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Complementary Contributions of Prefrontal Neuron Classes
in Abstract Numerical Categorization
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The primate prefrontal cortex (PFC) plays a cardinal role in forming abstract categories and concepts. However, it remains elusive how
this is accomplished and to what extent the interaction of functionally distinct neuron classes underlies this representation. Here, we
inferred the major cortical cell types, putative pyramidal cells, and interneurons by characterizing the waveforms of action potentials
recorded in monkeys performing a cognitively demanding numerosity categorization task. Putative interneurons responded much faster
than cells classified as pyramidal neurons and exhibited a higher reliability of category discrimination, whereas putative pyramidal cells
showed a higher degree of category selectivity. An analysis of the numerosity tuning profiles and the temporal interactions of adjacent
neurons indicated that inhibitory input by putative interneurons shapes the tuning to numerical categories of putative PFC pyramidal
cells. These findings favor feedforward mechanisms subserving cognitive categorization and help to clarify cellular interactions in PFC
microcircuits.
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Introduction
The prefrontal cortex (PFC) at the apex of the cortical processing
hierarchy (Miller and Cohen, 2001) plays a dominant role in
categorization; its neurons readily reflect perceptual (Freedman
et al., 2001) and numerical categories (Nieder et al., 2002; Diester
and Nieder, 2007). Neurons in the PFC are selectively tuned to
preferred numerosities, i.e., the quantity of a stimulus is encoded
by the maximum response rate of a particular neuron and the
tuning function is a peak function with the preferred numerosity
represented at the maximum of discharge (Nieder et al., 2002;
Nieder and Merten, 2007). To avoid extensively overlapping tun-
ing curves and to increase discrimination precision between nu-
merosities, neurons should exhibit relatively sharp tuning behav-
ior. How tuning functions to abstract categories are shaped by
neuronal computations remains elusive. It is known, however,
that local microcircuits between functional types of neurons
within the PFC play an important role in shaping other represen-
tations, such as spatial locations (Goldman-Rakic, 1996). We
thus hypothesized that the local interactions between neuron
classes in the PFC could also help to shape numerical
representations.

The two main types of neurons in the neocortex are pyramidal
cells and interneurons, which differ in biochemical and anatom-
ical aspects (Markram et al., 2004; Shepherd, 2004; Wonders and

Anderson, 2006). Pyramidal cells are the more abundant cell type
and constitute �80% of all neocortical neurons. They are excita-
tory and can project across brain areas. Interneurons, however,
are mainly inhibitory and their axons remain within a circum-
scribed cortical area, indicating that interneurons function as
local processing units.

In combination with histology, intracellular recordings have
established distinct electrophysiological characteristics for pyra-
midal cells and interneurons. One of the most obvious differ-
ences is related to the electrical profile of their action potentials.
Pyramidal cells typically show longer action potential wave-
lengths than interneurons (Connors and Gutnick, 1990;
Markram et al., 2004). Because the duration of extracellularly
recorded spike waveforms is directly related to the duration of
intracellularly recorded waveforms (Henze et al., 2000; Gold et
al., 2006), narrow-spiking (NS; putative interneurons) and
broad-spiking neurons (BS; putative pyramidal cells) can also be
discriminated with extracellular recording techniques. This ap-
proach has proven successful in several studies in the somatosen-
sory (Simons, 1978; McCormick et al., 1985; Swadlow and Gusev,
2002), visual (Swadlow and Weyand, 1987; Gur et al., 1999; Shap-
ley et al., 2003; Mitchell et al., 2007; Nowak et al., 2008), auditory
(Atencio and Schreiner, 2008), and prefrontal cortices (Wilson et
al., 1994; Rao et al., 1999; Constantinidis and Goldman-Rakic,
2002) of different mammalian species.

To test whether and to what extent distinct cell classes con-
tribute to abstract category representations in behaving monkeys,
we separated the signals of single cells recorded extracellularly
based on their waveform profiles. Putative pyramidal cells and
interneurons showed specific response properties and functional
interactions, implicating distinct roles in shaping abstract quan-
tity representations. These data suggest mainly feedforward in-
teractions between putative inhibitory and excitatory neurons
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and allow for a refinement of current models of prefrontal
circuitry.

Materials and Methods
Behavioral protocol. The monkeys judged the number of items in a de-
layed match-to-sample task (see Fig. 1). Numerosities one to four were
tested. A trial started when the monkeys grasped the response lever; the
monkeys were required to maintain their gaze within 1.75° of visual angle
of the fixation point during sample presentation and the memory delay
(monitored with an infrared eye-tracking system, ISCAN, at a sample
rate of 120 Hz). After the fixation period, an array of dots was presented
for 800 ms as sample stimulus (sample period). The monkeys had to
memorize the numerosity until the end of a delay period (1000 ms), after
which the test stimulus (1200 ms) was presented. In a match trial, the first
test stimulus contained the same number of items as the sample stimulus.
The monkeys were required to indicate a match by a lever release. In
nonmatch trials, the first test stimulus was either larger or smaller in
numerical value than the sample stimulus. In this case, the monkeys had
to hold the lever until the second test stimulus came up, which was always
a match. After correct responses, a fluid reward was delivered. False
responses led to a short time out. Fixation breaks and lever releases
during sample or delay led to an abortion of the trial. Match and non-
match trials appeared in a pseudorandom order and with equal proba-
bility ( p � 0.5). Trials were randomized and balanced across all relevant
features.

Stimuli. The stimuli were randomly arranged black dots displayed on a
gray background (diameter, 6° of visual angle). Low-level visual features
were controlled for to ensure that the monkeys were indeed using the
numerical value of the arrays of dots to solve the task. For each session,
100 different images per numerosity were generated with pseudoran-
domly varied visual features: the diameter of the dots ranged from 0.5 to
0.9° of visual angle and their positions were only restricted by the border
of the gray background circle and the fact that they were not allowed to
overlap each other. Sample and test stimuli were never identical. All four
quantities were presented in each session with one standard and one
control condition. Standard and control trials were randomly intermin-
gled and appeared with equal probability ( p � 0.5). Controls included
displays with constant circumference (and, thus, decreasing total area as
opposed to increasing total area in the standard condition), linear con-
figuration (i.e., all dots were linearly arranged), and constant density (i.e.,
constant mean distance between dots) across all presented quantities.
These measures prevented the monkeys from memorizing visual patterns
instead of using the numerical information to solve the task.

Recording method. Recordings were made from the PFC of four hemi-
spheres in four adult rhesus monkeys (Macaca mulatta) in accordance
with the guidelines for animal experimentation approved by the Re-
gierungspräsidium Tübingen (Tübingen, Germany). Arrays of varnish-
insulated tungsten microelectrodes (1 M�; FHC) or glass-insulated
tungsten microelectrodes (1 M�; Alpha Omega) attached to screw mi-
crodrives were inserted by using a grid with 1 mm spacing (see Fig. 4).
The frequency distribution of NS and BS cells recorded with these two
types of electrodes were not different (� 2 test, two-sided, p � 0.001), nor
was any other characteristic. Recording sites were anatomically recon-
structed by using structural magnetic resonance images taken from each
monkey before implantation. Neurons were selected at random; no at-
tempt was made to search for task related activity. Waveform separation
was performed off-line by applying mainly principal component analysis
(Plexon Systems).

Exclusion of waveforms. Only neurons characterized by mean wave-
forms with a downward voltage deflection followed by an upward voltage
deflection with a clear peak were included. The selection criteria were as
follows: the minimum of the waveform had to occur between 200 and
400 �s after reaching the initial threshold, and the maximum was not
allowed to occur before 300 �s after crossing of the threshold. Neurons
that did not fulfill these criteria were excluded from additional analysis.
In total, 45 neurons were excluded; 2 of them had their minimum before
200 �s and 43 had their maximum before 300 �s.

Classification of narrow- and broad-spiking neurons. A linear classifier
(k-means, k � 2, squared Euclidean distance) categorized single units as

narrow or broad-spiking cells based on their waveforms. In a preprocess-
ing step, waveforms were normalized by the difference between their
peak and trough values and aligned by their minimum to remove irrele-
vant and possibly misleading features (i.e., amplitude and time of mini-
mum). By this, we ensured that only relevant features (i.e., spike width
and shape of the waveform, in particular the slope of the peak after the
initial trough) (Henze et al., 2000) were used by the classifier. The cluster
with the smaller mean spike width was defined as the population of
narrow-spiking neurons, the cluster with the larger mean spike width as
the population of broad-spiking neurons. We evaluated the classification
by calculating an index of discriminability of the two classified distribu-
tions. d� is a measure derived from signal detection theory, given by the
difference between the means (or separation between the peaks) of the
distribution A and the distribution B, divided by the SD of distribution B.
It indicates by how many SDs the two distributions are separated. Be-
cause the classification was based on waveforms of 800 �s duration sam-
pled at a frequency of 40 kHz (one entry every 25 �s), the averaged
waveforms were saved as a 32-element vector. We calculated d� as the
difference between the means of the broad- and narrow-spiking neurons
across all elements divided by the variance across all elements of the
narrow-spiking neurons. The centroids of the two classified distributions
were separated by 7 SDs (d� � 7.22).

Calculation of slope during rising activity. The change of firing rate
during the fixation period was normalized by the firing rate measured at
200 ms after fixation onset. The slope was defined as the relative change
of firing rate from 200 to 500 ms after fixation onset divided by the
temporal difference of 300 ms.

Visual response latency analysis. To determine the neuronal response
latencies, averaged spike density histograms were derived with a 1 ms
resolution, smoothed by a sliding window with a kernel bin width of 10
ms for all sample stimuli. A 200 ms time window before stimulus onset
was used as baseline. If five consecutive time bins after stimulus onset
reached a value higher than the maximum of the baseline period, re-
sponse latency was defined by the first of these time bins. A default
latency of 100 ms was used if no value could be calculated.

ANOVA. Numerosity-selective neurons were defined based on a two-
factor ANOVA. To account for different temporal response phases, spike
rates were tested in four adjacent, nonoverlapping time windows
(Diester and Nieder, 2007). The first window (400 ms) started at the
beginning of the sample period and was shifted by the neurons’ response
latencies. The second window (400 ms) followed the first one, covering
the rest of the sample period. The next two windows (450 ms each)
covered the first and second part of the delay period. Selectivity for nu-
merosities was calculated based on these discharge rates using a two-way
ANOVA with main factors numerosity (1– 4) and stimulus condition
(standard and control). Cells were considered to be numerosity selective
only if they showed a significant main effect of numerosity, but no
significant stimulus condition or interaction effect in one of the four
analysis windows.

Population peristimulus time histograms. Neuronal responses were av-
eraged across cells sorted in the order of preferred numerical values: we
calculated the mean of all responses to the preferred numerosity, of all
responses to the second most preferred numerosity, etc. The responses
were averaged and smoothed with a 200 ms Gaussian kernel for illustra-
tive purposes only.

Population tuning curves. To derive averaged numerosity-filter func-
tions, the tuning functions of individual neurons were normalized by
dividing all spike rates by the maximum activity, thus setting the activity
at the preferred numerosity to 100%. Pooling the resulting normalized
tuning curves across the entire population of numerosity-selective cells
resulted in averaged numerosity-filter functions. The population tuning
functions were calculated for the entire sample or delay period for neu-
rons classified as numerosity selective by the two-way ANOVA during
the sample or delay period, respectively.

Modulation index. The modulation index was calculated as the ratio of
raw firing rates for the most- and least-preferred stimuli (Swadlow, 1989,
2003). (Note that the normalization of this index might also be achieved
in different ways.) Firing rates obtained during the sample period were
used for neurons classified as numerosity selective during the sample
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period by the two-way-ANOVA. Firing rates obtained during the delay
period were used for neurons classified as numerosity selective during the
delay period.

Fano factor. The Fano factor was calculated as the mean spike count
within the sample or delay period divided by the variance of spike counts
in that period.

ROC analysis. The reliability of numerosity discrimination and its time
course was examined by using a sliding receiver operating characteristic
(ROC) analysis (Green and Sweets, 1966). For each neuron, the two spike
rate distributions for the preferred (true-positive rate) and least-
preferred numerosity (false-positive rate) were compared. To obtain the
ROC curve, the probability of true positives were plotted as a function of
the probability of false positives in 1 spike/s bins. The area under the ROC
curve (AUC) was taken as a quantitative measure of how reliably the two
distributions were separated, and, in other words, how well a neuron
discriminated between the preferred and the least-preferred numerosity.
An AUC of 0.5 represents identical distributions (no discrimination),
and an AUC of 1.0 indicates completely separated distributions (perfect
discrimination). The sliding ROC analysis (kernel width 50 ms, 1 ms
increments) was performed to derive the AUC of a neuron at each time
point during the trial. The threshold was calculated as the mean AUC
plus 3 SDs derived in a 200 ms interval (pure fixation) before sample
onset. The latency of numerosity discrimination was defined as the time
after sample onset at which this threshold was exceeded. Average AUC
values for the entire sample and delay period were compared across cell
classes to test differences in numerosity discrimination reliability.

Cross correlation between tuning curves of neuron pairs. To compare the
tuning properties of adjacent neurons, we obtained their tuning curves
and calculated the cross-correlation coefficient (CCTuning). The CCTuning

takes the entire tuning functions of two cells, i.e., tneuron1(n) and
tneuron2(n) for the numerical values n � [1,2,3,4] into account. It is scale
invariant, because the means t�neuron1 and t�neuron2 are subtracted from
each spike rate, and has the advantage of normalization, which allows
comparison across all cell pairs. The normalized cross-correlation coef-
ficient CCTuning was calculated as follows:

CCTuning �

�
n�1

4

�tneuron1�n� � t�neuron1� � �tneuron2�n� � t�neuron2�

��
n�1

4

�tneuron1�n� � t�neuron1�
2 � ��

n�1

4

�tneuron2�n� � t�neuron2�
2

where tneuron1 is the tuning function for neuron 1, tneuron2 is the tuning
function for neuron 2, t̄neuron1 and t̄neuron2 are the means of the tuning
functions, and n �[1,2,3,4] is the numerosity. The means were calculated
as follows:

t�neuron1 �
1

4�
n�1

4

tneuron1�n�; t�neuron2 �
1

4�
n�1

4

tneuron2�n�.

Negative CCTuning values indicate inversely tuned cells, whereas positive
CCTuning values suggest similar tuning. Note that only neurons that were
significantly tuned to numerosity (as tested by the two-way ANOVA),
and in addition had been recorded at the same electrode, were included
in the cross-correlation analysis.

Cross correlation between spike trains of neuron pairs. We used custom-
made Matlab algorithms for calculating temporal cross-correlations be-
tween neurons (CCTiming) (de Oliveira et al., 1997). All stimulus condi-
tions were analyzed together, and the entire trial was taken into account.
The algorithm for estimation of cross-correlations was as follows: of a
given pair, one neuron was designated the trigger. For each of the spikes
fired by this neuron, the temporal delays to each of the spikes of the other
neuron were calculated and plotted in a histogram with a bin width of 1
ms. This procedure was repeated for all spikes and all trials, summing up
all entries and yielding the “raw cross-coincidence histogram” (RCCH).
We normalized the RCCHs to a score that was independent of firing rates
of the two units.

We calculated the shuffle predictor (derived by correlating subsequent
trials with each other and the last trial with the first one). The shuffle
predictor is generally interpreted as an estimate of correlogram features
induced by an influence repeating itself identically for all trials (typically,
the stimulus). We calculated the Z score by subtracting the shuffle pre-
dictor and dividing by the SD of the predictor. We chose the Z score for
normalization because it has been shown to produce estimates of corre-
lation strength that are independent from firing rates and reliably reflect
the actual functional connectivity in a given neural architecture (Aertsen
et al., 1989). Z scores �3 were considered statistically significant devia-
tions from the null hypothesis (of two independent random Poisson
processes). To further avoid false positives, we performed two additional
tests: (1) false positives often consist of single bins exceeding the confi-
dence limits. We smoothed correlograms by a three-point averaging fil-
ter, and only if the resulting correlograms still had peak heights of �3 SD
were they scored as significant correlations. (2) We divided the trials into
two groups. Only if a significant correlation occurred within 	 25 ms in
both groups, the pair was considered significantly correlated.

Results
Classification of narrow- and broad-spiking neurons
PFC neurons were recorded extracellularly in four rhesus mon-
keys performing a cognitively demanding delayed match-to-
sample task on visually displayed numerosities (Fig. 1a). The
monkeys maintained fixation while judging the number of items.
After an initial 500 ms fixation period, an array of dots was pre-
sented as sample stimulus for 800 ms. In the following 1000 ms
(delay period), the monkeys were required to memorize the nu-
merosity to match it to the number of dots during the subsequent

Figure 1. Delayed match to numerosity task and behavioral performance. a, Behavioral
protocol. The monkeys held a lever and fixated a small fixation spot at the center of the com-
puter monitor to start a trial. The first display (sample) contained one to four items. During a
1000 ms memory delay, the monkeys had to memorize this numerosity and match it to the
subsequent test display. There was a 50% probability that the test contained the same number
of items as the sample (a match). In a match trial, the monkeys released the lever to receive a
reward. In a nonmatch trial, the monkeys continued holding the lever until a second test display
appeared, which was always a match and required a lever release to receive a reward. b,
Behavioral performance. The curves show how often the monkeys judged the first test as being
equal to the sample numerosity. The numerical value in the first test display is shown on the
x-axis. Each color represents a specific sample numerosity. The average performance for each
numerosity is shown in gray as the percentage correct (chance level, 50%).
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test phase. Low-level visual features were controlled for to ensure
that the monkeys were indeed using the numerical value of the
arrays of dots to solve the task. All four quantities were presented
in each session with one standard and one control condition.
Different control conditions were applied day by day. Controls
included displays with constant circumference, linear configura-
tion, and constant density across all presented quantities. For
each session, 100 different images per numerosity were generated
with pseudorandomly varied visual properties. Sample and test
stimulus were never identical (see Materials and Methods). All
monkeys performed the task 80 –90% correct (Fig. 1b) and
showed the behavioral characteristics of numerical discrimina-
tion as described previously (Nieder et al., 2002, 2006; Nieder and
Miller, 2004; Diester and Nieder, 2007; Nieder and Merten, 2007;
Merten and Nieder, 2008).

Neuronal signals were sorted based on waveform characteris-
tics using principle components and other characteristic features
(using Offline Sorter software; Plexon), taking the refractory pe-
riod into account. A total of 1081 single units were isolated (214
from monkey B, 512 from monkey H, 203 from monkey R, and
152 from monkey W). The amplitude threshold for spike detec-
tion was set below baseline (negative relative to baseline) to ac-
count for the fact that the largest amplitude deflection was ex-
pected downward in extracellular recordings without signal
inversion. All PFC neurons (1036 of 1081) with a downward
voltage deflection followed by an upward voltage deflection with
a clear peak in their waveforms were analyzed. The remaining 45
PFC neurons with deviating waveforms were excluded from ad-
ditional analysis (for details of exclusion criteria, see Materials
and Methods).

According to our hypothesis of two separable neuron types,
the distribution of spike waveforms was expected to be bi-
modal. To test this, we calculated the average action potential
waveform of each neuron. Waveforms had similar biphasic
shapes but varied in duration, as defined by the interval be-
tween the waveforms’ troughs and peaks (Fig. 2a) (Bartho et
al., 2004). The distribution of waveform durations (Fig. 2b)
was significantly bimodal [p � 0.001; Hartigan and Hartigan’s
(1985) dip test, not influenced by the exclusion of atypical
waveforms]. A linear classifier was used to objectively separate
narrow- and broad-spiking neurons based on waveforms. Fig-
ure 2c shows the mean spike waveforms of a random subset of
130 classified PFC neurons. The classification results corre-
sponded to the two modes of the bimodal distribution, with
13% (137 of 1036) showing narrow waveforms clustering at
�200 ms and 87% (899 of 1036) showing broad waveforms
clustering at �500 ms duration (Fig. 2b). Because our cell
classification is based on waveform criteria, we use the de-
scriptive terms “narrow-spiking neurons” and “broad-spiking
neurons” in the following to denote putative interneurons and
pyramidal cells. Based on the discharge rate, NS and BS neu-
rons have also been termed “fast-spiking neurons” and
“regular-spiking neurons,” respectively (Wilson et al., 1994).

General response properties of narrow- and
broad-spiking neurons
We found several physiological properties that differed system-
atically between NS and BS cells. First, the overall firing rates for
all task periods differed strongly between neuron classes (Fig. 3a).
NS neurons exhibited a higher level of activity during the fixation
period when no stimulus was present (meanNS, 13.7 Hz; meanBS,
3 Hz; Mann–Whitney U test, p � 0.001). Second, NS neurons
also showed a prominent ramping activity during fixation with

positive slopes (mean change of firing rate from baseline, 30%;
sign test, two-sided, p � 0.01), possibly reflecting stimulus expec-
tation. Slopes of BS cells were not different from zero (mean
change of firing rate from baseline, 12%; p � 0.24), but differed
significantly from those of putative interneurons (Mann–Whit-
ney U test, p � 0.01). Third, NS neurons showed stronger
stimulus-evoked responses than did BS neurons (meanNS, 17 Hz;
meanBS, 3.2 Hz; Mann–Whitney U test, p � 0.001). Fourth, NS
neurons showed shorter visual response latencies than BS neu-
rons (medians, 87 and 123 ms for NS and BS neurons, respec-

Figure 2. Classification of broad- and narrow-spiking neurons. a, Mean waveforms of one
narrow and one broad-spiking neuron recorded from the same electrode. Waveform duration
was defined as the time from waveform valley to peak. b, Bimodal distribution of waveform
durations. c, Normalized average waveforms of a random subset of 130 neurons aligned by their
minimum. Red and blue waveforms correspond to narrow- and broad-spiking neurons,
respectively.
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tively; p � 0.001, Mann–Whitney U test) (Fig. 3b). The distinct
properties of NS and BS neurons and their clearly separable dis-
tributions strongly suggest classification into putative interneu-
rons and pyramidal cells as discussed below.

Category-dependent firing rate
modulation of NS and BS cells
To determine whether neurons were selec-
tive to numerical categories, we first calcu-
lated a two-way ANOVA [with factors nu-
merosity (i.e., 1,2,3, and 4) 
 stimulus
condition (i.e., standard vs control); p �
0.05]. During the sample period, 30% (309
of 1036) of the PFC neurons were numer-
osity selective (only significant for factor
numerosity, no other main effects or inter-
actions). During the delay period, 38%
(396 of 1036) of the neurons were signifi-
cantly tuned to numerosities.
Numerosity-selective neurons showed
peaked tuning curves with maximum dis-

charge at their respective preferred numerosities (Nieder et al.,
2002, 2006; Nieder and Miller, 2004; Diester and Nieder, 2007;
Nieder and Merten, 2007) (see Figs. 6a,c, 8a). Figure 4 shows the
exact recording locations of all numerosity-selective neurons in
the four monkeys. There was no clustering of NS and BS neurons.
We found a slight but not significant tendency of NS neurons
toward deeper recording sites in three of the four monkeys (dif-
ference between mean recording depth of BS and NS cells: mon-
key H, �66 �m; monkey B, �320 �m; monkey R, �214 �m,
monkey W, 117 �m).

To clarify the contributions of NS and BS cells to numerical
categorization, we compared their involvement in the task (Table
1). Overall, the proportion of numerosity-selective neurons in
the sample period did not differ between cell classes (BS cells,
29%; NS cells, 35%; � 2 test, two-sided, p � 0.05). During the
delay period, however, proportionally more numerosity-
selective NS neurons were found (BS cells 37%, NS cells 46%, p �
0.05). Preferred numerosities were equally distributed across NS
and BS cells (� 2 test of homogeneity, p � 0.05). Figure 5a shows
the average response of the 261 putative pyramidal neurons that
were numerosity selective during the sample period. Responses
to the preferred numerosity of each BS cell (ranging from numer-
osity 1– 4 in this data set) are shown in dark blue. Responses to
less preferred numerosities (i.e., the numerosities at the flanks of
the tuning curves) are shown in faded color (decreasing satura-
tion with decreasing preference). The average firing rates of 48
numerosity-selective NS cells are shown in red. Responses to the
preferred numerosity are given in dark red, responses to the least-
preferred numerical value in light red. A prominent phasic com-
ponent in NS cells is clearly visible during the first 250 ms of the
sample period for all numerical stimuli. Even for the least-
preferred numerosity, the discharges were elevated relative to the
baseline rate obtained during pure fixation (mean baseline dis-
charge rate, 15.6 Hz; mean discharge rate during first 250 ms of
sample, 22.5 Hz; signed rank test, p � 0.001). In contrast, re-
sponses of BS cells to less preferred stimuli did not show any
significant elevation of firing rates (mean baseline discharge rate,
4.4 Hz; mean discharge rate during first 250 ms of sample, 4.1 Hz;
signed rank test, p � 0.2). The changes between baseline and early
sample period were highly significant between neuron classes
(meanNS increase, 7 Hz; meanBS decrease, �0.3 Hz; Mann–Whit-
ney U test, p � 0.001). During the second half of the sample
period (last 400 ms), both neuron classes were characterized by a
significant depression of firing rates for the least-preferred nu-
merosities (NS cells: mean baseline, 15.6 Hz; mean late sample,
11.8 Hz; signed rank test, p � 0.05; BS cells: mean baseline, 4.4
Hz; mean late sample, 2.4 Hz; signed rank test, p � 0.001). Dur-

Figure 4. Location of recording sites in PFC. a, Left and right hemispheric views of a monkey
brain indicating the gross anatomy of the recording sites in the PFC (circles represent location of
recording well). b, Reconstruction of recording sites (indicated by dots and crosses) in the PFC of
the four monkeys. Numerosity-selective narrow-spiking (NS) and broad-spiking (BS) cells are
shown in red and blue, respectively. The dot size reflects the proportion of selective units found
at each recording site. Sites lacking numerosity-selective neurons are marked by crosses. There
was no apparent topographical arrangement or clustering of BS and NS neurons. ar, Arcuate
sulcus; ps, principal sulcus.

Figure 3. Characterization of broad- and narrow-spiking neurons. a, Mean temporal response profile for NS (red) and BS
neurons (blue) across the trial. Shaded areas represent the SEM. b, Cumulative histogram of visual response latencies.
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ing this period, no significant differences between neuron classes
were found (meanNS decrease, �3.8 Hz; meanBS decrease, �1.9
Hz; Mann–Whitney U test, p � 0.8).

During the delay period, only BS cells showed significant de-
viations from baseline firing rate for the least-preferred numer-
osities. Discharges relative to their baseline decreased for least-
preferred numerosities during early delay (first 300 ms: mean
baseline, 4 Hz, mean early delay, 3 Hz; signed rank test, p � 0.001)
and middle delay (starting 400 ms after delay onset and lasting
400 ms: mean, 2.5 Hz; signed rank test, p � 0.001) (Fig. 5b). NS
cells did not show any significant changes in discharge rates for
least-preferred numerosities (mean baseline, 13.4 Hz; mean early
delay period, 13.5 Hz; mean middle delay period, 11.5 Hz; signed
rank test, p � 0.2). The differences between NS and BS cells’ firing
rate changes were significant during the early delay phase
(meanNS increase, 0.1 Hz; meanBS decrease, �1 Hz; Mann–Whit-
ney U test, p � 0.05).

Selectivity of numerosity encoding for NS and BS cells
To investigate the category selectivity of NS and BS cells, we cal-
culated tuning curves (with numerosity as the independent vari-
able) and modulation indices (calculated as the ratio of firing
rates elicited by the most- and least-preferred numerosity) (see
also Materials and Methods). We found that NS neurons exhib-
ited much broader tuning curves than BS cells (Fig. 6a,c). The
differences between the tuning curves for both cell classes were
significant for almost all numerical distances (Mann–Whitney U
test, p � 0.05). Moreover, the modulation indices were signifi-

cantly larger in BS cells (Fig. 6b,d), with some cells showing par-
ticularly strong modulation (median, 2.4 and 1.6 for BS and NS
cells, respectively, during the sample period, p � 0.001; median,
2.7 and 1.6 for BS and NS cells, respectively, during the delay
period, p � 0.001).

The tuning curves and modulation indices take the differences
in absolute firing rates into account. They describe how selective
a neuron responds on average, ignoring trial-by-trial variability
and, thus, reliability. To test variability and reliability of categor-
ical representations, we derived Fano factors for the discharges to
the preferred numerosities and calculated the AUC for the dis-
charges to the most- and least-preferred numerosities (see Mate-
rials and Methods). Whereas Fano factors did not differ between
NS and BS cells (median Fano factors ranged between 1.1 and 1.2;
p � 0.4), the AUC values describing the reliability of stimulus
discrimination revealed a significant difference between neuron
classes. Figure 7 shows the time course of the average sliding ROC
analyses. The AUC differences between most- and least-preferred
numerosities were significantly higher in NS than in BS cells dur-
ing the entire sample period (mean, 0.58 and 0.55; p � 0.001,
two-tailed Mann–Whitney U test) (Fig. 7a). Also during the delay
period, NS neurons discriminated more reliably between best-
and least-preferred numerosities than BS neurons (mean, 0.59
and 0.56; p � 0.001, two-tailed Mann–Whitney U test) (Fig. 7b).
The ROC analysis also revealed that neuronal classes differed in
latency to become selectively tuned to the quantity categories
(note the earlier rise of the red curve corresponding to NS cells in
Fig. 7a). Numerosity information was first coded by NS neurons

Table 1. Frequency of broad- and narrow-spiking neurons and numerosity selectivity in different cell classes

Sample Delay Average (%)

Neuron class n Numerosity selective % Numerosity selective %

Broad spiking 899 261 29 333 37 33
Narrow spiking 137 48 35 63 46 41

Figure 5. Firing rate modulation of broad- and narrow-spiking numerosity-selective neurons. a, b, Average firing rates of BS (blue) and NS (red) neurons that were selective for numerosity during
the sample (a) and delay (b) period to the preferred (dark colors) and less preferred (light colors) numerosities.
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(median selectivity latency, 117 ms) (see Materials and Methods)
and later by BS cells (median, 168 ms; p � 0.001, two-tailed
Mann–Whitney U test).

Tuning properties and temporal interactions of adjacent NS
and BS cells
If adjacent NS and BS cells constitute elements of microcircuits
operating with inhibition and excitation, differences in category
tuning for these cell classes might be expected. To test this, we
investigated the response properties of single cells recorded si-
multaneously at the same electrode. Such juxtaposed neurons
may interact more frequently than neurons recorded at different
sites. As depicted in Figure 8a, NS and BS neurons recorded at the
same electrode often showed opposite tuning preferences. For
instance, an NS neuron may show a preferred numerosity 1 and a
progressive drop-off of activity toward numerosity 4, whereas the
corresponding BS neuron may discharge maximally to numeros-
ity 4 and respond least to numerosity 1, and vice versa. To quan-
tify this observation, we calculated cross-correlations of the tun-
ing profiles of adjacent neurons and evaluated the cross-
correlation coefficients (CCTuning) (see Materials and Methods)
as a measure of similarity or dissimilarity in tuning between cells;
a CCTuning of 1 would indicate identical tuning profiles for the cell
pair, whereas a CCTuning of �1 would be expected for exactly
inverted tuning functions. For the cell pairs of neighboring NS
and BS neurons characterized by an inversion of tuning (Fig. 8a),
negative CCTuning values were obtained. Across the population
of NS–BS cell pairs, both highly positive and highly negative
CCTuning values were most frequent (Fig. 8b). For comparison, we
also calculated CCTuning values for BS–BS pairs (Fig. 8c) and
NS–NS pairs (data not shown). CCTuning values smaller than

�0.5 were significantly more frequent in NS–BS cell pairs than in
BS–BS pairs (� 2 test, p � 0.02; nNS � 64, nBS � 179; only 1 of 10
NS–NS pairs had a CCTuning ��0.5) (Fig. 8b,c). In other words,
inverted tuning was more frequent between adjacent NS and BS
neurons than between two neighboring BS cells.

To test whether such inverse tuning of adjacent NS and BS
neurons was caused by inhibition, we performed a cross-
correlation analysis on spike timing and derived the cross-
correlation coefficients (CCTiming) between 44 NS–BS neuron
pairs recorded simultaneously at the same electrode (see Materi-
als and Methods). If two cells are functionally connected and one
cell provides inhibitory input to the other, synchronous spiking
should be suppressed, resulting in a negative correlation in the
cross-correlogram at zero time lag. Although correlations be-
tween single neurons in the PFC are typically rare (Constantinidis
et al., 2001; Constantinidis and Goldman-Rakic, 2002), five
NS–BS cell pairs showed significant CCTiming. Negative correla-
tions were found in three of those NS–BS cell pairs (Fig. 9a,c).
Remarkably, all three NS-BS cell pairs with negative CCTiming

showed inverted tuning profiles (CCTuning � �0.5) (Fig. 9b,d).
Of the remaining pairs with significantly positive CCTiming, one
pair showed inverse tuning (CCTuning � �0.72), the other more
or less identical tuning (CCTuning � 0.98).

In contrast to NS–BS cell pairs, functional interactions were
very different in BS–BS cell pairs. We found six BS–BS cell pairs
with significantly positive CCTiming values (of a total of 103 tested
pairs) (Fig. 9e,g) and only one pair with a significantly negative
CCTiming. Except for one BS–BS pair with a positive CCTiming,
which showed unrelated tuning functions (CCTuning � 0), all
other BS–BS pairs exhibited highly similar tuning profiles
(CCTuning � 0.75) (Fig. 9f,h). We did not find any significant
temporal correlation effects between NS–NS pairs (n � 7).

In summary, NS–BS pairs were mainly characterized by in-
verse numerosity tuning and negative cross-correlations of spike
timing, indicating inhibitory interactions. BS–BS cell pairs, how-
ever, exhibited similar numerosity tuning and positive cross-
correlations of spike occurrence. This confirms excitatory con-
nections causing spiking synchronization in neighboring BS cells.

Discussion
In this study, we characterized the contributions of two classes of
PFC neurons. Extracellularly recorded neurons can be divided
into BS and NS neurons based on the width of their action po-
tentials, and several physiological response properties suggest
these cell types represent pyramidal cells and interneurons, re-
spectively. Both cell types were tuned to numerosity, but putative
pyramidal cells showed a higher degree of category selectivity,
whereas putative interneurons exhibited higher reliability of cat-
egory discrimination. Furthermore, putative interneurons were
characterized by fast response kinetics. An analysis of the numer-
osity tuning profiles and the temporal interactions of adjacent
neurons indicated that inhibitory input by putative interneurons
sharpens the categorical numerosity tuning of possible PFC py-
ramidal cells. As discussed below, our results are in line with
previous findings in a variety of cortical areas in different mam-
malian species, thus arguing for conserved mechanisms across
cortical areas and species.

NS and BS neurons resemble putative interneurons and
pyramidal cells
Several response features argue that NS and BS neurons corre-
sponded to interneurons and pyramidal cells, respectively. First,
the higher average firing rate of NS neurons is a typical charac-

Figure 6. Numerosity-selectivity of broad- and narrow-spiking neurons. a, Population tun-
ing curves of NS (red) and BS neurons (blue) that were selective during the sample period. The
differences between the tuning curves for NS and BS neurons were significant for almost all
numerical distances (*p � 0.05; **p � 0.01; ***p � 0.001). b, Tuning modulation index for
the same neurons. c, d, Population tuning curves (c) and modulation indices (d) for neurons
tuned during the delay period. The same layout as in a and b is used. Error bars indicate SEM.
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teristic of interneurons (Connors and Gutnick, 1990; Markram et
al., 2004). The mean spike rates of NS and BS neurons (Fig. 5)
corresponded exactly to values that have been reported in the
literature: 10.6 –19 spikes/s for putative interneurons and 4 – 8
spikes/s for possible pyramidal cells (Swadlow, 2003). Second, the
short visual latencies are in agreement with the finding that in-
terneurons react very rapidly to electrical stimulation (Swadlow,
2003). Third, the ratio of BS (85–90%) versus NS neurons (10 –
15%) that we found is identical to previous extracellular record-
ings in the macaque (Wilson et al., 1994) and rat PFC (Homay-
oun and Moghaddam, 2007), and in agreement with the
overrepresentation of pyramidal cells observed with intracellular
and anatomical studies in monkey and rat PFC (Kawaguchi,
1995; Gabbott and Bacon, 1996; Gabbott et al., 1997). Fourth,
interactions between adjacent NS and BS neurons were predom-
inantly inhibitory, the typical connection pattern between inter-
neurons and pyramidal cells (Shepherd, 2004). Neighboring
BS–BS neuron pairs, however, showed mainly excitatory
interactions.

Temporal response characteristics of putative pyramidal cells
and interneurons
Compared with BS neurons, NS neurons exhibited distinct tem-
poral response characteristics. First, putative inhibitory cells
showed a more pronounced phasic component after stimulus
onset. Such a phasic response caused by intense temporal sum-
mation would allow increased efficiency and temporal precision
in driving postsynaptic pyramidal cells (Fricker and Miles, 2000;
Povysheva et al., 2006; Mann and Paulsen, 2007). Second, puta-
tive interneurons responded faster to visual stimulation and also
discriminated numerical categories earlier than putative pyrami-
dal cells, providing strong evidence for a role of interneurons in
disynaptic feedforward inhibition of pyramidal cells. This effect
can be explained by significantly larger and faster EPSPs of fast-
spiking interneurons than of pyramidal cells (Povysheva et al.,
2006). This causes lower thresholds for action potential genera-
tion and shorter latencies for EPSP–spike coupling in interneu-
rons. The ramping activity we found during the fixation period in
putative interneurons may reflect this increased propensity to
fire, preparing the ensemble of possible interneurons to rapidly
integrate excitatory inputs.

Coding selectivity versus coding reliability
Putative pyramidal cells were more selective for numerical cate-
gories. Compared with putative interneurons, their tuning curves

were sharper and showed higher modulation indices. Our results
complement previous studies in sensory and cognitive domains
in which putative interneurons showed broader tuning than pu-
tative pyramidal cells in the visual, somatosensory, and auditory
cortices (Swadlow and Weyand, 1987; Swadlow and Gusev, 2002;
Swadlow, 2003; Wu et al., 2008) as well as in the prefrontal cortex
(Rao et al., 1999, 2000; Constantinidis and Goldman-Rakic,
2002). As argued below, broader tuning of inhibitory putative
interneurons may have a critical role in sharpening the tuning
functions of possible pyramidal cells.

We derived the AUC as a measure of the cells’ coding reliabil-
ity. The AUC values in putative interneurons were higher than in
putative pyramidal cells, indicating a more reliable discrimina-
tion of quantity categories in putative interneurons. In V4,
Mitchell et al. (2007) reported a similar finding in an attention
task based on Fano factors. This superior reliability could be the
result of the convergence of many input neurons on interneu-
rons, because a broad range of unselective inputs is more reliable
when averaged than few selective inputs (Swadlow, 2003). The
higher reliability of putative interneurons could also be explained
by their lower membrane threshold rendering them more likely
to fire in response to an input (Povysheva et al., 2006).

Together, our results indicate that category selectivity is
higher in putative pyramidal cells, but discriminability is more
reliable in putative interneurons. We speculate that reliability is
more important for extraction and sharpening numerosity rep-
resentations within the local PFC microcircuitry, whereas selec-
tivity may play a more prominent role in downstream decision-
related processing (Medalla et al., 2007).

Interactions between neighboring NS and BS neurons
Previous studies have shown that neighboring NS and BS cells in
the primate PFC can exhibit opposite spatial response properties.
When comparing the responses of fast-spiking neurons (NS neu-
rons) and regular-spiking neurons (BS neurons) that were re-
corded within 400 �m of each other, Wilson et al. (1994) ob-
served inverted spatial direction selectivity of NS and BS cell
pairs. Rao et al. (1999), however, found similar spatial prefer-
ences and visual field biases of NS and BS neurons recorded at the
same electrode. Moreover, Constantinidis et al. (2002) reported
that inhibition was primarily present in cell pairs with dissimilar
spatial tuning profiles.

In the current study, we found inverted category tuning be-
tween adjacent NS and BS neurons at the same electrode tip and,
thus, at minimum anatomical distance. With reference to tuning

Figure 7. Reliability of numerosity discrimination for broad- and narrow-spiking neurons. Average AUC derived from the sliding ROC analysis for NS (red) and BS neurons (blue) that were
numerosity selective during the sample (a) and delay (b) period. Red and blue shaded areas indicate SEM. The differences between the AUCs were significant for both trial periods (***p � 0.001).
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characteristics of neighboring BS–BS cell pairs, inverse tuning
between NS and BS cells occurred significantly more often. This
finding is suggestive of the inhibitory effects of NS cells on BS cells
(note that NS cells showed shorter latencies), resulting in sharp-
ening of the tuning curves of BS cells via feedforward inhibition
provided by NS neurons. Indeed, in some cases we were able to
demonstrate a functional connection between NS and BS cell
pairs with inverted numerosity tuning, showing that the tempo-
ral discharge of adjacent NS and BS cells was negatively corre-
lated; if one neuron discharged, the other neuron was signifi-

cantly inhibited, and vice versa. Such inhibitory effects were
absent between neighboring BS cells. Rather, BS–BS cell pairs
were excited synchronously, possibly reflecting shared excitatory
input (Rao et al., 1999).

Modeling category selectivity
Recurrent network models have tried to describe the interactions
between populations of excitatory pyramidal cells and inhibitory
interneurons in monkey PFC and lateral intraparietal area
(Compte et al., 2000; Wang, 2002; Renart et al., 2003; Fusi et al.,
2007). These models make two basic assumptions. First, the pop-
ulation of inhibitory neurons does not receive direct input (from
other cortical processing stages), but is recruited via local pyra-
midal cells. Second, the responses of model interneurons are not
tuned to the stimulus parameter of interest.

In contrast to the fundamental assumptions of these network
models, we find that putative interneurons have significantly
shorter response latencies than putative pyramidal cells, which
suggests a predominantly feedforward mechanism rather than
exclusively recurrent circuitry. Abstract categories might first be
processed by broadly tuned putative interneurons, which convey
this representation to putative pyramidal cells to cause further
sharpening of their tuning behavior. Wang et al. (2004) proposed
a feedforward model to explain how inhibition by broadly tuned
inhibitory interneurons could increase the selectivity of pyrami-
dal cells. In this model, interneurons inhibit pyramidal cells if a
stimulus is presented at a location that deviates from the pyrami-
dal cells’ preferred one. Because the nonpreferred stimuli are
represented at the flanks of the tuning function, the curve’s
shoulders are lowered by this inhibition, thus sharpening the
tuning curve. This mechanism has recently been confirmed in the
rat primary auditory cortex (Wu et al., 2008). Without this inhi-
bition, the tuning of pyramidal cells becomes broader. This has
been verified experimentally: blockade of GABAergic inhibition
broadened the tuning properties of neurons in a spatial working
memory task in the monkey PFC (Rao et al., 2000).

Similarly, and consistent with our findings in the PFC,
numerosity-selective putative interneurons may sharpen the tun-
ing functions of putative pyramidal cells to increase categorical
selectivity. In that respect, abstract categorical tuning may be
governed by the same feedforward and recurrent mechanisms as
proposed for tuning to stimulus properties in sensory cortices
(Shapley et al., 2003; Swadlow, 2003; Teich and Qian, 2006). We
propose that both mechanisms occur sequentially in a numeros-
ity discrimination task. Putative interneurons and pyramidal
cells may receive excitatory inputs simultaneously, but faster
channel kinetics allow interneurons to respond earlier. Hence,
putative interneurons are able to disynaptically inhibit possible
pyramidal cells with inverse tuning properties (Fig. 9) and even
prevent them from reaching spiking threshold (as indicated by
the suppression of firing rates; see Fig. 5a). Later during the trial,
the responses of putative interneurons are modified by a recur-
rent multisynaptic network (Wang et al., 2004).

In conclusion, our data provide evidence for dissociable re-
sponse properties of putative pyramidal cells and interneurons.
We propose that a disynaptic feedforward inhibitory network
consisting of fast-acting, broadly tuned, and highly reliable puta-
tive interneurons suppresses nonoptimal excitatory input to pu-
tative pyramidal cells. This may lead to a refinement of response
accuracy in putative pyramidal cells subserving a more precise
distinction between categories, a process likely to take place in the
PFC (Miller et al., 2003).

Figure 8. Tuning properties of adjacent numerosity-selective neurons. a, Tuning curves of
exemplary neuron pairs recorded at the same electrode. Tuning curves of BS cells with preferred
numerosities of 1, 2, 3, and 4 are shown in blue and tuning of neighboring NS cells in red.
CCTuning, Correlation coefficient of tuning curves. b, Histogram of CCTuning values of all
numerosity-encoding NS–BS cell pairs recorded at the same electrode. c, Histogram of CCTuning

values of all numerosity-encoding BS–BS pairs recorded at the same electrode. Error bars indi-
cate SEM.
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