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Zusammenfassung

Umfragen und andere sozialwissenschaftliche Datensétze liegen hiufig in hierar-
chischer Form vor, d.h. die einzelnen Teilnehmer (Stichproben) kénnen auf einer
hoheren Ebene, z.B. ihrer geografischen Region, zusammengefasst werden. Ein
Vergleich dieser hoheren Ebenen (Einheiten) erfolgt in der Regel iiber den Ab-
stand ihrer Mittelwerte. Jede Einheit kann jedoch als eine Wahrscheinlichkeitsver-
teilung tiber ihre Stichproben betrachtet werden. In dieser Arbeit entwickeln wir
einen Ansatz zur Einbettung hierarchischer Datensétze in niedrige Dimensionen
unter Verwendung der Wasserstein Distanz, die nicht nur die Mittelwerte, sondern
auch die Formen der Verteilungen innerhalb der Einheiten beriicksichtigt. Der Al-
gorithmus t-distributed Stochastic Neighbor Embedding (t-SNE) wird verwendet,
um 2D-Einbettungen der Matrix der paarweisen Wasserstein Distanzen zu kon-
struieren. Wir generieren synthetische Daten, bei denen ein Teil der Information
in der Kovarianz der Stichproben kodiert ist, um die Effektivitit von Wasserstein
t-SNE zu demonstrieren. AnschlieBend wenden wir diese Methode auf mehrere
sozialwissenschaftliche Datensétze an, insbesondere auf die Bundestagswahl und
die Furopean Values Study. Durch die Visualisierung ihrer Struktur mit Wasser-
stein t-SNE zeigen wir spezifische Beispiele von bedeutungsvollen Strukturen, die
durch den Algorithmus aufgedeckt und hervorgehoben werden. Wir kommen zu
dem Schluss, dass unsere Methode 2D-Einbettungen verbessern und eine feinere
Struktur in den Daten aufdecken kann, die sonst verborgen ware. Wir glauben,
dass sie auch in anderen Anwendungsbereichen niitzlich sein kann, z.B. bei der

Visualisierung biologischer oder biomedizinischer Datensétze.
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Abstract

Surveys and other social science datasets often come in hierarchical form, i.e. in-
dividual participants (samples) can be grouped at a higher level such as their
geographical region. A comparison of these higher levels (units) is usually made
by the distance between their means. However, each unit can be viewed as a prob-
ability distribution over its samples. In this work, we develop an approach for
embedding hierarchical datasets in low dimensions using the Wasserstein distance
metric that takes into account not only the means but also the shapes of within-
unit distributions. The t-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm is used to construct 2D embeddings of the matrix of pairwise Wasser-
stein distances. We generate synthetic data, in which part of the information is
encoded in the covariance of the samples, to demonstrate the effectiveness of our
Wasserstein t-SNE. We then apply this method to several social science datasets,
in particular the German Federal Election and the European Values Study. Vi-
sualizing their structure with Wasserstein t-SNE, we show specific examples of
meaningful structure uncovered and highlighted by the algorithm. We conclude
that our method can improve 2D embeddings and can reveal a finer structure in
the data that would be otherwise hidden. We believe it can be useful in other

application domains, e.g. for visualizing biological or biomedical datasets.
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Chapter 1
Introduction

In this thesis we will study the dimension reduction algorithm t-distributed
Stochastic Neighbor Embedding [I] in a particular setting. We will develop
a method to embed datapoints which are probability distributions. This requires
a notion of similarity for such objects. Throughout the thesis we will compare the
Wasserstein metric [2] with the Euclidean distance of the means. The objective
is to find out whether the resulting embeddings show a different structure. This
chapter gives a brief introduction to data visualization in general. Furthermore,
it explains the data structure that is required for later experiments. Chapter
provides an overview about the mathematical concepts. We will explain different
dimension reduction algorithms and define the Wasserstein metric for our setup.
Subsequently, in Chapter [3] our method is applied to synthetic data as well as
real-world data such as the European Values Study [3] and the German Federal
election [4]. We will eventually summarize that the method is able to improve

clustering but that the perfect use-case it yet to be found.

1.1 Visualizing Structure in Datasets

In the modern world data is collected on a daily basis. When collecting infor-
mation about patients, companies, countries (i.e. datapoints) policy makers have
to deal with complex and high dimensional feature spaces. Most of the datasets
however contain low dimensional structure, which is really of interest. Before
searching for information we can embed data in a visualizable space, often the
2D-plane. This procedure not only helps to get an overview of the dataset but is
also able to find clusters of datapoints, which share certain features. The main
goal of data visualization is therefore to simplify datasets without loosing too
much structure, a task which is not optimally solvable but subject to different

trade-offs and design decisions.

1.1.1 Motivational example

To illustrate the effects of data visualization we have a look at the election of
Baden-Wiirtemberg in March 2021 [6]. This dataset is a matrix X € [0, 1]

1
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Figure 1.1: Political Landscape of Baden-Wiirtemberg (visualization inspired
by [5/). In the lower left corner the mean result is given. Each voting district
is annotated with its deviation from the mean. The six colors represent the six
dominant parties, gray shows the share of nonvoters. The t-SNE algorithm was
used to embed similar voting districts nearby.



where each row X, represents a voting district. For simplicity we consider here
only the results of the six major parties: DIE GRUNEN, CDU, SPD, FDP, AfD,
DIE LINKE as well as non-voters. The percentages for each party are positive
values which sum to one. To show the structure of this dataset we would need
a seven-dimensional coordinate system which is impossible to visualize. A di-
mension reduction algorithm however is able to embed these N = 72 datapoints
into the 2D-plane which we can see in Figure Nearby points in the seven-
dimensional space are also close in the embedding. In the lower right corner
we find a cluster of university cities (e.g. Heidelberg, Freiburg) that dominantly
vote for the green party. Towards the upper left corner the share of green votes
decreases as we encounter more rural areas like Balingen and Aalen. Industry
driven communities like Heidenheim or Mannheim are found in the upper right
corner and have a larger share of non-voters. Without exploiting any prior knowl-
edge about the voting districts this meaningful structure arises directly from the
data itself. Dimension reduction can help to get an overview before doing an
analysis of the dataset. However, we must keep in mind that the low dimensional
representation comes with a loss of information and will almost never keep the

full structure.

1.2 Hierarchical Data

In the first example we encountered a dataset where each datapoint was repre-
sented by a single vector. For the rest of this thesis however we will analyze
hierarchical data, i.e. datasets where each datum X, is a probability distribution
which we will call unit from now on. Of each unit we have an arbitrary amount of
samples. Throughout the thesis we will investigate whether significant informa-
tion is lost by collapsing the samples into their unit mean. More precisely, we will
find that structure can be present in the covariance of units and we will develop

a technique to include this information into the dimension reduction algorithm.

Figure 1.2: Hierarchical Data. Each unit X, is a probability distribution from
which M,, samples are drawn.



1.2.1 Unit means

As an example of the scheme in Figure[I.2|we can think of participants in a survey
from regions around the world. If we want to visualize similarities and difference
of countries, we consider them as units X,,. The participants of the respective
nationality are then samples from the unit. The most natural choice to embed this
hierarchical dataset is to compute the mean sample of each distribution and run
the visualization algorithm on the flattened matrix. However, as stated above,
significant information is lost by this procedure. Figure illustrates answers
to the European Value Study in Germany and Albania. While the mean of both
countries is fairly close to each other, it reasonable to assume that the political
situation in both countries is rather different. This might be encoded in the
variance of the answers which can be seen in the histogram. In this thesis we will
therefore use the Wasserstein metric to compare distributions. It is motivated by
the question: How much mass has to be transferred (and how far) to obtain one
distribution from the other? In the figure the distance of the countries becomes
much larger when applying the Wasserstein metric. We will describe its details
in Section [2.2] For now it should be clear that this approach is much more
accurate than using only the distance of the means as we can also take into
account bimodal structure. Later in this thesis we will see that the additional

information can change cluster memberships of units in the embedding.

1-Wasserstein distance: 1.83 Germany Albania
=493 = 5.40
0.30 A o =170 o= 3.54
0.25 1
£ 0.20 1
£ 0151
Ei
0.10 A
0.05 A
0.00 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

I consider myself 'on the right’

Figure 1.3: Variance in the European Values Study. Histogram of answers to
the Question: Where do you consider yourself politically from left (1) to right
(10)7



1.2.2 Labels

In Figure [1.4] we consider another hierarchical dataset in which the units are
countries, i.e. the Big-Five Personality Survey [7]. On the left we can see the
t-SNE embedding where we used flags to represent countries. However no clear
structure is visible. The units are embedded in a donut shape with a small cluster
on the top right (Sudan, Morocco, Tunisia, Algeria and Iraq). The cultural
similarity of these countries leads to the assumption that there might be however
some structure in the embedding. It can be helpful to a priori define labels of
each unit — information that is not included when embedding the data, but helps

afterwards when visualizing the structure.

country flags continent labels
g = 4P
—
*
o] — L
=
——
|« |8 - ?J
)] 3] .= -
— =4 o
£ . <
o | v |
[ ]

Figure 1.4: Big-Five Personality Traits (flags from [8,19]). Left: t-SNE embed-
ding of the mean personality per country using the flag of the country. Right:
Each unit is visualized by its label (continent).

One way to define labels for this particular dataset is to use the continents of the
respective countries. Each unit is now represented by the hypothetical flag of its
continent. In Figure [1.4] on the right we then see a lot of structure within the
embedding: Asian countries are clustered on the top left; African and Northern
American countries are bottom left, while the European cluster is on the bot-
tom right. For the analysis why this structure emerges from the dataset and
how it could be improved by including the covariance we refer to the legend in
Appendix For now this example should only serve as a quick motivation
why using labels of units is necessary when arguing for or against structure in an

embedding.



Chapter 2

Theory: Methods and Distances

In this thesis we develop a method to embed a high dimensional dataset X, that
contains hierarchical structure, i.e. where each datapoint X, is a probability
distribution from which we have an arbitrary amount of samples. These samples
can be used to compute the mean, but also other moments such as covariance
etc. In this chapter we give a brief description of existing dimension reduction
algorithms. In Section we discuss the Wasserstein metric which is a natural
distance for probability distributions. We compare it to other distance measures,
show its closed form solution for Gaussians and explore a technique to compute
it exactly even in high dimensions. In Section we introduce the Wishart

distribution which we use in Chapter [3.1] to sample covariance matrices.

2.1 Dimension Reduction

A multitude of algorithms exist that embed or project high dimensional data into
a low dimensional space. We will describe three particular techniques instead of
giving an overview which can be found elsewhere [I0, II]. Our aim is not to
compare existing algorithms, rather we explain why the chosen t-SNE algorithm
works as well as any other to show the main result of this thesis: that structure
can be found in the covariance of hierarchical data. All visualizations in this
work could as well have been done using UMAP or similar as long as we stay
consistent, since the goal is not to compare dimension reduction algorithms but

the underlying metrics.

2.1.1 PCA

Principal Component Analysis (PCA) is a dimension reduction algorithm
which projects a dataset to the subspace of largest variance. The basis vectors
of this subspace are the eigenvectors of the data matrix which correspond to the
largest singular values. As a design choice we have to fix a hyperparameter K
which sets the dimension of the subspace. The higher we choose K the more ac-
curate the projection will become but this is not the goal of dimension reduction.

Usually K is set in such a way that the complete subspace can be visualized.

6



As an example let us consider a dataset X that contains N datapoints X,, € R”.
We now want to find a low dimensional projection Y € R¥*E that has largest
variance while K < D. One way to obtain this is a Gaussian fit of the dataset.

The data is then projected to the marginal distributions with largest variance.

T =

1
il X,
N

== [M]=

1 - AT
S = N ;(Xn —z)(X, — )

A simpler way is to directly compute the Singular Value Decomposition of X
and obtain the largest eigenvalues and their eigenvectors from X = UAVT. Both
methods yield the same unique projection axis as in Figure [2.1, There we can
see datapoints being projected to the 1D-Line which corresponds to the largest

eigenvector of the covariance matrix S.

% Covariance

® Mean

Samples

30

25

204

=== Projection

10
—»  FEigenvectors

T 0 10 20 30 10

Figure 2.1: Principal Component Analysis. A multivariate Gaussian in pro-
jected to the axis of largest variance (orange).

The benefits of PCA are its simplicity and transparency. We can visualize the
eigenvectors and interpret their components and directions. Also we obtain a
generative model and can create new datapoints in the low dimensional space that
will be close to their neighbors even in higher dimensions. The main drawback of
PCA is its linearity. For datasets in complicated manifolds the method will not

capture the structure anymore.



2.1.2 MDS

A non-linear alternative in dimension reduction is known as Multidimensional
Scaling (MDS). This concept describes a set of algorithms for which it is not
necessary to know the original data, but only a matrix K € S™(R) that contains
the pairwise distances (or similarities). The datapoints are then embedded in a
fictional space which is usually two dimensional. The axes of that space don’t
have a particular interpretation, however the coordinates of the embedded data
represent the distances of the input matrix. Under certain circumstances they are

proven to be exact, however in most cases only an approximation is possible [12].

2.1.3 t-SNE

An extension of the previous algorithm is called t-distributed Stochastic Neigh-
bor Embedding [I]. Here we also don’t project but embed the data into a
subspace without particular interpretation of the axes. While it was originally
proposed to embed vectors, it works as well with a distance matrix as input. In
this section we describe the latter approach since the units we will embed later

are probability distributions which can’t be represented in Fuclidean space.

Definition 2.1.1 Let P, () be matrices of the same dimension. The Kullback-

Leibler divergence is then given by

KL(P|Q) : Z logQ

Definition 2.1.2 Let p(x) be a discrete probability density function. The per-
plexity of p is then given by

PP(p) :=24® = [ [ p(a) "

Having defined perplexity and the Kullback-Leibler divergence, we can unbox the
t-SNE algorithm. The first step is done by computing the affinity matrix P from

the distances.

Definition 2.1.3 Let K € S™"(R) be distance matriz of n arbitrary datapoints.
The rows of the affinity matriz P will then be constructed by Gaussian kernels
with bandwidth o;

exp(—K3/207)
Zk;ﬁi exp(— K}, /207)

bji =



such that all perplexities of the conditional distributions equal a predefined per-
plexity o. At last the affinity matrix is symmetrized by

o Pili TPl

" 2n
Then the embedding is initialized randomly (or with an advanced algorithm such

as PCA [13]). The next step is to compute the pairwise distances of the datapoints
in the embedding.

Definition 2.1.4 Let P be an affinity matriz. The t-SNE algorithm will (locally)
minimize the Kullback-Leibler divergence KL(P||Q) with respect to the low dimen-
stonal embeddingY , where Q) is an affinity matriz based on the t-distribution and

the coordinates of the embedded vectors y;

(- y )
- —1
Zk;&l (1 + ||yk - yl||2)

ij

The Kullback-Leibler divergence of the low and high dimensional affinity matrices
is then optimized with respect to the coordinates of the embedding. The points
are thus moved along the gradient until convergence. This procedure results in
a local minimum where no point can be slightly moved without yielding a worse
embedding than before.

When interpreting t-SNE embeddings it is important to keep in mind that the
choice of the t-distribution puts emphasis on close points. The opposite does not
hold: points that are embedded far from each other don’t necessarily need to be

far away from each other in the high dimensional space.

Design choices

The t-SNE algorithm comes with certain hyperparameters and is dependent on
an initialization. Its objective is non-convex, thus it has multiple local minima
in which the algorithm can terminate. The t-SNE embedding is therefore not
unique, i.e. it can have certain artifacts that occur with some initialization and
not with others.

Another parameter that needs to be set is the perplexity o. It defines the scale on
which points are considered to be close. If the perplexity is very low, the structure
will be very fine with lots of clusters since only few points are considered to be
close. If the perplexity is high, all points might end up in the same cluster.
Throughout this thesis we will leave the perplexity at the default value of o = 30
and use the implementation of openTSNE [14].



2.2 Wasserstein Metric

Any embedding algorithm requires a distance measure in the high dimensional
space. When dealing with hierarchical data this becomes non trivial as there is no
default distance measure for probability distributions. A simple work-around is
to collapse the distributions to their means and then use the Euclidean distance.
But one can easily imagine that this technique can loose arbitrarily much of the
information. A distance which is able to capture the structure of higher moments
as well is called the Wasserstein metric and has been widely used in Machine
Learning [15]. One particular benefit is the sensitivity to the metric space on
which the distributions are defined. Another advantage is that it can compare
probability densities which don’t have the same support, as long as a distance
measure of their support is given. The downside of the Wasserstein distance
is its computation complexity. We will later see that it is related to optimal
transport. However, for Gaussians a closed-form solution exists. In this section
we will provide the formula and explain why its computation in the discrete case

is essentially a Linear Program.

1-Wasserstein distances: L;-distances: P, P, P.
08 d12=5.0 d33=7.35 d3»=2.72 d12=2.0 d33=1.88 d3»=1.88 ! 2 3
distances of means: KL-divergences:
d19=5.0 d31=7.35 d33=2.35 dyp=inf d3;=3.12 d3,=3.12
2 0.64
Z
£
2 041
S
0.2 1
0.0 T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

metric space

Figure 2.2: FEarth Mowver’s Distance. The pairwise 1-Wasserstein distances of
three probability distributions are compared to the L;-distance and the Kullback-
Leibler divergence.

2.2.1 Motivation

In Computer Science the 1-Wasserstein metric is also known as the Earth Mover’s
Distance. This name is motivated by the following thought experiment: we

imagine the probability distributions as piles of earth — their distance now repre-

10



sents the amount of work that has to be done in order to transfer the probability
mass from one distribution to the other. This definition however requires a metric
space M on which the probability distributions are defined. This emerges from
the fact that we have to measure how far two points are away from each other,
i.e. how far the mass has to be transported.

In Figure [2.2| we can see the comparison of four different metrics. For each metric
the pairwise distance of three discrete distributions is computed. While the two
component-wise metrics (KL-divergence and L;-distance) can’t distinguish dss
from ds3;, the Wasserstein distance mirrors our intuition that P, is much closer
to P3 than P;. Another takeaway from this example is the similarity of the
Wasserstein distance to the distance of the means. This effect will be important
throughout the thesis.

Definition 2.2.1 Let (M,d) be a metric space. The p-Wasserstein distance of

two distributions p and v is then defined as

Wy (p,v) :=( inf /Mde(x,y)pdv(%yO

YET ()

where I is the set of all coupling of p and v.

2.2.2 Special Case: Gaussians

While the p-Wasserstein distance for continuous distributions is generally hard
to compute, there exists a closed-form solution of the 2-Wasserstein metric for

multivariate normals, also known as Fréchet distance [16].

Definition 2.2.2 Let N1, N5 be two Gaussian distributions with N; = (m;, C;).

The 2-Wasserstein distance of these distributions is then given by:
1/2
W (N, NG = [fmy — ma2 + tr (cl + G -2 (G 0i0") )

Note, that the left part of the sum is just the Euclidean distance of the means.
The Wasserstein metric can therefore be seen as an extension of the Euclidean
distance. It was also shown [16] that the right part of the sum defines a proper

metric on the space of covariances. We can also write it differently as

1/2
d(C1, 02)2 =1tr <C1 +Cy—2 <C’21/201C21/2> )
=tr (Cl +Cy—2 (0201)1/2> .
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Convex Interpolation Method

By introducing a hyperparameter A € [0, 1] we can put emphasis either on means
or covariances. The convex generalization of the 2-Wasserstein distance for Gaus-

sians can therefore be written as
2 2 12 4 1/2) /2
WNLN)? = (1= A) - I — mal2+ A tr 01+02—2(02 C\C. )

which yields both the Euclidean and the Covariance metric for A =0 and A =1
respectively. As the t-SNE algorithm is indifferent to scaling the distances of
datapoints linearly, the additional factors won’t change the embeddings. We will
use this notation in the analysis to reconcile all three cases into one method. Also

it can be interesting to see the evolution of the embeddings for growing A\ as in

the Appendix [A.§

Computation Complexity

The computation of the closed-form solution for the 2-Wasserstein distance of
Gaussians is very fast. However, we have to compute a matrix multiplication as
well as an eigenvalue decomposition to take the square root of the product which
can be both considered to be of O(d?®) where d is the number of dimensions. This
has to be done for each distance computation, so if we have N Gaussians, their
pairwise distance matrix requires O(N?) eigenvalue decompositions.

Contrary to what had originally been written on the German Wikipedia pageﬂ
about the Wasserstein metric for Gaussians, the following equation does only

hold, iff the covariances commute

tr ((021/201(7;/2)1/2) ” Holl/? - 021/2“1.

However, this assumption would simplify the calculation even more: we could
vectorize the computation in a package like numpy to reduce the complexity to
O(N) eigenvalue decompositions. We did not use this approximation but a quick

comparison indicated that the differences are not very large.

2.2.3 Linear Programming

So far we have only looked at the Wasserstein distance of Gaussians. In this
section we will compute the exact Wasserstein distance, which we have earlier
claimed to be hard for continuous distributions. However, most social science

datasets contain discrete samples. That makes the computation easier. In fact,

lwe edited the article on 16:45, 15" Sep. 2021
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the Wasserstein distance of two discrete distributions boils down to the following

Linear Program [17]:

Wy(p, V)P == min Z d(m;, m;)? - x(m;, m;)

x€l(py) =,
primal form : dual form :
minimize z = «c¢'x, | maximize z = bly,
sothat Ax = b sothat ATy < ¢
and x > 0

Here, the vectorized matrix ¢ defines the transport cost, i.e. ¢;; = d(m;, m;)?
represents the L,-distance of the points m; and m; (M is the discrete metric space
on which the probability distributions are defined). The optimization variable z
represents the transport plan as in Figure 2.3 Each entry of  must be non-
negative. The constraint Ax = b is satisfied, if the marginals of x equal the
distributions u, v. Note that only the primal problem yields an explicit transport
plan while the dual form has less variables and is much faster. Due to the strong
duality of a Linear Program the resulting solution however is the same. In practice

we therefore use the dual form to compute Wasserstein distances.

Figure 2.3: Wasserstein distance as Linear Program (visualization inspired
by [18]). The optimal transport map X of two probability distributions v (or-
ange) and p (blue) is shown in the center. The heatmap on the right represents
the cost matrix C.
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Scalability

A Linear Program can solve the exact Wasserstein distance with unique opti-
mal solution. However the complexity increases with the number of variables in
x. If we add a second dimension to the histogram in Figure |2.3| each marginal
distribution gets squared in the number of bins, thus the variables in x increase
biquadratically. However, in high dimensions most of the bins will have zero
probability mass, that is, no sample will be observed at that point. So the com-
plexity of the Linear Program is upper bounded by the number of samples in each
distribution. In Figure|2.4|we show the same Linear Program but just exploit the
fact that each row or column which should sum to zero can directly be left out in
the formulation. The cost matrix is then just given by the pairwise L,-distance

of all samples which can be vectorized and computed efficiently.

. - " EFEIHEH-51 -

Figure 2.4: Scalability of Wasserstein distance. The marginals are considered
to be uniformly distributed over their sample space. The cost matrix on the right
contains as entries the pairwise distance of the samples. In the center the optimal
transport map is shown.

Performance

The approach described in the last section is indifferent to the number of features,
since we can compute the pairwise Euclidean distance of the samples regardless
their dimension. In particular this means, that they no longer need to be samples
from a discrete distribution. Even when we deal with continuous data, such as
samples from a Gaussian, we can consider these samples to be discrete and set up
the Linear Program as in Figure [2.4] Thus we can run an experiment to find out

how accurate the exact Wasserstein distance computation becomes for growing

14



35

304

251 Nl LN Euclidean Distance

20 1 \ @
mmmm Fstimated 2-Wasserstein Distance =
15 1 —— Gaussian 2-Wasserstein Distance
msss Computation Time

10 4

+ 100

Covariance Distance

0 10 20 30 ‘ 200 400 600 800
sample size

Figure 2.5: Computation Time and Accuracy. The Wasserstein distance of two
Gaussians is computed using a different number of samples. The red lines show
the theoretical distances of the Gaussians. In purple and green the computation
time and estimates are shown with their standard deviation in 50 trials.

sample sizes. Figure [2.5 shows the convergence towards the ground truth calcu-
lated with the closed-form solution. The dashed red lines represent the parts of
the sum in the formula. We can see again, that the Euclidean distance plays a
bigger role even though the orientation of the covariance is rotated by 7. When
looking at the computation time we can remark that it grows almost exponen-
tially. This may be an artefact of the setup of the experiment. Since the sample
size is equal for both Gaussians, also both of them have the same probability
distribution (both uniform with % on a different support). Thus the problem

becomes an Integer Linear Problem which has exponential complexity [19].

2.3 Wishart Distribution

In the next chapter we will generate random Gaussian distributions. This requires

a generative model to draw their means and covariances from, i.e. y and ¥ in

1 1 Ty-1
N(X;M72):W€XP<—§(X—IJ/) % (X—M))-

While it is straight forward to generate random means, sampling covariance ma-
trices is not as easy. One way to do so is to draw them from a Wishart dis-
tribution, which can be understood as the result of the following procedure:
First draw v samples from the multivariate normal with zero mean and a scale
covariance, then estimate the covariance matrix of these samples. A formal way

to define this random variable is shown in Definition 2.3.1]
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Definition 2.3.1 Let ¥ be a d x d positive-definite, symmetric scale matriz and
v > d a positive integer. The probability density function of the Wishart distri-

bution is then given by

A|F=d=D/2 (—(1/2) x(S71A)
W(A; v, ) = 4| e/2
ovd/2 |A|V Ty (%)

Figure [2.6] visualizes covariance matrices drawn from the Wishart distribution.
As a reference we show in the top row samples which are generated by another
method: the length of both eigenvectors as well as their angle is sampled uniformly
from an interval. This gives a uniquely defined covariance matrix. We observe
that this method yields less homogeneous covariance matrices, i.e. they have
larger pairwise distances. The Wishart samples only show this effect for minimal

v = 2 in the middle row.

Figure 2.6: Sampling Covariance matrices. Top row: Uniformly sampled co-
variance matrices with increasing interval. Middle row: Wishart samples with
identity scale matrix and increasing v < 7. Bottom row: Wishart samples with
rotated scale matrix and fixed v = 2.
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Chapter 3

Analysis: Finding Structure in

Covariance

The objective of the following analysis is to find use-cases for the method, i.e. hier-
archical datasets where information is stored in the unit covariances as previously
explained. We will start this chapter by creating synthetic data to design a proof
of concept. From Section on we will apply the method to real-world data to

show that in practice, too, new insights can be won by the inclusion of covariance.

3.1 Synthetic Data

To model the hierarchical setup of later experiments we define a Hierarchical
Gaussian Mixture (HGM). By creating synthetic data from this model we
can encode information in the covariances. Thus we will be able to show that
Wasserstein t-SNE is actually able to separate units that share the same mean but
have different covariances. To measure an accuracy true labels are necessary. The
HGM will therefore consist of multiple classes from which the units are drawn.
Of course, the information about its class is not given to the embedding method

Wasserstein t-SNE; so it can’t use the label for clustering.

Proposition 1 Let U, N, W be Uniform, Normal and Wishart distributions re-
spectively. A Hierarchical Gaussian Mizture is then defined by the number of
classes (K ), the number of units per class (Ny), the number of samples per unit

(M) and their dimension F', where

e cach class is defined by a Gaussian and a Wishart distribution Cy, = [N}, Wi]
IN (v, T), W(s, Ap)] with v, € RE, Ty, € REXE 5 € R and Ay, € RFXF

e cach unit is a Gaussian distribution X, = N (pn, Xn). Their means are
samples from the Class-Gaussian ji, ~ N (vg, T'y) and their covariances are
samples from the Class-Wishart ¥, ~ W (sg, Ag)

e the samples of each unit are given by Sy ~ N (pin, Xn)
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Figure 3.1: Hierarchical Gaussian Mizture. The dataset contains N = 100 units
with M = 20 samples each. The units belong to K = 5 classes with a = 20 and
b =5 (default parameters).

3.1.1 Example

To illustrate a 2-dimensional HGM we create a dataset with random parameters
in Figure [3.1} This works by defining two additional parameters a, b that set the

space from which the class parameters are drawn.

Definition 3.1.1 For F, K, N,M € N, and a,b € R the random HGM 1is given
by the sampling procedure s ~ U([F,2F)), vy ~ U([—a,al"), T ~ W(F, b- 1F)
and A, ~ W(F, 1g). It has Class-Mean-Distance a and Class-Scale-Variance b.

For the random HGM in Figure [3.1| we choose to draw the means of the Class-
Gaussians from a large area so that the classes are very distinct from each other.
The further away the classes are, the easier it will be for an algorithm to cluster
the units correctly. Similarly the dashed black curves indicate the covariance of
the Class-Gaussians. The larger the variance within a class, the more outliers
will add noise to the dataset. The same holds for the Class-Wisharts and its
covariance matrices. We can see that the green class on the lower left has larger
variation: some of its units show a different shape in their samples than others.
However, all covariances within a class are samples from the same Wishart, so
their distance should be smaller compared to the covariances of units in other

classes.
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3.1.2 Proof of Concept

Now that we have properly defined a HGM, we can set the parameters in such
a way that the information about the unit means is not enough to cluster the
dataset correctly, while the Wasserstein t-SNE approach would successfully do so.
In Figure 3.2 we can see a HGM that consists of K = 4 classes, two of which share
the same Gaussian while two of them share the same Wishart. On the right the
respective embeddings are shown. The Euclidean embedding expectedly doesn’t
capture the structure of the dataset. Its two clusters have multiple labels in
it (orange-blue and red-green). Pure information about covariance isn’t enough
neither, so the Covariance embedding at the bottom only finds two clusters as well
(blue-green and orange-red). The convex combination of both, the Wasserstein
embedding, however separates all four classes from each other and can therefore

be considered superior in this setting.
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Figure 3.2: Proof of Concept. On the left a HGM is defined with K = 4 classes.
On the right the respective embeddings are shown. On the lower right corner the
nearest neighbor accuracy is plotted for 10 different values of A.

3.1.3 Interpretation of A

While it is obvious that in our method A € {0,0.5,1} represents the Euclidean,
Wasserstein and Covariance distance, it is not intuitive what the values for A in
between should represent. In a way A\ puts emphasis on either the means or the
covariance. We saw in Chapter [2] why this might be important. The problem we
will face later is that even for large variations of unit correlations, the means will
dominate the Wasserstein distance. A HGM which shows this effect is given in
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Figure[3.3] This random HGM has large variation in its Class-Wisharts, however
the Class-Mean-Distance is very small so all classes are on top of each other. As
one can see on the lower right, the kNN accuracies increase until A = 0.6 which
might be an indication that the distance in covariance is a little more important
than the distance of the means. In the Wasserstein embedding on the top right
both these distances are weighed equally. However, this effect will become clearer
when we look at real-world data, which is the topic for the next two sections.

7 classes a 100 datapoints with each 15 samples in 2 dimensions Euclidean embedding (A=0) Wasserstein embedding (A=0.5)
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Figure 3.3: Random HGM with embeddings. On the left a HGM is defined with
K =7 classes. On the right the respective embeddings are shown. On the lower
right corner the nearest neighbor accuracy is plotted for 10 different values of A.

3.2 European Value Study 2017-2020

The first example of real-world data analyzed in this thesis is the European
Values Study (EVS). From 2017 to 2020 this 40 year old study has been up-
dated for each European country. It is available at the database of GESIS [3].
Its topics cover relevant demographic aspects such as views on morality, politics,
economy etc. Moreover the NUTS-2 region of each participant is encoded in the
questionnaire, so this dataset suits the hierarchical setting. In our analysis a
NUTS-2 region will represent a unit from which we have as samples the partici-
pants of that region. In the first steps we will fit Gaussians to each unit and do
the Gaussian Wasserstein analysis. Later however, we will be able to compute
the exact pairwise Wasserstein distance for all units and construct the exact em-
bedding. In Figure [3.4] we can see as a first example the histograms for Poland

and Switzerland in two features.
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Figure 3.4: Correlation in the Furopean Values Study. Histogram of survey
results for two countries and two features. Answer options range from 1 (disagree)
to 10 (agree). A Gaussian fit is given by the dashed red curve.

3.2.1 Preprocession

The EVS contains 107 questions, of which only a third offer numeric values as
answers. We will focus on these as the others are difficult to compare numeri-
cally. In particular we chose 34 questions which are given in the Appendix [A.1]
Moreover we stretched all of the possible answers to an interval [1, 10], since some
questions had a smaller range.

Secondly we noted that in the dataset no NUTS-2 regions for Germany are
given. In the documentation we found that they were omitted since otherwise it
would have been possible to track individuals from their NUTS-2 region. As a
workaround we used the higher NUTS-1 level for Germany instead, which corre-
sponds to the 16 states.

An important question when dealing with survey data is how to use incomplete
samples. For example, some participants answered only part of the questions.
For this analysis we threw away all incomplete questionnaires. In that way we
can calculate covariances without having to impute missing data. Of course a
more sophisticated solution to this problem is possible, such as nearest neighbor
imputation. Lastly we omitted all regions which had less that 40 participants,

since it would not have been very accurate to compute covariances otherwise.

Logit transformation

We will later see that the Gaussian approximation of the units is not very accu-
rate. To model bimodal distributions as well, we considered to transform the data
with a logit function and then fit Gaussians in logit-space. However, we eventu-
ally decided to leave out this transformation as it didn’t improve the embeddings

significantly. For completeness we put the results in the Appendix [B.2]
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Figure 3.5: EVS Gaussian Wasserstein Embeddings. For four values of A\ the
resulting embedding is shown. The upper left embedding corresponds to taking
the means only, whereas the lower right embedding only considers distance of
covariances. The embeddings in between are using the interpolated distances.

3.2.2 Gaussian Wasserstein Embeddings

To get an overview of the dataset we run t-SNE with three different parameters
A € {0,0.5,1} and obtained the embeddings in Figure The Euclidean em-
bedding on the left shows meaningful structure: Western and Eastern Europe is

separated with [talian and Czech regions bridging the two clusters. On the right

the same structure is visible in the Covariance embedding, however not as sharp.
Moreover the substructure of both the Western and Eastern cluster is lost. The

Wasserstein embeddings in the middle, which are a combination of both, resemble

the Euclidean embedding. This is not surprising since not much new information
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is contributed by the Covariance embedding. A legend to the figure is provided
in the Appendix[A.3

Feature Analysis

To find out from which features the structure of the embeddings emerge, we can
encode the unit means by size of the flags. From Figure [3.6] it is obvious that
religion plays a dominant role in the structure, but also other questions have
a clear gradient in the Eastern-Western direction. This indicates that the unit
means alone are able to capture the structure of the dataset. In that sense, the
covariances might be additional noise to the unit means and do not contribute

much to a more structured embedding.
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Figure 3.6: EVS Feature analysis. The size of the label flag indicates the mean
response to the question in that region. The Euclidean distance is used to embed

the units.

Accuracy of Gaussian Approximation

Another reason why the Euclidean embedding seems better than the Wasserstein
embedding could be that the Gaussian approximation of the units is inaccurate.
It was easy to see in Figure 3.4 that the Gaussian fit is far from accurate. Another
more drastic example was shown in Figure [I.3]in Chapter [I] where Albania had
a bimodal distribution in one feature. Due to the Gaussian approximation this
information might me weakened. In the next section we will therefore compute the
exact Wasserstein distance to check whether it can strengthen the contribution

of the higher moments.

3.2.3 Exact Wasserstein Embedding

Using the Linear Program described in Section [2.2] we computed the pairwise
Wasserstein distance of all N = 193 NUTS-2 units. This procedure took 17 hours
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on a desktop computer and was only possible at all if we reduced the samples
size to maximally S,, < 1000. However only few units had significantly more
participants (e.g. Iceland). In Figurewe compare the distance matrices of the
Gaussian approximation and the exact Wasserstein distance. The differences are
obvious: the Gaussian approximation systematically underestimates the distance,
which might be due to the fact that multi-modal distributions collapse when
being fitted by a Gaussian as in Figure[I.3. On the right the ratio of the absolute
differences is given with most ratios being higher than r» > 0.4. Despite the
differences being quite large, the structure of both matrices looks similar. Due
to the adaptive perplexity in the t-SNE algorithm it is understandable why in
the resulting embeddings both methods show a similar structure. The respective
figure is found in the Appendix [3.§

N
5 50 75 100 125 150 175 00 0 25 50 75 100 125 150 175 0.0 25 5 75 100 125 150 175 0

Figure 3.7: EVS Distance matrices. The exact Wasserstein distances are com-
pared to the Gaussian approximations. On the right their relative difference is
visualized.

Comparison to Euclidean Embedding

The ambition of the analysis was to find out whether Wasserstein t-SNE could
improve a standard embedding, i.e. the Euclidean embedding. In the case of
the Gaussian approximation this seemed not to be true. Now we want to inquire
whether the exact Wasserstein distance embedding shows a qualitatively different
structure. In Figure we highlighted the unit lle de France (Paris). While this
region had been assigned to the French cluster in the Euclidean embedding, it
now stands alone in a different part of the embedding. Is this an artefact of the
t-SNE initialization? Or does it represent a variation in the distance matrix?

One way to find out is to calculate the nearest neighbors of lle de France. In
Figure [3.9] we see that its eight nearest neighbors are all French units when using
the Euclidean distance. The result for the Wasserstein distance is rather different.
Only two of the top-30 neighbors are French. This indicates that the structure

in the Wasserstein embedding is not a t-SNE artifact. It could be a meaningful
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Figure 3.8: EVS Wasserstein t-SNE embedding. Left: Exact Wasserstein dis-
tance was used. Right: Fuclidean distance was used. In both embeddings the
unit Ile de France is highlighted.

variation from which arises the hypothesis that in Paris, the capital, different
features correlate. However, we have to take into account that all Wasserstein
distances are very close to each other. After computing the affinity matrix the
aversion of the unit against other French units might not remain significant. We

will discuss later that it might be a general disadvantage of our method that the

Wasserstein distance introduces a lot of noise to the distances. This emerges from

the noise in the covariances.
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Figure 3.9: Nearest Neighbors of Ile de France. The Wasserstein metric is an
extension of the Euclidean distance so its values are strictly larger.
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3.3 German Federal Election 2017

The German Federal Election (GER) is divided into 299 voting districts, each of
which consists of roughly 150-850 poll stations. For simplicity we exclude voting
by mail. In this analysis one voting district will be considered as a probability
distribution over poll stations, i.e. the poll stations are samples from the voting
district as in Figure [3.10] We shall find that certain parties correlate differently
within all over the country. We thus find structure in the covariance of the units

and observe different clusters for different \.
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Figure 3.10: German Federal Election 2017. Left: Two urban voting districts of
the same type with their distribution of poll stations. Right: Two voting districts
with different types.

3.3.1 Preprocession

The GER dataset is available online [4] but comes in absolute numbers, i.e. for
each poll station the absolute number of votes per party are given. Voting by mail
is registered with a completely different scheme so we have to omit these votes.
As a first step we excluded any party that isn’t active in all states, in particular
this means that we only consider the main six parties, where we merged the
Bavarian CSU into the national CDU. This is relevant, because otherwise spatial
information could be directly inferred from the correlation of (non-active) parties.
Secondly we computed the percentages from the absolute votes, that is, we divide
by the number of voters per poll station. This erases information about the size
of the poll station and is important because cities have a different poll station

density than rural areas.
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Thirdly we define labels for each voting district. For this analysis we chose the
corresponding state. We consider this choice reasonable since different states may
show different voting behavior. However it is far from obvious that the structure
in the dataset should be able to separate the datapoints into well distinguished
clusters of different labels.

Finally, since all percentages of the parties lie in the interval [0, 1] we observed
that the variance of a party result is dependent on the mean, e.g. that a party with
mean zero can’t have any variance. In the Appendix we show a brief analysis of
this mean-variance correlation and apply a variance stabilizing transformation.
However, for this section we keep the percentages as they are since it doesn’t

make any difference for the embeddings.
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Figure 3.11: GER Gaussian Wasserstein Embeddings. For four values of A the
resulting embedding is shown. The upper left embedding corresponds to taking
the means only, whereas the lower right embedding only considers distance of
covariances. The embeddings in between are using the interpolated distances.
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3.3.2 Gaussian Wasserstein Embeddings

Using the Gaussian approximation we can again compute the pairwise distances
of the units and embed the voting districts as in Figure [3.11} In the Euclidean
embedding we see three clusters. The legend in the Appendix[A.5|shows that these
clusters could be labeled as southern Germany, western Germany and eastern
Germany. The Covariance embedding on the right however shows a different
structure. There are again three clusters but with different units assigned to
them: the cluster in the middle contains mostly cities. This cluster wasn’t as
isolated in the Euclidean embedding. The Wasserstein embedding, since it is an
interpolation with A\ = 0.75, combines both structures. Interestingly we can see
all four clusters here. This specification qualifies the dataset for deeper analysis.
It seems likely that we get a finer structure in the embedding if we as well consider

the covariance of districts into the distance.

Features

Before we start analyzing where the difference in correlation emerges from, we
can take a look at the mean structure. Which features are responsible for the
embedding? From feature embeddings in Appendix it becomes clear that
the AfD is mainly responsible for the separation of Eastern Germany, while DIFE
GRUNEN and CDU yield finer gradients in the big cluster at the top. A more
detailed analysis of the mean features as well as a legend with all names of the
districts is given in the Appendix [A.5]

Correlations

To understand the structure in covariance that was present in Figure [3.11] we
can visualize the pairwise correlation of the parties for each district as in Figure
We used the Gaussian Wasserstein embedding which showed four distinct
clusters, so that we can easily distinguish different areas and their interpretation.
One can see that certain features (e.g. AfD and SPD) correlate in cities, but anti-
correlate in eastern Germany. What causes this different correlation of parties?
This would be an interesting topic of research for political scientists, we however
can only speculate. A very general interpretation could be that both SPD and
AfD are considered to be working class parties in western Germany. In the east
however workers on the left traditionally vote DIE LINKFE, so the SPD is rather
an option for the middle class. The spatial separation of working and middle
class is then reflected in the voting results of different poll stations.

In the Appendix we show more such examples. Moreover we find that the corre-
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Figure 3.12: Visualization of Party Correlations. The Gaussian Wasserstein
embedding with A = 0.75 is used to cluster the units. The colors represent the
correlation of the respective parties in that voting district, red being high (1) and

blue being anti-correlation (-1).

lation is not independent from the means. This is indicated by Figure [A.7] which

shows structure in the correlation without using this information for the embed-

ding. While one can imagine that the variance of a random variable depends on

its mean if it is sampled from a closed interval, it is unclear why the correlation

should be dependent on the mean. We did experiments to apply a variance stabi-

lizing transformation to the data. The results of these experiments can be found

in the Appendix [B.3|
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Figure 3.13: GER Covariance analysis. On the left only the marginal variances
were included into the distance measure, while on the right the covariance was

normalized to correlation.
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Covariances

The Covariance embedding in Figure [3.11| shows a clear structure. Where does
this structure emerge from? Covariance can be seen as a combination of correla-
tion and marginal variance. In Figure [3.13] we show these two different aspects
with their embeddings. The Variance embedding in the center suggests that the
structure in covariance is rather due to marginal variance of each individual fea-
ture as the structure is similar to the embedding on the left. However we can
observe from the right embedding, that also correlation shows structure and is

therefore not negligible.

3.3.3 Exact Wasserstein Embedding

As explained in Section [2.2] we can use a Linear Program to calculate the Wasser-
stein distance of two sampled probability distributions. We did this for all
M = 44551 combinations to compare whether the exact Wasserstein dis-
tance was different from the Gaussian approximation. In Figure |3.14] we can
see that indeed the results are quite similar. This indicates that the Gaussian

approximation was appropriate.

0.0

Figure 3.14: GER Distance matrices. The exact Wasserstein distances are
compared to the Gaussian approximations. On the right their relative difference
is visualized.

Comparison to Euclidean Embedding

To understand if the method includes new information to the visualization, the
exact Wasserstein t-SNE embedding is compared to the Euclidean embedding in
Figure [3.15] We see that the structure is rather similar. But, however, a few
datapoints are embedded differently by the two approaches. Berlin-Neukolln for
example is put to the cluster of cities by the Wasserstein approach, but to eastern
Germany in the Euclidean embedding. This is again due to the nearest neighbors

of the district: while in the Euclidean distance matrix Berlin-Neukdlln has as

30



top-3 nearest neighbors Berlin-Pankow, Potsdam and Berlin-Mitte (all eastern
Germany), the Wasserstein distance yields nearest neighbors from the cluster of

cities.

Exact Wasserstein embedding Euclidean embedding (A=0)

Figure 3.15: GER Wasserstein t-SNE embedding. Left: The exact Wasserstein
distance was used to embed the dataset. Right: As a comparison the Euclidean
embedding is shown. The voting district Berlin-Neukdolln is highlighted in both
embeddings.

A visualization of the nearest neighbors for Berlin-Neukolln is given in the Ap-
pendix [A.9] While the Wasserstein metric adds distance to all of the units, those
from eastern Germany have the strongest increase. More of these examples can
be found in other areas of the embedding. The question remains whether these
novelties are meaningful. When we look again at Figure [3.10| we see that Berlin-
Neukolln has in fact an interesting structure of the poll stations, which is almost
bimodal. Units like these make Wasserstein t-SNE an interesting method to

experiment with.
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Chapter 4
Discussion and Outlook

In this thesis we introduced Wasserstein t-SNE to visualize hierarchical datasets.
The method uses a more sophisticated distance measure than collapsing each
unit to its mean. We first looked at synthetic data, i.e. we designed the data in a
way that the unit covariances contained information, and then showed that the
method is able to visualize the structure in the embedding. Finally we applied
Wasserstein t-SNE to real-world data and investigated whether there, too, we

could find structure in the covariances.

4.1 Summary

While it had been very straight forward to design a proof of concept in Sec-
tion [3.1.2] it turned out to be difficult to find a real-world datasets on which
our method significantly changed the outcome. We tried the European Values
Study in the hope, that the bimodal division of today’s political landscape would
yield units that share the same mean but have different covariances. We could
find those examples, e.g. in Figure [I.3) but their effect was not strong enough
to be meaningfully visible in the Wasserstein t-SNE embedding. The analysis in
Section [3.2 showed that information about the means is sufficient to find roughly
the same structure that our method finds with full information. However, small
differences in the embeddings such as lle de France indicate that on a small scale
the method could yield an improvement for other datasets.

The second dataset that we analyzed was the German Federal Election. Again
we found small variations in the embedding, e.g. the position of Berlin-Neukdlln
changed. This special voting district is politically divided as we saw in Fig-
ure [3.10] The unit consists of samples that either vote largely for the AfD or
DIE LINKE. That indicated that the voters for the respective parties live spa-
tially separated, while in other units voters for these parties live in the same
neighborhood. The exact Wasserstein distance, using the Linear Program solver,
could take this bimodal structure of the unit into account. However there were
only few such cases. Mostly the means dominated the covariances. A particular
benefit of the A-interpolation was then, that we were able to obtain finer struc-

ture, i.e. the interpolated distance with A = 0.75 yielded an embedding which
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showed four clusters instead of three. The feature to put more weight on the
covariance is not possible with the exact Wasserstein distance but only with the
convex generalization of the Wasserstein distance for Gaussians.

A third dataset, the Big-Five Personality Survey, was also analyzed. Since the
results didn’t vary much from the results of the previously mentioned datasets,
we put that section in the Appendix

4.2 Future Work

In the multiverse of datasets we will continue to look for promising candidates to
show the benefits of our method. But also other experiments could be done which
are related to the topics of this thesis. In this section we give a small overview of
possible extensions without going much into detail. These are sketches of projects

which could help to understand the methods further or even improves it.

4.2.1 Distances of Covariances

As we have seen in the analysis, our intuition about the distance of Gaussian
distributions is slightly off. Figure indicates that a rotation of the covariance
matrix doesn’t change much of the distance which is in fact dominated by the
means. However, these experiments were only in low dimensions. It could be
interesting to design experiments that investigate the behavior of covariance dis-
tances in higher dimensions. As the parameters of a covariance matrix increase
quadratically with the dimension and the parameters of the mean linearly, it

seems reasonable to observe an effect here.

2-Wasserstein distances d;=3.80 2-Wasserstein distances d;=7.59

Figure 4.1: Distance of Covariance matrices. Five colored Gaussian distri-
butions have equal 2-Wasserstein distance d; to the reference Gaussian in the
center.
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4.2.2 Improving the Runtime

Another problem that we came across was the computation time of the exact
Wasserstein distance. We noted that for higher dimensions the histogram of the
sample space will be almost uniform, since it will become very unlikely that two
individual share the same feature vector for a large feature space. In that case
the Linear Program could become an Integer Problem which is known to be NP-
complete [19]. That may be the reason why the computation time we measured in
Figure [2.5] almost increased exponentially. There could consequentially be more
efficient ways to compute the Wasserstein distance for this special case. Another
possibility could be to estimate it from a sample subset as we have seen that also

for small sample size the distance is reasonably accurate.

4.2.3 Finding more Use-Cases

The most urgent improvement however is the discovery of a clear use case, i.e. a
hierarchical dataset where a large part of the information is encoded by covari-
ance. This dataset is difficult to find due to two reasons: First, the dataset needs
to come in hierarchical form with many units so that an embedding actually
makes sense. Secondly, the information in the means must not be sufficient. The
units should either be bimodal or show even more complicated distributions of
their samples so that the Gaussian fits and moreover the means lack significant
information. In the following we will describe possible datasets that we could

image to work well, but which we haven’t found yet.

Medical Data

The medical dataset that we have in mind is a study among patients. The units
correspond to individuals and the samples are multiple measurements of features
about the patient. For example, N = 1000 patients have 100-200 cells each.
Each cell is defined by a set of features (e.g. shape, size). We want to embed the
patients in 2D to find structure within the dataset. Rather than taking the mean
of the cells as feature vector for each patient, we also take into account their
feature covariances. The embedding could then reveal that certain correlations
lead to a phenotype (e.g. sickness) of the patient which we would be using as
labels.

Time Series

An interesting hierarchical dataset could as well involve time series. An example

for such data could be the daily weight of individuals. We infer the Gaussian
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Process for the time series and compute the Wasserstein distance of them, since
a closed-form solution of the 2-Wasserstein distance for Gaussian Processes has
recently been proposed [20]. Similarly, we could use multiple measurements of the
same time series and compute the point-wise variances. A problem that arises in

this scenario is that the temporal structure might be lost in the distance measure.

Topic Model

Another idea that regularly comes up is a dataset based on bag-of-words represen-
tations. While the units in such a dataset are intuitive (e.g. books, TV-shows)
the problem we encounter here is the lack of a metric space. A bag of words
doesn’t let us easily define a distance other than component-wise metrics such as
the Kullback-Leibler divergence. This however quickly diverges from the general
design of the experiment in this thesis and would then lead to a different kind of

model.

4.2.4 Inferring a HGM

The final extension that we thought about is connected to the HGM in Section [3.1]
Similar to the Expectation-Maximization algorithm for Gaussian Mixture Mod-
els [21] one could think about inferring the parameters of the HGM from a given
hierarchical dataset. The properties of the Wishart and Gaussian distributions
might qualify the model for a deeper analysis. The benefit of an algorithm to infer
the parameters of a HGM would be that it would yield a generative model from
which we could sample new units. Furthermore we would have a quantification of
how good the fits are and thus be able to compare different settings with respect
to their likelihood. The derivation of that algorithm might get fairly complicated

however and was therefore left for future research.
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Appendix A

Supplementary Material

Table A.1: Questions in the EVS dataset. Each row corresponds to a question
asked in the questionnaire with answers ranging from 1 to 10.

I have complete control over my life

I am satisfied with my life

God is important in my life

I consider myself ’on the right’

Everyone is responsible for him /herself
The unemployed should take any job
Competition is good

Incomes should be made equal

Private ownership should be increased
My country is governed democratically

I am satisfied with the government
Immigrants take jobs away

Immigrants make crime problems
Immigration is a strain on welfare system
Immigrants should maintain their traditions
I would give money for the environment

Exact Wasserstein embedding

it

Someone like me can do much for environment
There are more important things than environment
Others should start to protect the environment
Environmental threats are exaggerated

Do you justify:
Do you justify:
Do you justify:
Do you justify:
Do you justify:
Do you justify:
Do you justify:
Do you justify:
Do you justify:
Do you justify:
Do you justify:
Do you justify:

claiming state benefits
avoiding a fare on public transport
cheating on tax
accepting a bribe
homosexuality
prostitution

abortion

divorce

euthanasia

suicide

having casual sex
death penalty

Wasserstein embedding (A=0.5)

Figure A.1: Goodness of Gaussian Approzimation in EVS. Left: The Wasser-
stein t-SNE embedding of the EVS is shown. Right: The Gaussian distances with
A = 0.5 were used to embed the comparison.
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Figure A.5: Legend of the Fuclidean GER embedding. Names of the voting
districts are given as annotations to the emblem of its state.
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Figure A.6: GER Feature analysis. For six different parties the mean percentage
of votes is encoded in the size of the emblem. The coordinates of each unit are
given by the Wasserstein embedding.
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Figure A.7: Party Correlations in Fuclidean embedding. The Euclidean embed-
ding is used to cluster the units. The colors represent the correlation of the re-
spective parties in that district, red being high (1) and blue being anti-correlation

(-1).
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Figure A.8: FEwvolution of embeddings with increasing \. For six values of A the
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Sorted by Wasserstein distance

0.15 1

0.10 4

0.05

I Wasserstein
B Euclidean

0.00 -

Hamburg-Altona
Koln 11T

Bremen I
Berlin-Pankow
Potsdam IT
Hamburg-Mitte
Leipzig 11
Berlin-Mitte
Stadt Hannover 11
Hamburg-Eimsbiittel
Niirnberg-Nord
Koln I

Kassel

Darmstadt

20
3}
=
[
)
w0
ok
=}
=
=
2
g
<
&
3
/Mm
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the cluster of eastern Germany, the districts in black are among the cluster of
cities. The 2-Wasserstein metric is an extension of the Euclidean distance so its
values are strictly larger.
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Appendix B

Supplementary Analysis

Throughout this thesis we mentioned some experiments, which we did but didn’t
include in the analysis. In this chapter we will show them for the sake of complete-
ness. The following results are additional work and can be considered completely

independent from the rest of the project.

B.1 Big-Five Personality Traits

A third dataset that we analyzed was the Big-Five Personality Online Survey
2016 [7] (BIG5). It contains the personality traits of over two million participants
and is hosted on Kaggle. After an extensive preprocession we used a clean subset
of the data where it is insured that every participant is only included once. We
particularly chose samples where the completion time is neither too short nor
too long and furthermore constrained the number of participants per country to
range from 60 to 12000. Thus 120 countries remained with a total of 219584

participants.

Table B.1: Big-Five Personality Traits. The rows of this matrix corresponds to
individual personality traits of citizens of that country. The hierarchical form of
the dataset is due to multiple participants per country.

AGR CSN EST EXT OPN
United Arab Emirates 4.8 4.6 1.9 1.8 4.7
United Arab Emirates 2.1 4.3 2.5 1.5 4.7
United Arab Emirates 4.5 2.1 3.2 1.9 3.5
United Arab Emirates 3.9 2.4 2.0 1.4 3.9
United Arab Emirates 3.9 2.4 1.6 3.0 4.6
Zimbabwe 3.5 4.6 2.4 2.1 4.9
Zimbabwe 3.1 3.4 2.0 2.8 4.7
Zimbabwe 2.9 2.2 2.9 4.8 4.4
Zimbabwe 4.6 3.6 1.9 1.7 4.6
Zimbabwe 4.3 3.5 3.5 1.5 4.6

(219584 rows x 5 columns]
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Figure B.1: Legend of the Euclidean BIG5 embedding. This embedding was
created with the t-SNE algorithm. The five colors represent the five personality
traits. In the lower left corner the mean personality is given. Each unit is
annotated by its deviation from the mean.
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The Big-Five model is used to describe personality traits by the main components:
Agreeableness (AGR), Conscientiousness (CSN), Neuroticism (EST), Extraver-
sion(EXT) and Openness to Experience (OPN) [22]. The BIG5 survey measured
each trait by 10 questions which can be answered from one to five. If we average
the answers per trait we obtain Table [B.I] However, to find structure in the
covariance we kept the full information. In any case, Figure shows that the
questions related to the same trait correlate with each other, but there is also
some other structure in the correlation. China for example shows clean squares
while for other countries such as Germany or Russia the second and third trait
anti-correlate. This corresponds to the independence of the personality traits.
The Big-Five model was developed in the USA so it is reasonable to assume
that it is particularly adapted. This could lead to an interesting structure in the

correlation.

China (784) ) Germany (10549) Iran, Islamic Republic of (291) Myanmar (64)
= 4

o

Russian Federation (2347 Tanzania (62) ~ United States (12000) Venezuela (852)
izl

]

Figure B.2: Correlation of questions related to the same trait. For eight coun-
tries the correlation of participant’s answers to the 50 questions is indicated by
red (1) and blue (-1).

While we have shown the Euclidean embedding of the BIG5 dataset in the in-
troduction, we now want to compare it to its Wasserstein embedding. Does the
correlation in Figure have an effect? In order to compute the exact Wasser-
stein distances we decreased the sample size of some units to a maximum value
of 500. Otherwise the computation would have been too long. In Figure
we show the exact Wasserstein embedding of the dataset. We observe that the
structure is still present, however not as sharp as in Figure

The reason why the distinct clusters are lost in the exact Wasserstein embedding
might again be the addition of noisy information. For the small range of possible

answers from one to five the inclusion of covariance might not be very meaningful.
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Figure B.3: BIG5 Wasserstein embedding (flags from [8, [9]). Left: t-SNE
embedding of the mean personality per country using the flag of the country.
Right: Each unit is visualized by its label (continent).

B.2 Logit Transformation

We have stated in Chapter that the EVS data is not normally distributed for
some units. The full information with the Wasserstein metric however added too
much noise. A compromise would be to apply a logit transformation to the data

and fit the Gaussians in logit-space.

Definition B.2.1 Let o(z) = 1/(1 + e®) the logistic (sigmoid) function. Its

wverse s called the logit function and is defined as

logit(p) = ¢ *(p) = In (%) for pe(0,1)

Before we can apply the transformation properly to the data we add noise on top
of the samples in order to get small derivations around the bins. Otherwise the
transformation would use only ten bin-values as well and could not improve the
shape of the fit. Also we have to squeeze the data into the interval (0, 1) which is
done linearly. The process of the transformation can be seen in Figure The

results of the embedding however did not change much.
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Figure B.4: Logit Transformation of EVS units. For different countries the orig-

inal data is shown as well as the transformation to logit-space and transformation
of the Gaussian fit backwards (score).
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B.3 Variance Stabilization

We observed another problem in the analysis of the German Election, namely
that there seems to be a correlation of the means and the variances. This is not
surprising if we look at the space from which the samples are drawn. Percentages
naturally lie in the interval [0,1]. A unit with low mean must also have low
variance, e.g. for ¢ = 0 and ¢ = 1 we must have 0 = 0. The closer the units
means are to g = 0.5, the higher standard deviation o is possible. Therefore
the quantities correlate. A way to disentangle mean and variance is given by the

Variance Stabilization Transformation [23] which reads for binomial distributions

Y

T(Y) = /narcsin(y/ —).

n
Figure show the steps of this transformation on the GER dataset, where we
compare for each unit and feature the standard deviation and mean. Interestingly,
the last factor of y/n of the transformation yields correlation again. This is an
indication that information is encoded in the size of a poll station as well, e.g. that
cities have less poll stations per voting district and thus larger number of votes
per station. Instead of introducing this prior knowledge into the analysis we

rather left out the transformation.

Absolute votes (Y) Percentages (¥)

250

200

std

100

0 50 100 150 200 250 300 350 0.0 0.1 0.2 0.3 0.4 0.5

mean mean

T(Y) = au-siu(ﬁ) T(Y) = ﬁanfsm(ﬁ )
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Figure B.5: Variance Stabilizing Transformation in GER. Four steps of the
variance stabilization are shown.
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