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Mathematics is based on highly abstract principles, or rules, of how
to structure, process, and evaluate numerical information. If and
how mathematical rules can be represented by single neurons,
however, has remained elusive. We therefore recorded the activity
of individual prefrontal cortex (PFC) neurons in rhesus monkeys
required to switch flexibly between “greater than” and “less than”
rules. The monkeys performed this task with different numerical
quantities and generalized to set sizes that had not been presented
previously, indicating that they had learned an abstract mathemat-
ical principle. The most prevalent activity recorded from randomly
selected PFC neurons reflected the mathematical rules; purely sen-
sory- and memory-related activity was almost absent. These data
show that single PFC neurons have the capacity to represent flex-
ible operations on most abstract numerical quantities. Our findings
support PFC network models implementing specific “rule-coding”
units that control the flow of information between segregated
input, memory, and output layers. We speculate that these neuro-
nal circuits in the monkey lateral PFC could readily have been adop-
ted in the course of primate evolution for syntactic processing of
numbers in formalized mathematical systems.
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Intelligent behavior requires strategic processing of numbers and
abstract quantity information in accordance with internally

maintained goals. In many everyday situations, our decisions on
quantities are guided by mathematical rules applied to them, and
mathematical principles also play a major role in our scientifically
and technologically advanced culture (1–5). Nonhuman primates
can perform basic arithmetic tasks on a par with college students,
however, suggesting an evolutionarily primitive system for non-
verbal mathematical thinking shared by man and monkey (6).
The semantic aspect of numerical quantity is represented by

neurons in a frontoparietal cortical network, with the intra-
parietal sulcus (IPS) as the key node (7). Neurons in macaque
IPS (8–10) and prefrontal cortex (PFC) (11–14) readily encode
numerosities from visual displays and memorize them during
delay periods. In humans, the detection of nonsymbolic numer-
osities and symbolic number information activates these sites in
functional imaging studies (7, 15–17). Although the fundus of the
IPS constitutes the first cortical site where quantities are
extracted from sensory input, these quantities need to be pro-
cessed further by integrating different sources of external and
internal information to gain control over behavior. To that aim,
numerical information from the IPS seems to be conveyed to the
PFC, which operates on a higher hierarchy level (14).
We thus hypothesized that neurons in the PFC are ideally

positioned to implement abstract response strategies required for
basic mathematical operations. First, the PFC is particularly
engaged during the processing of arithmetic operations requiring
mathematical rules in humans (18–22), and damage to the PFC
impairs reasoning with quantities (23–25). Second, PFC neurons
can flexibly group information into behaviorally meaningful cat-
egories according to task demands (26–32). Consistent with these
findings, lesions of human PFC cause deficits in rule-guided
behavioral planning (33–36) and functional imaging studies show

strong PFC activation in tasks tapping the application of behav-
ioral strategies (37, 38). Suchprocesses are commonly summarized
as executive control functions (39–41). Because mathematical
principles operate on most abstract categories (e.g., quantities,
numbers) rather than specific sensory stimuli, mathematical rules
particularly require the highest degree of internal structuring. To
investigate this, we recorded single-cell activity from the lateral
PFC in macaques trained to compare set sizes (numerosities) and
to switch flexibly between two abstract mathematical rules: a
“greater than” rule and a “less than” rule.

Results
Behavioral Performance. We designed a simple rule-based
numerical task and investigated if and how single neurons in the
PFC represent basic mathematical rules. To that aim, we trained
two rhesus monkeys to compare set sizes (numerosities) and to
switch flexibly between two abstract mathematical rules. The
greater than rule required the monkeys to release a lever if the
first test display showed more dots than the sample display,
whereas the less than rule required a lever release if the number
of items in the test display was smaller compared with the first
test display (Fig. 1). For each trial, the rule to apply (greater than
vs. less than) was indicated by a cue that was present in the delay
between sample and test stimuli. This enabled us to discern
purely sensory-related signals in the sample period and purely
memory-related signals in the delay 1 period from rule-related
activity in the delay 2 phase. Because the animals additionally
needed information about the numerosity of the test 1 display to
prepare a motor response (whether to release or maintain the
lever), preparatory motor-related activation could also be
excluded from rule-related activation in the delay 2 phase. To
dissociate the neural activity related to the physical properties of
the cue from the rule that it signified, two distinct cues from
different sensory modalities were used to indicate the same rule,
whereas cues signifying different rules were from the same
modality (Fig. 1 and Methods).
Themonkeys learned the quantitative greater than and less than

rules andwere able to choose the smaller or greater set size relative
to the sample numerosity independent of the absolute numerosity
of the displays (Fig. 2). The monkeys ignored the particular visual
appearance of the multiple-item dot displays and performed
equally well in the standard (randomdot sizes and dot density) and
control (equal total dot area and dot density) conditions. Average
correct performances in the standard and control conditions,
respectively, were 92% and 91% for monkey B and 83% and 89%
for monkey O, and this was significantly above chance level (P <
0.001, binomial test). Moreover, the animals’ performance was
comparable for the two rule cue modalities (red/blue vs. water/no-
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water) (Fig. 2 A and B). Most importantly, the monkeys immedi-
ately generalized the greater than and less than rules to numer-
osities that had not been presented previously (Methods). Fig. 2 C
and D shows the monkeys’ high performance to the first session
with sample numerosities that had not been presented previously,
and this performance remained stable over several sessions (Fig. 2
E and F). This indicates that they understood this basic mathe-
matical principle irrespective of the absolute numerical value of
the sample displays.

Single PFC Neurons Encode Mathematical Rules. We recorded the
activity of 484 randomly selected single neurons in the lateral PFC
on both banks of the principal sulcus (Fig. 3A and B), whereas the
two monkeys flexibly switched between the greater than and less
than rules. Neuronal selectivity was determined in the four task
periods: sample, delay 1, cue, anddelay 2. Table 1 shows that only a
few neurons were selectively tuned to sample numerosity in the
sample and delay 1 periods (two-way ANOVA, with factors
[sample numerosity] × [numerosity protocol]; P < 0.01; only a
significant numerosity main effect, with no other main effects or
interactions present). During the rule cue period, most of the
selective neurons (Table 1) were tuned to the modality of the rule
cue (four-way ANOVA, with factors [sample numerosity] ×
[numerosity protocol] × [cue modality] × [rule]; P < 0.01).
In the delay 2 period, however, the first phase in which the

monkeys had been informed about the mathematical rule to
apply, but before they could know how to respond to the test
display, rule selectivity emerged with duration of the delay 2
period. During the first half of the delay 2 period, many neurons
encoded both the cued rule and the cue modality (resulting in a
high proportion of cells exhibiting interaction between main
factors) (Table 1). In the second half of the delay 2 phase,

however, the highest proportion of neurons [90/484 (19%)]
showed activity that varied significantly and exclusively with the
cued rule. Therefore, we confined all further analyses to the
second half of the delay 2 period. Rule selectivity was inde-
pendent of the sample numerosity, the stimulus protocol, or the
sensory rule cues (four-way ANOVA; only significant rule was a
main effect, with no other main effects or interactions present).
Of the 90 purely rule-selective neurons in the second half of
delay 2, greater than (50 cells) and less than (40 cells) neurons
were about equally frequent. All displays and analysis in Figs. 3–
6 are based on purely rule-selective neurons. Only a few neurons
showed a main effect for numerosity, stimulus protocol, or cue
modality in the second half of the delay 2 phase (Table 1).
Two example pure rule-selective neurons are shown in Fig. 3

C–F. The neuron in Fig. 3 C and D discharged preferentially to
the greater than rule and generalized over the sensory rule cues,
whereas the cell in Fig. 3 E and F showed inverse selectivity and
discharged strongest to the less than condition. Fig. 4 shows the

Fig. 1. Behavioral protocol. Monkeys grasped a lever and maintained cen-
tral fixation. A sample numerosity was followed by a brief working memory
delay (delay 1). Next, a cue indicated either the greater than or less than rule
(P = 0.5 for each rule). Each rule was signified by two different sensory cues
(red and water for the greater than rule, blue or no-water for the less than
rule; first bifurcating arrows), followed by a rule delay (delay 2) requiring the
monkeys to assess the rule at hand for the subsequent choice. For each rule,
two trial types are illustrated (second bifurcating arrows). (Upper) For the
greater than rule, the monkeys released the lever if more dots were shown
in the first test display than in the sample display; otherwise, they held the
lever until the appearance of a second test display that always required a
response. (Lower) For the less than rule, the lever had to be released if the
numerosity in the first test display was smaller than that in the sample dis-
play. Thus, only test 1 required a decision; test 2 was used so that a behav-
ioral response was required on each trial, ensuring that the monkeys were
paying attention during all trials.

Fig. 2. Behavioral performance. Columns show percent correct responses of
the two monkeys for the greater than and less than tasks. (A and B) Per-
formance of monkey B and monkey O during electrophysiological recordings
(standard and control protocols pooled). (C–F) Generalization task. Task per-
formance of monkey B (C) and monkey O (D) in the first session with sample
numerosities not previously presented. (C) Each data point (i.e., bar) repre-
sents a minimum of 4 trials and a maximum of 9 trials for monkey B. (D) For
monkey O, theminimum andmaximum trial counts in this first generalization
session were 10 and 16 trials, respectively. Generalization performance of
both monkeys to the previously unpresented sample numerosities pooled for
seven (E) and six (F) sessions. Both monkeys performed significantly above
chance level (50%) for all sample numerosities, cues, and rules.
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detailed responses of a third pure rule-selective neuron during
the second half of the delay 2 period; this neuron always pre-
ferred the greater than rule, irrespective of the displayed sample
numerosities. Note that all three neurons in Figs. 3 and 4
developed rule selectivity several hundred milliseconds after cue
offset. This latency may reflect the time the monkeys needed to
deduce the appropriate rule from the sensory cues. Alternatively,
neurons in the PFC may acquire rule representation only
immediately before the rule information is needed, thus
reflecting certainty that the rule will need to be applied soon.
To characterize the quality of rule selectivity in the PFC inmore

detail, we determined quantitatively whether neurons responded
more strongly to the greater than or less than rule. We used a
receiver operating characteristic (ROC) analysis (42) to determine
whether and how activity of the ANOVA pure rule-selective
neurons differed in the two rule conditions. ThisROCanalysis was
performed over the same 500-ms time window used for the
ANOVA during the second half the delay 2 period. The ROC
values indicate the degree of separation between two distributions
of discharge rates, independent of the cell’s overall activity and
dynamic range. By convention, we used the responses to the less
than rule as the reference distribution; thus, ROC values >0.5
characterized cells that responded more strongly to the greater
than rule. Except for four neurons (two for the greater than rule
and two for the less than rule), all ROC values were significantly
different from 0.5 (P < 0.05, permutation test; n = 86). The
bimodally distributed data (Fig. 5A) indicate that approximately
half of the selective neurons preferred the greater than rule,
whereas the other half preferred the less than rule (binomial test,
P> 0.05). ROCvalues for the greater than rule (0.62) and less than
rule (0.38) were not different (P > 0.05, Mann–Whitney U test).
This confirmed that both rules were represented about equally by
the neuronal discharges.
We next characterized how neurons represented quantitative

rules across time during the delay 2 period. A sliding-window
ROC analysis applied to consecutive overlapping time windows
of 100 ms (advanced in steps of 20 ms) revealed that different
neurons encoded quantitative rules during different overlapping
time segments (Fig. 5B). With time after rule cue offset, an
increasing number of cells (n = 78, latency could not be deter-
mined in eight neurons) became selectively tuned to the rules
(latency determined as the first bin significantly different from
0.5 occurring 240 ms after rule cue offset; permutation test, P <
0.05). Across the population of neurons, signals representing
rules developed progressively after the rule cue and increased in
quality (i.e., average ROC values increased) toward the begin-
ning of the test period (Fig. 5 C and D).

PFC Activity Predicts Successful Rule Application. If rule-selective
neurons constitute a neuronal correlate for the monkeys’ ability
to choose greater than/less than rules, the neurons’ selectivity
should be weaker whenever the monkeys failed to derive the
correct rule, and thus chose wrongly. To address this issue, we
compared the neuronal responses of individual rule-selective
neurons when the monkeys made correct choices with trials with
behavioral errors. Average discharge rates were significantly

decreased by 9.4% when the monkeys made rule errors relative
to correct choices (P < 0.01, Wilcoxon signed rank test, two-
tailed; n = 90). Fig. 6A shows the time course of a representative
neuron’s responses in correct and error trials. The discharge to
the preferred greater than rule is largely reduced toward the end
of the delay 2 period. For the population of selective neurons,
median ROC values were decreased from 0.614 in correct trials
to 0.594 in error trials (P < 0.01, Wilcoxon signed rank test, two-
tailed; n = 86). As a consequence, the bimodal distribution of
ROC values deteriorated in error trials (Fig. 6B). These findings
argue that single PFC neurons represent basic mathematical
rules and guide greater than/less than decisions.

Discussion
Our results demonstrate that PFC neurons can flexibly represent
highly abstract mathematical rules. We found that this is accom-
plished by quite specific rule-selective neurons at the expense of
lower level sensory and working memory representations. These
findings elucidate the neurobiological mechanisms of operations
on numbers and pave the way for a better understanding of the
processing of basic mathematical rules in the primate brain.

Behavior. To use greater than/less than rules, the monkeys were
required to understand relations between numerosities and how
to apply them successfully in a goal-directed manner. We pre-
sented the animals with a large number of unique trials per
session (160 in total) that were repeated three times at most
during a single session (Methods). Thus, it was impossible for the
animals to solve the task by quickly learning, on each day, a set of
160 associations. Instead, the monkeys had to rely on principles
of relations between quantities that hold irrespective of the
numerical values of the sample and test displays and the rule
cue modalities (Fig. 2 A and B). Thus, the animals immediately
generalized the greater than and less than rules to sample
and test numerosities that had not been presented previously
(Fig. 2 C–F).

Selectivity to Basic Mathematical Rules in PFC. Damage to the PFC
typically causes deficits in switching between different abstract
rules (33–36), and PFC neurons in monkeys have been shown to
encode abstract rules in a “match/nonmatch” task (28) as well as
during changing response strategies (29, 31). Here, we report
that almost 20% of randomly selected PFC neurons encode basic
mathematical rules. Among the four task components analyzed
(sample numerosity, numerosity protocol, rule cue modality, and
rule), the most prevalent neuronal activity reflected the greater
than and less than rules, which were represented about equally
by single neurons. Rule-selective activity was not encoded
instantaneously but needed time to develop. We suspect this to
be a reflection of a time-consuming neuronal process that derives
from the cue of the corresponding rule semantics. Alternatively,
it may represent a demanding retrieval process of rule infor-
mation from other brain areas.
The quality of rule selectivity for mathematical rules in our

study (median ROC = 0.614) was slightly higher than that found
for match/nonmatch rules (0.57) by Wallis and Miller (43) and

Table 1. Neural selectivity in different task periods (484 neurons)

Percentage of cells selective for Sample* Delay 1* Cue† Delay 2†(first half) Delay 2†(second half)

Only sample numerosity 3.5 4.3 0.4 1.3 3.7
Only numerosity protocol 0.6 0.8 0.0 0.6 1.5
Only cue modality — — 10.9 7.8 4.1
Only rule — — 2.0 7.4 18.6
Any interaction between main factors 1.0 0 1.6 13.8 6.4

*Two-factor ANOVA.
†Four-factor ANOVA.

Bongard and Nieder PNAS | February 2, 2010 | vol. 107 | no. 5 | 2279

N
EU

RO
SC

IE
N
CE



comparable to that found for neurons reflecting repeat–stay and
change–shift strategies (0.615) by Genovesio et al. (31). (Note
that different durations of analysis windows and different num-
bers of trials per cell in the three studies limit the comparability
of ROC values.)
An analysis of trials in which the monkeys made judgment

errors further emphasizes the significance of rule-related activity
for correct choices. If the animals made wrong decisions, the
spike rates and ROC values in the delay 2 period were sig-
nificantly reduced. In other words, whenever the rule detectors
did not properly encode “their” rule by maximum discharges, the
animals had a higher tendency to fail.

Predominance of Rule Selectivity Over Sensory- and Memory-Related
Activity. The task-switching protocol we used enabled us to discern
sensory-related (sample) and working memory-related (delay 1)
activity from rule-selective activity (delay 2). We found that very
few neurons were tuned to the numerical value of the sample
display in the demanding task-switching task. Such activity was
virtually absent even in the memory delay periods. Because car-
rying information across delays is thought to reflect working
memory, a hallmark function of PFC (40), this finding is partic-
ularly surprising and in striking contrast to those of many studies
using delayed response tasks (44) as well as our previous record-
ings from the PFC. There, about one-third of randomly selected
PFC neurons were significantly tuned to numerosity during a
delayed matching task (11–14). Neurophysiological differences
between individuals are unlikely to account for this discrepancy,
because one of the monkeys participating in the current study
(monkey B) also exhibited the typical high proportion of numer-
osity-selective PFC neurons in a previous delayed match to
numerosity study (14). Most likely, thus, these coding differences
are related to the functional properties of PFC neurons.
As long as task demands are low, it seems that the highly

adaptable cells in the PFC (45) can afford to code low-level
sensory stimulus features and intermediate-level working mem-
ory signals. If a task demands an increase, however, a division of
coding labor is required and the PFC is released from lower level
representations that limit its cognitive resources (see the article
by Gold and Shadlen (46) for similar findings in the frontal eye
field). To reveal its sophisticated coding capacities, we
hypothesize that the PFC needs to be “challenged” with com-
plicated task components. This would (also) be consistent with
the general finding that damage to the lateral PFC spares low-
level functioning, although causing impairments of intricate
high-level mental processes (23–25, 33–36).

Fig. 4. Detailed responses of a rule-selective neuron. Spike-density histo-
grams of a third example neuron in the delay 2 (second half) period are
shown. The neuron showed higher activity to the greater than rule, irre-
spective of whether sample numerosity 2 (A), 3, (B), 5 (C), 8 (D), or 13 (E) was
shown. (F) Average discharges across all sample numerosities. Only respon-
ses to correct trials are shown.

Fig. 3. Single-cell recordings. Location of recording sites in monkey B (A)
and monkey O (B). The percentage of proportion-selective units found at
each recording site is color-coded. (B, Inset) Lateral view of a rhesus monkey
brain. The circle indicates the location of the recording chamber. ant,
anterior; iar, inferior arcuate sulcus; ps, principal sulcus; sar, superior arcuate
sulcus. (C and D) Typical rule-selective example neuron 1 selective for the
greater than rule toward the end of the delay 2 (second half) phase.
Responses across the entire trial (C) and magnified during the delay 2 period
(D) are shown. (Upper) Neuronal responses are plotted as dot-raster histo-
grams (each dot represents an action potential, spike trains are sorted and
color-coded according to the rules and rule cues). (Lower) Spike density
functions (activity averaged over all trials and smoothed by a 150-ms
Gaussian kernel). Rule selectivity was regardless of which cue signified the
rule. (E and F) Example neuron 2 selective for the less than rule (same layout
as in C and D). Only responses to correct trials are shown.
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Our finding that PFC neurons specifically represent the rules
at hand is in good agreement with a PFC neural network model
proposed by Dehaene and Changeux (47) for the classic neuro-
psychological Wisconsin Card Sorting Test (WCST). In the
WCST task, a deck of cards needs to be sorted according to
different changing rules (color, form, or number of card signs).
According to this model, separate rule-coding clusters represent
the rules of the game. Each rule-coding cluster codes for a
particular sorting rule and gates a corresponding subset of
internal memory (for input) clusters and intention (for output)
clusters. Such specific rule-coding clusters in the network are
mirrored by our finding of a physiological predominance of rule-
selective neurons that specifically respond to the larger than and
less than rules.
The current data therefore beg two questions: (i) Where is the

information about number categories originally encoded during
sensory presentation, and (ii) where is it maintained online in
working memory? An ideal candidate structure for extracting and
storing numerosity in working memory is the posterior parietal
cortex (7). Neurons in the IPS have been shown to encode
numerosity, both explicitly (8, 9) and implicitly (10), and also to
maintain numerical information online during a delay period (8,
9). In addition, or alternatively, neurons in other parts of the
frontal lobe, such as the anterior cingulate cortex (29), premotor
cortex (43), or even parietal (48) or subcortical areas (49), could
also be engaged. Recordings from different cortical and sub-
cortical regions could help to elucidate the complete network of
brain regions necessary for solving basic mathematical tasks.

Methods
Behavioral Protocol.Monkeys learned to perform numerical greater than and
less than comparisons flexibly based on varying rules. In each trial (Fig. 1), a
sample stimulus cued the animals for the reference numerosity they had to
remember for a brief time interval. The first memory interval (delay 1) was
followed by a rule cue that instructed the monkeys to select a numerosity
either larger (greater than rule) or smaller (less than rule) than the sample
numerosity in the subsequent test phase to receive a liquid reward.

Because both sample and test numerosities varied systematically, the
monkeyscouldonlysolvethetaskbyassessingthenumerosityofthetestdisplay
relative to the five possible numerosities of the sample display together with
the appropriate rule in any single trial. To test a broad range of numerosities,
monkeyBwaspresentedwith samplenumerosities2 (smaller testnumerosity=
1, larger test numerosity = 3), 3 (2: 5), 5 (3: 8), 8 (5: 13), and 13 (8: 19).MonkeyO
was testedwith sample numerosities 3 (1: 5), 5 (3: 8), 8 (5: 16), 16 (8: 32), and 32
(16: 64). For any sample numerosity, test numerosities were either larger or
smaller with equal probability (P = 0.5). Because the monkeys’ numerosity
discrimination performance obeys the Weber–Fechner law (12), numerosities
larger than a sample numerosity need to be numerically more distant than
numerosities smaller than the sample numerosity to reach equal discrim-
inability. Based on this design, any numerosity (except the smallest and largest
used) served as sample and test numerosities, thus precluding the animals
from learning systematic relations between numerosities.

To prevent the animals from exploiting low-level visual cues (e.g., dot
density, total dot area), standard (dot size and position randomized) and
control (equal total area and average density of all dots within a trial)
numerosity protocols were presented in a randomized fashion. To dissociate
the rule-related cellular responses from responses to the sensory features of
the rule cue, each rule was signified in two different sensory modalities: A red
circleandadropofwaterdeliveredwithawhite circle signifiedthe rulegreater
than, whereas a blue circle and nowater deliveredwith awhite circle cued the
rule less than. To test if monkeys could generalize the mathematical principle
to numerosities that had not been presented previously, both monkeys

Fig. 6. Rule selectivity during error trials. (A)
Discharges of a representative neuron during
a monkey’s correct vs. erroneous choices. (B)
Frequency histogram of ROC values during
the second half of the delay 2 phase of neu-
rons encoding the two abstract rules during
error trials.

Fig. 5. PFC neurons encode the greater than and less than rules. (A) Frequency histogram of ROC values of neurons encoding the abstract quantitative rules
during correct trials in the delay 2 (second half) period. (B) Temporal evolution of rule-selective signals in the second half of the delay 2 period. Each row in
the color map represents rule-selective coding for an individual neuron, with neurons preferring greater than (red) and less than (blue) sorted in opposite
order according to the first time point where the ROC value significantly differed from 0.5. White curves depict the neurons’ latency for rule selectivity. Time 0
ms is the onset of the delay 2 period. Average ROC values are shown as a function of time during delay 2 (second half) for all neurons preferring the greater
than (C) or less than (D) rule.
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additionally performed the task with sample numerosities 3 (smaller test
numerosities: 1 and 2; larger test numerosities: 4 and 5), 4 (1, 2: 6, 7), 6 (2, 4: 9,
12), 9 (3, 6: 13, 16), and 14 (7, 10: 18, 20). Thus, in any given session, the animals
were confronted with 160 unique trials [5 sample numerosities four times × 2
stimulus protocol types (standard/control) × 2 rules × 2 cue modalities], which
were repeated up to three times per session. After each session, the displays
were generated anew using Matlab (Mathworks).

Trials were randomized and balanced across all relevant features (e.g.,
greater than and less than rules, rule cue modality, sample numerosities).
Monkeys had to keep their gaze within 1.75° of the fixation point from the
fixation interval up to the onset of the first test stimulus (monitored with an
infrared eye-tracking system; ISCAN, Burlington, MA).

Neuronal Recording. Recordings were made from the left PFC of two rhesus
monkeys (Macaca mulatta) in accordance with the guidelines for animal
experimentation approved by the Regierungspräsidium Tübingen, Germany.
Arrays of eight tungsten microelectrodes (1-MΩ impedance) were inserted
using a grid with 1-mm spacing. Recordings were localized using stereotaxic
reconstructions from individual magnetic resonance images. Neurons were
selected at random; no attempt was made to search for any task-related
activity. Signal amplification, filtering, digitizing of spike waveforms, and
spike sorting were accomplished using the Plexon system (Dallas, TX). Sep-
aration of all single-unit waveforms was performed off-line.

Data Analysis. Activity in the different task periods was separately analyzed.
For the sample period, discharge rates were measured in a 500-ms window
starting 100 ms after sample onset. Purely working memory-related activity
in the delay 1 period was assessed in an 800-ms window starting 200ms after
sample offset. Responses to cue modality were assessed in a 300-ms window

beginning 100 ms after rule cue onset. Rule-selective activity in the delay 2
period was analyzed in two consecutive 500-ms windows starting 100 ms
(first half) and 600 ms (second half), respectively, after delay 2 onset. A two-
way ANOVA with the main factors of sample numerosity (five numerosities)
and numerosity protocol (standard and control protocols) was evaluated at
P < 0.01 in the sample and delay 1 periods. From the cue period on, a four-
way ANOVA with the main factors of sample numerosity (five numer-
osities), numerosity protocol (standard and control protocols), rule cue
modality (color vs. water), and rule (greater than vs. less than) was eval-
uated at P < 0.01.

In addition, we compared spike counts in the two rule conditions using a
ROC analysis (42) of neurons classified as purely rule-selective based on the
ANOVA. This ROC analysis was performed over the same 500-ms time win-
dow used for the ANOVA during the second half of the delay 2 period. We
also characterized the temporal evolution of individual neurons’ rule selec-
tivity by computing a sliding ROC analysis in 100-ms windows moved in 20-
ms steps across a trial’s delay 2 period and the first 100 ms of the test 1
period. Discharges in error trials were compared with those in correct trials
using raw spike counts from the same 500-ms window used for the ANOVA
as well as the ROC values. To derive error-ROC values, activity of a greater
than (“smaller than”) neuron for trials in which the monkey correctly chose
the larger (smaller) numerosity was compared with the same neuron’s
activity when the animal erroneously chose the smaller (larger) numerosity.
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