
Probabilistic solvers enable a straight-forward exploration of numerical
uncertainty in neuroscience models

Jonathan Oesterle1, Nicholas Krämer2, Philipp Hennig2,3, Philipp Berens1,2

1 Institute of Ophthalmic Research, University of Tübingen
2 Department of Computer Science, University of Tübingen
3 Max Planck Institute for Intelligent Systems, Tübingen, Germany

* philipp.berens@uni-tuebingen.de

Abstract

Understanding neural computation on the mechanistic level requires models of neurons and neuronal net-
works. To analyze such models one typically has to solve coupled ordinary differential equations (ODEs),
which describe the dynamics of the underlying neural system. These ODEs are solved numerically with de-
terministic ODE solvers that yield single solutions with either no, or only a global scalar bound on precision.
It can therefore be challenging to estimate the effect of numerical uncertainty on quantities of interest, such
as spike-times and the number of spikes. To overcome this problem, we propose to use recently developed
sampling-based probabilistic solvers, which are able to quantify such numerical uncertainties. They neither
require detailed insights into the kinetics of the models, nor are they difficult to implement. We show that
numerical uncertainty can affect the outcome of typical neuroscience simulations, e.g. jittering spikes by mil-
liseconds or even adding or removing individual spikes from simulations altogether, and demonstrate that
probabilistic solvers reveal these numerical uncertainties with only moderate computational overhead.

1 Introduction 1

Computational neuroscience is built around computational models of neurons that allow the simulation and 2

analysis of signal processing in the central nervous system. These models can describe neural computations on 3

different levels of abstraction. On the statistical level, e.g. generalized linear models have been used to provide a 4

probabilistic model mapping environmental variables to neural activity [1]. For such statistical models, quantifying 5

the uncertainty of the parameters can be achieved using Bayesian approaches [2]. On the mechanistic level, the 6

models typically take the form of systems of coupled ordinary differential equations (ODEs), which describe the 7

dynamics of the membrane potential and give rise to the spike-times [3, 4]. Recently, likelihood-free inference 8

approaches have made it possible to perform uncertainty-aware inference even for such complicated mechanistic 9

models [5–7]. 10

However, mechanistic models of neurons are subject to an additional source of uncertainty: the numerical 11

error caused by the solution of the model’s ODEs with a concrete algorithm [8]. This arises because all numerical 12

solvers are necessarily run with finite time and limited resources, so their estimate diverges from the true solution 13

of the ODE, even if the problem is well-posed. When simulating neurons, one would like to compute a numerical 14

solution close to the true solution of the ODE, to ensure that conclusions drawn from the simulations are based 15

on the mechanisms described by the model rather than the specific choice, setting and implementation of the 16

ODE solver. 17

Many of the well-established numerical solvers do report a global error estimate and a corresponding tolerance 18

that can be set by the user [9, Chapter II.4]. This global scalar error, though, does not capture how the numerical 19

error arising from finite step-sizes used in practice affects crucial quantities of interest in the simulation, such as 20

spike-times or the number of spikes. In practice, it can therefore be challenging to select a tolerance that strikes 21

a good balance between run time and accuracy. 22

For some of the most common mechanistic models in neuroscience like the Hodgkin-Huxley or Izhikevich 23

neuron model, errors in numerical integration have been studied in detail for a range of solvers and different 24

integration step-sizes [10–12]. These studies have shown that standard solvers are often not the best choice in 25

terms of accuracy or the accuracy vs. run time tradeoff. Therefore, the authors of these studies proposed to use 26

specific solvers for the analyzed models, e.g. the Parker-Sochacki method for the Hodgkin-Huxley and Izhikevich 27

neuron [10], an exponential midpoint method [11] or second-order Strang splitting [12] for Hodgkin-Huxley-like 28

models. While improving computations for the specific problems, applying these to other scenarios requires a 29

detailed understanding of the kinetics of the neuron model of interest; and while choosing a “good” solver for a 30

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

given model is important, it is typically not necessary to choose the “best” ODE solver. In many cases, it can be 31

sufficient to ensure that the computed solution is within a certain accuracy. 32

As a more general approach to quantify the numerical uncertainty in mechanistic models in neuroscience, we 33

therefore propose to use probabilistic ODE solvers [8, 13, 14]. In contrast to classical ODE solvers, this class of 34

solvers does not only yield a single solution, but instead a distribution over solutions that quantifies the numerical 35

uncertainty. 36

Several frameworks for probabilistic ODE solvers have been proposed, which differ mostly in the tradeoff 37

between computational cost and flexibility of the posterior, from fast Gaussian filters [15–17] to sampling-based 38

approaches [18–22]. These solvers have been mostly tested for well-behaved systems with well-behaved solutions, 39

but the ODEs used to simulate neural activity model the non-linear membrane dynamics that underlie the all-or- 40

none nature of an action potential. Here, we use two related approaches of probabilistic ODE integration, the state 41

perturbation proposed by Conrad et al. [18] and the step-size perturbation of Abdulle and Garegnani [22]. Both 42

build on existing explicit, iterative ODE solvers and stochastically perturb the numerical integration of individual 43

steps taken by the underlying solvers. These perturbations make the solution of every step probabilistic and 44

therefore of the solution as a whole. The magnitude of the perturbation has to be calibrated, such that the 45

solver’s output distribution reflects the numerical uncertainty in the solution. 46

Here, we explore the potential of probabilistic ODE solvers for neuron models. We show how probabilistic 47

solvers can be used to quantify and reveal numerical uncertainty caused by the numerical ODE integration and 48

demonstrate that the solver outputs are easy to interpret. For this, we simulate typical neuron models, namely the 49

Izhikevich neuron model [23], as a representative of leaky-integrate-and-fire neuron models, single-compartment 50

Hodgkin-Huxley models [24] and a model with three synaptically coupled Hodgkin-Huxley-like neurons [25] as an 51

example of a neuronal network model. Lastly, we discuss practical considerations and limitations of probabilistic 52

solvers such as the calibration of the perturbation and the computational overhead. 53

Taken together, our results suggest that probabilistic ODE solvers should be considered as a useful tool for 54

the simulation of neuronal systems, to increase the quality and reliability of such simulations over those achieved 55

with classic solvers. 56

2 Methods and Models 57

2.1 Probabilistic solvers 58

Simulating neuron models typically amounts to solving an initial value problem (IVP) based on a set of coupled
ODEs. In abstract form, an initial value problem is given by

ẋ(t) = f(t,x(t)), x(t0) = x0, (1)

where f , x0 and t0 are known and x(t) for t > t0 is the quantity of interest. The solution to the initial value 59

problem at time t+ ∆t provided the solution at time t, is given by integrating Eq. (1) from t to t+ ∆t: 60

x(t+ ∆t) = x(t) +

∫ t+∆t

t

f(s,x(s)) ds. (2)

Except for special cases, this integral has no analytic form and must be solved numerically. For example, the 61

forward Euler method approximates the integral as
∫ t+∆t

t
f(s,x(s)) ds ≈ ∆t · f(t,x(t)). To simulate a neuron, 62

Eq. (2) is solved iteratively, which results in a sequence of solutions X = [x(t0), x(t1), x(t2), ..., x(tN)] for a set 63

of time points with ti+1 > ti and a maximum time point tN . Standard solvers yield a deterministic solution in 64

every step, and therefore for the solution X as a whole. In contrast, the probabilistic solvers used in this study 65

stochastically perturb the numerical integration used to approximate Eq. (2), which makes the solution of every 66

step—and therefore of the whole solution—probabilistic. For a given IVP and solver, one can therefore generate 67

a sample distribution of solutions X by repeating the iterative numerical integration from t0 to tN multiple times. 68

To create these probabilistic solvers, we implemented the state perturbation algorithm of Conrad et al. [18] and 69

the step-size perturbation algorithm of Abdulle and Garegnani [22]. 70

In the state perturbation algorithm [18], in each step of the numerical integration, a small i.i.d. noise term ξt 71

is added to the solution xdet(t+ ∆t) of a corresponding deterministic integration scheme: 72

xprb(t+ ∆t) = xdet(t+ ∆t) + ξt, ξt ∼ N (0, diag(νt)
2), (3)

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

t0 t0 + t
t

x0

x1x(
t)

f(t0, x0)

xdet(t0 + t)

x1 = xexact(t0 + t)

xprb(t0 + t)A

0 1
(xprb(t + t))

0 t
0

10(
t)B

t0 t0 + tt0 + t
t

x0

x1x(
t)

f(t0, x0)

xdet(t0 + t)

x1 = xexact(t0 + t)

xprb(t0 + t)

0 1
(xprb(t + t))

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

50
0

50

v(
t)

C

Figure 1: Illustration of probabilistic ODE solvers. (A) Left : A single integration step with a probabilistic
forward Euler method using the state perturbation method [18] for the ODE f(t, x(t)) = 3 · x(t) · sin(t+ 3) and
the exact solution x(t) = exp(−3 · cos(t + 3)) (black curve). We set t0 = 0 and the step-size to ∆t=0.1. The
exact solution at t = t0 + ∆t is highlighted (black dot). A first order solution is computed using forward Euler:
xdet(t + ∆t) = x0 + ∆t · f(t0, x0) (xdet: green dot, f : blue arrow). Right : The probability density function ρ of
xprb(t+ ∆t), where xprb(t+ ∆t) is the output of the probabilistic step. In the state perturbation, ρ is a normal
distribution with mean xdet(t+ ∆t) and a standard deviation based on a local error estimator (see Section 2.1).
A random sample is shown for illustration (red dot). (B) Similar to (A), but for the step-size perturbation
method [22] using a log-normal perturbation distribution. Instead of integrating from t0 to t0 + ∆t, the ODE is
integrated from t0 to t0 +ζt, where ζt is randomly drawn from a log-normal distribution (top panel). The solution
of this perturbed integration xdet(t+ζt) (green circle) is then used as the solution xprb(t+∆t) of the probabilistic
step (red dot), making xprb(t+ ∆t) a random variable with a distribution ρ(xprb(t+ ∆t)) (right panel), that has
no general analytical form but is dependent on the ODE and the solver. Therefore, ρ(xprb(t+∆t)) is shown as an
empirical histogram and a kernel density estimate. (C) Simulations of an Izhikevich neuron with a deterministic
(green dashed line) and a probabilistic forward Euler method using state perturbation (two samples: red and
orange).

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

where νt controls the magnitude of the perturbation. The perturbation is only efficient when νt is of the right 73

order: if chosen too small, the uncertainty will be underestimated; if chosen too large, it will render the solver 74

output useless. Conrad et al. [18] suggested calibrating νt to replicate the amount of error introduced by the 75

numerical scheme. We chose νt = σεt using the error estimator εt readily available in methods that were de- 76

veloped for step-size adaptation (see Appendix A), and a scalar perturbation parameter σ that can be adjusted 77

to calibrate the perturbation. If not stated otherwise, we used σ=1. An example of this perturbation method is 78

shown in Fig. 1A for a single integration step and in Fig. 1C for an Izhikevich neuron model. 79

80

A related approach to stochastically perturbing the numerical integration was proposed by Abdulle and 81

Garegnani [22], where noise is added to the integration step-size (i.e. to the “input” of the solver, rather than the 82

“output”, cf. Fig. 1B). The numerical integration is performed using the perturbed step-size ζt, but the computed 83

solution is treated as the solution for the original step-size ∆t: 84

xprb(t+ ∆t) = xdet(t+ ζt), ζt ∼ P, (4)

where ζt is the i.i.d. perturbed step-size drawn from a distribution P and xdet(•) is a deterministic integration 85

scheme that approximates Eq. (2). For example, for the forward Euler method Eq. (4) would be computed as 86

xprb(t + ∆t) = xdet(t) + ζt · f(t,xdet(t)). Abdulle and Garegnani [22] defined three properties the i.i.d. random 87

variables ζt should fulfill: 88

• P (ζt > 0) = 1, where P is the probability, 89

• there exists ∆t such that E[ζt] = ∆t, and 90

• there exist p ≥ 0.5 and C > 0 independent of t such that E[(ζt −∆t)2] = C ·∆t2p+1. 91

Based on these restrictions, they proposed, as an example, to use a log-normal distribution: 92

ζt ∼ LN t(m, s
2), (5)

where the mean m and standard deviation s of the underlying normal distribution should be chosen such that 93

E[ζt] = ∆t and E[(ζt − ∆t)2] = C · ∆t2p+1 hold for some C > 0 and p ≥ 0.5 independent of ∆t. m and s can 94

therefore be defined as: 95

m = ln(∆t2/φ),

s =
√

2 ln(φ/∆t),

φ =
√
E2[ζt] + Var[ζt] =

√
∆t2 + C ·∆t2p+1.

(6)

Using p = O, where O is the order of the method, ensures that the mean-squared convergence order of the 96

method is not changed. We therefore used p = O throughout. We further generalized the example provided by 97

Abdulle and Garegnani [22] in which C = 1 to a parametrized distribution by setting C = σ2, i.e. setting φ = 98√
∆t2 + σ2 ·∆t2O+1. The introduction of the perturbation parameter σ allows to—similarly to the perturbation 99

parameter used in the state-perturbation—adjust and calibrate the magnitude of perturbation. If not stated 100

otherwise, we used σ=1. The perturbation is illustrated in Fig. 1B for the first order forward Euler scheme. 101

2.2 Choice of solvers 102

We used the perturbation methods described above to create probabilistic versions of the solvers listed in Table 1. 103

Table 1: Summary of the ODE solvers used in this paper.

Abbr. O Oe Method & Error estimate

FE 1 2 Forward Euler with Heun’s method for error estimation.
EE 1 Exponential Euler.
EEMP 2 Exponential Euler Midpoint [11].
RKBS 3 2 Bogacki–Shampine, an embedded Runge-Kutta method [26].
RKCK 4 5 Cash–Karp method, an embedded Runge-Kutta method [27].
RKDP 5 4 Dormand–Prince, an embedded Runge-Kutta method [28].

O and Oe are the orders of the solution and the error estimator, respectively.
See Appendix B for details.

104

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

The usage of fixed (f) and adaptive (a) step-sizes is indicated with subscripts, and the perturbation method 105

is indicated using the superscripts—x for the state perturbation [18] and t for the step-size perturbation [22]— 106

meaning that e.g. FEf
x is referring to a forward Euler method using fixed step-sizes and the state perturbation. 107

For the exponential integrators, we chose to only use the step-size perturbation because it preserves the important 108

property of these solvers that the activation and inactivation variables can not leave the interval [0, 1], and also 109

because there are no established methods for local error estimation for these methods. 110

The second order exponential integrator EEMP was implemented based on the version by Börgers and Nectow 111

[11] (Appendix B), which is a modification of the midpoint method by Oh and French [29]. Computation of 112

Runge-Kutta steps and step-size adaptation were based on the respective scipy implementations [30]. To avoid 113

computational overhead, we only computed the local error estimates when necessary, i.e. for adaptive step-sizes 114

or the state perturbation. 115

2.3 Interpolation 116

The iterative solvers used in this study yield solutions for x(t) on either a fixed and equidistant grid of time points 117

T or, in the case of adaptive step-size solvers, on a finite set of time points T automatically chosen by the solver. 118

To interpolate these solutions for example for spike-time estimation (see Section 2.4), we used linear interpolation 119

for FE, EE and EEMP between solutions of single steps. To interpolate the steps of the Runge-Kutta methods 120

we utilized the “dense output” implemented in the respective scipy methods [30]. These “dense outputs” allow 121

to evaluate the solution between two steps x(ti) and x(ti+1) for any t with ti ≤ t ≤ ti+1 without any additional 122

ODE evaluation. To not discard the effect of the state perturbation during interpolation, we defined the dense 123

output d̂RK(t, ti, ti+1) for a state perturbed Runge-Kutta step from time ti to ti+1 as: 124

d̂RK(t, ti, ti+1) = dRK(t, ti, ti+1) +
t− ti

ti+1 − ti
ξti , (7)

where dRK(t, ti, ti+1) is the dense output of the respective deterministic Runge-Kutta step and ξti is the per- 125

turbation noise that was added to this step to compute x(ti+1) (see Eq. (3). This is a simplified version of the 126

continuous-time output proposed by Conrad et al. [18]. 127

2.4 Spike-time estimation 128

To determine spike-times based on simulated voltage traces v(t), we interpolated the ODE solutions for all steps 129

where v(t) started from below and ended above a certain threshold voltage vth. For lineally interpolated solutions 130

(Section 2.3) we computed spike-times as follows. For every step from a time ti to ti+1 with v(ti) < vth ≤ v(ti+1) 131

we estimated the respective spike-time tspike as: 132

tspike =
vth − v(ti)

ti+1 − ti
. (8)

To estimate spike-times for Runge-Kutta methods with “dense-outputs”, we utilized scipy’s “brentq” root finding 133

algorithm to determine the time point tspike when the threshold is reached, i.e. |v(tspike)−vth| < ε, with ε = 1e−12. 134

2.5 Common ODE models in computational neuroscience 135

In this study, we use probabilistic ODE solvers to analyze the effect of numerical uncertainty in the following 136

neuroscience models: 137

• The Izhikevich neuron model with a wide range of dynamics, 138

• the Hodgkin-Huxley neuron model, 139

• and a small network of Hodgkin-Huxley neurons. 140

We picked these models to cover both single neuron models and models of neuronal networks. 141

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

2.5.1 Single Izhikevich neurons 142

The Izhikevich neuron (IN) model is a simplified non-linear single neuron model that has been used e.g. to build 143

large-scale models of the brain [31] and to understand oscillatory phenomena in the cortex [32,33] and the olfactory 144

bulb [34]. An attractive property of the IN is that a whole range of different response dynamics can be simulated 145

(Fig. S1) depending on the setting of the parameters θ = [a, b, c, d] [23]. The IN is described by the following pair 146

of ODEs [32]: 147

v̇(t, v, u) = 0.04 · v2 + 5 · v − u+ IStim(t),

u̇(t, v, u) = a(b · v − u),
(9)

where v is the membrane potential, u is a recovery variable and IStim is a given input current. Whenever the 148

threshold is reached, i.e. v(t) ≥ 30, a “spike” is triggered and the neuron is reset in the next time step of the 149

simulation: 150

v(t+ ∆tspike) = c,

u(t+ ∆tspike) = u(t) + d,
(10)

where ∆tspike ≥ 0. Typically ∆tspike = ∆t is used, but to facilitate the comparison between different step- 151

sizes we used ∆tspike = 0 instead. The reset is problematic, because it introduces an error of order O(∆t) [10], 152

independent of the solver scheme. This is because spikes can only occur after a full step of integration and the 153

value u(t+ ∆tspike) in Eq. (10) is dependent on the previous value u(t). 154

To address this problem, we implemented two complementary strategies. Fist, we adapted Eq. (9) such that 155

whenever v̇ and u̇ would have been evaluated for v(t) ≥ 30—which can only happen for multi-stage methods—the 156

derivatives were evaluated for v(t) = 30 instead. Second, we implemented the strategy suggested by Stewart et 157

al. [10]: Every step resulting in a reset is split into two intermediate steps, a step until the threshold is reached, 158

and a step after the reset. For this, the spike-time tspike during such as step was estimated as described in 159

Section 2.4 with a threshold of vth = 30. Then, the pre-reset step solution x(tspike) was approximated based on 160

the interpolation strategies described in Section 2.3. And finally, the post-reset step solution x(tti) was computed 161

by resetting (see Eq. (10)) and integrating x from tspike to tti . 162

2.5.2 Single Hodgkin-Huxley neurons 163

Hodgkin-Huxley (HH) models [24] are widely used to simulate single and multi-compartment neurons. We study 164

both the classical HH neuron [24] and a single compartment HH-like neuron model [35] prominently used to study 165

the stomatogastric ganglion (STG) [25]. Both models are described by ODEs including the membrane potential 166

v(t) described by: 167

v̇(t) = (IStim(t)−
∑

iIi(x)) /C, (11)

where C is the membrane capacitance, IStim is the stimulation current and Ii are membrane currents. These 168

membrane currents are described by the following equation: 169

Ii(x) = ḡi ·mi(x)pi · hi(x) · (v − Ei), (12)

where Ei is the reversal potential of the current, ḡi is the maximum channel conductance, pi are integer exponents, 170

and mi and hi are activation and inactivation functions. mi and hi were modeled by the following differential 171

equations: 172

ṁ(v) = (m∞(v)−m) /τm(v), ḣ(v) = (h∞(v)− h) /τh(v), (13)

where m∞, τm, h∞, and τh are voltage dependent functions defining the channel’s kinetics. For non-inactivating 173

channels, hi is removed from Eq. (12). In the classical HH model, this amounts to a 4-dimensional ODE [36]. 174

For the STG neuron, which has eight instead of two membrane currents and also implements a model for the 175

intracellular calcium concentration, the ODE is 13-dimensional [35]. The respective parametrizations can be 176

found in Appendix C. 177

We simulated the HH neuron’s response to two different input current IStim, a step and a noisy step stimulus. 178

Both stimuli were 200 ms long, with IStim(t) = 0 for t < tonset and t ≥ toffset, where tonset = 10 ms and toffset = 179

190 ms. The amplitude of the step stimulus for tonset ≥ t < toffset was IStim(t) = 0.2 mA. The amplitude of the 180

noisy step stimulus were created by drawing 99 values from a uniform distribution between 0.0 mA and 0.4 mA 181

that were spaced equidistantly between tonset and toffset. These points were interpolated using a cubic spline with 182

endpoints at tonset and toffset. At the endpoints both IStim and its derivative were set to zero. The single STG 183

neuron was simulated for 3 s using a step stimulus starting at tonset = 0.9 s with an amplitude of IStim(t) = 3 nA. 184

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

2.5.3 STG model 185

The STG neuron model described above was used by Prinz et al. [25] in a network of three synaptically cou- 186

pled neurons, ABPD, LP and PY, to study their firing patterns in dependence of the synaptic and neuronal 187

parametrizations. In the model, there are seven synapses connecting the neurons, that are either modeled as slow 188

or fast synapses. The postsynaptic input current Ii to a neuron is described by: 189

Ii(x) = ḡi · si(x) · (v − Ei), (14)

where, similarly to Eq. (12), Ei is the reversal potential of the current, ḡi is the synapse’s maximum conductance, 190

v is the membrane potential of the postsynaptic neuron and s is the activation function of the synapse. s is 191

described by the following differential equation: 192

ṡ = (s̄− s) /τs,

s̄ = (1 + exp((−35 mV − vpre)/5 mV))
−1
,

τs = (1− s̄)/fs,
(15)

where vpre is the membrane potential of the presynaptic neuron and τs and fs are constants (see Appendix C). 193

2.6 Quantifying numerical uncertainty 194

2.6.1 Reference solutions 195

None of the aforementioned neuron models has an analytical solution. It is therefore not possible to compare 196

simulations to the true solutions of the respective IVPs. As a substitute, we computed reference solutions using 197

a deterministic RKDPa solver with a tolerance of κ=1e−12 and a maximum step-size dependent on the model 198

investigated (0.01 ms for IN and HH; 0.1 ms for the STG model). To obtain a reference solution at the same time 199

points of a given fixed step-size solution X = [x(t0), ...,x(tM)], we forced the reference solver to evaluate x(t) 200

at least at all time points T = [t0, ..., tM] of the given solution. For this, in every step in which the adaptive 201

reference solver automatically picked a step-size that would skip any ti in T by taking a too large step-size ∆ti−1, 202

the step-size ∆ti−1 was clipped such that the step was evaluated exactly at x(ti). All solutions x(t) for t not 203

in T were dropped before the comparison. To compare adaptive step-size solvers to reference solutions, we also 204

forced these solvers to evaluate time points on a grid T = [t0, ..., tM] with time points space equidistantly using 205

a distance of 1 ms. 206

2.6.2 Distance metrics 207

To estimate the uncertainty for a given neuron model and solver, we computed multiple solutions (samples) with 208

the same probabilistic solver to obtain a distribution of solutions. Based on these sample distributions and the 209

respective reference solutions, we evaluated the distributions of sample-sample distances and sample-reference 210

distances. For this, we computed the Mean Absolute Error (MAE) between single traces of the ODE solutions 211

as a distance measure. If not stated otherwise, MAEs were computed on the simulated membrane potentials, 212

because this is typically the quantity of interest. For two traces of equal size a = [a0, ..., aM] and b = [b0, ..., bM] 213

the MAE was defined as: 214

MAE =
1

M

M∑
i=0

|ai − bi|. (16)

For n samples from a probabilistic solver, we computed the sample-sample distance distribution MAESM as the 215

n MAEs between single samples and the mean trace of the other n − 1 samples. Sample-reference distance 216

distributions MAESR were computed as the n MAEs between single samples and the reference solution. In some 217

cases, we also computed the distance between the solution of a corresponding deterministic solver to the reference 218

solution, abbreviated as MAEDR. 219

2.7 Code and availability 220

The probabilistic solvers and models were implemented in Python and Cython. The code is available at https: 221

//github.com/berenslab/neuroprobnum. 222

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://github.com/berenslab/neuroprobnum
https://github.com/berenslab/neuroprobnum
https://github.com/berenslab/neuroprobnum
https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

3 Results 223

In this study, we explored the potential of probabilistic ODE solvers in computational neuroscience. First, we 224

study the effect of numerical uncertainty on simulations of neuron models and qualitatively show that probabilistic 225

solvers can reveal this uncertainty in a way that is easy to interpret. Second, we provide examples and guidelines 226

were probabilistic solvers can be useful when conducting a new study. Third, we analyze potential drawbacks of 227

probabilistic solvers, such as computational overhead. 228

3.1 Probabilistic solvers can reveal numerical uncertainty in neuron models 229

To demonstrate the effect of numerical uncertainty on simulations of single neuron models, we first simulated the 230

classical HH neuron with the step stimulus (Fig. 2A). We computed solutions with a deterministic and probabilistic 231

EE solver for a step-size of ∆t=0.25 ms. Additionally, we computed a reference solution. We found that the exact 232

spike-times of the deterministic EE solver differed substantially from the reference solution (spike-time difference 233

tdet
spike − tref.

spike of the first three spikes: 0.7 ms, 2.8 ms, 4.5 ms). The probabilistic solver revealed this numerical 234

uncertainty with spike-times varying substantially between samples (standard deviation (SD) of the spike-time 235

tspike for the first three spikes over all 20 samples: 0.2 ms, 0.9 ms, 1.2 ms). 236

Next we simulated single INs with different parametrizations θi and response dynamics [23]. Using the original 237

step-sizes ∆t and input currents Ii, we compute solutions with the original solver scheme—which is related to 238

a FEf solver (Appendix B)—a deterministic FE scheme and a probabilistic FEf
t solver. We found, that for 239

the “Inhibition-induced spiking” neuron all solvers produced similar spiking patterns in response to a negative 240

current step (Fig. 2B). However, the original solver produced longer intervals between the spikes compared to 241

the reference, resulting in only three instead of four spikes. The deterministic FE solution matched the reference 242

better (e.g. both had four spikes), but the spike-times were still off by several milliseconds (spike-time difference 243

tdet
spike − tref.

spike of the last two spikes: 8.2 ms, 3.9 ms). The probabilistic solver revealed this numerical uncertainty 244

(SD of the spike-time tspike of the four spikes: 3.7 ms, 5.0 ms, 6.6 ms, 4.1 ms). 245

Similarly, for the “Inhibition-induced bursting” neuron the solution from the original solver and the deter- 246

ministic FE solver were qualitatively broadly consistent with the reference solution (Fig. 2C). In all simulations, 247

the neuron responded with spike bursts to a negative stimulus current step. The spike-times and the number of 248

spikes of the original solution (nspikes = 11) and the deterministic FE solution (nspikes = 14) differed substantially 249

from the reference (nspikes = 33) though, with the FE solution having only two bursts instead of three during 250

the simulated period. Here, the probabilistic solver revealed the substantial uncertainty in the spike-times and 251

number of spikes (nspikes = 14.4 (SD 2.5), where n denotes the sample mean), with more than half of the samples 252

having a third burst (Fig. 2C, bottom). All 16 simulated parametrizations are shown in Fig. S1. 253

To provide an example of a neuronal network, we simulated the STG model for two parametrizations (Figs. 2D 254

and 2E) that only differ in their synaptic conductances (see Section 2.5.3). We computed solutions with a reference 255

solver, a deterministic and a probabilistic EE solver. We focused the analysis on the LP neuron for simplicity. For 256

the first parametrization (Fig. 2D), the LP neuron showed continuous spiking in all simulations. Similar to the HH 257

neuron, we found differences in the exact spike-times and number of spikes between the reference (nspikes = 17) 258

and the deterministic EE solution (nspikes = 13). The uncertainty was again revealed by the probabilistic solver 259

(nspikes = 14.6 (SD 1.3); Fig. 2D). The second parametrization resulted in a different spiking behavior of the 260

LP neuron. Here, the neuron started to fire at a high frequency for a prolonged time after approximately two 261

seconds. In the reference solution, the neuron continued to fire. In contrast, in the deterministic solution, 262

the neuron stopped after about another two seconds to then start another burst shortly later. While this also 263

happened in all generated samples from the probabilistic solvers, the sample distribution still indicated a high 264

uncertainty about the duration of the firing periods (Fig. 2C). Simulations of all five synaptic parametrizations 265

from the original paper [25] are shown in Fig. S2. 266

Finally, we turned to a single STG neuron and stimulated the response to a step stimulus (Fig. 3) based on the 267

original publication [35]. Here, we compared the numerical uncertainty in two different state variables, namely 268

the voltage v(t) (Fig. 3A) and the intracellular calcium Ca(t) (Fig. 3B). We found that the numerical uncertainty 269

differed strongly between these state variables, and was much higher for v(t) (Fig. 3). While this is expected 270

because of the transient and brief nature of spikes in contrast to the slower changing calcium, it highlights the 271

power of probabilistic ODE solvers, as they can guide the choice of the solver and step-size parameter dependent 272

on the quantity of interest and the desired accuracy without requiring detailed knowledge about the model and 273

its kinetics. 274

275

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

Figure 2: Neuron simulations can be subject to substantial numerical uncertainty. (A) Simulations
of the classical HH model for the step stimulus IStim (normalized stimulus in gray). Solutions for v(t) are shown
for a reference solver (black) and a deterministic EE solver with ∆t=0.25 ms (orange). Bottom panel : Spike-
times of the reference (black), the deterministic EE solution (orange) and for 20 samples from a probabilistic
EEf

t solver with ∆t=0.25 ms (blue). (B, C) Simulations of the IN model for two different parametrizations θi
(see Appendix C) and stimuli IStim (normalized stimuli in gray). Solutions for v(t) are shown for a reference
solver (black), the original solver scheme (green) and a deterministic FE solver (orange). Based on the original
publication, the step-size ∆t was set to 0.5 ms for all but the reference solver. For plotting, v(t) were clipped
at 30. Bottom panels: Spike-times are shown for the reference (black), the original solver solution (green), the
deterministic FE solution (orange) and for 20 samples from a probabilistic FEf

t solver (blue). Samples were sorted
by the number of spikes. (D, E) Simulations of the STG model for the two different synaptic parametrizations
(see Appendix C) θb

syn and θd
syn, respectively. Solutions for the membrane potential v(t) of the LP neuron are

shown for a reference solver (black) and a deterministic EE solver with ∆t=0.1 ms (orange). Bottom panels:
Spike-times of the LP neuron are shown for the reference (black), the deterministic EE solution (orange) and for
20 samples from a probabilistic EEf

t solver with ∆t=0.1 ms (blue). Samples were sorted by the number of spikes.

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

v(t)A Ca(t)B

50
0

50

y(
t)

0.00

0.25 ref.
mean

0

100
Ab

so
lu

te
Er

ro
r

0.00

0.05 mean
q(10-90)

0 1 2 3
Time (s)

0

2

R
el

at
iv

e
Er

ro
r

0 1 2 3
Time (s)

0

2
mean
q(10-90)

Figure 3: Numerical uncertainty can vary between state variables. (A, B) Simulations of a single STG
neuron in response to a step-stimulus (gray, top row). Solutions were computed using a reference solver and by
drawing 100 samples from a EEf

t solver with ∆t=0.1 ms. The reference solution (black) and the mean over the
samples (blue) is shown for two state variables: the membrane potential v(t) (A, second row) and the intracellular
calcium Ca(t) (B, second row). For both state variables, the absolute error AE(t) = |ysample(t) − yref.(t)| (third
row) and the relative error RE(t) = |ysample(t)−yref.(t)|/max(|ysample(t)|, |yref.(t)|) (bottom row) between sample
and reference traces are shown as means and the 10th and 90th percentiles over all samples, respectively.

= 1e 3A = 1e 5B = 1e 7C

0
60v(

t) 0
60

0
60

060v(
t) 060 0

60

0 50
Time (ms)

1

20
det.
ref.

Sa
m

pl
e

0 50
Time (ms)

1

20
det.
ref.

0 50
Time (ms)

1

20
det.
ref.

1e-3 1e-5 1e-7
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 s

am
pl

es
w

ith
 z

er
o

sp
ik

es

D

Figure 4: Numerical uncertainty affects also higher order methods. (A-C) Simulations of the classical
HH model for the step stimulus IStim with an amplitude of 0.022 523 5 mA (normalized stimulus in gray). Solutions
for v(t) are shown for a reference solver (black) and a deterministic RKDPa solver with κ=1e−3, κ=1e−5 and
κ=1e−7, respectively (orange). Bottom panels: Spike-times of the reference (black), the deterministic solutions
(orange) and for 20 samples from probabilistic RKDPa

x solvers with κ=1e−3, κ=1e−5 and κ=1e−7, respectively
(blue). (D) Fraction of samples (n = 20) from the probabilistic solvers in (A-C) that had no spike, shown as
mean and standard error. All other samples had exactly one spike.

All the examples in Fig. 2 used first order methods. To also provide an example where higher order solvers 276

with low tolerances yield solutions qualitatively different from the reference solution, we simulated the classical 277

HH neuron’s response for 50 ms to a step stimulus with an amplitude of 0.022 406 mA and tonset = 10 ms and 278

toffset = 40 ms. This amplitude did not evoke a single spike in the reference solver (Fig. 4A), but was very close 279

to the threshold, i.e. slightly larger amplitudes (e.g. 0.022 410 mA) did produce a spike for the reference solver. 280

When simulating this model with a RKDPa solver, we found that for tolerances of κ=1e−3 and κ=1e−5 the 281

solutions did contain a spike (Figs. 4A and 4B). Only a tolerance as small as κ=1e−7 yielded a solution with no 282

spike for this solver (Fig. 4C). Simulating the model with probabilistic solvers revealed this numerical uncertainty 283

for both κ=1e−3 and κ=1e−5, with a fraction of samples containing one and a fraction containing zero spikes in 284

both cases (Fig. 4D). 285

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

A

0 25 50 75 100 125 150 175 200
Time (ms)

0
60v(

t)

10
3

10
4

ODE evaluations

10
2

10
0

Sa
m

pl
e-

R
ef

er
en

ce
 M

AE

B

EEt
f

EEMPt
f

FEt
f

RKBSx
a

10
3

10
4

ODE evaluations

10
2

10
0

Sa
m

pl
e-

Sa
m

pl
e

M
AE

C

10
2

10
0

Sample-Reference MAE

10
2

10
0

Sa
m

pl
e-

Sa
m

pl
e

M
AE

D

Figure 5: Probabilistic solvers can be used to compare different solver schemes. (A) Reference solutions
of v(t) (black) for the Hodgkin-Huxley model stimulated with the noisy step stimulus (normalized stimulus in
gray). (B) Mean Absolute Errors MAESR between sample traces of v(t) and the respective reference solutions for
different solver schemes (legend) and step-sizes / tolerances. Mean Absolute Errors from 100 samples are shown
as medians (dots) and 10th to 90th percentiles (vertical lines) as a function of the number of ODE evaluations of a
corresponding deterministic solver (x-axis). (C) As in (B), but for sample-sample Mean Absolute Errors MAESM.
(D) As in (B), but for sample-sample Mean Absolute Errors MAESM vs. sample-reference Mean Absolute Errors
MAESR.

3.2 Probabilistic solvers can guide solver selection 286

To demonstrate how probabilistic ODE solvers can be used to compare the accuracy vs. run time tradeoff between 287

different solver schemes, we simulated the HH neuron’s response to the noisy step stimulus (Fig. 5A) using the 288

following probabilistic solvers: EEf
t, EEMPf

t, FEf
t and RKBSa

x. To this end, we computed the Mean Absolute 289

Error between voltage trace samples v(t) and the reference (MAESR) for each solver as an estimate of the numer- 290

ical error induced. We compared these errors to the number of ODE evaluations a corresponding deterministic 291

solver would need. We found that the exponential integrators EE and EEMP allowed computing solutions with 292

the fewest ODE evaluations, as they terminated successfully even for the relatively large step-size ∆t=0.5 ms 293

(Fig. 5B). In contrast, when using the FE solver, all step-sizes ∆t � 0.05 ms resulted in floating-point overflow 294

errors and therefore in both useless and incomplete solutions. However, when choosing a sufficiently small step- 295

size of ∆t ≤ 0.05 ms the samples obtained with the FE method had on average a smaller error compared to the 296

EE method (Fig. 5B). From the methods tested, the adaptive RKBS method was the most efficient one, i.e. it 297

produced the most accurate solutions for the fewest number of ODE solutions, but it also required a substantially 298

higher number of minimum ODE evaluations to successfully terminate compared to the exponential integrators 299

(Fig. 5B). 300

301

In principle, a very similar analysis could also have been done with deterministic solvers. However, probabilistic 302

solvers have two advantages. First, they yield sample distributions instead of single solutions which make it 303

possible to compute confidence intervals etc. when comparing different solver outputs. Second, and more crucially, 304

probabilistic solvers do not require a reference solution to estimate the numerical error in a solution. For a 305

sufficiently calibrated probabilistic solver, the sample distribution, i.e. the solver’s output, can be used to estimate 306

the numerical error of the solver. In Fig. 5C we computed the sample-sample distances MAESM, which are 307

independent of the reference, for the same samples used in Fig. 5B. We found that the mean sample-reference 308

distances MAESR were highly similar to the respective mean sample-sample distances MAESM for all solvers 309

(Figs. 5B–5D). Therefore, the solver comparison described above could have also been based on MAESM instead 310

of MAESR, and therefore would not have required a reference solution. 311

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

3.3 Calibration of probabilistic solvers 312

The mean sample-sample distance MAESM is only then a good approximation to the mean sample-reference 313

distance MAESM (as for example in Fig. 5) when the probabilistic solver is well calibrated. Ideally, the magnitude 314

of the perturbation is large enough to capture the numerical uncertainty of the underlying numerical integration, 315

but it is not too large to severely reduce the accuracy of the integration scheme. To quantify the calibration 316

of different solvers, we therefore defined two metrics, the ratio RN = MAESM/MAESR and the ratio RD = 317

MAEDR/MAESR, where MAEDR is the distance between a corresponding deterministic solution and the reference. 318

RN is close to zero if the perturbation is too small (i.e. the sample-sample distance is much smaller than the 319

sample-reference distance) and close to one if the perturbation is sufficiently large to not underestimate the 320

numerical uncertainty (i.e. the sample-sample distance can be used as an approximate measure of the sample- 321

reference distance). RD is close to one if the perturbation is either too small to affect the model output (i.e. all 322

samples are approximately equal to the deterministic solution) or if samples are on average approximately equally 323

close to the reference than the deterministic solution. RD converges to zero, if the perturbation is too large and 324

the perturbation severely reduces the solver accuracy. Note that RD can also take values larger than one, which 325

happens when the perturbation increases the solver accuracy on average (e.g. see Fig. 2C). This happens for 326

example when the deterministic solution is missing a spike but almost reaches the model’s spike threshold, and 327

the perturbation is strong enough to generate the missing spike in some samples. 328

For a well calibrated solver, RN is close to one, such that the sample-reference distance MAESR can be 329

estimated from sample-sample distance MAESM while RD is close to or larger than one, such that the perturbation 330

does not decrease the solver accuracy. 331

The magnitude of the perturbation can be adjusted with the perturbation parameter σ that we defined for 332

both the state and step-size perturbation (see Section 2.1). To analyze how the parameter σ affects the calibration 333

of the perturbation and to test for which σ the solvers are well calibrated, we simulated the classical HH neuron in 334

response to the noisy step stimulus with probabilistic solvers for a range of perturbation parameters (Fig. 6). First, 335

we used a probabilistic EEf
t solver and computed MAESM, MAESR and MAEDR and the ratios of the distribution 336

means RN and RD for five different σ ranging from 0.0625 to 16 (Figs. 6A–6C). We found that with increasing 337

σ, the mean sample-sample distance MAESM converged to the mean sample-reference distance MAESR, and for 338

sufficiently large σ the mean sample-sample distance MAESM could therefore be used as an approximate measure of 339

mean sample-reference distance MAESR (Figs. 6A and 6B). For example, for σ=0.25, the perturbation magnitude 340

was too small and the solver was underestimating the numerical uncertainty: Here, the mean sample-sample 341

distances was much smaller MAESM (0.33) than mean the sample-reference distance MAESR (4.35) (Fig. 6A) 342

with all sample-reference distances distributed narrowly (MAESR 10th to 90th percentiles: [4.14, 4.56]) around 343

the sample-deterministic distance MAEDR (4.36), indicating that all samples were very close to the deterministic 344

solution, despite the numerical error. When using σ ≥ 4, the mean sample-reference distance was higher than the 345

deterministic-reference distance (Figs. 6A and 6C), indicating a loss of solver accuracy caused by the perturbation 346

(e.g. RD = 0.51 for σ=8). The best calibration was achieved with 1 ≤ σ ≤ 4, with distributions of MAESM close 347

to MAESR (RN : 0.51, 0.83 and 0.97 for σ=1, σ=2 and σ=4, respectively; Figs. 6A and 6B) and with the mean 348

sample accuracy close to the accuracy of the deterministic solution (RD: 1.11, 1.08 and 0.74 for σ=1, σ=2 and 349

σ=4, respectively; Figs. 6A and 6C). 350

To provide an overview of the calibration for different solvers settings, we defined the clipped ratio product 351

Rc
SR

c
D = min(RN , 1) ·min(RD, 1), which is ideally close to one. We used clipped values, because in some cases 352

RS and RD took values larger than one which makes their product more difficult to interpret (Fig. S3). Rc
SR

c
D is 353

close to zero for either an underestimation of the numerical uncertainty (Rc
S ≈ 0) or for a too strong perturbation 354

that renders the solver output useless (Rc
D ≈ 0). 355

We computedRc
SR

c
D for different probabilistic solvers and step-sizes—including the EEf

t solver with ∆t=0.025 ms 356

used above—for the HH neuron stimulated with the step and noisy step stimulus (Fig. 6D). The respective values 357

for RN and RD are shown in Fig. S3. We found that the default perturbation parameter σ produced reasonably 358

calibrated solutions in all cases. However, in most cases σ=1 was also not ideal. For EEf
t, larger values (e.g. 359

σ=2 or σ=4) resulted in better calibration, whereas for FEf
t the calibration was improved using smaller values 360

(e.g. σ=0.5 or σ=0.25). The adaptive Runge-Kutta methods RKBS and RKDP were well calibrated for a wide 361

range of perturbation parameters σ, including very small ones (e.g. σ=0.0625), especially in the high tolerance 362

case (κ=1e− 2). This is likely because even small perturbations cause the solvers to take different step-sizes and 363

therefore to evaluate the ODE at different time points. 364

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

Figure 6: Default calibration of probabilistic solvers is good but not optimal. Simulations of the
Hodgkin-Huxley model with different probabilistic solvers and perturbation parameters σ ranging from 0.0625
to 16. (A) Distributions of the Mean Absolute Error between voltage traces v(t) computed with a probabilistic
EEf

t solver with ∆t=0.025 ms, a deterministic version of this solver, and a reference solver for five perturbation
parameters (titles). Solutions were computed for the noisy step stimulus. In each panel: Mean Absolute Error
distributions were computed between 100 samples and the reference as MAESR (blue histograms), between the
samples and the sample mean MAESM (red histograms) and between the deterministic and reference solution
as MAEDR (dashed grey line). Means of the distributions are highlighted (triangles). (B) Ratios of the Mean
Absolute Error distribution means RN = MAESM/MAESR as a function of the perturbation parameter. (C) As
in (B), but for ratio RD = MAEDR/MAESR. (D) Clipped ratio products Rc

SR
c
D = min(RN , 1) ·min(RD, 1) for

different solvers (column titles) and step-sizes ∆t / tolerances κ (panel titles) for the step (grey) and the noisy
step (black) stimulus as a function of the perturbation parameter σ (x-axis).

3.4 Computational overhead 365

Probabilistic solvers based on state or step-size perturbation increase the computational costs for two reasons. 366

First, they are sampling based and require computing multiple solutions for a single IVP. While this process 367

can be parallelized, it may nevertheless come with a computational overhead, especially if it conflicts with other 368

computations using parallelized model evaluation, e.g. in simulation based inference where the same model is 369

evaluated for different model parameters [37, 38]. Second, probabilistic solvers induce a computational overhead 370

per solution computed relative to their deterministic counterparts. We analyzed both aspects in the following. 371

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

Figure 7: The computational overhead of probabilistic solver is moderate. (A,B) Bootstrapped dis-
tributions of normalized sample-sample distances RSM = MAESM-n/MAESM-300 as a function of the numbers of
samples n. RSM-n were computed for the classical HH neuron simulated with a EEf

t with ∆t=0.1 ms (A) and a
RKBSa

x solver with κ=1e−2 (B) for the step (grey) and noisy step (black) stimulus, respectively. Top: Distribu-
tions over log10(RSM) computed by 1000 times repeated random sub-sampling of MAESM-n from all 300 generated
samples. Vertical lines highlight RSM values of 0.67, 1 and 1.5. Bottom: Percentages of the bootstrapped RSM

distributions in the interval [0.67, 1.5]. (C) Relative run times for different solver schemes measured for the classi-
cal HH neuron with the noisy step stimulus. For every solver, 100 samples were simulated for both a probabilistic
and a corresponding deterministic solver. Relative run times were computed by dividing the run times of the
probabilistic samples by the run times of the respective deterministic samples. Distributions were computed by
bootstrapping 10000 ratios and are shown as medians and the 10th to 90th percentiles. The step-size of fixed
step-size methods was ∆t = 0.05 ms and the tolerance of adaptive methods was κ=1e−4. For EE and EEMP,
only the step-size perturbation was used.

3.4.1 Required number of samples 372

To empirically determine the number of samples necessary to obtain a reliable measure of numerical uncertainty, 373

we simulated the classical HH neuron with probabilistic solvers for the step and noisy step stimulus. To this end, 374

we computed mean sample-sample distances MAESM-n for small numbers of samples n, and divided them by the 375

mean sample-sample distances for a much larger number of samples (300) to obtain normalized sample-sample 376

distances RSM(n) = MAESM-n/MAESM-300 (Figs. 7A and 7B). We found that often already two samples were 377

sufficient to get a good estimate of the sample-sample distance. e.g. for the step stimulus and n = 2, more than 378

half of the RSM were in [0.67, 1.5] with little difference between the solvers EEf
t (Fig. 7A) and RKBSa

x (Fig. 7B). 379

3.4.2 Overhead per sample 380

In addition to in the computational overhead caused by the computation of multiple samples, probabilistic methods 381

also come with a computational overhead per solution. For the state perturbation [18] this overhead has three 382

components. First, one needs to compute the local error estimator, which only causes overhead for fixed step-sizes 383

since for adaptive methods the local error estimator needs to be computed anyway. The second potential source 384

of overhead is that the “First Same As Last” property—i.e. that the last stage in one step can be used as the 385

first stage of the next step, which is used in RKBS and RKDP—is not applicable. This is because the last stage 386

is computed before the perturbation, and after the perturbation the evaluation of the ODE is not valid anymore. 387

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

Figure 8: Probabilistic solver only account for errors in numerical integration. (A) Simulations of
the “DAP” IN model with a pulse stimulus IStim (normalized stimuli in gray). Solutions for v(t) are shown for
a reference solver (black), the original solver scheme (green) and a deterministic FE solver (orange). Based on
the original publication, the step-size ∆t was set to 0.1 ms. For plotting, v(t) were clipped at 30. Bottom panel :
Spike-times are shown for the reference (black), the original solver solution (green), the deterministic FE solution
(orange) and for 20 samples from a probabilistic FEf

t solver (blue). Samples were sorted by the number of spikes.
(B,C) Number of spikes for the “DAP” IN model (see Fig. 2C) dependent on the step-size (x-axis) for different
solver methods (legend) for fixed (A) and pseudo-fixed (B) step-sizes, respectively. Number of spikes are shown
for 40 samples as medians, 10th to 90th percentiles (vertical lines) and outliers (stars). The dashed horizontal
line refers to the reference solution (see Fig. 2C).

Lastly, the perturbation itself, which includes sampling form a Gaussian, needs to be computed. 388

In total, this overhead is relatively small for higher order methods optimized for step-size adaptation like RKBS, 389

RKCK and RKDP. For example, the state perturbation for RKDPa increases the number of ODE evaluations 390

per step from six to seven (+16%) due to the loss of the First Same As Last property, and for RKCKa—which 391

does not make use of this property—no additional ODE evaluation is required. However, for first order methods 392

like FE this overhead severely reduces the computational efficiency because instead of a single ODE evaluation 393

per step, a state perturbed version needs two (+100%). Additionally, lower order methods typically require more 394

steps in total compared to higher order methods, because they are typically used in combination with smaller 395

step-sizes. This increases the total computational costs of the perturbation itself, which is done once per step. 396

For the step-size perturbation, the overhead is reduced to the perturbation and, for adaptive step-size methods, 397

the loss of the First Same As Last property. 398

To quantify this overhead empirically, we simulated the HH neuron with different probabilistic solvers and 399

their deterministic counterparts and compared the run times relative to each other. As expected, for the state 400

perturbation, the computational overhead was larger for the lower order methods (Fig. 7C; on average for FEf
x: 401

+91%, RKBSf
x: +44%, RKCKf

x: +22%, RKDPf
x: +30%). The adaptive methods—where the local error estimates 402

were computed not only for the probabilistic, but also for the deterministic methods—showed the smallest increase 403

in run times (+12% on average across all adaptive methods), with RKCKa
x, not using the First Same As Last 404

property, having the least overhead (+8%). For the step-size perturbation, the increase in run times was on 405

average smaller (+15% on average across all methods) and without large differences between the solver schemes 406

and the usage of adaptive or fixed step-sizes. 407

3.5 Limitations 408

Finally, we turned back to the “DAP” IN model, to illustrate limitations of the approach. For this neuron model 409

we had found a large difference in the number of spikes for the fixed step-size methods, like the original solver, 410

compared to the reference solution (Fig. 8A). While the reference solution had eight spikes during the simulated 411

period, the original solution had only one and a deterministic FE solver had two. While the probabilistic solver 412

FEf
t arguably indicated some numerical uncertainty (nspikes = 2.4 (SD 0.7)), the number of spikes was still much 413

lower compared to the reference. To better understand the source of this numerical uncertainty, we simulated the 414

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

“DAP” neuron model with different probabilistic solvers, FEf
t, RKBSf

x and RKDPf
x. 415

First, we simulated the neuron for different fixed step-sizes. We found that all probabilistic solvers underes- 416

timated the true number of spikes when using relatively large fixed step-sizes (Fig. 8B). For the largest step-size 417

tested, ∆t=0.5 ms, only the FEf
t solver indicated uncertainty in the number of spikes, whereas for RKBSf

x and 418

RKDPf
x all samples had only a single spike. When using smaller step-sizes, the probabilistic solvers’ outputs 419

were more indicative of the numerical uncertainty. For ∆t=0.02 ms, all solvers produced outputs that were closer 420

(nspikes = 5.9 for FE, nspikes = 6.5 for RKBS and nspikes = 6.7 for RKDP) to the reference solution and all 421

methods indicated uncertainty in the number of spikes. With the very small step-size ∆t=0.002 ms, all samples 422

from all solvers showed the same number of spikes as the reference and the probabilistic solvers indicated no 423

remaining uncertainty about the number of spikes here. 424

While these results may be unsatisfactory at first glance, they are not necessarily unexpected. The probabilistic 425

solvers used here can only capture the uncertainty arising through the numerical integration; they can not capture 426

the error that is introduced by restricting spikes to occur only on a fixed time grid, which is the case for the fixed 427

step-size solvers. We therefore simulated the neuron for the same solvers and step-sizes again, but allowed the 428

solver to take intermediate steps (see Eq. (10)) every time a reset occurred. When using these “pseudo-fixed” 429

step-sizes, we found that RKDPf
x still did not indicate uncertainty in the number of spikes for any step-size tested, 430

but now all samples had the same number of spikes as the reference (Fig. 8C). And while FEf
t and RKBSf

x still 431

underestimated the number of spikes for larger step-sizes on average (e.g. for ∆t=0.5 ms: nspikes = 3.5 for FE and 432

nspikes = 6.3 for RKBS), both indicated high numerical uncertainty (e.g. for ∆t=0.5 ms: q90(nspikes) = 6 for FE 433

and q90(nspikes) = 8 for RKBS, where q90 is the 90th percentile). 434

4 Discussion 435

The outcome of neuron simulations is affected by numerical uncertainty arising from the inevitably finite step-sizes 436

used in numerical ODE integration. With standard solvers there is no straightforward way to quantify how this 437

uncertainty affects quantities of interest such as spike-times and the number of spikes. 438

In this study, we demonstrated how probabilistic solvers can be used to quantify and reveal numerical uncer- 439

tainty in commonly used neuron models. Crucially, these solvers can be easily implemented and do not require a 440

detailed understanding of the underlying kinetics of the neuron model of interest. 441

Further, we showed that numerical uncertainty can affect the precise timing and sometimes even the number of 442

the spikes in simulations of neuron models commonly used in neuroscience. We also found that some models and 443

parametrizations are more susceptible to numerical uncertainty than others, and that some solvers employed in 444

the neuroscience literature yield rather large uncertainties. These findings highlight the need for a thorough quan- 445

tification of numerical uncertainty in neuroscience simulations to strike an informed balance between simulation 446

time and tolerated uncertainty. 447

The idea to quantify the accuracy or numerical errors of different solvers for mechanistic models in neuroscience 448

is not new. For example, Butera and McCarthy [39] showed that for small step-sizes, the forward Euler method 449

produces more accurate solutions than the exponential Euler method, which is in agreement with our findings. 450

Börgers and Nectow [11] on the other hand argued that for Hodgkin-Huxley-like systems exponential integrators— 451

such as exponential Euler and the exponential midpoint Euler—are often the best choice, as they allow for much 452

larger step-sizes especially when high accuracy is not necessary, which is again what we observed. Stewart and 453

Bair [10] argued in favor of the Parker-Sochacki integration method and showed that it can be used to generate 454

highly accurate solutions for both the Izhikevich and Hodgkin-Huxley model. However, this method has the 455

disadvantage that the ODE system at hand has to be put into the proper form and therefore requires specific 456

knowledge about the model and solver. In a more recent study, Chen et al. [12] recommended to use splitting 457

methods, such as second-order Strang splitting, instead of exponential integrators. 458

In contrast to these studies, probabilistic solvers offer a more general approach to tackle the problem of 459

numerical uncertainty. Instead of finding the “best” solver for a specific problem, they produce an easy-to- 460

interpret uncertainty measure that can be analyzed without specific knowledge about the solver or solved neuron 461

model. This allows to easily assess if a solver is sufficiently accurate for a given research question. It can therefore 462

facilitate both the choice of the solver and choice of solver settings such as the step-size. 463

In this study, we used two simple probabilistic solvers that build on deterministic solver and stochastically 464

perturb the numerical integration. For both, the state [18] and the step-size perturbation [22] method, it is crucial 465

that the perturbation is of the right order to neither underestimate the numerical uncertainty nor to reduce the 466

solver accuracy unnecessarily. To be able to adjust the perturbation we introduced a perturbation parameter for 467

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

both the state and step-size perturbation. We found that using the default value for this parameter yielded good 468

calibration in most cases, but slight adjustments often improved the calibration further. 469

The state and step-size perturbation are conceptually quite similar, but the two methods have some clear 470

advantages and disadvantages with respect to each other. The step-size perturbation requires a local error 471

estimator to be calibrated. This is disadvantageous because it requires a method for local error estimation which 472

can introduce a relatively large computational overhead per solution for lower order methods like FE. The step- 473

size perturbation may therefore a better choice for lower order methods. However, for higher order methods like 474

RKDP this difference vanishes and both approaches require an equally small computational overhead per solution. 475

Another advantage of the step-size perturbation is that it preserves desirable properties of the underlying solver 476

schemes [22]. For example, when Hodgkin-Huxley-like models are solved with exponential integrators like EE 477

or EEMP, the state variables of the activation and inactivation can not leave their domain [0, 1] by design of 478

the solvers, a property preserved by the step-size but not the state perturbation. A downside of the step-size 479

perturbation is that the calibration can be slightly more challenging because the perturbation is influenced by 480

linear scaling of the simulated time, which happens for example if the time unit of the model is changed. 481

Beyond the two perturbation methods used and discussed in this study, there are probabilistic ODE solvers 482

constructed using techniques from (nonlinear) Gaussian filtering and smoothing [15, 16, 40]. These methods 483

have the advantage that instead of repeatedly integrating the initial value problem, they only require a single 484

forward integration and return local uncertainty estimates that are proportional to the local truncation error. 485

The disadvantage of Gaussian ODE filters and smoothers is that the uncertainty estimates are Gaussian. This 486

restriction can be lifted by replacing Gaussian filters and smoothers with particle filters and smoothers [16]. In 487

particular for large neural network simulations, such efficient methods will be key in quantifying uncertainty. 488

To further extent the applicability of probabilistic solvers in neuroscience, it will be crucial to also develop 489

and test implicit probabilistic solvers for neuron models. For example, the ODEs of multi-compartment neuron 490

models are typically stiff which makes implicit solvers the better choice for such models [41]. A priori, it is often 491

not easy to judge whether a ODE system is stiff or not. A noteworthy attempt to tackle this problem is the 492

algorithm by Blundell et al. [42] that automatically determines whether an implicit or an explicit solver should 493

be used. 494

5 Acknowledgements 495

This research was funded by the Deutsche Forschungsgemeinschaft through a Heisenberg Professorship (BE5601/8- 496

1, PB), the Excellence Cluster 2064 “Machine Learning — New Perspectives for Science” (ref number 390727645, 497

PB and PH), ADIMEM (01IS18052C and 01IS18052B to PB and PH) and the Tübingen AI Center (FKZ: 498

01IS18039A, PB and PH). NK and PH gratefully acknowledge financial support by the German Federal Ministry 499

of Education and Research (BMBF) through Project ADIMEM (FKZ 01IS18052B), as well as by the European 500

Research Council through ERC StG Action 757275 / PANAMA, and funds from the Ministry of Science, Research 501

and Arts of the State of Baden-Württemberg. The authors thank the International Max Planck Research School 502

for Intelligent Systems (IMPRS-IS) for supporting Nicholas Krämer. 503

6 Competing interests 504

The authors have no competing interest to declare. 505

References

[1] Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke, EJ Chichilnisky, and
Eero P Simoncelli. Spatio-temporal correlations and visual signalling in a complete neuronal population.
Nature, 454(7207):995–999, 2008.

[2] Sebastian Gerwinn, Matthias Bethge, Jakob H Macke, and Matthias Seeger. Bayesian inference for spiking
neuron models with a sparsity prior. In Advances in Neural Information Processing Systems, pages 529–536,
2008.

[3] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations, plasticity.
Cambridge University Press, 2002.

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

[4] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT Press, 2007.

[5] Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo
Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels, et al. Training deep
neural density estimators to identify mechanistic models of neural dynamics. bioRxiv doi: 10.1101/838383,
2019.

[6] Jonathan Oesterle, Christian Behrens, Cornelius Schroeder, Thoralf Herrmann, Thomas Euler, Katrin
Franke, Robert G Smith, Guenther Zeck, and Philipp Berens. Bayesian inference for biophysical neuron
models enables stimulus optimization for retinal neuroprosthetics. bioRxiv doi: 10.1101/2020.01.08.898759,
2020.

[7] George Papamakarios, David C Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. arXiv:1805.07226, 2018.

[8] Philipp Hennig, Michael A Osborne, and Mark Girolami. Probabilistic numerics and uncertainty in compu-
tations. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
471(2179), 2015.

[9] Ernst Hairer, Syvert P Nørsett, and Gerhard Wanner. Solving Ordinary Differential Equations I – Nonstiff
Problems. Springer, 1993.

[10] Robert D Stewart and Wyeth Bair. Spiking neural network simulation: numerical integration with the
parker-sochacki method. Journal of Computational Neuroscience, 27(1):115–133, 2009.

[11] Christoph Borgers and Alexander R Nectow. Exponential time differencing for hodgkin–huxley-like odes.
SIAM Journal on Scientific Computing, 35(3):B623–B643, 2013.

[12] Zhengdao Chen, Baranidharan Raman, and Ari Stern. Structure-preserving numerical integrators for
hodgkin–huxley-type systems. SIAM Journal on Scientific Computing, 42(1):B273–B298, 2020.

[13] Chris J Oates and Tim J Sullivan. A modern retrospective on probabilistic numerics. Statistics and Com-
puting, 29:1335–1351, 2019.

[14] John Cockayne, Chris J Oates, Tim J Sullivan, and Mark Girolami. Bayesian probabilistic numerical methods.
SIAM Review, 64:756–789, 2019.

[15] Michael Schober, Simo Särkkä, and Philipp Hennig. A probabilistic model for the numerical solution of
initial value problems. Statistics and Computing, 29:99–122, 2019.

[16] Filip Tronarp, Hans Kersting, Simo Särkkä, and Philipp Hennig. Probabilistic solutions to ordinary differ-
ential equations as nonlinear Bayesian filtering: a new perspective. Statistics and Computing, 29:1297–1315,
2019.

[17] Nicholas Krämer, Nathanael Bosch, Jonathan Schmidt, and Philipp Hennig. Probabilistic ODE solutions in
millions of dimensions. arXiv preprint arXiv:2110.11812, 2021.

[18] Patrick R Conrad, Mark Girolami, Simo Särkkä, Andrew Stuart, and Konstantinos Zygalakis. Statistical
analysis of differential equations: introducing probability measures on numerical solutions. Statistics and
Computing, 27:1065–1082, 2017.

[19] Oksana A Chkrebtii, David A Campbell, Ben Calderhead, and Mark A Girolami. Bayesian solution uncer-
tainty quantification for differential equations. Bayesian Analysis, 11:1239–1267, 2016.

[20] Onur Teymur, Konstantinos Zygalakis, and Ben Calderhead. Probabilistic linear multistep methods. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, pages 4314–4321. Curran Associates, Inc., 2016.

[21] Onur Teymur, Han Cheng Lie, Tim Sullivan, and Ben Calderhead. Implicit probabilistic integrators for odes.
In Advances in Neural Information Processing Systems, pages 7244–7253, 2018.

[22] Assyr Abdulle and Giacomo Garegnani. Random time step probabilistic methods for uncertainty quantifi-
cation in chaotic and geometric numerical integration. Statistics and Computing, 2020.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

[23] Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE Transactions on Neural
Networks, 15(5):1063–1070, 2004.

[24] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its application
to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544, 1952.

[25] Astrid A Prinz, Dirk Bucher, and Eve Marder. Similar network activity from disparate circuit parameters.
Nature Neuroscience, 7(12):1345–1352, 2004.

[26] Przemyslaw Bogacki and Lawrence F Shampine. A 3 (2) pair of Runge-Kutta formulas. Applied Mathematics
Letters, 2(4):321–325, 1989.

[27] Jeff R Cash and Alan H Karp. A variable order runge-kutta method for initial value problems with rapidly
varying right-hand sides. ACM Transactions on Mathematical Software (TOMS), 16(3):201–222, 1990.

[28] John R Dormand and Peter J Prince. A family of embedded Runge-Kutta formulae. Journal of Computational
and Applied Mathematics, 6(1):19–26, 1980.

[29] Jiyeon Oh and Donald A French. Error analysis of a specialized numerical method for mathematical models
from neuroscience. Applied mathematics and computation, 172(1):491–507, 2006.

[30] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[31] Eugene M Izhikevich and Gerald M Edelman. Large-scale model of mammalian thalamocortical systems.
Proceedings of the National Academy of Sciences, 105(9):3593–3598, 2008.

[32] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6):1569–
1572, 2003.

[33] Justin WM Domhof and Paul HE Tiesinga. Balance between inhibitory cell types is necessary for flexible
frequency switching in adult mouse visual cortex. bioRxiv doi: 10.1101/2020.01.18.911271, 2020.

[34] Roberto F Galán, Nicolas Fourcaud-Trocmé, G Bard Ermentrout, and Nathaniel N Urban. Correlation-
induced synchronization of oscillations in olfactory bulb neurons. Journal of Neuroscience, 26(14):3646–3655,
2006.

[35] Astrid A Prinz, Cyrus P Billimoria, and Eve Marder. Alternative to hand-tuning conductance-based models:
construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6):3998–4015, 2003.

[36] G Bard Ermentrout and David H Terman. The hodgkin–huxley equations. In Mathematical foundations of
neuroscience, pages 1–28. Springer, 2010.

[37] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings
of the National Academy of Sciences, 117(48):30055–30062, 2020.

[38] Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo
Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels, et al. Training deep
neural density estimators to identify mechanistic models of neural dynamics. Elife, 9:e56261, 2020.

[39] Robert J Butera and Maeve L McCarthy. Analysis of real-time numerical integration methods applied to
dynamic clamp experiments. Journal of Neural Engineering, 1(4):187, 2004.

[40] Hans Kersting, T J Sullivan, and Philipp Hennig. Convergence rates of Gaussian ODE filters.
arXiv:1807.09737v2, 2019.

[41] Michael V Mascagni, Arthur S Sherman, et al. Numerical methods for neuronal modeling. Methods in
neuronal modeling, 2, 1989.

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

[42] Inga Blundell, Dimitri Plotnikov, Jochen M Eppler, and Abigail Morrison. Automatically selecting a suitable
integration scheme for systems of differential equations in neuron models. Frontiers in neuroinformatics,
12:50, 2018.

[43] Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathematical modeling
of neural systems. Computational Neuroscience Series, 2001.

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

Appendix

A Local error estimation and step-size adaptation

To compute the local error estimator εt for a single integration step, step solutions were computed with two different
numerical methods that were run in parallel to provide two solutions xa(t+ ∆t) and xb(t+ ∆t) for every step, given t, ∆t
and x(t) (e.g. see Dormand and Prince [28]). In every step, the local error estimator was computed as:

εt = |xa(t+ ∆t)− xb(t+ ∆t)|. (17)

For adaptive step-size methods, the error estimator εt = [ε1t , ..., ε
d
t]
> was used to compute an error norm ||e|| on

e = [e1, ..., ed]
>, where d was the dimension of the state vector x(t) = [x1(t), ..., xd(t)]

>. For every state variable xi, ei was
computed as:

ei =
εit

κa + κr ·max(|xi(t)|, |xi(t+ ∆t)|) , (18)

with κa and κr being the absolute and relative tolerance. For simplicity, we used κa = κr in all simulations and therefore
refer to these parameters as the tolerance κ.
||e|| was computed as the root-mean-square of e, i.e.:

||e|| =
√

1

d

∑
i

e2i . (19)

If ||e|| < 1, the step was accepted, and rejected otherwise. In both cases, the step-size was adapted and the next step-size
∆tnext was computed as:

∆tnext = 0.9 ·∆t ·min(max(||e||−1/kexp , kmin), kmax), (20)

where kmin and kmax are the minimum and maximum allowed change factors, that we set to typical values of 0.1 and 5
respectively [9]. kexp was 2 for FE, 3 for RKBS, 4 for RKCK, and 5 for RKDP, corresponding to the order of the error
estimator. Furthermore, we limited the step-sizes to be always smaller or equal to a maximum step-size ∆tmax, which we
set to ∆tmax = 1 ms for all simulations.

B Solver details

Runge-Kutta steps were implemented based on the scipy implementation [30]. The Butcher tableau for the RKCK method
was taken from [27]. Heun’s method was used as an error estimator for the FE method and implemented as follows. Given
t, ∆t, x(t), f(t,x(t)) and the deterministic FE solution xFE

det(t+ ∆t) the solution for Heun’s method was computed as:

x(t+ ∆) = x(t) + ∆t
[
f(t,x(t)) + f(t,xFE

det(t+ ∆t))
]
/2 (21)

To use the exponential integrators EE and EEMP, the ODEs were cast into the following form:

ż(t,x(t)) = [z∞(x)− z] /zτ (x), (22)

where z is a state variable of x (e.g. the membrane potential) and z∞(x) and zτ (x) are functions depending on x but not
explicitly on t. For a derivation of these functions for the HH model see for example [43]. The EE step was implemented
as:

z(t+ ∆t) = z∞(x) + [z(t) + z∞(x)] exp(−∆t/zτ (x)). (23)

The second order exponential integrator EEMP proposed by Börgers and Nectow [11] builds on the EE method. Given t,
∆t, x(t), the half-step EE solution x̃ = xEE

det(t+∆t/2) and the evaluations of z∞(x̃) and zτ (x̃) at the half-step, the solution
for z using the EEMP method was computed as:

z(t+ ∆t) = z∞(x̃) + [z(t) + z∞(x̃)] exp(−∆t/zτ (x̃)). (24)

We also implemented the solver used in the original implementation of the IN neurons, where the IVP was solved with a
method similar to FE of fixed step-size ∆t [23]. The implementation differs from a standard FE scheme in so far, as v and
u are updated subsequently:

v(t+ ∆t) = v(t) + ∆t · v̇(t, u(t), v(t)),

u(t+ ∆t) = u(t) + ∆t · u̇(t, u(t), v(t+ ∆t)).
(25)

21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

C Neuron model parameters

The neuron models simulated in this study were parametrized as follows. The parameters θ = [a, b, c, d] and IStim of the IN
model and the respective original step-sizes ∆t were taken from https://www.izhikevich.org/publications/figure1.m

[23].

The three maximum conductances for the classical HH neuron (see Eq. (12)) were set to ḡNa = 1.2 mS, ḡK = 0.36 mS
and ḡleak = 0.003 mS. The membrane capacitance was set to C = 0.01 µF (see Eq. (11)). For all STG neurons, we set the
membrane area to A = 0.628× 10−3 cm2 and the membrane capacitance to C = A · 1 µF/cm2 (see Eq. (11)). An STG
neuron has eight maximum channel conductances (see Eq. (12)):

θSTG-neuron = [ḡNa, ḡCaT, ḡCaS, ḡA, ḡKCa, ḡKd, ḡH, ḡleak]. (26)

For the single STG neuron, we set θSTG-neuron = A · [400, 2.5, 10, 50, 20, 0, 0.04, 0] mS/cm2, taken from an example in [35].
The STG neuronal network consists of three neuron models ABPD, LP and PY. The network is parametrized by the three
neurons’ conductances:

θABPD = A · [100, 2.5, 6, 50, 5, 100, 0.01, 0.0] mS/cm2,

θLP = A · [100, 0.0, 4, 20, 0, 25, 0.05, 0.03] mS/cm2,

θPY = A · [100, 2.5, 2, 50, 0, 125, 0.05, 0.01] mS/cm2,

(27)

where A = 0.628× 10−3 cm2 and the synaptic conductances θsyn:

θsyn = [ḡfastABPD-LP, ḡ
slow
ABPD-LP, ḡ

fast
ABPD-PY, ḡ

slow
ABPD-PY, ḡ

fast
ABPD-LP, ḡ

fast
LP-ABPD, ḡ

fast
LP-PY, ḡ

fast
PY-LP], (28)

where for example ḡfastABPD-LP is the maximum conductance of the fast synapse connecting neuron ABPD (presynaptic) to
neuron LP (postsynaptic). We simulated the network for five different synaptic parametrizations taken from the original
publication [25]:

θasyn = [10, 100, 10, 3, 30, 1, 3] nS,

θbsyn = [3, 0, 0, 30, 3, 3, 0] nS,

θcsyn = [100, 0, 30, 1, 0, 3, 0] nS,

θdsyn = [3, 100, 10, 1, 10, 3, 10] nS,

θesyn = [30, 30, 10, 3, 30, 1, 30] nS.

(29)

The frequencies fs (Eq. (15)) for the fast and slow synapses were 25 Hz and 10 Hz, and the reversal potentials Ei
(Eq. (14)) were −70 mV and −80 mV, respectively [25].

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://www.izhikevich.org/publications/figure1.m
https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

Tonic spikingA Tonic burstingB Phasic burstingC Mixed modeD
0

60v(
t) 0

60
0

60
0

60
0

60v(
t) 0

60
0

60
0

60
0

60v(
t) 0

60
0

60
0

60

0 50 100
Time (ms)

1

20
det.
org.
ref.

Sa
m

pl
e

0 100 200
Time (ms)

1

20
det.
org.
ref.

0 100 200
Time (ms)

1

20
det.
org.
ref.

0 50 100 150
Time (ms)

1

20
det.
org.
ref.

Spike frequency adaptationE Class 1F Class 2G Spike latencyH
0

60v(
t) 0

60
0

60
0

60
060v(

t) 060 060 060
0

60v(
t) 0

60
0

60
0

60

0 25 50 75
Time (ms)

1

20
det.
org.
ref.

Sa
m

pl
e

0 100 200 300
Time (ms)

1

20
det.
org.
ref.

0 100 200 300
Time (ms)

1

20
det.
org.
ref.

0 50 100
Time (ms)

1

20
det.
org.
ref.

ResonatorI IntegratorJ Rebound spikeK Rebound burstL
060v(

t) 060 060 060
060v(

t) 060 060 060
060v(

t) 060 060 060

0 200 400
Time (ms)

1

20
det.
org.
ref.

Sa
m

pl
e

0 50 100
Time (ms)

1

20
det.
org.
ref.

0 100 200
Time (ms)

1

20
det.
org.
ref.

0 100 200
Time (ms)

1

20
det.
org.
ref.

Threshold variabilityM DAPN Inhibition-induced spikingO Inhibition-induced burstingP
060v(

t) 060 060 060
060v(

t) 060 060 060
060v(

t) 060 060 060

0 50 100
Time (ms)

1

20
det.
org.
ref.

Sa
m

pl
e

0 20 40
Time (ms)

1

20
det.
org.
ref.

0 100 200 300
Time (ms)

1

20
det.
org.
ref.

0 100 200 300
Time (ms)

1

20
det.
org.
ref.

Figure S1: (A-P) As in Figs. 2B and 2C. Simulations of the IN model for different parametrizations θi with
stimuli IStim (normalized in gray). Solutions for v(t) and the respective spike-times for a reference solver (black)
and the original solver scheme (orange). For plotting, v(t) were clipped at 30. For both solutions, spike-times are
shows in a raster plot (bottom) together with spike-times of 20 samples from a FEf

t solver (blue).

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

0
60v(

t) A
0

60

B
0

60

C

0
60v(

t) 0
60

0
60

0 1 2
Time (ms)

1

20
det.
ref.

Sa
m

pl
e

0 1 2
Time (ms)

1

20
det.
ref.

0 1 2
Time (ms)

1

20
det.
ref.

0
60v(

t) D
0

60

E

0
60v(

t) 0
60

0 2 4 6
Time (ms)

1

20
det.
ref.

Sa
m

pl
e

0 1 2
Time (ms)

1

20
det.
ref.

Figure S2: (A-E) As in Figs. 2D and 2E. Simulations of the STG model for all five synaptic parametrizations
(see Appendix C) from θa

syn to θe
syn, respectively. Solutions for the membrane potential v(t) of the LP neuron

are shown for a reference solver (black) and a deterministic EE solver with ∆t=0.1 ms (orange). Bottom panels:
Spike-times of the LP neuron are shown for the reference (black), the deterministic EE solution (orange) and for
20 samples from a probabilistic EEf

t with ∆t=0.1 ms (blue).

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

-4 0 4
0

1

R
N

EEt
f

t = 0.1msA

-4 0 4

FEt
f

t = 0.05ms

-4 0 4

RKBSx
a

= 1e 2

-4 0 4

RKDPx
a

= 1e 2

-4 0 4
log2()

0

1

R
N

t = 0.025ms

-4 0 4
log2()

t = 0.025ms

-4 0 4
log2()

= 1e 4

-4 0 4
log2()

= 1e 4

-4 0 4
0

1

R
D

t = 0.1msB

-4 0 4

t = 0.05ms

-4 0 4

= 1e 2

-4 0 4

= 1e 2

-4 0 4
log2()

0

1

R
D

t = 0.025ms

-4 0 4
log2()

t = 0.025ms

-4 0 4
log2()

= 1e 4

-4 0 4
log2()

= 1e 4

Figure S3: (A, B) MAE ratios RN and RD for different solvers (column titles) and step-sizes ∆t / tolerances κ
(panel titles) for the step (grey) and the noisy step (black) stimulus as a function of the perturbation parameter
σ (x-axis), respectively. See also Fig. 6D. Values larger than 1.5 were clipped (indicated by red circles).

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.04.27.441605doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.27.441605
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Methods and Models
	 Probabilistic solvers
	Choice of solvers
	 Interpolation
	 Spike-time estimation
	Common ODE models in computational neuroscience
	 Single Izhikevich neurons
	Single Hodgkin-Huxley neurons
	STG model

	Quantifying numerical uncertainty
	Reference solutions
	Distance metrics

	Code and availability

	Results
	Probabilistic solvers can reveal numerical uncertainty in neuron models
	Probabilistic solvers can guide solver selection
	Calibration of probabilistic solvers
	Computational overhead
	Required number of samples
	Overhead per sample

	 Limitations

	 Discussion
	Acknowledgements
	Competing interests
	Local error estimation and step-size adaptation
	Solver details
	Neuron model parameters

