frequency components of the 
raw signal become visible as their amplitude increased and decreased 
over time. 
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crows as in primates, we analyzed LFP recorded throughout NCL from a 
total of 336 electrodes. We performed spectral decomposition of the 
recorded signal using Morlet-wavelet convolution, after removing 
neuronal spiking artifacts and 50 Hz line noise (see Section 2 for details). 
LFP power was affected throughout the time course of a trial in a 
frequency-dependent manner. To facilitate the comparison to results 
obtained in primates, we subdivided frequencies into the commonly 
recognized LFP bands, i.e., ‘theta’, ‘alpha’, ‘beta’, and ‘gamma’ (Miller 
et al., 2018). 

We observed modulation of LFP power in a frequency band 
(40–52 Hz) of the gamma range during the sample phase and delay 
phase, as well as high levels of power in a 3–8 Hz frequency band toward 
the end of the sample phase (Fig. 1B and C). This was also observed in 
the raw signal trace, most prominently in the sample and towards the 
end of the delay, when the individual frequency components contrib
uted most to the composite signal (indicated by higher frequency am
plitudes in Fig. 1D). 

3.3. Gamma power modulation is present throughout NCL 

Were specific frequency bands consistently affected by the ongoing 
cognitive task? We tested trial averaged LFP power during the trial 
against stable baseline power (see Section 2 for details). Averaging 
across trials revealed two frequency bands of particular interest (Fig. 2, 
example electrode). Power in the lower frequency band (2–20 Hz) was 
significantly suppressed during the early sample and at the end of the 
delay (Fig. 2, bottom). The higher-frequency band (> 20 Hz) was 
significantly elevated relative to baseline during the late sample and 
towards the end of the delay phase (Fig. 2, top; see Fig. S1 for statistical 
results and further details). Elevated power in the gamma range at the 
single-trial level was consistent across trials but showed some temporal 
variance (Fig. S2). Thus, modulations of LFP generated in NCL had 
narrow and well-defined frequency bands that reflected the different 
task phases. 

Because the gamma frequency range was most affected by our task, 
we focused on electrodes that showed modulations in that range. The 
peaks in power in the high gamma frequency bands were the most 
prominent observation at the level of individual electrodes. Was this a 

general effect throughout the extent of NCL or was it localized only at 
specific electrodes, as has been observed in monkey PFC (Lundqvist 
et al., 2016)? We determined if our electrodes could be classified into 
‘gamma-modulated’ and ‘non-modulated’ sites, by calculating signifi
cance of a low (33–48 Hz) and high gamma (83–98 Hz) band during the 
sample phase for each of our electrodes (see Section 2 for details). We 
found that power in the low gamma band was significantly modulated at 
81.64 % (n = 249) of electrodes (76.72 %, n = 234, for high gamma). 
The electrodes without significant gamma modulation came from re
cordings obtained at locations within individual sessions (i.e., sessions in 
which there was no gamma modulation detected at any site), i.e., 
gamma modulation was either present or absent at the sites of any given 
recording session. There was also no systematic difference in the re
cordings obtained throughout the dorso-ventral extent of the NCL. We 
examined the overall modulations of recorded LFP power from all 
electrodes with significant gamma modulation. 

The sampled average signal showed that the task phases strongly 
affected the LFP. Both low gamma frequencies (33–48 Hz ‘low gamma’) 
and beta band frequencies (13–19 Hz ‘beta’) showed a distinct modu
lation by the task. The low gamma band was shortly suppressed after the 
sample onset, followed by an increase in power towards the end of the 
sample phase (Fig. 3A left). In the memory delay phase, power of these 
frequencies remained at an elevated level (relative to baseline) and 
ramped up towards the end of the delay leading up to the choice. Beta 
frequencies initially showed strong suppression of power during the 
early sample phase (Fig. 3A right) and returned to baseline levels toward 
the late sample and early delay. Power was again suppressed towards 
the end of the delay phase, leading up to the choice. 

3.4. Gamma modulation reflected working memory processing 

The described modulations in power have so far been linked to the 
processing of the WM task, divided into the processing of presented 
memory items (during sample), their maintenance (during the delay), 
and in anticipation of the upcoming change detection (towards the end 
of the delay). We investigated if our WM task caused further modulation 
of LFP that reflected cognitive processing of relevant stimulus di
mensions by analyzing if power of these bands contained information 
about the location of the presented items and if the number of items 
affected power. 

To estimate information about positions, we applied the method of 
Kornblith et al. (2016), performing model comparisons of generalized 
linear models. Positions were localized relative to electrodes as either 
ipsilateral (i.e., on the same side as the implanted hemisphere) or as 
contralateral (opposite side of the hemisphere). For all electrodes that 
had significant gamma modulation, we derived position information 
needed to solve the task for the locations by quantifying the difference of 
model fits (ΔR2

adj.) in six 400 ms intervals (pre-sample; early/late sample; 
early/mid/late delay, see Section 2.10 for more details). 

In general, power contained information about the (task relevant) 
locations of presented squares (Fig. 4B). This information was most 
prominently present during the sample phase. We found that low 
gamma power had significant position information during the sample 
for the contralateral side of the screen (early and late sample, mean 
(± standard error of the mean (SEM)): 0.0182 (± 0.0019), F(1,1247) =
379.83, p < 0.0001, ω2 = 0.2327 and 0.0330 (± 0.0020), F(1,1247) =
1063.8, p < 0.0001, ω2 = 0.4597, respectively). Beta band power con
tained a significant amount of information during the sample (early and 
late sample, mean (± SEM): 0.0049 (± 0.0007), F(1,1247) = 200.02, 
p < 0.0001, ω2 = 0.1374 and 0.0065 (± 0.0008), F(1,1247) = 299.36, 
p < 0.0001, ω2 = 0.1928, respectively) and notable information during 
the delay (mid delay, mean (± SEM), 0.0121 (± 0.0011), F(1,1247) =
543.44, p < 0.0001, ω2 = 0.2993). 

Other frequency bands (3–7 Hz ‘theta’, 8–12 Hz ‘alpha’, and 
83–98 Hz ‘high gamma’) also contained information about the 

Fig. 2. Average time-frequency power of LFP of a single electrode of a single 
session during the baseline period (1 s during the middle of the inter-trial- 
interval) and during the trial period. The duration of the pre-sample period 
was variable dependent on behavior, it could therefore not be used as baseline, 
and it contains motion and stimulus-viewing. In the sample phase an increase in 
gamma power, and a decrease in alpha/beta power is detectable. Outlined areas 
indicate power values significantly different from baseline. Higher and lower 
frequencies were split to highlight their respective power range that scales with 
1
f . See Supplementary section 1 for more details. 

L.A. Hahn et al.                                                                                                                                                                                                                                 



Progress in Neurobiology 219 (2022) 102372

6

contralateral position during the sample phase and delay phases 
(Fig. S3). However, these frequency bands had much less information 
compared to the low gamma band (see Supplementary section 2). None 
of the frequency bands had meaningful information about the ipsilateral 
locations (refer to Tables S1 and S2 for a detailed overview). This 
location information contained in LFP power indicates involvement in 
processing the spatial component of the task, as binding each color to a 
location was necessary for localizing the change detection. 

3.5. Working memory load modulated gamma 

The major manipulation affecting cognitive processing in our task 
was the number of squares the birds had to memorize as it determined 
the load of WM. We considered three load conditions (‘loads’). Because 
power contained information only for contralateral locations, we 
analyzed load effects for the number of squares presented in the visual 
hemifield contralateral to the recording electrode. Trials in which only 
one square was presented during the sample (Fig. 1A) were considered 
to have ‘load 1’ (irrespective of the number of squares on the other side 

of the screen). Following this logic, trials with two or three presented 
colors were considered ‘load 2’ and ‘load 3’, respectively. To understand 
how LFP-power was modulated by WM-load, we again compared the 
power of all gamma-modulated electrodes during the sample and 
memory delay phases to baseline power during the inter-trial interval. 
When comparing power across the different loads, the local maximum of 
power in the low gamma band appeared to be modulated, with higher 
loads reducing average power (Fig. 4, Fig. S4). Similarly, the power in 
the lower bands appeared to be affected by load. To better quantify the 
load effect, we tested its effect on power in the five major frequency 
bands introduced above (we focus on the low gamma and the beta band 
that were prominently affected by the overall task, refer to Fig. S5 for the 
other frequency bands). The mean power in the respective frequency 
band, across all channels with significant gamma power modulation in 
load 1 trials, was compared by calculating the average change in power 
per added item. Power in the low gamma band decreased as load 
increased during sample and delay but reversed this modulation during 
the subsequent choice phase (Fig. 3C). The beta band showed the 
opposite effect of load, with power generally increasing at higher loads. 

Fig. 3. (A) LFP in the gamma (top) and beta (bottom) are modulated by working memory. At load 0 no stimuli were presented contralateral to the electrode, at load 1 
a single contralateral stimulus was presented during the sample period. Lines indicate the mean; shaded areas indicate the standard error of the mean. (B) Position 
information (mean ΔR2

adj.) contained in average power of the low gamma and beta band (400 ms bins). Power of the low gamma and of the beta frequency band 
contained information about the contralateral positions of stimuli, in contrast information about the positions of the ipsilateral stimuli was much smaller. Position 
information for low gamma frequencies was more pronounced during the sample phase than during the delay phase. Error bars indicate the standard error of the 
mean. Stars indicate significance at the Bonferroni corrected alpha level (α = 0.0083; refer to Fig. S3 for other frequency bands). (C) Average change in power per 
added item (100 ms bins). The low gamma frequency band (33–48 Hz) shows a reduction of power with every added item throughout the sample delay phase but 
gains power with every added item in the choice phase. The beta frequency band (13–19 Hz) shows a consistent increase in power with every added item throughout 
sample and delay phase, notably peaking towards the end of the delay. Error bars indicate the standard error of the mean. (D) Quantification of the load effect 
depicted in (C), as percent explained variance by factor power (ω2). 
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We further quantified the magnitude of the load effect by calculating the 
effect size (PEV, ω2) of the LFP differences for different loads over time 
(see Section 2 for details). The influence of load on low-gamma power 
was largest towards the end of the sample (power decreased with load) 
and in the choice phase (power increased with load). The strongest beta 
power load modulation started appearing during the middle of the delay 
phase (power increased with load), peaking at the end of the delay 
(Fig. 3D, refer to Table S3 for numerical values). This means that LFP 
power was substantially affected by both the locations of the presented 
stimuli and by the WM load. Therefore, LFP processes seem to be tightly 
linked to ongoing cognitive processing of the WM task, during both 
sample encoding of memory items and their subsequent maintenance 
during the delay. 

3.6. Beta and Gamma appear in bursts 

An additional observation we made was that power modulations in 
the low gamma band appeared as bursts throughout sample and delay 
phase (Fig. 1B). In a study in which monkeys performed a sequential 
version of our task (Lundqvist et al., 2016), increases in gamma power 
were found to originate from sparse and temporarily defined ‘bursts’ of 
power. We tested if the increase in gamma power was due to individual 
bursts by investigating the potential burst events. We detected bursts as 
temporal intervals in which power crossed a set threshold 
(mean + 1.5 * SD) for a set amount of time (two cycles of the center 
frequency of the respective band, indicating a lasting deflection of 
power). To ensure that our burst counts were driven by task conditions 
and did not occur randomly, we also applied more conservative 
thresholds (up to 3 * SD above mean for 3 cycles). Results remained 
qualitatively the same (Figs. S6 and S7). Finally, we used the method of 
Feingold et al. (2015), comparing burst rates of a surrogate signal to our 
original signal. The surrogate signal retained the power distribution, but 
which was randomly shuffled in time due to randomization of the phase 
of frequency components (see Section 2.11 for details). Burst rates in our 
data were substantially higher than those of the synthetic data (Figs. 5A 

and S5, Table S6 for statistical results) and had a broader range of 
temporal fluctuations (i.e., bursts) as measured by the coefficient of 
variation (CV, Fig. S8). 

We calculated burst rates over time (i.e., the observed rate of bursts 
at any given time in a trial, see Section 2 for details). Burst rate in the low 

Fig. 4. WM load affected the time-frequency power of LFP. Average power of 
all electrodes with significant gamma band modulation, relative to baseline (in 
decibel), for load 1–3. Lower frequencies show a general suppression of power, 
relative to baseline, while higher frequencies show a general increase in power. 
The tree panels depict different WM-load (number of items contralateral to the 
recording electrode). Outlined areas indicate significant differences 
from baseline. Fig. 5. (A) Trial burst rate of low gamma and beta frequency bands during the 

trial at gamma modulated sites. Burst rate of low gamma strongly increases 
towards the end of the sample phase, while beta has peak burst rate in the 
middle of the delay. Load modulation occurs with higher loads decreasing burst 
rate in the sample but increasing burst rate towards the end of the delay. Lines 
depict the mean, shaded areas indicate the standard error of the mean, black 
bars indicate consecutive significance between loads 1–3 (p < 0.05) over 2 
cycles of the bands center frequency. In brown, burst rates of the respective 
frequency band, for load 1–3, calculated from the randomized surrogate signal. 
(B) Schematic generation of mammalian pyramidal inhibitory network gamma 
(PING). Gamma oscillation is generated in a cycle when excitatory pyramidal 
cells first become active, exciting inhibitory parvalbumin positive interneurons 
that provide dense, short-lasting feedback inhibition. The inhibition briefly 
shuts down the pyramidal cells to terminate the cycle. (C) Implementation of a 
winner-take-all dynamic. If several pyramidal populations (colored triangles) 
are connected to the same inhibitory population (black circle), the gamma 
generating feedback inhibition can implement a K winners take all dynamic 
where only the K most excited populations will spike before the feedback in
hibition deactivates all populations. For example, the earlier spiking of blue and 
red in each cycle results in K = 2. (D) Cortical layer organization facilitate 
gamma oscillation. Many similarly aligned pyramidal cells receive rhythmic, 
peri-somatic inhibition. The pyramidal cells are thought to act as aligned di
poles with the source close to the somas and the sink in the apical dendrites, 
creating an extracellular field. The gamma in cortical LFPs is thus generated in 
the superficial layers of cortex. Crow NCL lacks this layered anatomical orga
nization. (E) Two different networks solving a 2-item delay change detection 
task. The two colored squares can be retained either by selective, persistent 
activity (top) in a network where gamma implements a K = WM capacity 
winner-take-all algorithm, or alternatively, in a network relying both on 
intermittent spiking and synaptic mechanisms with K = 1. In the latter, since 
K = 1, the two memory representations take turn being active and silent 
resulting in bursting gamma. In the silent periods, information is retained in 
synaptic changes rather than sustained spiking. 
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gamma band increased throughout the sample phase, peaking in the late 
sample phase (load 1, mean ± SEM, 0.1044 ± 0.0015 at 619 ms), before 
gradually reducing throughout the delay (Fig. 5A top, Table S4, Fig. S5 
for alpha and high gamma). Notably, the burst rate increased again 
during the latest part of the delay. These burst rates were also load- 
dependent in two directions depending on the task phase. During the 
sample phase, the burst rate significantly decreased with load, while 
during the late delay phase, the burst rate increased with load (Fig. 5A, 
refer to Table S5 for statistical values). The beta band had peak burst rate 
during a trough of gamma bursting during the delay (load 3, mean 
± SEM, 0.0871 ± 0.0034 at 1262 ms; refer to Figs. S5 and S10 for the 
other frequency bands and for a comparison of bursts to population 
spiking rate). The phase and load-dependent rates of low gamma and 
beta bursts correlated with processing demands of WM for encoding 
during the sample, maintenance during the delay, and preparation for 
decoding towards the end of the delay and choice phase. The average 
length of a burst event (duration measured as the number of cycles of the 
center frequency), of any frequency band, did not meaningfully change 
depending on the load. While nominally significant for some compari
sons (based on an ANOVA with factor load, Fig. S9), the difference be
tween the loads were so small in absolute terms (< 1 % of cycle length) 
and inconsistent with regard to the effect direction, that we did not 
consider it to be relevant. This interpretation was also backed by a 
subsequent calculation of the effect size which resulted in very small 
values for each of the significant ANOVAs (all ω2 ≤ 0.001). The stability 
in burst length, across different working memory loads, further supports 
the notion that random noise fluctuations were not artificially inflating 
the burst rate. If this had been the case the load dependent increase in 
burst rate should have also affected burst length. 

However, there was a noticeable difference between frequency 
bands. The average cycle length of burst events for the alpha band was 
lowest at 2.2344 and increased with the frequency band up to 2.9082 at 
high gamma. This means high-gamma bursts were ≈ 30 % longer than 
alpha bursts (relative to their respective cycle length). This general in
crease in cycle length was also significant (F(3,91288) = 1995, 
p < 0.0001, ω2 = 0.0615). 

4. Discussion 

We observed cognitively modulated oscillations of LFP in the NCL of 
carrion crows performing a WM task. Oscillations occurred in a narrow 
gamma band and in the beta band. This data shares many similarities 
with those observed in monkey PFC. While these results are consistent 
with behavioral and single-cell observations, they are remarkable given 
that WM of birds and monkeys have diverging neuronal architectures 
that evolved independently over the last 320 million years (Benton and 
Donoghue, 2007). 

4.1. Cognitively modulated gamma 

Gamma range increases in power might have been correlated with 
motor preparation. While we cannot fully exclude this possibility, 
several aspects of the task and our analysis diminish the possible role of 
specific motor (preparation) signals. 

First, in addition to tracking head position, we also tracked an 
angular component to ensure that each eye only saw half of the screen (i. 
e., the left or right hemifield). This angle dimension also restricted head 
movements throughout sample and delay. Any movement would have 
been considerably effortful, for example a parallel movement that did 
not change the angle of the head. Further, the birds did not know which 
location would change its color, i.e., they were not able to plan for a peck 
at any particular location. Color changes happened in the left or right 
hemifield in a randomized fashion, so that preliminary movement to 
either side would not have been a favorable strategy. Furthermore, load 
within one hemifield was independent of the load in the other hemifield 
(with the exception that their sum always was between 2 and 5). We 

used this feature in analysis, with our load depending only on the 
contralateral hemifield (i.e., contralateral to implanted hemisphere). 
This means that for the highest load of 3 the ipsilateral hemifield will 
always have had fewer colored squares (0–2), which should then have 
triggered a movement towards that side that counterbalanced possible 
strategies such as moving the head towards the side with the smaller or 
bigger load. 

Finally, when we analyzed the LFP for information about location of 
colored squares (an analysis independent of load) we only found infor
mation for the contralateral side, and none for the ipsilateral side 
(Fig. 3B, Fig. S3). Had the LFP been governed by motor preparation we 
would have expected to find either information about both hemifields 
(Supplementary section 2, (Brincat et al., 2021; Husband and Shimizu, 
2001)). 

Complementing this is the presence of gamma bursts, i.e. on indi
vidual trials power did not just steadily increase towards the end of the 
delay. We therefore will discuss our findings with relation to what we 
call the cognitive (i.e., non-motor-related) components of the task. 

4.2. Non-cortical local field potentials 

Two major phenomena of our results need to be considered with 
regard to avian brain: the generation of the rhythm itself and the anat
omy needed to pick up the signal in the LFPs. 

First, it is believed that similarly oriented dendrites are needed to 
create dipoles that constructively contribute to the LFPs, such that os
cillations in neural activity also are manifested in the LFPs (Fig. 5D, 
Einevoll et al., 2013). The laminar and columnar organization of the 
mammalian cortex, with similarly aligned pyramidal cells, is thought to 
produce extracellular electrical fields that facilitate the observation of 
rhythmic population activity (Fig. 5B; (Buzsáki et al., 2012; Einevoll 
et al., 2013)). Gamma oscillations in birds have first been reported in the 
optic tectum of pigeons (Neuenschwander and Varela, 1993) and barn 
owls (Sridharan et al., 2011), a midbrain structure that like the 
mammalian neocortex displays a separation between grey and white 
matter and organization into highly structured layers (Güntürkün et al., 
2020). However, the associative pallium of birds lacks this structure 
entirely (Güntürkün and Bugnyar, 2016), and the mosaic-like arrange
ment of fiber patches in NCL (Stacho et al., 2020) differs substantially 
from the highly structured, layered organization of the PFC. Therefore, 
our results indicate that the assumption that a (cortical) layering of 
dendrites is required for oscillations, is not valid. This is in line with 
recent other observations of modulated gamma in the (non-layered) 
telencephalon of birds: in the song system of singing zebra finches 
(Brown et al., 2021; Lewandowski and Schmidt, 2011) and in the hip
pocampus of sleeping zebra finches (van der Meij et al., 2020). Our re
sults now show that such gamma oscillations occur in a modulated 
fashion during ongoing higher cognitive functions like working 
memory. 

Second, to generate oscillations themselves, (cortical) models typi
cally rely on feedback loops between excitatory and inhibitory neurons 
(in particular for gamma). Thus, there is likely some convergent evo
lution at play with a similar feedback-loop in NCL. 

Functionally involved in such gamma oscillations are excitatory cell 
types, homologous to mammalian excitatory neurons (including par
valbumin positive neurons), which are part of neuronal circuitry that 
can be optogenetically induced to produce broad range gamma oscilla
tions ((Spool et al., 2021), Fig. 5B). These neurons were found in higher 
associative parts of the zebra finch pallium, adjacent to NCL (Spool 
et al., 2021). 

Recent advances in comparative neuroanatomy have shown that the 
caudal nidopallium of crows has undergone substantial differentiation 
comparable to the differentiation of PFC in primates (Eugen et al., 
2020). Therefore, it is possible that the comparable cognitive abilities 
between primates and crows are based on similar specializations of 
associative endbrain regions. Unfortunately, a detailed characterization 
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of the microanatomy of different cell types in the NCL of songbirds (in 
particular in crows) is lacking, and the region as a whole appears to have 
a complex neuronal architecture, in contrast to more established 
non-associative regions of the bird brain (Stacho et al., 2020; Eugen 
et al., 2020). 

From a functional perspective, based on the similarities of the ob
servations of gamma in the avian optic tectum, it has been suggested 
that gamma rhythms play an essential role in information processing 
and are thus evolutionary conserved (Sridharan and Knudsen, 2015). 
We now demonstrate that the NCL of crows also shows gamma modu
lation of the LFP linked to ongoing cognition in the form of WM. This is 
despite the anatomical differences between the layered PFC and nuclear 
NCL, in terms of the architecture of the telencephalon at this mesoscale. 

Therefore, the firmly established equivalency of avian NCL to 
mammalian PFC, both functionally (Nieder, 2017) and through its 
macro anatomy (Güntürkün and Bugnyar, 2016), also holds for its LFP 
dynamics. This expands our knowledge about how higher cognition 
(WM) arises in birds, i.e. following the same oscillatory dynamics 
observed in mammals. 

4.3. Gamma modulation related to WM 

Remarkably, the telencephalic LFP power dynamics in the gamma 
frequency range is observed across species in a similar fashion: it was 
elevated during stimulus encoding, contained information about stim
ulus location, reduced during the early delay, and ramping up towards 
the end of the delay (Kornblith et al., 2016; Lundqvist et al., 2016). 

The observation that gamma oscillations have similar cognitive 
correlates in crows as in mammals, despite key anatomical differences, 
could point towards a key functional advantage of rhythmic population 
activity. This argument was previously made based on the conserved 
temporal properties across vastly different mammalian brain sizes 
(Buzsáki et al., 2013). Cortical gamma is thought to implement a 
winner-take-all algorithm (Fig. 5C) that simultaneously promotes se
lective neuronal activity without runaway excitation due to divisive 
normalization (Fries, 2015; Lundqvist et al., 2010). Earlier analysis of 
changes in spiking with WM load suggested that there is such normali
zation of spike rates in avian NCL (Hahn et al., 2021) and modeling 
findings demonstrated that the same neural architecture with feedback 
inhibition generated both normalization and gamma oscillations 
(Lundqvist et al., 2010). Taken together this suggests that gamma os
cillations are a manifestation of normalization across species and that 
crow gamma could have a similar role in selection and normalization 
despite being implemented on a different neural substrate. 

We also report that avian gamma is ‘bursty’ rather than a continuous 
and prolonged increase in power. The smooth elevation during stimulus 
encoding and the smooth increase during the end of the delay were 
visible only in the trial averages, at the single-trial level it was only 
elevated above baseline in brief bursts. Such bursts of gamma have also 
been observed in human and non-human primate cortex (Kucewicz 
et al., 2017; Lundqvist et al., 2016, 2018b). They provide support for 
models in which WM information is retained by a combination of 
spiking and synaptic mechanisms (Fig. 5E; (Lundqvist et al., 2011; 
Mongillo et al., 2008; Sandberg et al., 2003)). The role of the bursts may 
be to facilitate reliable synaptic transmission (Lisman, 1997) and to 
leave a plastic synaptic mark of WM at the synapse (Miller et al., 2018). 
This and other related findings have motivated models of WM in which 
retention can be achieved by ‘activity silent’ mechanisms, i.e., synaptic 
plasticity following bursts of spiking (Lundqvist et al., 2018a; Miller 
et al., 2018; Sreenivasan and D’Esposito, 2019). However, there is an 
ongoing debate over these models and the more classical model of WM 
retention through observable sustained spiking (Constantinidis et al., 
2018; Wang, 2021). 

In addition to gamma oscillations, we also observed lower frequency 
oscillations (4–25 Hz). Similar to alpha/beta oscillations in primates, 
these largely showed the opposite behavior as the gamma oscillations 

over time (elevated when gamma was suppressed and vice versa). In 
cortical networks, alpha/beta oscillations are thought to play an inhib
itory role and suppress gamma and the associated processing of sensory 
information (Händel et al., 2011; Jensen and Mazaheri, 2010; Lundqvist 
et al., 2016). Gamma band activity, in contrast, is associated with active 
encoding and decoding of WM information, e.g., when information has 
to enter WM, or when it is retrieved (Lundqvist et al., 2016; Roux et al., 
2012; Sederberg et al., 2003). Thus, during these gamma active phases, 
the neuronal networks are plastic. Alpha/beta band activity is associated 
with retention (e.g., during the delay) that safeguards encoded infor
mation against perturbation. Our data are largely in line with these 
ideas, although we also observed some deviations from such mammalian 
data and model-predictions as outlined above. 

4.4. Deviations from mammalian models 

Despite these striking similarities in the overall modulation of 
oscillatory activity by task epochs between birds and mammals, we also 
observed key deviations, in particular for load-dependent effects: 
despite gamma increasing during WM-encoding (load 1 vs. load 0), it 
subsequently decreased with load. Similarly, power of the beta band 
generally decreased during the delay, but additional items increased 
power (Fig. 3C). This is in stark contrast to studies from human and non- 
human primates in which gamma increases monotonically with load 
(Howard et al., 2003; Kornblith et al., 2016; Lundqvist et al., 2016; 
Meltzer et al., 2008; Roux et al., 2012), and beta decreases mono
tonically with load (Lundqvist et al., 2016; Kornblith et al., 2016). All 
models (persistent and activity silent models alike), as far as we are 
aware, assume that there should be increased activity with load. The 
finding that gamma decreases with load during encoding is really 
interesting and puzzling as it poses a challenge to virtually all WM 
models (computational and primate models alike). The strongest pre
diction from activity silent models is that activity should be transient or 
intermittent. This is supported by the bursty nature of the power changes 
that speaks against persistent models. Further, in the memory delay/r
etention period gamma bursting increased with load as one would 
expect from the activity silent model (and here also spiking increased 
with load in contrast to encoding period so it is not just the LFPs that 
demonstrate this pattern). From a modeling perspective, a load depen
dent reduction of bursts could potentially be explained by an increase of 
simultaneously active populations as load increases. Each population 
codes for distinct items. Due to the lack of columnar alignment, they 
could potentially cancel out each other’s contribution to the measured 
field when more than one is active (in contrast to the cortical alignment, 
Fig. 5D). However, the positive correlation between load and gamma at 
the end of the delay and in the choice period could speak against an 
anatomical explanation for this cross-species discrepancy. It should also 
be noted that single-neuron spiking only showed a load-dependent effect 
towards the end of the delay (where it increased with load, similar to 
mammals), suggesting there are cross-species differences in the popu
lation activity, particularly at encoding and not only in the measured 
LFP. This poses a challenge to existing models of working memory that 
tend to assume increased cognitive load is supported by increased (or at 
least not decreasing) population activity (Lundqvist et al., 2011). 
Another possible explanation could be that the birds processed the 
memory items differently during the sample and at the end of the delay. 
Because memory items were presented simultaneously, the birds might 
have processed them as one during the sample but then shifted to an 
individual representation during the delay, like cycling through the in
dividual colors one by one. Task-dependent changes, depending on the 
behavioral relevance in the neural representations of WM items, have 
been reported in monkeys (Panichello and Buschman, 2021). If there’s a 
difference between those modes, it might explain why our observations 
are congruent with those of monkeys from a full sequential version of the 
task only at the end of the delay (Lundqvist et al., 2016). 

We cannot exclude the possibility that some methodological 
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differences (in comparison to monkeys) could have caused our observed 
deviations. We trained our birds to retain head fixation without 
restraining them which might have caused effort-related signals that 
attenuated some effects. Similarly, we did not explicitly control for eye 
movements. Importantly though, these differences were necessary to 
attain recordings that would allow our novel LFP analysis of purely task- 
related cognition. Motor-related activity in particular would have hin
dered such isolated analysis. Overall, the complex pattern with different 
load effects during encoding and choice, and non-monotonic changes 
from load 0 to load 3, points towards intriguing differences in the 
evolved implementations between mammals and birds. In addition, 
while gamma and alpha/beta tended to be elevated and suppressed in 
different parts of the trials, this relationship did not seem as strong as 
that in primates. For instance, the load effects for gamma and beta bursts 
went in the same, not opposite, directions as one would expect if they 
were anti-correlated. 

The fact that birds have similar WM capacity, and striking similar
ities in the neural WM activity, makes these differences more relevant as 
clues towards what dynamical features are vital to support higher order 
cognition. Future modeling and avian neurophysiological studies hold 
significant promise to reveal such principles. 
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Buzsáki, G., Logothetis, N., Singer, W., 2013. Scaling brain size, keeping timing: 
evolutionary preservation of brain rhythms. Neuron 80, 751–764. https://doi.org/ 
10.1016/j.neuron.2013.10.002. 
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