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Zusammenfassung

Umfragen und andere sozialwissenschaftliche Datensätze liegen häufig in hierar-

chischer Form vor, d.h. die einzelnen Teilnehmer (Stichproben) können auf einer

höheren Ebene, z.B. ihrer geografischen Region, zusammengefasst werden. Ein

Vergleich dieser höheren Ebenen (Einheiten) erfolgt in der Regel über den Ab-

stand ihrer Mittelwerte. Jede Einheit kann jedoch als eine Wahrscheinlichkeitsver-

teilung über ihre Stichproben betrachtet werden. In dieser Arbeit entwickeln wir

einen Ansatz zur Einbettung hierarchischer Datensätze in niedrige Dimensionen

unter Verwendung der Wasserstein Distanz, die nicht nur die Mittelwerte, sondern

auch die Formen der Verteilungen innerhalb der Einheiten berücksichtigt. Der Al-

gorithmus t-distributed Stochastic Neighbor Embedding (t-SNE) wird verwendet,

um 2D-Einbettungen der Matrix der paarweisen Wasserstein Distanzen zu kon-

struieren. Wir generieren synthetische Daten, bei denen ein Teil der Information

in der Kovarianz der Stichproben kodiert ist, um die Effektivität von Wasserstein

t-SNE zu demonstrieren. Anschließend wenden wir diese Methode auf mehrere

sozialwissenschaftliche Datensätze an, insbesondere auf die Bundestagswahl und

die European Values Study. Durch die Visualisierung ihrer Struktur mit Wasser-

stein t-SNE zeigen wir spezifische Beispiele von bedeutungsvollen Strukturen, die

durch den Algorithmus aufgedeckt und hervorgehoben werden. Wir kommen zu

dem Schluss, dass unsere Methode 2D-Einbettungen verbessern und eine feinere

Struktur in den Daten aufdecken kann, die sonst verborgen wäre. Wir glauben,

dass sie auch in anderen Anwendungsbereichen nützlich sein kann, z.B. bei der

Visualisierung biologischer oder biomedizinischer Datensätze.
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Abstract

Surveys and other social science datasets often come in hierarchical form, i.e. in-

dividual participants (samples) can be grouped at a higher level such as their

geographical region. A comparison of these higher levels (units) is usually made

by the distance between their means. However, each unit can be viewed as a prob-

ability distribution over its samples. In this work, we develop an approach for

embedding hierarchical datasets in low dimensions using the Wasserstein distance

metric that takes into account not only the means but also the shapes of within-

unit distributions. The t-distributed Stochastic Neighbor Embedding (t-SNE)

algorithm is used to construct 2D embeddings of the matrix of pairwise Wasser-

stein distances. We generate synthetic data, in which part of the information is

encoded in the covariance of the samples, to demonstrate the effectiveness of our

Wasserstein t-SNE. We then apply this method to several social science datasets,

in particular the German Federal Election and the European Values Study. Vi-

sualizing their structure with Wasserstein t-SNE, we show specific examples of

meaningful structure uncovered and highlighted by the algorithm. We conclude

that our method can improve 2D embeddings and can reveal a finer structure in

the data that would be otherwise hidden. We believe it can be useful in other

application domains, e.g. for visualizing biological or biomedical datasets.
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Chapter 1

Introduction

In this thesis we will study the dimension reduction algorithm t-distributed

Stochastic Neighbor Embedding [1] in a particular setting. We will develop

a method to embed datapoints which are probability distributions. This requires

a notion of similarity for such objects. Throughout the thesis we will compare the

Wasserstein metric [2] with the Euclidean distance of the means. The objective

is to find out whether the resulting embeddings show a different structure. This

chapter gives a brief introduction to data visualization in general. Furthermore,

it explains the data structure that is required for later experiments. Chapter 2

provides an overview about the mathematical concepts. We will explain different

dimension reduction algorithms and define the Wasserstein metric for our setup.

Subsequently, in Chapter 3, our method is applied to synthetic data as well as

real-world data such as the European Values Study [3] and the German Federal

election [4]. We will eventually summarize that the method is able to improve

clustering but that the perfect use-case it yet to be found.

1.1 Visualizing Structure in Datasets

In the modern world data is collected on a daily basis. When collecting infor-

mation about patients, companies, countries (i.e. datapoints) policy makers have

to deal with complex and high dimensional feature spaces. Most of the datasets

however contain low dimensional structure, which is really of interest. Before

searching for information we can embed data in a visualizable space, often the

2D-plane. This procedure not only helps to get an overview of the dataset but is

also able to find clusters of datapoints, which share certain features. The main

goal of data visualization is therefore to simplify datasets without loosing too

much structure, a task which is not optimally solvable but subject to different

trade-offs and design decisions.

1.1.1 Motivational example

To illustrate the effects of data visualization we have a look at the election of

Baden-Würtemberg in March 2021 [6]. This dataset is a matrix X ∈ [0, 1]72×7
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Figure 1.1: Political Landscape of Baden-Würtemberg (visualization inspired
by [5]). In the lower left corner the mean result is given. Each voting district
is annotated with its deviation from the mean. The six colors represent the six
dominant parties, gray shows the share of nonvoters. The t-SNE algorithm was
used to embed similar voting districts nearby.
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where each row Xn represents a voting district. For simplicity we consider here

only the results of the six major parties: DIE GRÜNEN, CDU, SPD, FDP, AfD,

DIE LINKE as well as non-voters. The percentages for each party are positive

values which sum to one. To show the structure of this dataset we would need

a seven-dimensional coordinate system which is impossible to visualize. A di-

mension reduction algorithm however is able to embed these N = 72 datapoints

into the 2D-plane which we can see in Figure 1.1. Nearby points in the seven-

dimensional space are also close in the embedding. In the lower right corner

we find a cluster of university cities (e.g. Heidelberg, Freiburg) that dominantly

vote for the green party. Towards the upper left corner the share of green votes

decreases as we encounter more rural areas like Balingen and Aalen. Industry

driven communities like Heidenheim or Mannheim are found in the upper right

corner and have a larger share of non-voters. Without exploiting any prior knowl-

edge about the voting districts this meaningful structure arises directly from the

data itself. Dimension reduction can help to get an overview before doing an

analysis of the dataset. However, we must keep in mind that the low dimensional

representation comes with a loss of information and will almost never keep the

full structure.

1.2 Hierarchical Data

In the first example we encountered a dataset where each datapoint was repre-

sented by a single vector. For the rest of this thesis however we will analyze

hierarchical data, i.e. datasets where each datum Xn is a probability distribution

which we will call unit from now on. Of each unit we have an arbitrary amount of

samples. Throughout the thesis we will investigate whether significant informa-

tion is lost by collapsing the samples into their unit mean. More precisely, we will

find that structure can be present in the covariance of units and we will develop

a technique to include this information into the dimension reduction algorithm.

X1

S1 S2 SM1
. . .

X2

S1 S2 SM2
. . .

XN

S1 S2 SMN
. . .

. . .

Figure 1.2: Hierarchical Data. Each unit Xn is a probability distribution from
which Mn samples are drawn.
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1.2.1 Unit means

As an example of the scheme in Figure 1.2 we can think of participants in a survey

from regions around the world. If we want to visualize similarities and difference

of countries, we consider them as units Xn. The participants of the respective

nationality are then samples from the unit. The most natural choice to embed this

hierarchical dataset is to compute the mean sample of each distribution and run

the visualization algorithm on the flattened matrix. However, as stated above,

significant information is lost by this procedure. Figure 1.3 illustrates answers

to the European Value Study in Germany and Albania. While the mean of both

countries is fairly close to each other, it reasonable to assume that the political

situation in both countries is rather different. This might be encoded in the

variance of the answers which can be seen in the histogram. In this thesis we will

therefore use the Wasserstein metric to compare distributions. It is motivated by

the question: How much mass has to be transferred (and how far) to obtain one

distribution from the other? In the figure the distance of the countries becomes

much larger when applying the Wasserstein metric. We will describe its details

in Section 2.2. For now it should be clear that this approach is much more

accurate than using only the distance of the means as we can also take into

account bimodal structure. Later in this thesis we will see that the additional

information can change cluster memberships of units in the embedding.

1 2 3 4 5 6 7 8 9 10
I consider myself ’on the right’

0.00

0.05

0.10
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0.20
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p
ro

b
ab
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it

y
d

en
si

ty

1-Wasserstein distance: 1.83 Germany
µ = 4.93
σ = 1.70

Albania
µ = 5.40
σ = 3.54

Figure 1.3: Variance in the European Values Study. Histogram of answers to
the Question: Where do you consider yourself politically from left (1) to right
(10)?
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1.2.2 Labels

In Figure 1.4 we consider another hierarchical dataset in which the units are

countries, i.e. the Big-Five Personality Survey [7]. On the left we can see the

t-SNE embedding where we used flags to represent countries. However no clear

structure is visible. The units are embedded in a donut shape with a small cluster

on the top right (Sudan, Morocco, Tunisia, Algeria and Iraq). The cultural

similarity of these countries leads to the assumption that there might be however

some structure in the embedding. It can be helpful to a priori define labels of

each unit – information that is not included when embedding the data, but helps

afterwards when visualizing the structure.

country flags continent labels

Figure 1.4: Big-Five Personality Traits (flags from [8, 9]). Left: t-SNE embed-
ding of the mean personality per country using the flag of the country. Right:
Each unit is visualized by its label (continent).

One way to define labels for this particular dataset is to use the continents of the

respective countries. Each unit is now represented by the hypothetical flag of its

continent. In Figure 1.4 on the right we then see a lot of structure within the

embedding: Asian countries are clustered on the top left; African and Northern

American countries are bottom left, while the European cluster is on the bot-

tom right. For the analysis why this structure emerges from the dataset and

how it could be improved by including the covariance we refer to the legend in

Appendix B.1. For now this example should only serve as a quick motivation

why using labels of units is necessary when arguing for or against structure in an

embedding.
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Chapter 2

Theory: Methods and Distances

In this thesis we develop a method to embed a high dimensional dataset X, that

contains hierarchical structure, i.e. where each datapoint Xn is a probability

distribution from which we have an arbitrary amount of samples. These samples

can be used to compute the mean, but also other moments such as covariance

etc. In this chapter we give a brief description of existing dimension reduction

algorithms. In Section 2.2 we discuss the Wasserstein metric which is a natural

distance for probability distributions. We compare it to other distance measures,

show its closed form solution for Gaussians and explore a technique to compute

it exactly even in high dimensions. In Section 2.3 we introduce the Wishart

distribution which we use in Chapter 3.1 to sample covariance matrices.

2.1 Dimension Reduction

A multitude of algorithms exist that embed or project high dimensional data into

a low dimensional space. We will describe three particular techniques instead of

giving an overview which can be found elsewhere [10, 11]. Our aim is not to

compare existing algorithms, rather we explain why the chosen t-SNE algorithm

works as well as any other to show the main result of this thesis: that structure

can be found in the covariance of hierarchical data. All visualizations in this

work could as well have been done using UMAP or similar as long as we stay

consistent, since the goal is not to compare dimension reduction algorithms but

the underlying metrics.

2.1.1 PCA

Principal Component Analysis (PCA) is a dimension reduction algorithm

which projects a dataset to the subspace of largest variance. The basis vectors

of this subspace are the eigenvectors of the data matrix which correspond to the

largest singular values. As a design choice we have to fix a hyperparameter K

which sets the dimension of the subspace. The higher we choose K the more ac-

curate the projection will become but this is not the goal of dimension reduction.

Usually K is set in such a way that the complete subspace can be visualized.

6



As an example let us consider a dataset X that contains N datapoints Xn ∈ RD.

We now want to find a low dimensional projection Y ∈ RN×K that has largest

variance while K � D. One way to obtain this is a Gaussian fit of the dataset.

The data is then projected to the marginal distributions with largest variance.

x̄ :=
1

N

N∑

n

Xn

S :=
1

N

N∑

n

(Xn − x̄)(Xn − x̄)T

A simpler way is to directly compute the Singular Value Decomposition of X

and obtain the largest eigenvalues and their eigenvectors from X = UΛV T . Both

methods yield the same unique projection axis as in Figure 2.1. There we can

see datapoints being projected to the 1D-Line which corresponds to the largest

eigenvector of the covariance matrix S.

−10 0 10 20 30 40

10

15

20

25

30 Covariance

Mean

Samples

Projection

Eigenvectors

Figure 2.1: Principal Component Analysis. A multivariate Gaussian in pro-
jected to the axis of largest variance (orange).

The benefits of PCA are its simplicity and transparency. We can visualize the

eigenvectors and interpret their components and directions. Also we obtain a

generative model and can create new datapoints in the low dimensional space that

will be close to their neighbors even in higher dimensions. The main drawback of

PCA is its linearity. For datasets in complicated manifolds the method will not

capture the structure anymore.
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2.1.2 MDS

A non-linear alternative in dimension reduction is known as Multidimensional

Scaling (MDS). This concept describes a set of algorithms for which it is not

necessary to know the original data, but only a matrix K ∈ Sn(R) that contains

the pairwise distances (or similarities). The datapoints are then embedded in a

fictional space which is usually two dimensional. The axes of that space don’t

have a particular interpretation, however the coordinates of the embedded data

represent the distances of the input matrix. Under certain circumstances they are

proven to be exact, however in most cases only an approximation is possible [12].

2.1.3 t-SNE

An extension of the previous algorithm is called t-distributed Stochastic Neigh-

bor Embedding [1]. Here we also don’t project but embed the data into a

subspace without particular interpretation of the axes. While it was originally

proposed to embed vectors, it works as well with a distance matrix as input. In

this section we describe the latter approach since the units we will embed later

are probability distributions which can’t be represented in Euclidean space.

Definition 2.1.1 Let P, Q be matrices of the same dimension. The Kullback-

Leibler divergence is then given by

KL(P‖Q) :=
∑

ij

Pij log
Pij
Qij

Definition 2.1.2 Let p(x) be a discrete probability density function. The per-

plexity of p is then given by

PP(p) := 2H(p) =
∏

x

p(x)−p(x)

Having defined perplexity and the Kullback-Leibler divergence, we can unbox the

t-SNE algorithm. The first step is done by computing the affinity matrix P from

the distances.

Definition 2.1.3 Let K ∈ Sn(R) be distance matrix of n arbitrary datapoints.

The rows of the affinity matrix P will then be constructed by Gaussian kernels

with bandwidth σi

pj|i =
exp(−K2

ij/2σ
2
i )∑

k 6=i exp(−K2
ik/2σ

2
i )
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such that all perplexities of the conditional distributions equal a predefined per-

plexity σ. At last the affinity matrix is symmetrized by

pij =
pj|i + pi|j

2n

Then the embedding is initialized randomly (or with an advanced algorithm such

as PCA [13]). The next step is to compute the pairwise distances of the datapoints

in the embedding.

Definition 2.1.4 Let P be an affinity matrix. The t-SNE algorithm will (locally)

minimize the Kullback-Leibler divergence KL(P‖Q) with respect to the low dimen-

sional embedding Y , where Q is an affinity matrix based on the t-distribution and

the coordinates of the embedded vectors yi

qij =

(
1 + ‖yi − yj‖2)−1

∑
k 6=l
(
1 + ‖yk − yl‖2)−1

The Kullback-Leibler divergence of the low and high dimensional affinity matrices

is then optimized with respect to the coordinates of the embedding. The points

are thus moved along the gradient until convergence. This procedure results in

a local minimum where no point can be slightly moved without yielding a worse

embedding than before.

When interpreting t-SNE embeddings it is important to keep in mind that the

choice of the t-distribution puts emphasis on close points. The opposite does not

hold: points that are embedded far from each other don’t necessarily need to be

far away from each other in the high dimensional space.

Design choices

The t-SNE algorithm comes with certain hyperparameters and is dependent on

an initialization. Its objective is non-convex, thus it has multiple local minima

in which the algorithm can terminate. The t-SNE embedding is therefore not

unique, i.e. it can have certain artifacts that occur with some initialization and

not with others.

Another parameter that needs to be set is the perplexity σ. It defines the scale on

which points are considered to be close. If the perplexity is very low, the structure

will be very fine with lots of clusters since only few points are considered to be

close. If the perplexity is high, all points might end up in the same cluster.

Throughout this thesis we will leave the perplexity at the default value of σ = 30

and use the implementation of openTSNE [14].

9



2.2 Wasserstein Metric

Any embedding algorithm requires a distance measure in the high dimensional

space. When dealing with hierarchical data this becomes non trivial as there is no

default distance measure for probability distributions. A simple work-around is

to collapse the distributions to their means and then use the Euclidean distance.

But one can easily imagine that this technique can loose arbitrarily much of the

information. A distance which is able to capture the structure of higher moments

as well is called the Wasserstein metric and has been widely used in Machine

Learning [15]. One particular benefit is the sensitivity to the metric space on

which the distributions are defined. Another advantage is that it can compare

probability densities which don’t have the same support, as long as a distance

measure of their support is given. The downside of the Wasserstein distance

is its computation complexity. We will later see that it is related to optimal

transport. However, for Gaussians a closed-form solution exists. In this section

we will provide the formula and explain why its computation in the discrete case

is essentially a Linear Program.
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1-Wasserstein distances:
d12=5.0 d31=7.35 d32=2.72

L1-distances:
d12=2.0 d31=1.88 d32=1.88

distances of means:
d12=5.0 d31=7.35 d32=2.35

KL-divergences:
d12=inf d31=3.12 d32=3.12

P1 P2 P3

Figure 2.2: Earth Mover’s Distance. The pairwise 1-Wasserstein distances of
three probability distributions are compared to the L1-distance and the Kullback-
Leibler divergence.

2.2.1 Motivation

In Computer Science the 1-Wasserstein metric is also known as the Earth Mover’s

Distance. This name is motivated by the following thought experiment: we

imagine the probability distributions as piles of earth – their distance now repre-
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sents the amount of work that has to be done in order to transfer the probability

mass from one distribution to the other. This definition however requires a metric

space M on which the probability distributions are defined. This emerges from

the fact that we have to measure how far two points are away from each other,

i.e. how far the mass has to be transported.

In Figure 2.2 we can see the comparison of four different metrics. For each metric

the pairwise distance of three discrete distributions is computed. While the two

component-wise metrics (KL-divergence and L1-distance) can’t distinguish d32

from d31, the Wasserstein distance mirrors our intuition that P2 is much closer

to P3 than P1. Another takeaway from this example is the similarity of the

Wasserstein distance to the distance of the means. This effect will be important

throughout the thesis.

Definition 2.2.1 Let (M,d) be a metric space. The p-Wasserstein distance of

two distributions µ and ν is then defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫

M×M
d(x, y)pdγ(x, y)

) 1
p

where Γ is the set of all coupling of µ and ν.

2.2.2 Special Case: Gaussians

While the p-Wasserstein distance for continuous distributions is generally hard

to compute, there exists a closed-form solution of the 2-Wasserstein metric for

multivariate normals, also known as Fréchet distance [16].

Definition 2.2.2 Let N1,N2 be two Gaussian distributions with Ni = (mi, Ci).

The 2-Wasserstein distance of these distributions is then given by:

W (N1,N2)2 := ‖m1 −m2‖2
2 + tr

(
C1 + C2 − 2

(
C

1/2
2 C1C

1/2
2

)1/2
)

Note, that the left part of the sum is just the Euclidean distance of the means.

The Wasserstein metric can therefore be seen as an extension of the Euclidean

distance. It was also shown [16] that the right part of the sum defines a proper

metric on the space of covariances. We can also write it differently as

d(C1, C2)2 := tr

(
C1 + C2 − 2

(
C

1/2
2 C1C

1/2
2

)1/2
)

= tr
(
C1 + C2 − 2 (C2C1)1/2

)
.
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Convex Interpolation Method

By introducing a hyperparameter λ ∈ [0, 1] we can put emphasis either on means

or covariances. The convex generalization of the 2-Wasserstein distance for Gaus-

sians can therefore be written as

W (N1,N2)2 := (1− λ) · ‖m1 −m2‖2
2 + λ · tr

(
C1 + C2 − 2

(
C

1/2
2 C1C

1/2
2

)1/2
)

which yields both the Euclidean and the Covariance metric for λ = 0 and λ = 1

respectively. As the t-SNE algorithm is indifferent to scaling the distances of

datapoints linearly, the additional factors won’t change the embeddings. We will

use this notation in the analysis to reconcile all three cases into one method. Also

it can be interesting to see the evolution of the embeddings for growing λ as in

the Appendix A.8.

Computation Complexity

The computation of the closed-form solution for the 2-Wasserstein distance of

Gaussians is very fast. However, we have to compute a matrix multiplication as

well as an eigenvalue decomposition to take the square root of the product which

can be both considered to be of O(d3) where d is the number of dimensions. This

has to be done for each distance computation, so if we have N Gaussians, their

pairwise distance matrix requires O(N2) eigenvalue decompositions.

Contrary to what had originally been written on the German Wikipedia page1

about the Wasserstein metric for Gaussians, the following equation does only

hold, iff the covariances commute

tr
(

(C
1/2
2 C1C

1/2
2 )1/2

)
6=
∥∥∥C1/2

1 − C1/2
2

∥∥∥
2

F
.

However, this assumption would simplify the calculation even more: we could

vectorize the computation in a package like numpy to reduce the complexity to

O(N) eigenvalue decompositions. We did not use this approximation but a quick

comparison indicated that the differences are not very large.

2.2.3 Linear Programming

So far we have only looked at the Wasserstein distance of Gaussians. In this

section we will compute the exact Wasserstein distance, which we have earlier

claimed to be hard for continuous distributions. However, most social science

datasets contain discrete samples. That makes the computation easier. In fact,

1we edited the article on 16:45, 15th Sep. 2021
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the Wasserstein distance of two discrete distributions boils down to the following

Linear Program [17]:

Wp(µ, ν)p := min
x∈Γ(µ,ν)

∑

M×M

d(mi,mj)
p · x(mi,mj)

primal form : dual form :

minimize z = cTx,

so that Ax = b

and x ≥ 0

maximize z̃ = bTy,

so that ATy ≤ c

Here, the vectorized matrix c defines the transport cost, i.e. cij = d(mi,mj)
p

represents the Lp-distance of the points mi and mj (M is the discrete metric space

on which the probability distributions are defined). The optimization variable x

represents the transport plan as in Figure 2.3. Each entry of x must be non-

negative. The constraint Ax = b is satisfied, if the marginals of x equal the

distributions µ, ν. Note that only the primal problem yields an explicit transport

plan while the dual form has less variables and is much faster. Due to the strong

duality of a Linear Program the resulting solution however is the same. In practice

we therefore use the dual form to compute Wasserstein distances.

Figure 2.3: Wasserstein distance as Linear Program (visualization inspired
by [18]). The optimal transport map X of two probability distributions ν (or-
ange) and µ (blue) is shown in the center. The heatmap on the right represents
the cost matrix C.
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Scalability

A Linear Program can solve the exact Wasserstein distance with unique opti-

mal solution. However the complexity increases with the number of variables in

x. If we add a second dimension to the histogram in Figure 2.3 each marginal

distribution gets squared in the number of bins, thus the variables in x increase

biquadratically. However, in high dimensions most of the bins will have zero

probability mass, that is, no sample will be observed at that point. So the com-

plexity of the Linear Program is upper bounded by the number of samples in each

distribution. In Figure 2.4 we show the same Linear Program but just exploit the

fact that each row or column which should sum to zero can directly be left out in

the formulation. The cost matrix is then just given by the pairwise Lp-distance

of all samples which can be vectorized and computed efficiently.

Figure 2.4: Scalability of Wasserstein distance. The marginals are considered
to be uniformly distributed over their sample space. The cost matrix on the right
contains as entries the pairwise distance of the samples. In the center the optimal
transport map is shown.

Performance

The approach described in the last section is indifferent to the number of features,

since we can compute the pairwise Euclidean distance of the samples regardless

their dimension. In particular this means, that they no longer need to be samples

from a discrete distribution. Even when we deal with continuous data, such as

samples from a Gaussian, we can consider these samples to be discrete and set up

the Linear Program as in Figure 2.4. Thus we can run an experiment to find out

how accurate the exact Wasserstein distance computation becomes for growing

14
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Figure 2.5: Computation Time and Accuracy. The Wasserstein distance of two
Gaussians is computed using a different number of samples. The red lines show
the theoretical distances of the Gaussians. In purple and green the computation
time and estimates are shown with their standard deviation in 50 trials.

sample sizes. Figure 2.5 shows the convergence towards the ground truth calcu-

lated with the closed-form solution. The dashed red lines represent the parts of

the sum in the formula. We can see again, that the Euclidean distance plays a

bigger role even though the orientation of the covariance is rotated by π
2
. When

looking at the computation time we can remark that it grows almost exponen-

tially. This may be an artefact of the setup of the experiment. Since the sample

size is equal for both Gaussians, also both of them have the same probability

distribution (both uniform with 1
S

on a different support). Thus the problem

becomes an Integer Linear Problem which has exponential complexity [19].

2.3 Wishart Distribution

In the next chapter we will generate random Gaussian distributions. This requires

a generative model to draw their means and covariances from, i.e. µ and Σ in

N (x;µ,Σ) =
1√

(2π)d |Σ|
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

While it is straight forward to generate random means, sampling covariance ma-

trices is not as easy. One way to do so is to draw them from a Wishart dis-

tribution, which can be understood as the result of the following procedure:

First draw ν samples from the multivariate normal with zero mean and a scale

covariance, then estimate the covariance matrix of these samples. A formal way

to define this random variable is shown in Definition 2.3.1.
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Definition 2.3.1 Let Σ be a d× d positive-definite, symmetric scale matrix and

ν ≥ d a positive integer. The probability density function of the Wishart distri-

bution is then given by

W(Λ; ν,Σ) =
|Λ|(ν−d−1)/2 e−(1/2) tr(Σ−1Λ)

2νd/2 |Λ|ν/2 Γd
(
ν
2

)

Figure 2.6 visualizes covariance matrices drawn from the Wishart distribution.

As a reference we show in the top row samples which are generated by another

method: the length of both eigenvectors as well as their angle is sampled uniformly

from an interval. This gives a uniquely defined covariance matrix. We observe

that this method yields less homogeneous covariance matrices, i.e. they have

larger pairwise distances. The Wishart samples only show this effect for minimal

ν = 2 in the middle row.

Figure 2.6: Sampling Covariance matrices. Top row: Uniformly sampled co-
variance matrices with increasing interval. Middle row: Wishart samples with
identity scale matrix and increasing ν ≤ 7. Bottom row: Wishart samples with
rotated scale matrix and fixed ν = 2.
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Chapter 3

Analysis: Finding Structure in

Covariance

The objective of the following analysis is to find use-cases for the method, i.e. hier-

archical datasets where information is stored in the unit covariances as previously

explained. We will start this chapter by creating synthetic data to design a proof

of concept. From Section 3.2 on we will apply the method to real-world data to

show that in practice, too, new insights can be won by the inclusion of covariance.

3.1 Synthetic Data

To model the hierarchical setup of later experiments we define a Hierarchical

Gaussian Mixture (HGM). By creating synthetic data from this model we

can encode information in the covariances. Thus we will be able to show that

Wasserstein t-SNE is actually able to separate units that share the same mean but

have different covariances. To measure an accuracy true labels are necessary. The

HGM will therefore consist of multiple classes from which the units are drawn.

Of course, the information about its class is not given to the embedding method

Wasserstein t-SNE, so it can’t use the label for clustering.

Proposition 1 Let U ,N ,W be Uniform, Normal and Wishart distributions re-

spectively. A Hierarchical Gaussian Mixture is then defined by the number of

classes (K), the number of units per class (Nk), the number of samples per unit

(Mnk) and their dimension F , where

• each class is defined by a Gaussian and a Wishart distribution Ck = [Nk,Wk] =

[N (νk,Γk),W(sk,Λk)] with νk ∈ RF , Γk ∈ RF×F , sk ∈ R and Λk ∈ RF×F

• each unit is a Gaussian distribution Xn = N (µn,Σn). Their means are

samples from the Class-Gaussian µn ∼ N (νk, Γk) and their covariances are

samples from the Class-Wishart Σn ∼ W(sk, Λk)

• the samples of each unit are given by Sm ∼ N (µn, Σn)
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Figure 3.1: Hierarchical Gaussian Mixture. The dataset contains N = 100 units
with M = 20 samples each. The units belong to K = 5 classes with a = 20 and
b = 5 (default parameters).

3.1.1 Example

To illustrate a 2-dimensional HGM we create a dataset with random parameters

in Figure 3.1. This works by defining two additional parameters a, b that set the

space from which the class parameters are drawn.

Definition 3.1.1 For F,K,N,M ∈ N+ and a, b ∈ R+ the random HGM is given

by the sampling procedure sk ∼ U([F, 2F ]), νk ∼ U([−a, a]F ), Γk ∼ W(F, b · 1F )

and Λk ∼ W(F, 1F ). It has Class-Mean-Distance a and Class-Scale-Variance b.

For the random HGM in Figure 3.1 we choose to draw the means of the Class-

Gaussians from a large area so that the classes are very distinct from each other.

The further away the classes are, the easier it will be for an algorithm to cluster

the units correctly. Similarly the dashed black curves indicate the covariance of

the Class-Gaussians. The larger the variance within a class, the more outliers

will add noise to the dataset. The same holds for the Class-Wisharts and its

covariance matrices. We can see that the green class on the lower left has larger

variation: some of its units show a different shape in their samples than others.

However, all covariances within a class are samples from the same Wishart, so

their distance should be smaller compared to the covariances of units in other

classes.
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3.1.2 Proof of Concept

Now that we have properly defined a HGM, we can set the parameters in such

a way that the information about the unit means is not enough to cluster the

dataset correctly, while the Wasserstein t-SNE approach would successfully do so.

In Figure 3.2 we can see a HGM that consists of K = 4 classes, two of which share

the same Gaussian while two of them share the same Wishart. On the right the

respective embeddings are shown. The Euclidean embedding expectedly doesn’t

capture the structure of the dataset. Its two clusters have multiple labels in

it (orange-blue and red-green). Pure information about covariance isn’t enough

neither, so the Covariance embedding at the bottom only finds two clusters as well

(blue-green and orange-red). The convex combination of both, the Wasserstein

embedding, however separates all four classes from each other and can therefore

be considered superior in this setting.

Euclidean embedding (λ=0) Wasserstein embedding (λ=0.5)

Covariance embedding (λ=1)
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Figure 3.2: Proof of Concept. On the left a HGM is defined with K = 4 classes.
On the right the respective embeddings are shown. On the lower right corner the
nearest neighbor accuracy is plotted for 10 different values of λ.

3.1.3 Interpretation of λ

While it is obvious that in our method λ ∈ {0, 0.5, 1} represents the Euclidean,

Wasserstein and Covariance distance, it is not intuitive what the values for λ in

between should represent. In a way λ puts emphasis on either the means or the

covariance. We saw in Chapter 2 why this might be important. The problem we

will face later is that even for large variations of unit correlations, the means will

dominate the Wasserstein distance. A HGM which shows this effect is given in
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Figure 3.3. This random HGM has large variation in its Class-Wisharts, however

the Class-Mean-Distance is very small so all classes are on top of each other. As

one can see on the lower right, the kNN accuracies increase until λ = 0.6 which

might be an indication that the distance in covariance is a little more important

than the distance of the means. In the Wasserstein embedding on the top right

both these distances are weighed equally. However, this effect will become clearer

when we look at real-world data, which is the topic for the next two sections.
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Figure 3.3: Random HGM with embeddings. On the left a HGM is defined with
K = 7 classes. On the right the respective embeddings are shown. On the lower
right corner the nearest neighbor accuracy is plotted for 10 different values of λ.

3.2 European Value Study 2017-2020

The first example of real-world data analyzed in this thesis is the European

Values Study (EVS). From 2017 to 2020 this 40 year old study has been up-

dated for each European country. It is available at the database of GESIS [3].

Its topics cover relevant demographic aspects such as views on morality, politics,

economy etc. Moreover the NUTS-2 region of each participant is encoded in the

questionnaire, so this dataset suits the hierarchical setting. In our analysis a

NUTS-2 region will represent a unit from which we have as samples the partici-

pants of that region. In the first steps we will fit Gaussians to each unit and do

the Gaussian Wasserstein analysis. Later however, we will be able to compute

the exact pairwise Wasserstein distance for all units and construct the exact em-

bedding. In Figure 3.4 we can see as a first example the histograms for Poland

and Switzerland in two features.
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Figure 3.4: Correlation in the European Values Study. Histogram of survey
results for two countries and two features. Answer options range from 1 (disagree)
to 10 (agree). A Gaussian fit is given by the dashed red curve.

3.2.1 Preprocession

The EVS contains 107 questions, of which only a third offer numeric values as

answers. We will focus on these as the others are difficult to compare numeri-

cally. In particular we chose 34 questions which are given in the Appendix A.1.

Moreover we stretched all of the possible answers to an interval [1, 10], since some

questions had a smaller range.

Secondly we noted that in the dataset no NUTS-2 regions for Germany are

given. In the documentation we found that they were omitted since otherwise it

would have been possible to track individuals from their NUTS-2 region. As a

workaround we used the higher NUTS-1 level for Germany instead, which corre-

sponds to the 16 states.

An important question when dealing with survey data is how to use incomplete

samples. For example, some participants answered only part of the questions.

For this analysis we threw away all incomplete questionnaires. In that way we

can calculate covariances without having to impute missing data. Of course a

more sophisticated solution to this problem is possible, such as nearest neighbor

imputation. Lastly we omitted all regions which had less that 40 participants,

since it would not have been very accurate to compute covariances otherwise.

Logit transformation

We will later see that the Gaussian approximation of the units is not very accu-

rate. To model bimodal distributions as well, we considered to transform the data

with a logit function and then fit Gaussians in logit-space. However, we eventu-

ally decided to leave out this transformation as it didn’t improve the embeddings

significantly. For completeness we put the results in the Appendix B.2.
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Euclidean embedding (λ=0) Wasserstein embedding (λ=0.5)

Wasserstein embedding (λ=0.75) Covariance embedding (λ=1)

Figure 3.5: EVS Gaussian Wasserstein Embeddings. For four values of λ the
resulting embedding is shown. The upper left embedding corresponds to taking
the means only, whereas the lower right embedding only considers distance of
covariances. The embeddings in between are using the interpolated distances.

3.2.2 Gaussian Wasserstein Embeddings

To get an overview of the dataset we run t-SNE with three different parameters

λ ∈ {0, 0.5, 1} and obtained the embeddings in Figure 3.5. The Euclidean em-

bedding on the left shows meaningful structure: Western and Eastern Europe is

separated with Italian and Czech regions bridging the two clusters. On the right

the same structure is visible in the Covariance embedding, however not as sharp.

Moreover the substructure of both the Western and Eastern cluster is lost. The

Wasserstein embeddings in the middle, which are a combination of both, resemble

the Euclidean embedding. This is not surprising since not much new information
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is contributed by the Covariance embedding. A legend to the figure is provided

in the Appendix A.3.

Feature Analysis

To find out from which features the structure of the embeddings emerge, we can

encode the unit means by size of the flags. From Figure 3.6 it is obvious that

religion plays a dominant role in the structure, but also other questions have

a clear gradient in the Eastern-Western direction. This indicates that the unit

means alone are able to capture the structure of the dataset. In that sense, the

covariances might be additional noise to the unit means and do not contribute

much to a more structured embedding.

God is important in my life I am satisfied with the government Environmental threats are exaggerated

Figure 3.6: EVS Feature analysis. The size of the label flag indicates the mean
response to the question in that region. The Euclidean distance is used to embed
the units.

Accuracy of Gaussian Approximation

Another reason why the Euclidean embedding seems better than the Wasserstein

embedding could be that the Gaussian approximation of the units is inaccurate.

It was easy to see in Figure 3.4 that the Gaussian fit is far from accurate. Another

more drastic example was shown in Figure 1.3 in Chapter 1 where Albania had

a bimodal distribution in one feature. Due to the Gaussian approximation this

information might me weakened. In the next section we will therefore compute the

exact Wasserstein distance to check whether it can strengthen the contribution

of the higher moments.

3.2.3 Exact Wasserstein Embedding

Using the Linear Program described in Section 2.2 we computed the pairwise

Wasserstein distance of all N = 193 NUTS-2 units. This procedure took 17 hours
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on a desktop computer and was only possible at all if we reduced the samples

size to maximally Sn ≤ 1000. However only few units had significantly more

participants (e.g. Iceland). In Figure 3.7 we compare the distance matrices of the

Gaussian approximation and the exact Wasserstein distance. The differences are

obvious: the Gaussian approximation systematically underestimates the distance,

which might be due to the fact that multi-modal distributions collapse when

being fitted by a Gaussian as in Figure 1.3. On the right the ratio of the absolute

differences is given with most ratios being higher than r ≥ 0.4. Despite the

differences being quite large, the structure of both matrices looks similar. Due

to the adaptive perplexity in the t-SNE algorithm it is understandable why in

the resulting embeddings both methods show a similar structure. The respective

figure is found in the Appendix 3.8.
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Figure 3.7: EVS Distance matrices. The exact Wasserstein distances are com-
pared to the Gaussian approximations. On the right their relative difference is
visualized.

Comparison to Euclidean Embedding

The ambition of the analysis was to find out whether Wasserstein t-SNE could

improve a standard embedding, i.e. the Euclidean embedding. In the case of

the Gaussian approximation this seemed not to be true. Now we want to inquire

whether the exact Wasserstein distance embedding shows a qualitatively different

structure. In Figure 3.8 we highlighted the unit Île de France (Paris). While this

region had been assigned to the French cluster in the Euclidean embedding, it

now stands alone in a different part of the embedding. Is this an artefact of the

t-SNE initialization? Or does it represent a variation in the distance matrix?

One way to find out is to calculate the nearest neighbors of Île de France. In

Figure 3.9 we see that its eight nearest neighbors are all French units when using

the Euclidean distance. The result for the Wasserstein distance is rather different.

Only two of the top-30 neighbors are French. This indicates that the structure

in the Wasserstein embedding is not a t-SNE artifact. It could be a meaningful
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Île de France

Exact Wasserstein embedding

Île de France

Euclidean embedding (λ=0)

Figure 3.8: EVS Wasserstein t-SNE embedding. Left: Exact Wasserstein dis-
tance was used. Right: Euclidean distance was used. In both embeddings the
unit Île de France is highlighted.

variation from which arises the hypothesis that in Paris, the capital, different

features correlate. However, we have to take into account that all Wasserstein

distances are very close to each other. After computing the affinity matrix the

aversion of the unit against other French units might not remain significant. We

will discuss later that it might be a general disadvantage of our method that the

Wasserstein distance introduces a lot of noise to the distances. This emerges from

the noise in the covariances.
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Figure 3.9: Nearest Neighbors of Île de France. The Wasserstein metric is an
extension of the Euclidean distance so its values are strictly larger.
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3.3 German Federal Election 2017

The German Federal Election (GER) is divided into 299 voting districts, each of

which consists of roughly 150-850 poll stations. For simplicity we exclude voting

by mail. In this analysis one voting district will be considered as a probability

distribution over poll stations, i.e. the poll stations are samples from the voting

district as in Figure 3.10. We shall find that certain parties correlate differently

within all over the country. We thus find structure in the covariance of the units

and observe different clusters for different λ.
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Figure 3.10: German Federal Election 2017. Left: Two urban voting districts of
the same type with their distribution of poll stations. Right: Two voting districts
with different types.

3.3.1 Preprocession

The GER dataset is available online [4] but comes in absolute numbers, i.e. for

each poll station the absolute number of votes per party are given. Voting by mail

is registered with a completely different scheme so we have to omit these votes.

As a first step we excluded any party that isn’t active in all states, in particular

this means that we only consider the main six parties, where we merged the

Bavarian CSU into the national CDU. This is relevant, because otherwise spatial

information could be directly inferred from the correlation of (non-active) parties.

Secondly we computed the percentages from the absolute votes, that is, we divide

by the number of voters per poll station. This erases information about the size

of the poll station and is important because cities have a different poll station

density than rural areas.
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Thirdly we define labels for each voting district. For this analysis we chose the

corresponding state. We consider this choice reasonable since different states may

show different voting behavior. However it is far from obvious that the structure

in the dataset should be able to separate the datapoints into well distinguished

clusters of different labels.

Finally, since all percentages of the parties lie in the interval [0, 1] we observed

that the variance of a party result is dependent on the mean, e.g. that a party with

mean zero can’t have any variance. In the Appendix we show a brief analysis of

this mean-variance correlation and apply a variance stabilizing transformation.

However, for this section we keep the percentages as they are since it doesn’t

make any difference for the embeddings.

Euclidean embedding (λ=0) Wasserstein embedding (λ=0.5)

Wasserstein embedding (λ=0.75) Covariance embedding (λ=1)

Figure 3.11: GER Gaussian Wasserstein Embeddings. For four values of λ the
resulting embedding is shown. The upper left embedding corresponds to taking
the means only, whereas the lower right embedding only considers distance of
covariances. The embeddings in between are using the interpolated distances.
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3.3.2 Gaussian Wasserstein Embeddings

Using the Gaussian approximation we can again compute the pairwise distances

of the units and embed the voting districts as in Figure 3.11. In the Euclidean

embedding we see three clusters. The legend in the Appendix A.5 shows that these

clusters could be labeled as southern Germany, western Germany and eastern

Germany. The Covariance embedding on the right however shows a different

structure. There are again three clusters but with different units assigned to

them: the cluster in the middle contains mostly cities. This cluster wasn’t as

isolated in the Euclidean embedding. The Wasserstein embedding, since it is an

interpolation with λ = 0.75, combines both structures. Interestingly we can see

all four clusters here. This specification qualifies the dataset for deeper analysis.

It seems likely that we get a finer structure in the embedding if we as well consider

the covariance of districts into the distance.

Features

Before we start analyzing where the difference in correlation emerges from, we

can take a look at the mean structure. Which features are responsible for the

embedding? From feature embeddings in Appendix A.6 it becomes clear that

the AfD is mainly responsible for the separation of Eastern Germany, while DIE

GRÜNEN and CDU yield finer gradients in the big cluster at the top. A more

detailed analysis of the mean features as well as a legend with all names of the

districts is given in the Appendix A.5.

Correlations

To understand the structure in covariance that was present in Figure 3.11 we

can visualize the pairwise correlation of the parties for each district as in Figure

3.12. We used the Gaussian Wasserstein embedding which showed four distinct

clusters, so that we can easily distinguish different areas and their interpretation.

One can see that certain features (e.g. AfD and SPD) correlate in cities, but anti-

correlate in eastern Germany. What causes this different correlation of parties?

This would be an interesting topic of research for political scientists, we however

can only speculate. A very general interpretation could be that both SPD and

AfD are considered to be working class parties in western Germany. In the east

however workers on the left traditionally vote DIE LINKE, so the SPD is rather

an option for the middle class. The spatial separation of working and middle

class is then reflected in the voting results of different poll stations.

In the Appendix we show more such examples. Moreover we find that the corre-
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CDU with SPD CDU with AfD CDU with FDP CDU with DIE LINKE CDU with GRÜNE

SPD with AfD SPD with FDP SPD with DIE LINKE SPD with GRÜNE AfD with FDP

AfD with DIE LINKE AfD with GRÜNE FDP with DIE LINKE FDP with GRÜNE DIE LINKE with GRÜNE

Figure 3.12: Visualization of Party Correlations. The Gaussian Wasserstein
embedding with λ = 0.75 is used to cluster the units. The colors represent the
correlation of the respective parties in that voting district, red being high (1) and
blue being anti-correlation (-1).

lation is not independent from the means. This is indicated by Figure A.7 which

shows structure in the correlation without using this information for the embed-

ding. While one can imagine that the variance of a random variable depends on

its mean if it is sampled from a closed interval, it is unclear why the correlation

should be dependent on the mean. We did experiments to apply a variance stabi-

lizing transformation to the data. The results of these experiments can be found

in the Appendix B.3.

FULL Covariance embedding (λ=1) DIAGONAL Covariance (Variance) NORMALIZED Covariance (Correlation)

Figure 3.13: GER Covariance analysis. On the left only the marginal variances
were included into the distance measure, while on the right the covariance was
normalized to correlation.
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Covariances

The Covariance embedding in Figure 3.11 shows a clear structure. Where does

this structure emerge from? Covariance can be seen as a combination of correla-

tion and marginal variance. In Figure 3.13 we show these two different aspects

with their embeddings. The Variance embedding in the center suggests that the

structure in covariance is rather due to marginal variance of each individual fea-

ture as the structure is similar to the embedding on the left. However we can

observe from the right embedding, that also correlation shows structure and is

therefore not negligible.

3.3.3 Exact Wasserstein Embedding

As explained in Section 2.2 we can use a Linear Program to calculate the Wasser-

stein distance of two sampled probability distributions. We did this for all
299×298

2
= 44551 combinations to compare whether the exact Wasserstein dis-

tance was different from the Gaussian approximation. In Figure 3.14 we can

see that indeed the results are quite similar. This indicates that the Gaussian

approximation was appropriate.
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Figure 3.14: GER Distance matrices. The exact Wasserstein distances are
compared to the Gaussian approximations. On the right their relative difference
is visualized.

Comparison to Euclidean Embedding

To understand if the method includes new information to the visualization, the

exact Wasserstein t-SNE embedding is compared to the Euclidean embedding in

Figure 3.15. We see that the structure is rather similar. But, however, a few

datapoints are embedded differently by the two approaches. Berlin-Neukölln for

example is put to the cluster of cities by the Wasserstein approach, but to eastern

Germany in the Euclidean embedding. This is again due to the nearest neighbors

of the district: while in the Euclidean distance matrix Berlin-Neukölln has as
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top-3 nearest neighbors Berlin-Pankow, Potsdam and Berlin-Mitte (all eastern

Germany), the Wasserstein distance yields nearest neighbors from the cluster of

cities.

Berlin-Neukölln

Exact Wasserstein embedding

Berlin-Neukölln

Euclidean embedding (λ=0)

Figure 3.15: GER Wasserstein t-SNE embedding. Left: The exact Wasserstein
distance was used to embed the dataset. Right: As a comparison the Euclidean
embedding is shown. The voting district Berlin-Neukölln is highlighted in both
embeddings.

A visualization of the nearest neighbors for Berlin-Neukölln is given in the Ap-

pendix A.9. While the Wasserstein metric adds distance to all of the units, those

from eastern Germany have the strongest increase. More of these examples can

be found in other areas of the embedding. The question remains whether these

novelties are meaningful. When we look again at Figure 3.10 we see that Berlin-

Neukölln has in fact an interesting structure of the poll stations, which is almost

bimodal. Units like these make Wasserstein t-SNE an interesting method to

experiment with.
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Chapter 4

Discussion and Outlook

In this thesis we introduced Wasserstein t-SNE to visualize hierarchical datasets.

The method uses a more sophisticated distance measure than collapsing each

unit to its mean. We first looked at synthetic data, i.e. we designed the data in a

way that the unit covariances contained information, and then showed that the

method is able to visualize the structure in the embedding. Finally we applied

Wasserstein t-SNE to real-world data and investigated whether there, too, we

could find structure in the covariances.

4.1 Summary

While it had been very straight forward to design a proof of concept in Sec-

tion 3.1.2, it turned out to be difficult to find a real-world datasets on which

our method significantly changed the outcome. We tried the European Values

Study in the hope, that the bimodal division of today’s political landscape would

yield units that share the same mean but have different covariances. We could

find those examples, e.g. in Figure 1.3, but their effect was not strong enough

to be meaningfully visible in the Wasserstein t-SNE embedding. The analysis in

Section 3.2 showed that information about the means is sufficient to find roughly

the same structure that our method finds with full information. However, small

differences in the embeddings such as Île de France indicate that on a small scale

the method could yield an improvement for other datasets.

The second dataset that we analyzed was the German Federal Election. Again

we found small variations in the embedding, e.g. the position of Berlin-Neukölln

changed. This special voting district is politically divided as we saw in Fig-

ure 3.10. The unit consists of samples that either vote largely for the AfD or

DIE LINKE. That indicated that the voters for the respective parties live spa-

tially separated, while in other units voters for these parties live in the same

neighborhood. The exact Wasserstein distance, using the Linear Program solver,

could take this bimodal structure of the unit into account. However there were

only few such cases. Mostly the means dominated the covariances. A particular

benefit of the λ-interpolation was then, that we were able to obtain finer struc-

ture, i.e. the interpolated distance with λ = 0.75 yielded an embedding which
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showed four clusters instead of three. The feature to put more weight on the

covariance is not possible with the exact Wasserstein distance but only with the

convex generalization of the Wasserstein distance for Gaussians.

A third dataset, the Big-Five Personality Survey, was also analyzed. Since the

results didn’t vary much from the results of the previously mentioned datasets,

we put that section in the Appendix B.1.

4.2 Future Work

In the multiverse of datasets we will continue to look for promising candidates to

show the benefits of our method. But also other experiments could be done which

are related to the topics of this thesis. In this section we give a small overview of

possible extensions without going much into detail. These are sketches of projects

which could help to understand the methods further or even improves it.

4.2.1 Distances of Covariances

As we have seen in the analysis, our intuition about the distance of Gaussian

distributions is slightly off. Figure 4.1 indicates that a rotation of the covariance

matrix doesn’t change much of the distance which is in fact dominated by the

means. However, these experiments were only in low dimensions. It could be

interesting to design experiments that investigate the behavior of covariance dis-

tances in higher dimensions. As the parameters of a covariance matrix increase

quadratically with the dimension and the parameters of the mean linearly, it

seems reasonable to observe an effect here.
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Figure 4.1: Distance of Covariance matrices. Five colored Gaussian distri-
butions have equal 2-Wasserstein distance di to the reference Gaussian in the
center.
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4.2.2 Improving the Runtime

Another problem that we came across was the computation time of the exact

Wasserstein distance. We noted that for higher dimensions the histogram of the

sample space will be almost uniform, since it will become very unlikely that two

individual share the same feature vector for a large feature space. In that case

the Linear Program could become an Integer Problem which is known to be NP-

complete [19]. That may be the reason why the computation time we measured in

Figure 2.5 almost increased exponentially. There could consequentially be more

efficient ways to compute the Wasserstein distance for this special case. Another

possibility could be to estimate it from a sample subset as we have seen that also

for small sample size the distance is reasonably accurate.

4.2.3 Finding more Use-Cases

The most urgent improvement however is the discovery of a clear use case, i.e. a

hierarchical dataset where a large part of the information is encoded by covari-

ance. This dataset is difficult to find due to two reasons: First, the dataset needs

to come in hierarchical form with many units so that an embedding actually

makes sense. Secondly, the information in the means must not be sufficient. The

units should either be bimodal or show even more complicated distributions of

their samples so that the Gaussian fits and moreover the means lack significant

information. In the following we will describe possible datasets that we could

image to work well, but which we haven’t found yet.

Medical Data

The medical dataset that we have in mind is a study among patients. The units

correspond to individuals and the samples are multiple measurements of features

about the patient. For example, N = 1000 patients have 100-200 cells each.

Each cell is defined by a set of features (e.g. shape, size). We want to embed the

patients in 2D to find structure within the dataset. Rather than taking the mean

of the cells as feature vector for each patient, we also take into account their

feature covariances. The embedding could then reveal that certain correlations

lead to a phenotype (e.g. sickness) of the patient which we would be using as

labels.

Time Series

An interesting hierarchical dataset could as well involve time series. An example

for such data could be the daily weight of individuals. We infer the Gaussian
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Process for the time series and compute the Wasserstein distance of them, since

a closed-form solution of the 2-Wasserstein distance for Gaussian Processes has

recently been proposed [20]. Similarly, we could use multiple measurements of the

same time series and compute the point-wise variances. A problem that arises in

this scenario is that the temporal structure might be lost in the distance measure.

Topic Model

Another idea that regularly comes up is a dataset based on bag-of-words represen-

tations. While the units in such a dataset are intuitive (e.g. books, TV-shows)

the problem we encounter here is the lack of a metric space. A bag of words

doesn’t let us easily define a distance other than component-wise metrics such as

the Kullback-Leibler divergence. This however quickly diverges from the general

design of the experiment in this thesis and would then lead to a different kind of

model.

4.2.4 Inferring a HGM

The final extension that we thought about is connected to the HGM in Section 3.1.

Similar to the Expectation-Maximization algorithm for Gaussian Mixture Mod-

els [21] one could think about inferring the parameters of the HGM from a given

hierarchical dataset. The properties of the Wishart and Gaussian distributions

might qualify the model for a deeper analysis. The benefit of an algorithm to infer

the parameters of a HGM would be that it would yield a generative model from

which we could sample new units. Furthermore we would have a quantification of

how good the fits are and thus be able to compare different settings with respect

to their likelihood. The derivation of that algorithm might get fairly complicated

however and was therefore left for future research.
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Appendix A

Supplementary Material

Table A.1: Questions in the EVS dataset. Each row corresponds to a question
asked in the questionnaire with answers ranging from 1 to 10.

I have complete control over my life Someone like me can do much for environment
I am satisfied with my life There are more important things than environment
God is important in my life Others should start to protect the environment
I consider myself ’on the right’ Environmental threats are exaggerated
Everyone is responsible for him/herself Do you justify: claiming state benefits
The unemployed should take any job Do you justify: avoiding a fare on public transport
Competition is good Do you justify: cheating on tax
Incomes should be made equal Do you justify: accepting a bribe
Private ownership should be increased Do you justify: homosexuality
My country is governed democratically Do you justify: prostitution
I am satisfied with the government Do you justify: abortion
Immigrants take jobs away Do you justify: divorce
Immigrants make crime problems Do you justify: euthanasia
Immigration is a strain on welfare system Do you justify: suicide
Immigrants should maintain their traditions Do you justify: having casual sex
I would give money for the environment Do you justify: death penalty

Exact Wasserstein embedding Wasserstein embedding (λ=0.5)

Figure A.1: Goodness of Gaussian Approximation in EVS. Left: The Wasser-
stein t-SNE embedding of the EVS is shown. Right: The Gaussian distances with
λ = 0.5 were used to embed the comparison.
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Figure A.2: Legend of the Wasserstein EVS embedding. The names of the
respective NUTS-2 regions are given as annotations to the country flags.

38



AL01

AL02AL03

AM01
AM02

AM03
AM04

AT12

AT13

AT21

AT22
AT31

AT32

AT33

AZ-BA

AZ-GOR

AZ-HAC
AZ-ZAR

BABIH

BABRC

BASRP

BG31

BG32

BG33

BG34

BG41

BG42

BY01

BY02

BY03

BY04
BY05

BY06

BY07

CH01

CH02

CH03

CH04 CH05CH06

CH07

CZ01

CZ02

CZ03

CZ04

CZ05
CZ06

CZ07
CZ08

DE1
DE2

DE3

DE4

DE7

DE9

DEADEB

DED

DEE

DEF

DK01

DK02

DK03

DK04

DK05

EE00

ES21

ES30 ES51

ES52

ES61

FI19

FI1B

FI1C

FI1D

FR10 FRB0

FRD1

FRE1

FRF3
FRG0

FRH0FRI1

FRJ2

FRK2FRL0

GE01

GE02

GE03

HR03

HR04

HU11

HU12

HU21

HU22

HU23

HU31

HU32HU33

IS00

ITC1

ITC3

ITC4 ITF3ITF4

ITF6

ITG1

ITG2

ITH3

ITH5
ITI1

ITI4

LT01

LT02

ME00MK00

NL11

NL12

NL13

NL21

NL22

NL31

NL32

NL33

NL41

NL42

NO01

NO02

NO03

NO04

NO05
NO06

NO07

PL21

PL22

PL41

PL42

PL51

PL63

PL84

PL91

PL92

PT11

PT16

PT17

PT18

RO11

RO12

RO21

RO22

RO31

RO32

RO41

RO42

RS11

RS12

RS21

RS22

RU11RU21

RU31

RU41

RU51

RU61

SE11
SE12

SE21

SE22

SE23

SE31

SE32

SE33

SI03

SI04

SK01

SK02

SK03

SK04

UKC2

UKD3
UKE3

UKE4

UKF1

UKG1
UKG2

UKH1

UKI7

UKJ1

UKJ2

UKK1
UKK4

UKL1

UKM8

Figure A.3: Legend of the Euclidean EVS embedding. The names of the respec-
tive NUTS-2 regions are given as annotations to the country flags.
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Braunschweig

Helmstedt – Wolfsburg

Goslar – Northeim – Osterode

Göttingen

Bremen I

Bremen II – Bremerhaven

Berlin-Reinickendorf

Berlin-Spandau – Charlottenburg Nord

Berlin-Steglitz-Zehlendorf

Berlin-Charlottenburg-Wilmersdorf

Berlin-Tempelhof-Schöneberg
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Figure A.4: Legend of the Wasserstein GER embedding. Names of the voting
districts are given as annotations to the emblem of its state.
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Lübeck

Hamburg-Mitte

Hamburg-Altona

Hamburg-Eimsbüttel
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Figure A.5: Legend of the Euclidean GER embedding. Names of the voting
districts are given as annotations to the emblem of its state.
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CDU AfD GRÜNE

SPD DIE LINKE FDP

Figure A.6: GER Feature analysis. For six different parties the mean percentage
of votes is encoded in the size of the emblem. The coordinates of each unit are
given by the Wasserstein embedding.

CDU with SPD CDU with AfD CDU with FDP CDU with DIE LINKE CDU with GRÜNE

SPD with AfD SPD with FDP SPD with DIE LINKE SPD with GRÜNE AfD with FDP

AfD with DIE LINKE AfD with GRÜNE FDP with DIE LINKE FDP with GRÜNE DIE LINKE with GRÜNE

Figure A.7: Party Correlations in Euclidean embedding. The Euclidean embed-
ding is used to cluster the units. The colors represent the correlation of the re-
spective parties in that district, red being high (1) and blue being anti-correlation
(-1).
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Euclidean embedding (λ=0) Wasserstein embedding (λ=0.5) Wasserstein embedding (λ=0.75)

Wasserstein embedding (λ=0.875) Wasserstein embedding (λ=0.9475) Covariance embedding (λ=1)

Figure A.8: Evolution of embeddings with increasing λ. For six values of λ the
resulting embedding is shown. The upper left embedding corresponds to taking
the means only, whereas the lower right embedding only considers distance of
covariances. The embeddings in between are using the interpolated distance.
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Figure A.9: Nearest Neighbors of Berlin-Neukölln. The red districts are from
the cluster of eastern Germany, the districts in black are among the cluster of
cities. The 2-Wasserstein metric is an extension of the Euclidean distance so its
values are strictly larger.

43



Appendix B

Supplementary Analysis

Throughout this thesis we mentioned some experiments, which we did but didn’t

include in the analysis. In this chapter we will show them for the sake of complete-

ness. The following results are additional work and can be considered completely

independent from the rest of the project.

B.1 Big-Five Personality Traits

A third dataset that we analyzed was the Big-Five Personality Online Survey

2016 [7] (BIG5). It contains the personality traits of over two million participants

and is hosted on Kaggle. After an extensive preprocession we used a clean subset

of the data where it is insured that every participant is only included once. We

particularly chose samples where the completion time is neither too short nor

too long and furthermore constrained the number of participants per country to

range from 60 to 12000. Thus 120 countries remained with a total of 219584

participants.

Table B.1: Big-Five Personality Traits. The rows of this matrix corresponds to
individual personality traits of citizens of that country. The hierarchical form of
the dataset is due to multiple participants per country.

AGR CSN EST EXT OPN
United Arab Emirates 4.8 4.6 1.9 1.8 4.7
United Arab Emirates 2.1 4.3 2.5 1.5 4.7
United Arab Emirates 4.5 2.1 3.2 1.9 3.5
United Arab Emirates 3.9 2.4 2.0 1.4 3.9
United Arab Emirates 3.9 2.4 1.6 3.0 4.6
... ... ... ... ... ...
Zimbabwe 3.5 4.6 2.4 2.1 4.9
Zimbabwe 3.1 3.4 2.0 2.8 4.7
Zimbabwe 2.9 2.2 2.9 4.8 4.4
Zimbabwe 4.6 3.6 1.9 1.7 4.6
Zimbabwe 4.3 3.5 3.5 1.5 4.6
[219584 rows x 5 columns]
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Figure B.1: Legend of the Euclidean BIG5 embedding. This embedding was
created with the t-SNE algorithm. The five colors represent the five personality
traits. In the lower left corner the mean personality is given. Each unit is
annotated by its deviation from the mean.
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The Big-Five model is used to describe personality traits by the main components:

Agreeableness (AGR), Conscientiousness (CSN), Neuroticism (EST), Extraver-

sion(EXT) and Openness to Experience (OPN) [22]. The BIG5 survey measured

each trait by 10 questions which can be answered from one to five. If we average

the answers per trait we obtain Table B.1. However, to find structure in the

covariance we kept the full information. In any case, Figure B.2 shows that the

questions related to the same trait correlate with each other, but there is also

some other structure in the correlation. China for example shows clean squares

while for other countries such as Germany or Russia the second and third trait

anti-correlate. This corresponds to the independence of the personality traits.

The Big-Five model was developed in the USA so it is reasonable to assume

that it is particularly adapted. This could lead to an interesting structure in the

correlation.

China (784) Germany (10549) Iran, Islamic Republic of (291) Myanmar (64)

Russian Federation (2347) Tanzania (62) United States (12000) Venezuela (852)

Figure B.2: Correlation of questions related to the same trait. For eight coun-
tries the correlation of participant’s answers to the 50 questions is indicated by
red (1) and blue (-1).

While we have shown the Euclidean embedding of the BIG5 dataset in the in-

troduction, we now want to compare it to its Wasserstein embedding. Does the

correlation in Figure B.2 have an effect? In order to compute the exact Wasser-

stein distances we decreased the sample size of some units to a maximum value

of 500. Otherwise the computation would have been too long. In Figure B.3

we show the exact Wasserstein embedding of the dataset. We observe that the

structure is still present, however not as sharp as in Figure 1.4.

The reason why the distinct clusters are lost in the exact Wasserstein embedding

might again be the addition of noisy information. For the small range of possible

answers from one to five the inclusion of covariance might not be very meaningful.
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country flags continent labels

Figure B.3: BIG5 Wasserstein embedding (flags from [8, 9]). Left: t-SNE
embedding of the mean personality per country using the flag of the country.
Right: Each unit is visualized by its label (continent).

B.2 Logit Transformation

We have stated in Chapter 3.2 that the EVS data is not normally distributed for

some units. The full information with the Wasserstein metric however added too

much noise. A compromise would be to apply a logit transformation to the data

and fit the Gaussians in logit-space.

Definition B.2.1 Let σ(x) = 1/(1 + e−x) the logistic (sigmoid) function. Its

inverse is called the logit function and is defined as

logit(p) = σ−1(p) = ln

(
p

1− p

)
for p ∈ (0, 1)

Before we can apply the transformation properly to the data we add noise on top

of the samples in order to get small derivations around the bins. Otherwise the

transformation would use only ten bin-values as well and could not improve the

shape of the fit. Also we have to squeeze the data into the interval (0, 1) which is

done linearly. The process of the transformation can be seen in Figure B.4. The

results of the embedding however did not change much.
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Figure B.4: Logit Transformation of EVS units. For different countries the orig-
inal data is shown as well as the transformation to logit-space and transformation
of the Gaussian fit backwards (score).
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B.3 Variance Stabilization

We observed another problem in the analysis of the German Election, namely

that there seems to be a correlation of the means and the variances. This is not

surprising if we look at the space from which the samples are drawn. Percentages

naturally lie in the interval [0, 1]. A unit with low mean must also have low

variance, e.g. for µ = 0 and µ = 1 we must have σ = 0. The closer the units

means are to µ = 0.5, the higher standard deviation σ is possible. Therefore

the quantities correlate. A way to disentangle mean and variance is given by the

Variance Stabilization Transformation [23] which reads for binomial distributions

T (Y ) =
√
n arcsin(

√
Y

n
).

Figure B.5 show the steps of this transformation on the GER dataset, where we

compare for each unit and feature the standard deviation and mean. Interestingly,

the last factor of
√
n of the transformation yields correlation again. This is an

indication that information is encoded in the size of a poll station as well, e.g. that

cities have less poll stations per voting district and thus larger number of votes

per station. Instead of introducing this prior knowledge into the analysis we

rather left out the transformation.
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Figure B.5: Variance Stabilizing Transformation in GER. Four steps of the
variance stabilization are shown.
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